31不等关系与不等式精品PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3x y
x
N
*
y N *
必修5 第74页
a+b ≥0 h4
新课讲授
2.文字语言与数学符号间的转换.
文字语言 数学符号 文字语言 数学符号
大于
>
至多

小于
<
至少

大于等于 ≥
不少于

小于等于 ≤
不多于

三、不等式基本原理
a - b > 0 <=> a > b
a - b = 0 <=> a = b
变式a b 0那么 1
1
ab a
(2)如果a>b>c>0,那么 c
c
ab
变式a>b>c>0,那么 b c a-b a c
练习:已知c>a>b>0,试比较 b 与 c 的大小? c-b c a
例3.如果30<x<42,16<y<24,求x+y,x-2y,x 的范围? y
例4:已知a>b>0,c>d>0,求证:a d
2
2
取值范围是
(B )
A.
B. 0
C.
2
2
D. 0
2
问:当a
b时,求
1 a

1 b
的大小关系?
结论 : a b 0 1 1 ab
ab0 1பைடு நூலகம் 1 ab
例1:已知a>b>0,c<0,求证 c a
c b
例2.(1)如果a b 0, 那么 1 1 ab
现实世界和日常生活中,既有相等关系, 又存在着大量的不等关系.如两点之间线 段最短,三角形两边之和大于第三边,等 等.这种不等关系都可用不等式来表示.
一、不等关系是普遍存在的
想一想, 举出几个现实生活 中与不等关系有关的例子?
二、用不等式(组)来表示不等关系
不等式
用不等号(<、>、≤、≥、≠)表示不等关 系的式子叫不等式。
4.作差比较法 步骤:作差,变形,定号
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
20
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
a - b < 0 <=> a < b
比较两实数大小的方法 —作差比较法:
比较两个实数a与b的大小,归结为判断它们的差a-b 的符号;比较两个代数式的大小,实际上是比较它们 的值的大小,而这又归结为判断它们的差的符号.
性质1: (对称性) a b b a
性质2 : (传递性)
a b
b
c
a
二、用不等式(组)来表示不等关系
问题3 某钢铁厂要把长度为4000mm的钢管截 成500mm和600mm的两种规格。按照生产的要 求,600mm的钢管的数量不能超过500mm钢管 的3倍。怎样写出满足上述所有不等关系的不 等式呢?
分析:设截得500mm的钢管x根,截得600mm
的钢管y根 500x 600 y 4000
答案: 9≤t≤16
二、用不等式(组)来表示不等关系
问题2 某种杂志原以每本2.5元的价格销售, 可以售出8万本。据市场调查,若单价每提 高0.1元销售量就可能相应减少2000本。若 把提价后杂志的定价设为x元,怎样用不等 式表示销售的总收入仍不低于20万元呢?
(8 x 2.5 0.2) x 20 0.1
a b 0 n a n b (n N *, n 2)
(可乘方性、可开方性)
课堂练习
1. 若a、b、c R,a b,则下列不等式成
立的是
(C)
A. 1 1 ab
C. a b c2 1 c2 1
B. a2 b2 D. a | c | b | c |
课堂练习
2. 若、 满足 ,则 的
b c
例5 :已知x 0,求证 1+x 1 x 2
例6:(比较大小)
(1)x
-1,比较
1 1+x
与1
x的大小.
(2)当x 1时,求证:x 1 x x x 1
五、小结:
1.不等关系是普遍存在的
2.用不等式(组)来表示不等关系
3.不等式基本原理 a - b > 0 <=> a > b a - b = 0 <=> a = b a - b < 0 <=> a < b
c
性质3 : (加法的单调性) a b a c b c
推论 :
a c
b d
a
c
b
d
性质4 : (乘法的单调性) a b, c 0 ac bc (同向不等式的可乘性)
推论1 :
a b 0 c d 0 ac bd
推论2 : a b 0 an bn (n N *, n 2)
“不等号”是英国数学家哈里奥特 (T.Harriot)于1631年开始使用的,但当时并 没有被数学界所接受,直到100多年后,才逐 渐成为标准的应用符号。
二、用不等式(组)来表示不等关系
问题1 今天的天气预报说:明天早晨最低温 度为9℃,明天白天的最高温度为16℃ ,那 么明天白天的温度t℃满足什么关系?
相关文档
最新文档