大学哈工大第八版理论力学课件

合集下载

《哈工大理论力学》PPT课件_OK

《哈工大理论力学》PPT课件_OK

逆时针为正 顺时针为负
7
理论力学
7
三、定轴转动的角速度和角加速度
1、角速度 定义
limΔ
Δt 0 Δt
若已知转动方程
f (t)
d
代数量
dt
f (t) 单位 rad/s
8
理论力学
8
2、角加速度
设当t 时刻为 , t +△t 时刻为 +
角加 速度
lim d
d2
t 0 t dt dt2
f单位(:rt)ad/s2 (代数量)
Z1
2 2
O2
R1
R2
v1 v2
at1 at2
适合链条传动
25
理论力学
25
i12
主动轮转速 从动轮转速
n1 n2
1 R2 Z2 2 R1 Z 1
显然当: i12 1 时, 2 i12 1 时, 2
1 ,为加速转动; 1 ,为减速转动。
大轮(主动轮)带动小轮(从动轮)
加速
小轮(主动轮)带动大轮(从动轮)
30
30
主轴转两圈
2 2π rad=4π rad
主轴转动两圈后停止
0
2
2 0
2
0
102π
2 4π
100π2 8π
rad
s2
39.27rad s2
负号表示 的转向与主轴转动方向相反,故为减速运动。
11
理论力学
11
§6-3 转动刚体内各点的速度和加速度
一、角速度 与v 的关系
刚体定轴转动时,不在转轴上的各点都在垂直于转轴
19
理论力学
19
解:① 因为绳子不可以伸长,所以有 aCt aA 1m/s2

ppt版本——哈工大版理论力学课件(全套)04

ppt版本——哈工大版理论力学课件(全套)04
因为在公法线上有 Fy 0 FN FR cosq
A
j
FRA jf
而 F Rx F R sinq F R cosq tanq FN tanq FN tanjf F max
所以在切线上必然平衡。
理论力学
9
第9页,共43页。
2、如果全部主动力的合力FR 的作用线在摩擦角jf之外,则
jf
jf
无论这个力怎样小,物块一定
几何法:因为A、D两点同时达到临界状
态,所以两点处的全约束力与法线的夹
角均为摩擦角j,画受力图如图所示。
∆ACE
CE
b
sin[900 ( j)] sinj
fBs R D
R
E
-j
j
max A
∆CDE
cos( j)
CE
sinj b
CD CE
sin( j) sin(90j)
CD
CE sin( j) cosj
3、 特征:
大小:0 F S Fmax(平衡范围)满足Fx 0
静摩擦力特征:方向:与物体相对滑动趋势方向相反
定律: Fmax fS FN
( f s只与材料和表面情况有关,与接触面积大小无关。)
二、动滑动摩擦力 (与静滑动摩擦力不同的是产生了滑动)
大小: Fd f FN
(无平衡范围)
动摩擦力特征:方向:与物体运动方向相反
理论力学
1
第1页,共43页。
前几章我们把接触表面都看成是绝对光滑的,忽略 了物体之间的摩擦,事实上完全光滑的表面是不存在的, 一般情况下都存在有摩擦。[例]
平衡必计摩擦
按接触面的运动情况看摩擦分为:
滑动摩擦,滚动摩擦
理论力学

理论力学第一章ppt(哈工大版).

理论力学第一章ppt(哈工大版).
[例] 吊灯
公理
约束反力
受力分析
9
公理5 刚化原理
变形体在某一力系作用下处于平衡,如将此变形体刚化为刚 体,其平衡状态保持不变。
变形体(受拉力平衡)
A
刚化为刚体(仍平衡)
B
刚体(受压平衡)
B
变形体(受压不能平衡)
A
刚体的平衡条件对于变形体来说只是必要而不是充分条件。
公理
约束反力
受力分析
10 10
§1-2 约束和约束力
矢来表示。
力三角形法
F2
FR
F1
FR
F2
F2
FR
A
F1
A
F1
A
公理
约束反力
受力分析
FR = F1 + F2
3
公理2 二力平衡条件
作用于刚体上的两个力,使刚体平衡的必要与充分条件是: 这两个力大小相等 | F1 | = | F2 | 方向相反 F1 = –F2 作用线共线
等大,反向,共线
注意点
对于多刚体不成立
4
公理
约束反力
受力分析
说明:①对刚体来说,上面的条件是充要的
②对变形体来说,上面的条件只是必要条件(或多体中)
③二力体:只在两个力作用下平衡的刚体叫二力体。
F1
公理
约束反力
受力分析
二力杆
注:二力体自重不计
二力构件
5
F2
公理3 加减平衡力系原理
作用于刚体的任何一个力系上加上或去掉几个互成 平衡的力,而不改变原力系对刚体的作用。
说明:三力平衡必汇交 当三力平行时,在无限 远处汇交,它是一种特 殊情况。
46
画受力图应注意的问题

