2013年高考数学试题(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z=(1+ai)(2+i)是纯虚数,则实数a的值为A.2 B.- C.
D.-22.如图所示是数列一章的知识结构图,下列说法正确的是 A.概念与分类是从属关系 B.等差数列与等比数列是从属关系 C.数列与等差数列是从属关系D.数列与等比数列是从属关系,但数列与分类不是从属关系3.下列说法中错误的是A.对于命题p:?x0R,sin x01,则綈p:?xR,sin x高考数学试题由查字典数学网收集整理!!!B.命题若0C.若pq为真命题,则p,q均为真命题;D.命题若x2-x-2=0,则x=2的逆否命题是若x2,则x2-x-2.4.1A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件5.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如下几组样本数据:x3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是 A.=0.7x+0.35 B.=0.7x+1C.=0.7x+2.05 D.=0.7x+0.456.三角形的面积为S=(a+b+c)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为A.V=abcB.V=ShC.V=(S1+S2+S3+S4)r,(S1、S2、S3、S4为四个面的面积,r为内切球的半径)D.V=(ab+bc+ac)h,(h为四面体的高)7.函数
f(x)=x5-x4-4x3+7的极值点的个数是A.1个 B.2个 C.3个 D.4个8.已知椭圆+=1,F1、F2分别为其左、右焦点,椭圆上一点M到F1的距离是2,N是MF1的中点,则|ON|(O为原点)的长为A.1 B.2 C.3 D.4选择题答题卡题号12345678得分答案二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在答题卷对应题号后的横线上.9.已知复数z=1+,则||=____________.10.读下面的程序框图,当输入的值为-5时,输出的结果是________.11.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中的白色地面砖有______________块.12.曲线f(x)=xsin x在点处的切线方程是______________.13.已知双曲线-=1(a,b0)的顶点到渐近线的距离等于,则双曲线的离心率e是________.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.14.(本小题满分11分)在某测试中,卷面满分为100分,60分及以上为及格,为了调查午休对本次测试前两个月复习效果的影响,特对复习中进行午休和不进行午休的考生进行了测试成绩的统计,数据如下表所示:分数段[29~40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]午休考生人数23473021143114不午休考生人数1751671530173参考公式及数据:
K2=P(K2k0)0.100.050.0250.0100.005k02.7063.8415.0246.6357.879(1)根据上述表格完成列联表:及格人数不及格人数总计午休不午休总计(2)能否在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系?对今后的复习有什么指导意义?15.(本小题满分12分)已知:a,b,c0.求证:a(b2+c2)+b(a2+c2)+c(a2+b2)6abc.16.(本小题满分12分)已知抛物线y2=4x 的焦点是F,准线是l,过焦点的直线与抛物线交于不同两点A,B,直线OA(O为原点)交准线l于点M,设A(x1,y1),B(x2,y2).(1) 求证:y1y2是一个定值;(2) 求证:直线MB平行于x轴.一、填空题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.1.从抛物线x2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为________.二、选择题:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.已知定义在R上的函数f(x)的导数是f(x),若f(x)是增函数且恒有f(x)0,则下列各式中必成立的是A.2f(-1)2f(-3)C.2f(1)f(2) D.3f(2)2f(3)三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.3.(本小题满分13分)已知函数f(x)=-x3+3x.(1)求函数f(x)的单调区间和极值;(2)当x[0,a],a0时,设f(x)的最大值是h(a),求h(a)的表达式.4.(本小题满分13分)(1)证明:xln x(2)讨论函数f(x)=ex-ax-1的零点个数.5. (本小题满分14分)如图,已知焦点在x轴上的椭圆+=1(b0)有一个内含圆x2+y2=,该圆的垂直于x 轴的切线交椭圆于点M,N,且(O为原点).(1)求b的值;(2)设内含圆的任意切线l交椭圆于
