菱形的判定专项练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形的判定专项练习30题(有答案)
1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点.
(1)求证:四边形ABED是菱形;
(2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长.
2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD.
求证:BC=2DN.
3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点.
(1)求证:四边形AEDF是菱形;
(2)若AB=12cm,求菱形AEDF的周长.
4.如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;
(2)▱ABCD是菱形.
5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.
(1)求证:AF=DC;
(2)若∠BAC=90°,求证:四边形AFBD是菱形.
6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.
7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE.
(1)求证:四边形ADCE是菱形.
(2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么?
8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形.
9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作▱ADFE交BC于点G,H,且EH=EC.
求证:(1)∠B=∠C;
(2)▱ADFE是菱形.
10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB于G.(1)求证:△AEG≌△AEC;
(2)△CEF是否为等腰三角形,请证明你的结论;
(3)四边形GECF是否为菱形,请证明你的结论.
11.如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.
求证:四边形ADEF是菱形.
12.如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF 为菱形.
13.已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形.
14.如图,在△ABC中,AB=AC,M、O、N分别是AB、BC、CA的中点.求证:四边形AMON是菱形.
15.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.
16.如图,矩形ABCD绕其对角线交点旋转后得矩形AECF,AB交EC于点N,CD交AF于点M.
求证:四边形ANCM是菱形.
17.如图,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE交于M,BC、DF交于N,那么四边形BMDN是菱形吗?如果是,请写出证明过程;如果不是,说明理由.
18.已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明理由.
19.已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.
20.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.
21.如图,在矩形ABCD中,EF垂直平分BD.
(1)判断四边形BEDF的形状,并说明理由.
(2)已知BD=20,EF=15,求矩形ABCD的周长.
22.如图所示,在▱ABCD中,点E在BC上,AE平分∠BAF,过点E作EF∥AB.求证:四边形ABEF为菱形.
23.已知,如图,矩形ABCD中,AB=4cm,AD=8cm,作∠CAE=∠ACE交BC于E,作∠ACF=∠CAF交AD于F.
(1)求证:AECF是菱形;(2)求四边形AECF的面积.
24.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE是菱形吗?请说明理由.
25.如图:在平行四边形ABCD中,E、F分别是边AB、CD的延长线上一点,且BE=DF,连接EF交AC于O.(1)AC与EF互相平分吗?为什么?
(2)连接CE、AF,再添加一个什么条件,四边形AECF是菱形?为什么?
26.已知:如图,△ABC和△DBC的顶点在BC边的同侧,AB=DC,AC=BD交于E,∠BEC的平分线交BC于O,延长EO到F,使EO=OF.求证:四边形BFCE是菱形.
27.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.
(1)求证:△BDE≌△CDF;
(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由;
(3)在(2)下要使BECF是菱形,则△ABC应满足何条件?并说明理由.
28.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.
29.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.
求证:四边形AEDF是菱形.
30.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA 的外角平分线于点F.
(1)探究:线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.
矩形的判定专项练习30题参考答案:
1.1)证明:∵点E为BC的中点,
∴BE=CE=BC,
∵BA=AD=DC=BC,
∴AB=BE=ED=AD,
∴四边形ABED是菱形;
(2)解:过点D作DH⊥BC,垂足为H,
∵CD=DE=CE,
∴∠DEC=60°,
∴∠DBE=30°,
在Rt△BDH中,BD=4cm,
∴DH=2cm,
∵AF=DH,
∴AF=2cm.
2.∵AO=ON,BM=MO,∴四边形AMND是平行四边形,
∵AC⊥BD,∴平行四边形AMND是菱形,∴MN=DN,∵ON=NC,BM=MO,∴MN=BC,∴BC=2DN 3.(1)∵D,E分别是BC,AB的中点,
∴DE∥AC且DE=AF=AC.
同理DF∥AB且DF=AE=AB.
又∵AB=AC,∴DE=DF=AF=AE,
∴四边形AEDF是菱形.
(2)∵E是AB中点,∴AE=AB=6cm,因此菱形AEDF
的周长为4×6=24cm.
4.(1)∵BE=BP,∴∠E=∠BPE,
∵BC∥AF,
∴∠BPE=∠F,∴∠E=∠F.