本——哈工大版理论力学课件(全套)

本——哈工大版理论力学课件(全套)
连,在图示位置圆柱作纯滚动,中心速度为vA,杆与水平线 的夹角=450,求该瞬时系统的动能。
解: T TA TAB
P
B
TA 3 Mv A 2 4
P为AB杆的瞬心 vA
PAw
C
vA
A
vA
wΑΒ lsin
JP 1 ml 2 3
TAB
2 JP wA2B
1 6si2n
mv 3
mvA2 AT
11 12
9M 4m 2 vA
z1 O
M
M2
mg z2
y
代入功的解析表达式得
z2
W 12 (mg)dz mg(z z z1
x
1 2)
质点系: W W imig(zi1 zi2) mg(zC1 zC2)
质点系重力的功,等于质点系的重量与其在始末位置重 心的高度差的乘积,而与各质点运动的路径无关。
h
4
理论力学
4
2、弹性力的功 弹簧原长l0,作用点的轨迹为图示曲线A1A2。在弹性极限内F k(r l0)r 0 k—弹簧的刚性系数,表示使弹簧发生单位变形时所需的力(N/m)。
F s
M1
s
2
单位:焦耳(J); 1J 1Nm
h
理论力学
F M2
2
2
2
二、变力的功 设质点M在变力F的作用下沿曲线运动,力F在微小弧
段上所作的功称为力的元功,记为dW,于是有
δW Fcos ds
ds M'
M2
力F在曲线路程M1M2中作功为
M
W
s
F cosds
0
自然法表示的 功的计算公式
dr F
等于零,但变形体内力功之和不为零。

ppt版本-哈工大版理论力学课件(全套)

ppt版本-哈工大版理论力学课件(全套)

理论力学课程的内容包括质点和刚体的运动、弹性力学、 流体力学、振动和波等,其体系由静力学、运动学和动力 学三个部分组成。
理论力学课程的内容非常广泛,主要包括质点和刚体的运 动、弹性力学、流体力学、振动和波等方面的知识。这些 内容在理论力学体系中占据着重要的地位,为后续的工程 技术和科学研究提供了重要的理论基础和应用方法。同时 ,理论力学体系由静力学、运动学和动力学三个部分组成 ,这三个部分相互联系、相互渗透,构成了完整的理论力 学体系。
详细描述
理论力学作为经典力学的一个重要分支,主要研究物体运动规律、力的作用机制以及它们之间的相互作用。通过 对质点和刚体的运动规律、力的合成与分解、动量守恒和能量守恒等基本原理的研究,理论力学为各种工程技术 和科学研究提供了重要的理论基础和应用方法。
理论力学课程的内容和体系
要点一
总结词
要点二
详细描述
置和速度。
刚体的转动
02
描述刚体绕固定点或轴线的旋转运动,通过角速度矢量和角加
速度矢量表示刚体的转动状态。
刚体的复合运动
03
描述刚体同时存在的平动和转动,通过平动和转动运动的合成
来描述。
刚体的动力学方程
牛顿第二定律
表述了物体运动与力的关系,即物体受到的合外力等 于其质量与加速度的乘积。
动量定理
表述了物体动量的变化率等于作用在物体上的力与时 间的乘积。
由于非惯性参考系中物体受到的力不是真实的外力,而是由于参考 系加速或旋转产生的惯性力。
非惯性参考系的应用
在研究地球上的物体运动时,常常需要用到非惯性参考系,例如研 究地球的自转和公转对物体运动的影响。
05
刚体的运动
01
描述刚体在空间中的位置和运动,通过平动矢量表示刚体的位