点A、B.求证:,并求|AB|的取值范围.湖南师大附中2015届高二第一学期期末考试试题数学(文科)参考答案必考Ⅰ部分(100分)6.C 【解析】△ABC的内心为O,连结OA、OB、OC,将△ABC分割为三个小三角形,这三个小三角形的高都是r,底边长分别为a、b、c;类比:设四面体A-BCD的内切球球心为O,连接OA、OB、OC、OD,将四面体分割为四个以O为顶点,以原面为底面的四面体,高都为r,所以有V=(S1+S2+S3+S4)r.7.B 【解析】f(x)=x4-4x3-12x2=x2(x+2)(x-6),所以f(x)有两个极值点x=-2及x=6.8.D 【解析】据椭圆的定义,由已知得|MF2|=8,而ON是△MF1F2的中位线,故|ON|=4.二、填空题9.10.2 【解析】①A=-50,②A=-5+2=-30,③A=-3+2=-10,④A=-1+2=10,⑤A=21=2.11.4n+2 【解析】第1个图案中有6块白色地面砖,第二个图案中有10块,第三个图案中有14块,归纳为:第n 个图案中有4n+2块.12.x-y=013. 【解析】由题意知=tan 30=?e==.∵K25.75.024,因此,有97.5%的把握认为午休与考生及格有关系,即能在犯错误的概率不超过0.025的前提下认为午休与考生及格有关系.(10分)对今后的复习的指导意义就是:在以后的复习中,考生应尽量适当午休,以保持最佳的学习状态.(11分)(2)据题意设A,M(-1,yM),(8分)由A、M、O三点共线有=?y1yM=-4,(10分)又y1y2=-4则y2=yM,故直线MB平行于x轴.(12分)必考Ⅱ部分(50分)一、填空题1.10 【解析】设P(xP,yP),∵|PM|=|PF|=yP+1=5,yP=4,则|xP|=4,S△MPF=|MP||xP|=10.二、选择题2.B 【解析】由选择支分析可考查函数y=的单调性,而f(x)0且f(x)0,则当x0时0,即函数在(-,0)上单调递减,故选 B.三、解答题 3.【解析】(1)f(x)=-3x2+3=-3(x+1)(x-1)(2分)列表如下:x(-,-1)-1(-1,1)1(1,+)f(x)-0+0-f(x)递减极小值递增极大值递减所以:f(x)的递减区间有:(-,-1),(1,+),递增区间是(-1,1);f极小值(x)=f(-1)=-2,f极大值(x)=f(1)=2.(7分)(2)由(1)知,当0此时fmax(x)=f(a)=-a3+3a;(9分)当a1时,f(x)在(0,1)上递增,在(1,a)上递减,即当x[0,a]时fmax(x)=f(1)=2(12分)综上有h(a)=(13分)4.【解析】 (1)设函数(x)=xln x-x+1,则(x)=ln x(1分)则(x)在(0,1)上递减,在(1,+)上递增,(3分)(x)有极小值(1),也是函数(x)的最小值,则(1)=1ln 1-1+1=0故xln xx-1.(5分)(2)f(x)=ex-a(6分)①a0时,f(x)0,f(x)是单调递增函数,又f(0)=0,所以此时函数有且仅有一个零点x=0;(7分)②当a0时,函数f(x)在(-,ln a)上递减,在(ln a,+)上递增,函数f(x)有极小值f(ln a)=a-aln a-1(8分)ⅰ.当a=1时,函数的极小值f(ln a)=f(0)=a-aln a-1=0则函数f(x)仅有一个零点x=0;(10分)ⅱ.当01时,由(1)知极小值f(ln a)=a-aln a-10,又f(0)=0当0故此时f(x)?+,则f(x)还必恰有一个小于ln a的负根;当a1时,2ln a0,计算f(2ln a)=a2-2aln a-1考查函数g(x)=x2-2xln x-1(x1) ,则g(x)=2(x-1-ln x),再设h(x)=x-1-ln x(x1),h(x)=1-=0故h(x)在(1,+)递增,则h(x)h(1)=1-1-ln 1=0,所以g(x)0,即g(x)在(1,+)上递增,则g(x)g(1)=12-21ln 1-1=0即f(2ln a)=a2-2aln a-10,则f(x)还必恰有一个属于(ln a,2 ln a)的正根.故01时函数f(x)都是恰有两个零点.综上:当a(-,0]{1}时,函数f(x)恰有一个零点x=0,当a(0,1)(1,+)时函数f(x)恰有两个不同零点. (13分)5.【解析】(1)当MNx 轴时,MN的方程是x=,设M,N由知|y1|=,即点在椭圆上,代入椭圆方程得b=2.(3分)(2)当lx轴时,由(1)知当l不与x轴垂直时,设l的方程是:y=kx+m,即kx-y+m=0则=?3m2=8(1+k2)(5分)?(1+2k2)x2+4kmx+2m2-8=0,=16k2m2-4(1+2k2)(2m2-8)=(4k2+1)0,设A(x1,y1),B(x2,y2)则,(7分)x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2-+==0,即.即椭圆的内含圆x2+y2=的任意切线l交椭圆于点A、B时总有.(9分)(2)当lx轴时,易知|AB|=2=(10分)当l不与x轴垂直时,|AB|===(12分)设t=1+2k2[1,+),(0,1]则|AB|==所以当=即k=时|AB|取最大值2,当=1即k=0时|AB|取最小值,(或用导数求函数f(t)=,t[1,+)的最大值与最小值)综上|AB|.(14分)高考数学试题由查字典数学网收集整理!!!