深圳平湖平湖中学数学整式的乘法与因式分解中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
(2)∵a+b+c=11,ab+bc+ac=38,
∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;
(3)∵a+b=10,ab=20,
∴S阴影=a2+b2﹣ (a+b)•b﹣ a2
= a2+ b2﹣ ab
(1)计算:F(24);
(2)当n为正整数时,求证:F(n3+2n2+n)= .
【答案】(1) ;(2) .
【解析】
分析:(1)根据最佳分解的意义,把24分解成两数的积,找出ቤተ መጻሕፍቲ ባይዱ的绝对值最小的两数,求比值即可;
(2)根据(1)的求法,确定差的绝对值最小的两数的特点,然后根据要求变形即可.
详解:(1)∵24=1×24=2×12=3×8=4×6,
(1)根据图2,写出一个代数恒等式:.
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.
(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.
【解析】
【分析】
(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
(2)利用(1)中的等式直接代入求得答案即可;
(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.
(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.
【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45;(3)20.
3.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.
例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.
例如:

根据以上材料,完成相应的任务:
(1)利用“多项式的配方法”将 化成 的形式为_______;
(2)请你利用上述方法因式分解:
① ;② .
【答案】(1) ;(2)① ;②
【解析】
【分析】
(1)将多项式 即可完成配方;
(2)①将多项式+1-1后即可用配方法再根据平方差公式分解因式进行解答;
②将多项式 即可完成配方,再根据平方差公式分解因式,整理后即可得到结果.
(1)写出 的展开式;
(2)利用整式的乘法验证你的结论.
【答案】(1) ;(2)见解析
【解析】
【分析】
(1)运用材料所提供的结论即可写出;(2)利用整式的乘法求解验证即可.
【详解】
(1) ,
(2)方法一:
=
方法二:
=
=
= .
【点睛】
解决阅读题的关键是读懂题目所给材料并理解,应用题目中给出的信息解决问题.
= (a+b)2﹣ ab
= ×102﹣ ×20
=50﹣30
=20.
【点睛】
本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.
4.任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q).如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并且规定F(n)= .例如18=1×18=2×9=3×6,这时就有F(18)= .请解答下列问题:
(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.
【详解】
解:(1) = = ,
故答案为: ;
(2)①



【点睛】
此题考查多项式的配方法,多项式的分解因式,正确理解题中的配方法的解题方法是关键.
2.在我国南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用下图的三角形解释二项和的乘方规律.杨辉在注释中提到,在他之前北宋数学家贾宪(1050年左右)也用过上述方法,因此我们称这个三角形为“杨辉三角”或“贾宪三角”.杨辉三角两腰上的数都是 ,其余每一个数为它上方(左右)两数的和.事实上,这个三角形给出了 的展开式(按 的次数由大到小的顺序)的系数规律.例如,此三角形中第三行的 个数 ,恰好对应着 展开式中的各项系数,第四行的 个数 ,恰好对应着 展开式中的各项系数,等等.请依据上面介绍的数学知识,解决下列问题:
其中4与6的差的绝对值最小,
∴F(24)= = .
(2)∵n3+2n2+n=n(n+1)2,
其中n(n+1)与(n+1)的差的绝对值最小,且(n+1)≤n(n+1),
∴F(n3+2n2+n)= = .
点睛:本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.
5.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:
一、八年级数学整式的乘法与因式分解解答题压轴题(难)
1.阅读以下材料,并按要求完成相应的任务.
在初中数学课本中重点介绍了提公因式法和运用公式法两种因式
分解的方法,其中运用公式法即运用平方差公式: 和完全平方公式: 进行分解因式,能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.当一个二次三项式不能直接能运用完全平方公式分解因式时,可应用下面方法分解因式,先将多项式 变形为 的形式,我们把这样的变形方法叫做多项式 的配方法.再运用多项式的配方法及平方差公式能对一些多项式进行分解因式.
相关文档
最新文档