哈工大版理论力学课件(全套)课件

哈工大版理论力学课件(全套)课件
已知CE=EB=DE,角a =30o,CDB平面与水平面间的夹角∠EBF= 30o, 重物G=10kN。如不计起重杆的重量,试求起重杆所受的力和绳子的拉力。
解:1.取杆AB与重物为研究
对象,受力分析如图。
zD
E
F2
F 30o
B
C F1
z
E F1
F 30o
B
a
a
A FA
G
y
FA
A
G
y
x
侧视图
理论力学
10
4、空间任意力系简化为平衡的情形
当空间任意力系向一点简化时出现 主矢F'R=0, 主矩MO=0 ,这是空间任意力系平衡的情形。
理论力学
39
§3-5 空间任意力系的平衡
一、空间任意力系的平衡方程
F'R=0,MO=0
Fx 0, Fy 0, Fz 0 Mx(F) 0, M y(F) 0, Mz(F) 0
理论力学
16
理论力学
17
2、力对轴之矩的解析表达式
设力F在三个坐标轴上的投影分别为Fx,
z Fz
Fy,Fz,力作用点A的坐标为(x,y,z),则
F
B
M z(F) MO(Fxy)
A(x,y,z)
Fy
MO(Fx) MO(Fy) xFy yFx
同理可得其它两式。故有
M x(F) yFz zFy
Fx
O
先投影到坐标平面Oxy上,得到力Fxy,然后再把这个力投 影到x 、y轴上,这叫二次(间接)投影法。
z
Fx Fsing cosj
Fz
Fy Fsing sinj
gF
Fy y
Fz F cosg

哈工大理论力学 I 第8版_02_平面力系

哈工大理论力学 I 第8版_02_平面力系

12
三.力偶和力偶矩 1.力偶
由两个等值、反向、不共线的(平行)力组
成的力系称为力偶,记作 F , F
13
2.力偶矩 力偶中两力所在平面称为力偶作用面 力偶两力之间的垂直距离称为力偶臂 两个要素 a.大小:力与力偶臂乘积 b.方向:转动方向 力偶矩
M F d 2ABC


F n F n M n M O ( F n )
F R F i F i

M O M i M O ( Fi )
主矢 F R Fi

主矩 M O M O (Fi )
主矢与简化中心无关,而主矩一般与简化中心有关.
F R x ' F ix ' F ix F x
18
=
=
=
=
4.力偶没有合力,力偶只能由力偶来平衡.
19
五.平面力偶系的合成和平衡条件
已知:M 1 , M 2 , M n ;
任选一段距离d
M1 d

F1
M 1 F1d
M2 d

F2
M 2 F2d
Mn d
Fn
M n Fnd
=
=
20
FR F1 F2 Fn
FR F1 F2 Fn
第二章 平面力系
1
§2-1பைடு நூலகம்平面汇交力系
一.多个汇交力的合成
力多边形规则
2
FR1 F1 F2
3
FR2 FR1 F3 Fi i 1
n
FR Fi Fi i 1
力多边形 力多边形规则
3
二.平面汇交力系平衡的几何条件

《哈工大理论力学》课件

《哈工大理论力学》课件
质点和质点系的动能
描述物体运动所具有的能量的物理量,等于质量与速度平方的一半 的乘积。对于质点系,动能为各质点动能的矢量和。
动量定理、动量矩定理和动能定理
动量定理
物体所受力的矢量和等于 其动量的变化率。数学表 达式为FΔt=Δp。
动量矩定理
物体所受力矩的矢量和等 于其动量矩的变化率。数 学表达式为MΔt=ΔL。
在理论力学中,振动可以用 来研究机械系统的动态特性 、稳定性以及噪声等问题, 为解决实际问题提供重要的 理论支持。
振动在机械工程中的应用涉 及到多个领域,如机械制造 、航空航天、汽车等,对于 这些领域的发展起着重要的 作用。
振动在机械工程中的应用需 要综合考虑多种因素,如机 械系统的阻尼、刚度、质量 等,需要运用多种数学方法 和物理原理进行建模和分析 。
连续性假设
物质是连续的,没有空隙。
均匀性假设
物质在各处性质均一,不随位置变化。
弹性力学的基本假设和基本概念
• 线性弹性假设:应力与应变之间存在线性关系。
弹性力学的基本假设和基本概念
STEP 03
泊松比
STEP 02
描述材料横向收缩与纵向 伸长关系的物理量。
STEP 01
应力和应变
弹性模量
描述物体内部受力情况的 物理量。
相对论力学
20世纪初,爱因斯坦提出了相对 论,对经典力学进行了修正和发 展,提出了质能关系和时空观念 等新概念。
理论力学与其他学科的关系
与物理学关系
理论力学是物理学的重要分支学科,与光学、热学、电磁学等有密切联系。例如,电磁学中的麦克斯韦方程组就 是在经典力学的基础上发展起来的。
与工程学关系
理论力学是工程学的重要基础学科,为各种工程技术和工程问题的解决提供了理论基础和方法。例如,在机械工 程、航空航天工程、土木工程等领域中,理论力学的知识被广泛应用。

