肌肉宰后变化

肉的宰后变化

一、肉的宰后变化现象及原因。 肉的宰后变化包括尸僵、成熟、腐败。 (1)尸僵:屠宰后的肉尸经过一定时间,肉的伸展性逐渐消失,由弛缓变为紧张,无光泽,关节不活动,呈现僵硬状态。 死后僵直的机制:动物死亡后,呼吸停止了,供给肌肉的氧气也就中断了,此时其糖原不再像有氧存在时最终氧化成CO2和H2O,而是在缺氧情况下经糖酵解作用产生乳酸。在正常有氧条件下,每个葡萄糖单位可氧化生成39个分子A TP,而经过糖酵解只能生成3分子A TP,A TP的供应受阻。然而体内A TP的消耗,由于肌浆中ATP酶的作用却在继续进行,因此动物死后,ATP的含量迅速下降。ATP的减少及pH的下降,使肌质网功能失常,发生崩解,肌质网失去钙泵的作用,内部保存的钙离子被放出,致使Ca2+浓度增高,促使粗丝中的肌球蛋白ATP 酶活化,更加快了A TP的减少,结果肌动蛋白和肌球蛋白结合形成肌动球蛋白,引起肌肉收缩表现出肉尸僵硬。 (2)成熟:尸僵持续一定时间后,开始缓解,硬度降低,保水性恢复,变得柔嫩多汁,具有良好风味,适于加工食用的过程。成熟包括解僵和嫩化。 肉成熟的条件及机制:关于解僵的实质,至今尚未充分判明,主要有以下几方面论述: a、肌原纤维小片化刚宰后的肌原纤维与活体肌肉一样,是由数十到数百个肌节延长轴方向构成的纤维,动物死后由于僵直收缩产生张力,同时由于基质网功能破坏,大量Ca2+从网内释放,高浓度的Ca2+长时间作用于Z线,使Z线蛋白变性而脆弱,给予物理力的冲击和牵引即发生断裂。 b、死后肌肉中肌动蛋白和肌球蛋白纤维之间结合变弱。研究显示随保藏时间延长,肌原纤维的分解量逐渐增加,家兔肌肉10℃条件下保藏2d肌原纤维分解5%;到6d分解近50%。 c、肌肉中结构弹性网状蛋白的变化结构弹性网状蛋白是肌原纤维中除去粗丝、细丝及Z线等蛋白质后,不溶性的并具有较高弹性的蛋白质,贯穿于肌原纤维的整个长度,连续地构成网状结构。肉类在成熟软化时结构弹性蛋白质的消失,导致肌肉弹性的消失。 d、蛋白酶说成熟肌肉的肌原纤维,在十二烷硫酸盐溶液中溶解后,进行电泳分析,发现肌原蛋白T减少,出现了相对分子质量3万u的成分。说明成熟中的肌原纤维,在蛋白酶作用下分解。 肉嫩化原因:(1)肌原纤维I带和Z线结合变弱或断裂这是因为钙激活酶对联结蛋白和伴肌动蛋白的降解,弱化了细丝和Z线的相互作用,促进了肌原纤维小片化的增加,有助于提高肉嫩度。(2)连接蛋白的降解肌原纤维间连接蛋白起固定、保持整个肌细胞内肌原纤维排列的有序性,被钙激活酶降解后,有序结构受到破坏。(3)肌钙蛋白的降解肌钙蛋白由三个亚基构成,即钙结合亚基(TnC)、钙抑制亚基(TnI)、原肌球蛋白结合亚基(TnT),其中,TnT能结合原肌球蛋白起连接作用。TnT的降解弱化了细丝结构,有助于提高嫩度。 腐败:蛋白质受微生物作用的分解过程。 (3)腐败:蛋白质受微生物作用的分解过程。 肉腐败的原因和条件:动物死后,吞噬细胞停止作用,使细菌有可能繁殖和传播。健康动物的肌肉、血液通常无菌,肉的腐败是在屠宰、加工、流通过程受外界微生物污染所致。腐败通常由环境中好气微生物污染肉表面开始,然后沿结缔组织向深层扩散,特别是邻近关节、骨骼和血管的地方,最易腐败。由微生物分泌的