(2)∵EF∥BD,
∴∠E=∠ABD,∠F=∠ADB,
∴∠ABD=∠ADB,
∴AB=AD,
∵四边形ABCD是平行四边形,
∴□ABCD是菱形.
5.1)证明:∵E是AD的中点,∴∠1=∠2,
在△AEF和△DEC 中,
∴△AFE≌△DCE(AAS),
∴AF=DC;
(2)证明:∵D是BC的中点,
∴DB=CD=BC,
∵AF=CD,
∴AF=DB,
∵AF∥BD,
∴四边形AFBD是平行四边形,
∵∠BAC=90°,D为BC中点,
∴AD=CB=DB,
∴四边形AFBD是菱形.
6.∵对角线BD平分∠ABC,
∴∠1=∠2,
∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠3=∠1,
∴∠3=∠2,
∴DC=BC,
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
7.(1)∵三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,
∴△ABC≌△ABF,且∠BAC=∠BAF=30°,
∴∠FAC=60°,
∴AD=DC=AC,
又∵△ABC≌△EFC,
∴CA=CE,
又∵∠ECF=60°,
∴AC=EC=AE,
∴AD=DC=CE=AE,
(2)
证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,
∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形,
∴BC=AC,
∵EC=CB,
∴EC=AC,
∴E为AC中点,
∴DE⊥AC,
∴AE=EC,
∵AG∥BC,
∴∠EAG=∠ECB,∠AGE=∠EBC,
∴△AEG≌△CEB,
∴AG=BC,(7分)
∴四边形ABCG是平行四边形,
∵∠ABC=90°,
∴四边形ABCG是矩形
8.在△ADE和△CDF中,
∵四边形ABCD是平行四边形,
∴∠A=∠C,
∵DE⊥AB,DF⊥BC,
∴∠AED=∠CFD=90°.
又∵DE=DF,
∴△ADE≌△CDF(AAS)
∴DA=DC,
∴平行四边形ABCD是菱形
9.(1)∵在▱ADFE中,AD∥EF,
∴∠EHC=∠B(两直线平行,同位角相等).
∵EH=EC(已知),
∴∠EHC=∠C(等边对等角),
∴∠B=∠C(等量代换);
(2)∵DE∥BC(已知),
∴∠AED=∠C,∠ADE=∠B.
∵∠B=∠C,
∴∠AED=∠ADE,
∴AD=AE,
∴▱ADFE是菱形.
10.1)证明:∵∠ACB=90°,
∴AC⊥EC.在Rt△AEG与Rt△AEC中,
,
∴Rt△AEG≌Rt△AEC(HL);
(2)解:△CEF是等腰三角形.理由如下:
∵CD是AB边上的高,
∴CD⊥AB.
又∵EG⊥AB,
∴EG∥CD,
∴∠CFE=∠GEA.
又由(1)知,Rt△AEG≌Rt△AEC,
∴∠GEA=∠CEA,
∴∠CEA=∠CFE,即∠CEF=∠CFE,
∴CE=CF,即△CEF是等腰三角形;
(3)解:四边形GECF是菱形.理由如下:
∵由(1)知,Rt△AEG≌Rt△AEC,则GE=EC;由(2)知,CE=CF,
∴GE=EC=FC.
又∵EG∥CD,即GE∥FC,
∴四边形GECFR是菱形.
11.∵D、E、F分别是△ABC三边的中点,
∴DE AC,EF AB,
∴四边形ADEF为平行四边形.
又∵AC=AB,
∴DE=EF.
∴四边形ADEF为菱形.
12.∵M、E、分别为AD、BD、的中点,
∴ME∥AB,ME=AB,
同理:FH∥AB,FH=AB,
∴四边形MENF是平行四边形,
∵M.F是AD,AC中点,
∴MF=DC,
∵AB=CD,
∴MF=ME,
∴四边形MENF为菱形
13.∵AE平分∠BAD,
∵,
∴△BAE≌△DAE(SAS)…(2分)
∴BE=DE,…(3分)
∵AD∥BC,
∴∠DAE=∠AEB,…(4分)
∴∠BAE=∠AEB,
∴AB=BE,…(5分)
∴AB=BE=DE=AD,…(6分)
∴四边形ABED是菱形.