第八章理论力学哈工大

第八章理论力学哈工大

§8-2 点的速度合成定理
例:小球在金属丝上的运动
牵连点:在任意瞬时,与动点相重合的动 坐标系上的点,称为动点的牵连点。
讨 论
动坐标系是一个包含与之固连的刚体在内的 运动空间,除动坐标系作平移有牵连点的运动能够给动点以直接的影响。 为此,定义某瞬时,与动点相重合的动坐标 系上的点(牵连点)相对于静坐标系运动的 速度称为动点的牵连速度
已知:
, OA r , OO1 l , OA水平。求 : 1 ?。
解: 1、动点:滑块 A 动系:摇杆 O1B 2、运动分析: 绝对运动-绕O点的圆周运动;相对运动-沿 O1B的直线运动;牵连运动-绕O1轴定轴转动。 3、 √ √ √
ve va sin r sin ve r 2 1 2 2
动点与动系的选取原则(P186思考题)
⒈ 动点与动系不能选在同一物体上,否则无相对运动。
⒉ 动点相对于动系的相对运动轨迹要一目了然,即是一条 简单、明了的已知轨迹曲线 —-圆弧或直线。
绝对、相对和牵连运动之间的关系
可以利用坐标变换来建立绝对、相对和牵连运动之间的关系。
O 动点:M 动系: ' x ' y ' 绝对运动运动方程
MM 1 va lim t 0 t
速度合成定理
MM 1 显然: ve lim t 0 t
M 1M 1 vr lim t 0 t
va ve vr
动点的绝对速度等于它 的牵连速度与相对速度 的矢量和
上式为矢量方程,它包含了绝对速度、牵 连速度和相对速度的大小、方向六个量, 已知其中四个量可求出其余的两个量。

va ve vr
点的速度合成定理:动点在某瞬时的绝对速度等于 它在该瞬时的牵连速度与相对速度的矢量和。 讨论 ⑴ ⑵ ⑶

《哈工大理论力学》课件

《哈工大理论力学》课件

总结词
动量守恒定律在物理学、工程学和天文 学等领域有着广泛的应用。
VS
详细描述
在碰撞、火箭推进、行星运动、相对论等 领域中,动量守恒定律都起着重要的作用 。通过应用动量守恒定律,可以预测系统 的运动状态和变化趋势,为实际应用提供 重要的理论支持。
04
角动量与角动量守恒定律
角动量的定义与计算
角动量的定义
体育竞技
在花样滑冰、冰球等体育项目 中,运动员通过改变身体姿态 来调整角动量,以完成各种高
难度动作。
05
万有引力定律
万有引力定律的表述
总结词
万有引力定律是描述两个质点之间由于它们 的质量而相互吸引的力的大小和方向的定律 。
详细描述
万有引力定律由艾萨克·牛顿提出,表述为 任意两个质点通过连心线方向上的力相互吸 引,该力的大小与它们质量的乘积成正比,
02
牛顿运动定律
牛顿运动定律的表述
第一定律(惯性定律)
除非受到外力作用,否则保持静止或匀速直线运动 的状态不变。
第二定律(动量定律)
物体的加速度与作用力成正比,与物体的质量成反 比。
第三定律(作用与反作用定律)
对于任何作用力,都存在一个大小相等、方向相反 的反作用力。
牛顿运动定律的应用
动力学问题
弹性力学的应用实例
总结词:实际应用
详细描述:弹性力学在工程领域有广 泛的应用,如桥梁、建筑、机械和航 空航天等。应用实例包括梁的弯曲、 柱的拉伸和压缩、壳体的变形等。
THANKS
感谢观看
提供理论基础和解决方案。
理论力学的发展历程
总结词
理论力学的发展经历了古典力学和相对论力学两个阶段,相对论力学对于高速运动和强引力场的研究具有重要意 义。

