宜昌市八年级下学期数学期末考试试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜昌市八年级下学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)(2020·云南模拟) 若代数式在实数范围内有意义,则x的取值范围是()
A . x<3
B . x≤3
C . x>3
D . x≥3
2. (2分)对于一次函数y=x+6,下列结论错误的是()
A . 函数值随自变量增大而增大
B . 函数图象与两坐标轴围成的三角形面积为18.
C . 函数图象不经过第四象限
D . 函数图象与x轴交点坐标是(0,﹣6)
3. (2分) (2019八下·长兴月考) 矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连结AF,取AF的中点H,连结GH,若BC=EF=4,CD=CE=2,则GH=()
A . 1
B .
C .
D .
4. (2分) (2018九下·市中区模拟) 如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是().
A . 5.2
B . 4.6
C . 4
D . 3.6
5. (2分)(2017·陕西模拟) 如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD
与折痕的夹角是60°,则点B到C′的距离是()
A . 4
B .
C .
D . 3
6. (2分)(2018·连云港) 一组数据2,1,2,5,3,2的众数是()
A . 1
B . 2
C . 3
D . 5
7. (2分) (2020八上·丹江口期末) 如图,将矩形(长方形)沿折叠,使点与点重合,点落在处,连接,,则下列结论:① ,② ,③ ,④ ,,三点在同一直线上,其中正确的是()
A . ①②③
B . ①③④
C . ②③④
D . ①②④
8. (2分) (2019七上·鸡西期末) 一商场某品牌服装统一按进价增加10%作为定价,元旦期间以9折促销.李老师在该摊位以198元的价格买了一件服装,则对于商家来说,这次生意的盈亏情况为()
A . 亏2元
B . 不亏不赚
C . 赚2元
D . 亏5元
9. (2分)如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()
A . 14
B . 16
C . 17
D . 18
10. (2分)甲、乙两车分别从M,N两地沿同一公路相向匀速行驶,两车分别抵达N,M两地后即停止行驶.已知乙车比甲车提前出发,设甲、乙两车之间的路程S(km),乙行驶的时间为t(h),S与t的函数关系如图所示.有下列说法:
①M、N两地之间公路路程是300km,两车相遇时甲车恰好行驶3小时;
②甲车速度是80km/h,乙车比甲车提前1.5个小时出发;
③当t=5(h)时,甲车抵达N地,此时乙车离M地还有20km的路程;
④a=, b=280,图中P,Q所在直线与横轴的交点恰(, 0).
其中正确的是()
A . ①②
B . ②③
C . ③④
D . ②④
二、填空题 (共4题;共6分)
11. (1分)(2019·莲湖模拟) 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD 于点E,交BC于点F,则EF的长为________.
12. (1分)若,则m的取值范围是________.
13. (2分) (2015七下·龙口期中) 已知一次函数y=﹣ x+m和y= x+n的图象都经过A(﹣2,0),则A点可看作方程组________的解.
14. (2分) (2017九上·合肥开学考) 如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2 .
以上结论中,你认为正确的有________.(填序号)
三、解答题 (共11题;共81分)
15. (5分)已知:a= -2,b= +2,分别求下列代数式的值:
(1) a2b-ab2
(2) a2+ab+b2
16. (5分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:
候选人
面试笔试
形体口才专业水平创新能力
甲86909692
乙92889593
(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:4:6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?
(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,
创新能力占30%,那么你认为该公司应该录取谁?
17. (10分) (2018八上·江都月考) 如图,在平面直角坐标系中,O为坐标原点,正方形OABC的面积为16,点D的坐标为(0,3).将直线BD沿y轴向下平移d个单位得到直线l(0<d≤4).
(1)则点B的坐标为________;
(2)当d=1时,求直线l的函数表达式;
(3)设直线l与x轴相交于点E,与边AB相交于点F,若CE=CF,求d的值并直接写出此时∠ECF的度数.
18. (5分) (2018七上·河口期中) 如图所示,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,求出旗杆在离底部多少米的位置断裂?
19. (5分)某工厂用如图1所示的长方形和正方形纸板做成如图2所示的A、B两种长方体形状的无盖纸盒,现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子?
20. (10分) (2015八上·句容期末) 如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.
(1)求m、n的值;
(2)求△ABO的面积;
(3)观察图象,直接写出当x满足________时,y1>y2.
21. (5分)如果只给你一把带有刻度的直尺,你是否能检查如图所示的∠MPN是不是直角?如果能,请简述你的方法;如果不能,请说明理由.
22. (10分) (2019八下·博罗期中) 如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D 作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.
23. (6分)(2017·琼山模拟) 目前我市“校园手机”现象越来越受到社会关注,针对这种现象,重庆一中初三(1)班数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了多少名中学生家长;
(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;
(3)根据抽样调查结果,请你估计我校11000名中学生家长中有多少名家长持反对态度;
(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.
24. (5分) (2017九上·海宁开学考) 某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)
25. (15分)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.
(1)
求证:△ABD≌△BEC;
(2)
连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共4题;共6分)
11-1、
12-1、
13-1、
14-1、
三、解答题 (共11题;共81分)
15-1、
15-2、
16-1、
17-1、
17-2、
17-3、
18-1、
19-1、20-1、
20-2、20-3、
21-1、
22-1、
22-2、23-1、
23-2、23-3、
23-4、
24-1、25-1、25-2、。