宰后肉变化

肌肉宰后会发生一系列变化,使muscle→meat 热鲜肉→肉的尸僵→解僵成熟→自体酶解→腐败变质 动物刚屠宰后,肉温还没有散失,柔软具有较小弹性,这种处于生鲜状态的肉称作热鲜肉。肌肉宰后:尸僵→成熟→腐败 一、肌肉收缩的基本单位 肌肉→肌纤维(肌细胞)→肌原纤维→肌节 二、肌肉收缩的机制 生活的肌肉处于静止状态时,由于Mg和ATP形成复合体的存在,防碍了肌动蛋白与肌球 蛋白粗丝突起端的结合。肌原纤维周围糖原的无氧酵解和线粒体内进行的三羧酸循环,使ATP不断产生,以供应肌肉收缩之用。肌球蛋白头是一种ATP酶,这种酶的激活需要Ca2+的激活。神经冲动→肌内膜→肌质网释放Ca2+→ Ca2+浓度升高→使肌动蛋白暴露与肌球 蛋白结合位点→使ATP酶活化→ATP分解产生能量→肌动蛋白与肌球蛋白结合→收缩 三、肌肉僵直形成的原因 ①ATP减少:动物死之后,呼吸停止了,在缺氧情况下经糖酵解产生乳酸,产生的ATP量显著降低。然而体内ATP的消耗,由于肌浆中ATP酶的作用却在继续进行,因此动物死后,ATP的含量迅速下降。同时,由于糖酵解的进行,产生大量乳酸,使肉的pH迅速降低。 ②ATP的减少及pH值的下降,使肌质网功能失常,发生崩解,肌质网失去钙泵的作用, 内部保存的钙离子被放出,致使Ca2+浓度增高,促使粗丝中的肌球蛋白ATP酶活化,更加快了ATP的减少,结果肌动蛋白和肌球蛋白结合形成肌动球蛋白,引起肌肉收缩表现出肉 尸僵硬。 ③反应不可逆:这种情况下由于无神经调节作用,ATP不断减少,钙泵功能丧失,Ca2+浓 度无法调节,所以反应是不可逆的,则引起永久性的收缩。 四、肌肉宰后有三种短缩或收缩形式, –热收缩(heat shortening) –冷收缩(cold shortening) –解冻僵直收缩(thaw shortening) 冷收缩 当牛肉、羊肉和火鸡肉在pH值下降到5.9~6.2之前,也就是僵直状态完成之前,温度降 低到10℃以下,这些肌肉收缩,并在随后的烹调中变硬,这个现象称为冷收缩。 该现象红肌肉比白肌肉出现得更多一些,尤以牛肉明显。 特点:比正常的热收缩更剧烈的收缩,可逆性小,肉嫩度差。 解冻僵直收缩 肌肉在僵直未完成前进行冻结,仍含有较高的ATP,在解冻时由于ATP发生强烈而迅速的 分解而产生的僵直现象,称为解冻僵直。解冻时肌肉产生强烈的收缩,收缩的强度较正常 的僵直剧烈的多,并有大量的肉汁流出。因此要在形成最大僵直之后再进行冷冻,以避免 这种现象的发生。

肌肉收缩

肌肉收缩 肌肉收缩是肌肉对刺激所产生的收缩反应现象 分类 肌肉对单个刺激发生的机械反应称为单收缩。根据肌肉收缩时肌长度和肌张力的变化, 可将肌肉收缩分为三种形式。 缩短收缩 又叫向心收缩,特点:张力大于外加阻力,肌长度缩短。 作用:是肌肉运动的主要形式,是实现动力性运动的基础(如挥臂、高抬腿等)。 (1)等张收缩 外加阻力恒定,当张力发展到足以克服外加阻力后,张力不再发生变化。但在不同的关节角度时,肌肉收缩产生的张力则有所不同。在关节运动的整个范围内,肌肉用力最大的一点称为“顶点”。在此关节角度下,骨杠杆效率最差。 如:推举杠铃,关节角度在120°时肱二头肌收缩张力最大,关节角度在30°时肱二头肌收缩张力最小。 最大等长收缩时,只有在“顶点”即骨杠杆效率最差的关节角度下,肌肉才有可能达到最大收缩。而在其他关节角度下,肌肉收缩均小于自身最大力量。在整个关节活动的范围内,肌肉做等张收缩时所产生的张力往往不是肌肉的最大张力。 (2)等动收缩 在整个关节活动范围内,肌肉以恒定速度进行的最大用力收缩。但器械阻力不恒定。 等动练习器: 在离心制动器上连一条尼龙绳,由于离心制动作用,扯动绳子越快,器械产生的阻力就越大。 特点:器械产生的阻力与肌肉用力的大小相适应。 等动收缩的优点: 外加阻力能随关节活动的变化而精确地进行调整,使肌肉在整个关节活动范围内都能产生最大的肌张力。 拉长收缩 离心收缩,又叫特点:张力小于外加阻力,肌长度拉长。