哈工大理论力学PPT课件

哈工大理论力学PPT课件
第51页/共52页
感谢您的观看。
第52页/共52页
第29页/共52页
3 、光滑铰链约束(径向轴承、圆柱铰链、固 定铰链支座等)
(1) 径向轴承(向心轴承)
约束特点: 轴在轴承孔内,轴为非自由体、 轴承孔为约束.
约束力: 当不计摩擦时,轴与孔在接触处为 光滑接触约束——法向约束力.约束力作用在接 触处,沿径向指向轴心.
第30页/共52页
当外界载荷不同时,接触点会变,则约束力的 大小与方向均有改变.
, 的受
CD AB
解:
取 杆,其为二力构件,简称二力杆,其
受力C图D如图(b)
第43页/共52页
取 A梁B,其受力图如图 (c)
CD 杆的受力图能否画
为图(d)所示?
若这样画,梁 的A受B力图又如何
改动?
第44页/共52页
例1-4
不计三铰拱桥的自重与摩擦,画出左、
右拱 图.
的受力图A与B,系C统B 整体受力
第21页/共52页
公理5 刚化原理
变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡 状态保持不变。
柔性体(受拉力平衡) 反之不一定成立.
刚化为刚体(仍平衡)
刚体(受压平衡)
柔性体(受压不能平衡)
第22页/共52页
思考
只适用于刚体的公理有哪些? 二力平衡条件和加减平衡力系公理
第23页/共52页
光滑支承接触对非自由体的约束力,作用 在接触处;方向沿接触处的公法 线并指向受力 物体,故称为法向约束力,用 FN 表示.
第27页/共52页
2 、由柔软的绳索、胶带或链条等构成的约束
柔索只能受拉力,又称张力.用
FT
表示.

理论力学(哈工大第八版)-教学课件-第12章

理论力学(哈工大第八版)-教学课件-第12章
已知 :m ,l0 ,k , R , J。
求:系统的运动微分方程。
解: s R
T

1
m
ds
2
2 dt
1 J d 2
2 dt

1 2
m

J R2

ds dt
2
ds
ds
P重力 mg dt , P弹性力 ks dt
dT dt P重力 P弹性力
2.势能
在势力场中,质点从点M运动到任意位置M0,有势力所 作的功为质点在点M相对于M0的势能.
V
M0 F dr
M
M0 M
Fxdx Fydy Fzdz
M 0称势能零点
(1)重力场中的势能
V
Z0 Z
mgdz

mg

z

z0

(2)弹性力场的势能
V
m2 ,纯滚动, 初始静止 ;θ ,M 为常力偶。
求:轮心C 走过路程S时的速度和加速度
解: 轮C与轮O共同作为一个质点系
W12 M m2gSsin
T1 0
T2

1 2
(m1R12 )12

1 2
m222

1 2
(1 2
m2
R2
2
)
2 2
1

C
R1
,2

C
R2
W12 T2 T1
第十二章 动 能 定 理
§12-1 力的功
一、常力在直线运动中的功
W

F
cos

s

F

理论力学(1)哈工大版第八章

理论力学(1)哈工大版第八章
vBA与vA垂直且相等,点B的速度
vB vA2 vB2A 2vA 2(r1 r2 )O
以A为基点,分析点C的速度。
vC vA vCA
vCA CAII (r1 r2 )O vA
vCA与vA方向一致且相等,点C的速度
vC vC vA 2(r1 r2 )O
四个可以运动的构件。其中 Ⅰ作定轴转动,Ⅱ、Ⅲ、Ⅳ

均作平面运动。
C
设Ⅰ顺时钟转动,则运动如 O
A
B
图示。注意Ⅲ速度投影定理
可知B的速度方位铅直。
C1为Ⅱ的瞬心vD
E
D


vE vB Ⅳ
C
O

A
C2为 B
C为Ⅳ的瞬心
vA Ⅲ的瞬心
理论力学
中南大学土木建筑学院
31
C
A

O
B
理论力学
C1为瞬心
vC
C
C2为瞬心
x
是平行移动和转动的合成运动。
三种运动都
例如 车轮的运动
是刚体运动
车轮对于定系的平面运动
(绝对运动)
动系Ax y 相对定系的平行移动 (牵连运动)
车轮相对动系Ax y 的定轴转动 (相对运动)
理论力学
中南大学土木建筑学院
9
刚体平面运动合成:车轮对定系的平面运动可由 相对于动系的转动和动系对定系的平移组合而成。
二、速度投影法(对任意一个刚体均成立)
由于A, B点是任意的,因此 vB vA vBA 表示了图形上任
意两点速度间的关系。由于恒有 vBA AB ,因此将上式在
AB上投影,有
vB