14.∵AB=AC,M、O、N分别是AB、BC、CA的中点,
∴AM=AB=AC=AN,
M0∥AC,NO∥AB,且MO=AC=AN,
NO=AB=AM(三角形中位线定理),
∴AM=MO=AN=NO,
∴四边形AMON是菱形(四条边都相等的四边形是菱形)
15.证法一:∵AD⊥BC,
∴∠ADB=90°,
∵∠BAC=90°,
∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,
∴∠B=∠CAD,
∵CE平分∠ACB,EF⊥BC,∠BAC=90°(EA⊥CA),∴AE=EF(角平分线上的点到角两边的距离相等),
∵CE=CE,
∴由勾股定理得:AC=CF,
∵△ACG和△FCG中
,
∴△ACG≌△FCG,
∴∠CAD=∠CFG,
∵∠B=∠CAD,
∴∠B=∠CFG,
∴GF∥AB,
∵AD⊥BC,EF⊥BC,
∴AD∥EF,
即AG∥EF,AE∥GF,∴平行四边形AEFG是菱形.
证法二:∵AD⊥BC,∠CAB=90°,EF⊥BC,CE平分∠ACB,
∴AD∥EF,∠4=∠5,AE=EF,
∵∠1=180°﹣90°﹣∠4,∠2=180°﹣90°﹣∠5,
∴∠1=∠2,
∵AD∥EF,
∴∠2=∠3,
∴∠1=∠3,
∴AG=AE,
∵AE=EF,
∴AG=EF,
∵AG∥EF,
∴四边形AGFE是平行四边形,
∵AE=EF,
∴平行四边形AGFE是菱形.
16.∵CD∥AB,
∴∠FMC=∠FAN,
∴∠NAE=∠MCF(等角的余角相等),
在△CFM和△AEN中,
,
∴△CFM≌△AEN(ASA),
∴CM=AN,
∴四边形ANCM为平行四边形,
在△ADM和△CFM中,
,
∴△ADM≌△CFM(AAS),
∴AM=CF,
∴四边形ANCM是菱形
17.四边形BMDN是菱形.
∵AM∥BC,
∴∠AMB=∠MBN,
∵BM∥FN
∴∠MBN=∠BNF,
∴∠AMB=∠BNF,
又∵∠A=∠F=90°,AB=BF,
∴△ABM≌△BFN,
∴DM=DN,
∵ED=BF=AB,∠E=∠A=90°,∠AMB=∠EMD,
∴△ABM≌△EDM,
∴BM=DM,
∴MB=MD=DN=BN,
∴四边形BMDN是菱形
18.如图,由于DE∥AC,DF∥AB,所以四边形AEDF 为平行四边形.
∵DE∥AC,∴∠3=∠2,
又∠1=∠2,∴∠1=∠3,
∴AE=DE,∴平行四边形AEDF为菱形.
19.∵EF是BD的垂直平分线,
∴EB=ED,
∴∠EBD=∠EDB.
∵BD是△ABC的角平分线,
∴∠EBD=∠FBD.
∴∠FBD=∠EDB,
∴ED∥BF.
同理,DF∥BE,
∴四边形BFDE是平行四边形.
又∵EB=ED,
∴四边形BFDE是菱形.
20.方法一:∵AE∥FC.
∴∠EAC=∠FCA.(2分)
又∵∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.(5分)
∴EO=FO.
又EF⊥AC,
∴AC是EF的垂直平分线.(8分)
∴AF=AE,CF=CE,
又∵EA=EC,
∴AF=AE=CE=CF.
∴四边形AFCE为菱形.(10分)
方法二:同方法一,证得△AOE≌△COF.(5分)
∴AE=CF.
∴四边形AFCE是平行四边形.(8分)
又∵EF是AC的垂直平分线,方法三:同方法二,证得四边形AFCE是平行四边形.(8分)
又EF⊥AC,(9分)
∴四边形AFCE为菱形
21.(1)四边形BEDF是菱形.
在△DOF和△BOE中,
∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,
所以△DOF≌△BOE,
所以OE=OF.
又因为EF⊥BD,OD=OB,
所以四边形BEDF为菱
形.(5分)
(2)如图,在菱形EBFD中,BD=20,EF=15,
则DO=10,EO=7.5.
由勾股定理得DE=EB=BF=FD=12.5.