作用:缓冲、制动、减速、克服重力。 如:蹲起运动、下坡跑、下楼梯、从高处跳落等动作,相关肌群做离心收缩可避免运动损伤。 等长收缩 特点:张力等于外加阻力,肌长度不变。 作用:支持、固定、维持某种身体姿势。其固定功能还可为其他关节的运动创造适宜条件。 如:站立、悬垂、支撑等动作。 三种收缩形式的比较 (1)力量:收缩速度相同情况下,离心收缩产生的张力最大。(比向心收缩大50%,比等长收缩大25%) (2)代谢:输出功率时,离心收缩能量消耗低,耗氧量少。 (3)肌肉酸痛:离心收缩疼痛最显著,等长收缩次之,向心收缩最轻。 等长训练 等长训练是指在肌肉两端(起止点)固定或超负荷的情况下进行肌肉收缩的一种训练方式。收缩时肌肉的长度不能缩短,只能产生张力。这种长度不变张力增加的收缩又称为“等长收缩”等长训练提高肌肉力量快,用时少。 训练效果在很大程度上取决于做动作时所选用的角度。如某块肌肉某个部位比较薄弱,那就应选择好练这薄弱部位的最淮动作角度进行超负荷训练。 每次训练课一个部位的肌肉应反复进行等长收缩1一5次,然后休息2一3分钟,休息时可练其他部位的肌肉,因等长训练时间较短,消耗能量相对较少,不易发生酸疼。每周进行一次正规的等长训练就能保持增长的力量。等长训练可引起血压增高,因此高血压、心脏病及动脉硬化者一般不宜进行等长训练。 等张训练 肌肉长度缩短张力不变的收缩训练,称为等张训练。每次训练课一个部位的肌肉应以最大重量进行3旬4组的练习,每组做166次。负荷标准是以能重复的最多次数(RM)来表示。一个RM指尽全力只能举一次的重量;两个RM指尽全力只能举两次的重量。依此类推。显然,RM越小,重量越大。实践证明,用次数少、接近最大重量的练法最能增长力量,也最能长肌肉。等张训练一般比等长训练时间长,消耗的能量多,易使人疲劳,引起肌肉酸痛。因此,等张训练后需要较长的时间休息恢复。 等张训练要先练大肌群,若先练小肌群,身体疲劳了,再练大肌群效果就不会好。 等动训练 动作速度不变。器械的阻力与练习者用的力量成正比,保证动作过程中肌肉始终受到最大的负荷刺激。这种练法称为等动训练。等动训练是通过等动练习器(联合器械)进行的。

肌肉收缩实验报告详解

骨骼肌收缩实验 一.实验目的 1.肌肉标本收缩现象的描记及单收缩的分析,获得该肌肉收缩的阈值。 2.了解刺激强度对骨骼肌收缩的影响。 3.学习掌握刺激器和张力换能器的使用。 4.加强对神经和肌肉了解,熟练解剖。、 二.实验原理 1.肌肉标本收缩现象的描记 利用刺激器可诱发蛙的离体神经肌肉标本发生兴奋收缩现象,可利用适当的参数和图形,客观、详细、准确地描述收缩的生理过程与现象。 骨骼肌受到一次短促的阈上刺激时,先是产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。收缩的全过程可分为潜伏期、收缩期和舒张期。在一次单收缩中,肌峰电位的时程(相当于绝对不应期)仅1~2毫秒,而收缩过程可达几十甚至上百毫秒(蛙的腓肠肌可达100毫秒以上)。 2. 张力换能器 换能器是一种能将机械能、化学能、光能等非电量形式的能量转换为电能的器件或装置,并线性相关。利用物理性质和物理效应制成的物理换能器种类繁多,原理各异。张力换能器是一种能把非电量的

生理参数如力、位移等转换为电阻变化的间接型传感器,属于电阻应变式传感器。通常由弹性元件、电阻应变片和其他附件组成。弹性元件采用金属弹性悬梁,可根据机械力的大小选用不同厚度的弹性金属。弹性悬梁的厚度不同,张力换能器的量程亦不同。两组应变片 R1、R4及R2、R3分别贴于梁的两面。两组应变片中间接一只调零电位器,并用5~6V直流电源供电,组成差动式的惠斯登桥式电路(非平衡式电桥)输出电压值与应变片所受力的大小成正比,即力的变化转换成电桥输出电压的变化。此电信号经过记录仪器的放大处理,就能描记出肌肉收缩变化的过程。 实验时,根据测量方向将换能器用“双凹夹”固定在合适的支架上。但由于双凹夹在支架上移位不方便,很难在小范围内做出精细的移位;移位不当,可能引起标本的损伤和换能器的损坏。故现多采用“一维微调固定器”,由上下位置调节钮控制,可在小范围内(上下)精细的移位。这不仅方便了实验操作,也有利于前负荷的控制。测量的方向,即力与位移的方向,要与张力换能器弹性悬梁的前端上下移动的方向保持一致。使能量转换和线性关系良好,符合张力换能器设计与使用上的要求。一般张力换能器的调零电位器设计为暗调节,为了方便使用,其暗调节孔朝上,故张力换能器有暗调节孔的一面为上。 3. 影响骨骼肌收缩效能的因素 肌细胞最本质的功能是将化学能转变为机械功,产生张力和缩短。肌肉收缩效能表现为收缩时产生的张力和/或缩短程度以及产生张力或缩短的速度。横纹肌的收缩效能由收缩前或收缩时承受的负

相关文档
最新文档