哈工大理论力学课件第一章

哈工大理论力学课件第一章

04 动能定理和机械能守恒定 律
动能定理
定义
物体由于运动而具有的能量称为 动能,用公式表示为 (E_k = frac{1}{2}mv^2)。
推导过程
动能定理的推导基于牛顿第二定 律和运动学公式,通过分析力对 时间的累积效应来得出动能的变
化。
应用场景
动工具之一。
现代力学
爱因斯坦相对论的出现,对经典力学提出 了挑战,提出了时间和空间的相对性。
随着计算机技术和数值方法的进步,现代 力学得到了迅速发展,广泛应用于工程和 科学领域。
理论力学的重要性与应用
重要性
理论力学是物理学和工程学的重要基础学科,为其他学科提供了基本的原理和 方法。
应用
理论力学的应用广泛,包括航空航天、机械、土木、交通、船舶等领域。例如, 火箭发射需要理解力学原理,飞机设计需要考虑空气动力学和材料力学。
应用
在分析碰撞、火箭推进 等动力学问题时,动量 守恒定律是重要的理论 基础。
质点和质点系的动量定理和动量守恒定律
质点的动量定理和动量守恒定律
对于质点,动量定理和动量守恒定律的表述与上述内容一致。
质点系的动量定理和动量守恒定律
对于多个质点组成的质点系,动量定理和动量守恒定律的表述需要考虑内力和外 力的作用。内力不会改变系统的总动量,而外力则会引起系统动量的变化。
01
02
03
04
定义:物体的加速度与作用力 成正比,与物体的质量成反比

数学表达式:F=ma。
意义:揭示了力与加速度之间 的直接关系,是动力学的基本
规律。
应用:用于分析物体的运动状 态变化,以及求解物体的加速 度、速度和位移等物理量。
牛顿第三定律
定义

优质课件精选哈工大第八版理论力学课件

优质课件精选哈工大第八版理论力学课件
P225-习题8-5 3 曲柄连杆机构中---滑块
4 直线平移和曲线平移
44
45
平移的其他例子
46
பைடு நூலகம்
46
观察平行四连杆机构中土黄色杆的运动
47
图示铅直平面内的平行四连杆机构。曲柄O1A以匀角速 度 2 rad/s 绕 O1轴转动
O1A=O2B =r=20cm , AB=O1O2=40cm AC=CB
12
13
14
第二篇 运动学
一 什么是运动学 1 是研究物体运动的几何性质的科学 2 运动的几何性质 运动方程、轨迹、速度和
加速度
二 意义 1 动力学的基础 2 后继课程 (机械原理)的基础
15
第二篇运动学
三 如何学习?
1 不考虑致动的原因
2 点 刚体(系统) 必须有一个以上的自由度
3 有关概念 1) 参考体 由于物体运动的描述是相对的。将观察者所在的物体称 为参考体
2)参考坐标系 固结于参考体上的坐标系称为参考坐标系----
基础内容: 第五章 第六章 可以无限制扩大
重点内容: 第七章 第八章
16
第五章 点的运动
17
§ 5-1 矢量法
矢量法应用于什么场合? 一 运动方程
r r(t)
轨迹就是矢径端点的曲线
M
r r’
O
18
§ 5-1 矢量法
二 速度
M
v
A r(t)
成反比。
i12
1 2
z2 z1
相互啮合的两齿轮的角速度之比及角加速度之比与它
们的齿数成反比。
62
§6–4 轮系的传动比(自学)
2 带轮传动
i12
1 2

理论力学(哈工大第八版)-教学课件-第13章

理论力学(哈工大第八版)-教学课件-第13章
§ 13-1 惯性力·质点的达朗贝尔原理
ma F FN
F FN ma 0
令 FI ma
惯性力
有 F FN FI 0
质点的达朗贝尔原理:作用在质点的主动力、
约束力和虚加的惯性力在形式上组成平衡力系.
例13-1
已知: m 0.1kg, l 0.3m, 60
求:惯性力系向点O简化的结果(方向在图上画出).
解:
FItO

m
l
2
FIOn

m
l 2
2
M IO

1 3
ml 2
例13-5
已知:如图所示,电动机定子及其外壳总质量为m1,质心位于O
处.转子的质量为m2 ,质心位于C 处,偏心矩OC=e ,
图示平面为转子的质量对称面.电动机用地角螺钉固定
于水平基础上,轴O与水平基础间的距离为h.运动开始时,
解得
fs