S菱形EBFD =EF•BD=BE•AD,
即
所以得AD=12.
根据勾股定理可得AE=3.5,有AB=AE+EB=16.
由2(AB+AD)=2(16+12)=56,
故矩形ABCD的周长为56
22.∵四边形ABCD是平行四边形,
∴AF∥BE,
又∵EF∥AB,
∴四边形ABEF为平行四边形,
∵AE平分∠BAF,
∴∠BAE=∠FAE,
∵∠FAE=∠BEA,
∴∠BAE=∠BEA,
∴BA=BE,
∴平行四边形ABEF为菱形
23.(1)证明:在矩形ABCD中,
∵AB∥CD,
∴∠BAC=∠DCA,
又∠CAE=∠ACE,∠ACF=∠CAF,
∴∠EAC=∠FCA.
∴AE∥CF.
∴四边形AECF为平行四边形,
又∠CAE=∠ACE,
∴AE=EC.
∴▱AECF为菱形.
(2)设BE=x,则EC=AE=8﹣x,
在Rt△ABE中,
AB2+BE2=AE2,
所以EC=5,
即S菱形AECF=EC×AB=5×4=20.
24.四边形AFCE是菱形,理由是:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴=,
∵AO=OC,
∴OE=OF,
∴四边形AFCE是平行四边形,
∵EF⊥AC,
∴平行四边形AFCE是菱形
25.(1)AC与EF互相平分,连接CE,AF,
∵平行四边形ABCD,
∴AB∥CD,AB=CD,
又∵BE=DF,
∴AB+BE=CD+DF,
∴AE=CF,
∴AE∥CF,AE=CF,
∴四边形AECF是平行四边形,
∴AC与EF互相平分;
(2)条件:EF⊥AC,
∵EF⊥AC,
又∵四边形AECF是平行四边形,
∴平行四边形AECF是菱形.
26.∵AB=DC AC=BD BC=CB,
∴△ABC≌△DCB,
∴∠DBC=∠ACB,
∴BE=CE,
又∵∠BEC的平分线是EF,
∴EO是中线(三线合一),
∴BO=CO,
∴四边形BFCE是平行四边形(对角线互相平分),
又∵BE=CE,
∴四边形BFCE是菱形.
27.(1)证明:∵CF∥BE,∴∠EBD=∠FCD,
D是BC边的中点,则BD=CD,∠BDE=∠CDF,
∴△BDE≌△CDF.
(2)如图所示,由(1)可得CF=BE,又CF∥BE,所以四边形BECF是平行四边形;(3)△ABC是等腰三角形,即AB=AC,理由:当AB=AC 时,则有AD⊥BC,又(2)中四边形为平行四边形,所以可判定其为菱形.
28.(1)∵DE为BC的垂直平分线,
∴∠EDB=90°,BD=DC,
又∵∠ACB=90°,
∴DE∥AC,
∴E为AB的中点,
∴在Rt△ABC中,CE=AE=BE,
∴∠AEF=∠AFE,且∠BED=∠AEF,
∠DEC=∠DFA,
∴AF∥CE,
又∵AF=CE,
∴四边形ACEF为平行四边形;
(2)要使得平行四边形ACEF为菱形,则AC=CE即可,∵DE∥AC,∴∠BED=∠BAC,∠DEC=∠ECA,
又∵∠BED=∠DEC,
∴∠EAC=∠ECA,
∴AE=EC,又EB=EC,
∴AE=EC=EB,
∵CE=AB,
∴AC=AB即可,
在Rt△ABC中,∠ACB=90°,
∴当∠B=30°时,AB=2AC,
故∠B=30°时,四边形ACEF为菱形.
29.∵AD平分∠BAC
∴∠BAD=∠CAD
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中
,
∴△AEO≌△AFO(ASA),
∴EO=FO
即EF、AD相互平分,
∴四边形AEDF是平行四边形
又EF⊥AD,
∴平行四边形AEDF为菱形
30.1)解:OE=OF.理由如下:
∵CE是∠ACB的角平分线,
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵OF是∠BCA的外角平分线,
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)解:当∠ACB=90°,点O在AC的中点时,∵OE=OF,
∴四边形AECF是正方形;
(3)答:不可能.解:如图所示,
∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)
=90°,
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.。