Fs FN

3m1
2m1 m2
A
mg
D m2 g
FN
FS
M IA
FIA
FIC
B
§ 13-4 绕定轴转动刚体的轴承动约束力
Fx 0 FAx FBx FRx FI x 0 Fy 0 FAy FB y FR y FI y 0
Fz 0 FBz FRz 0
M IO ri FIi ri (miaC ) ( miri ) aC
mrC aC
惯性力系向质心简化. 只简化为一个力
M IC 0 FIR maC
平移刚体的惯性力系可以简化为通过质心的合力, 其大小等于刚体的质量与加速度的乘积,合力的方向与 加速度方向反向。

第十章.动量定理哈工大理论力学课件ppt

第十章.动量定理哈工大理论力学课件ppt

m1
l 2
cos
2m1
l
cos
m2
2l
cos
5 2
m1
2m2
l
cos
p
p
2 x
p
2 y
1 2
5m1
4m2 l
cos
p,
x
px ,
cos
p,
y
py
p
p
§11-1 动量与冲量
例10-1
曲柄OA的动量 pOA m1vE
大小: pOA m1vE m1l 2
方向:与 vE 方向一致,垂直 于OA并顺着ω的方向
Fx e
dp
F
e
dt
dpy
dt
Fy e
dpz
dt
Fz e
三、动量守恒定理
1、如果在上式中
F
e
0 ,则 有 p p0
常矢量
结论
其中:p0 为质点系初始瞬时的动量
在运动过程中,如作用于质点系的所有外力的矢量和始终等 于零,则质点系的动量保持不变。这就是质点系的动量守恒 定理
lim t0
K t
Q(v2
v1
)W
P1
P2
R

R (W P1 P2 )Q(v2 v1)
静反力 R'(W P1 P2 ) , 动反力 R''Q(v2 v1)
计算 R时'' ,常采用投影形式
Rx '' Q(v2x v1x ) Ry '' Q(v2 y v1y )
与 R'相' 反的力就是管壁上受到的流体作用的动压力.
解:取火炮和炮弹(包括炸药)为研究对象

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fx = 0
Q - F S= 0
P Q
c
A
Fy = 0
FN- P = 0
M A(F) 0 M f Qr
辊子静止(平衡)时 滚动阻力偶矩在逐渐增大 可以无限制增大吗?
P cQ
FS A Mf
8
4.4.滚动摩阻的概念
一 滚阻力偶和滚阻力偶矩
3 滚阻力偶矩
0 Mf Mmax
Mmax = FN
滚阻力偶矩的最大值与法向反力成正比.
A
B
O
69
判断题
7 刚体绕定轴转动时,其上各点的切向加速度 大小与点到轴心的距离成正比例关系;法向加 速度不满足这一关系。
8 刚体绕定轴转动时,其上各点的加速度大小 与点到轴心的距离成正比例关系。
A
B
O
70
判断题 9 平面直角折杆绕定轴转动,其中OA=L AB=a 则B点的速度与AB垂直 大小等于角速度与AB长 度的乘积
应用的场合以及如何应用?
运动方程 轨迹 速度 加速度?? z
一 运动方程
M
r xi yj zk
kr j
z
x f1(t)
iO
y
x
y f2 (t)
y
x
z f3 (t)
运动轨迹??
22
§ 5-2 直角坐标法
二 速度
z
v r& x&i y&j z&k vxi vy j vzk
v x2 y2 z2
2)参考坐标系 固结于参考体上的坐标系称为参考坐标系----
基础内容: 第五章 第六章 可以无限制扩大
重点内容: 第七章 第八章
17
第五章 点的运动
18
§ 5-1 矢量法
矢量法应用于什么场合? 一 运动方程
r r(t)
轨迹就是矢径端点的曲线
M
r r’
O
19
§ 5-1 矢量法
二 速度
M
v
A r(t)
求连杆中点C的速度 加速度
思考问题
1 O1A杆的运动形式?
2 AB杆的运动形式? A
C
B
O1
O2
3 AB杆上任一点的速度加速度之间的关系?
4 若杆O1A 加速转动 则C点的加速度?
49
观察平行四连杆机构中长杆的运动 观察平行四连杆机构中板的运动
50
铅直平面内的运动机构O1A=O2B =r=20cm , AB=O1O2=40cm
P225-习题8-5 3 曲柄连杆机构中---滑块
4 直线平移和曲线平移
45
46
平移的其他例子
47
47
观察平行四连杆机构中土黄色杆的运动
48
图示铅直平面内的平行四连杆机构。曲柄O1A以匀角速 度 2 rad/s 绕 O1轴转动
O1A=O2B =r=20cm , AB=O1O2=40cm AC=CB
成反比。
i12
1 2
z2 z1
相互啮合的两齿轮的角速度之比及角加速度之比与它
们的齿数成反比。
63
§6–4 轮系的传动比(自学)
2 带轮传动
i12
1 2
r2 r1
64
直线平移 各点轨迹
简单运动
平移


曲线平移 各点轨迹


转动 各点轨迹

复杂运动 第八章
各点的加速度的表示??
65
判断题 1 刚体的运动形式是平移时,各点的运动轨迹一定是 直线 一定是平面曲线
2 刚体的运动形式是平移时,任一瞬时刚体上各点 的速度相等
加速度不相等
54
判断题 3 各点都作圆周运动的刚体的运动形式
一定是定轴转动
55
判断题 4 刚体绕定轴转动时,所有点的轨迹都是圆。
56
判断题
5 刚体绕定轴转动时,角加速度为正,表示加速转动; 角加速度为负,表示减速转动。
6 刚体绕定轴转动时,其上各点的速度大小与 点到轴心的距离成正比例关系。
指向点运动的一方
加速度表达式是变化的
点的运动
直线运动 曲线运动 平面曲线
空间曲线
a a an
圆周运动
一般平面曲线
aa x
any
aa x
ay az
空间曲线考试
不涉及
31
第六章 刚体的简单运动
32
§6–2 刚体的定轴转动 加速转动与减速转动的判断
33
§6–2 刚体的定轴转动
一 定轴转动
1 在刚体运动的过程中,若刚体上或其延伸部分上有一 条直线始终不动,
一 转动刚体内各点的速度和加速度的计算 速度计算的逆运算
v ds R d R
dt dt
vB OB
vB
OB
O
vB
B
37
§6–3转动刚体内各点的速度和加速度
一 转动刚体内各点的速度和加速度的计算
2 加速度计算
at
dv dt
d dt
(R)
R
d
dt
R
v ds R d
dt dt
R
an
v2
( R ) 2
规律,加速度分布规律
O
A
O
40
§6–1 刚体的平行移动
平行移动的判断 以及特点
一 平行移动
41
铅直平面内的平行四连杆机构。 观察蓝色杆以及在滑道里面运动的杆的运动形式
O1
O2
A
B
42
铅直平面内的平行四连杆机构 观察带有固定圆的那个杆的运动
43
二 平移刚体内各点的运动轨迹速度加速度
uuur
z
vA A
A
B
O
57
判断题
7 刚体绕定轴转动时,其上各点的切向加速度 大小与点到轴心的距离成正比例关系;法向加 速度不满足这一关系。
8 刚体绕定轴转动时,其上各点的加速度大小 与点到轴心的距离成正比例关系。
A
B
O
58
判断题 9 平面直角折杆绕定轴转动,其中OA=L AB=a 则B点的速度与AB垂直 大小等于角速度与AB长 度的乘积
1) 平面 r xi y j
v d r xi yj dt
a d v xi yj dt
2) 直线
25
❖ 1 思考在地面上观察得到的点的运动轨迹? 课下看
❖ 2 在车轮上观察得到的点的运动轨迹? P147例5-6

运动的相对性
26
习题 P 153-154 5-4 注意:1 坐标原点选在固定的点
R
R 2
各点切向加速度的大小与该 点到轴心的距离成正比
O
an
方位垂直于该点到轴心的连线, 指向由角加速度转向确定
v 各点法向加速度的大小 与该点到轴心的距离
a 成正比 方向指向轴心
M
38
§6–3转动刚体内各点的速度和加速度
一 转动刚体内各点的速度和加速度的计算
2 加速度计算逆运算
at
dv dt
d dt
2 动点选在一般位置
27
§ 5-3 自然法
应用的场合以及如何应用? 1 运动方程 ?速度如何计算? 2 加速度如何计算? 一 弧坐标
O (+)
s
M (-)
s f (t)
运动方程
28
二 点的速度
1 自然轴系
§ 5-3 自然法
曲率 曲率半径
2 速度 v ds
dt
表示速度在切线方向 上的投影
3 正、负的含义 联想到了什么?
Δr M'
v*
r(t+Δt) O
B
lim v
r dr
t0 t dt
动点的速度矢沿着
动点运动轨迹的切线,并与此点运动的方向一致。
20
三 加速度
§ 5-1 矢量法
a
lim
t 0
v t
dv dt
d2r dt 2
a v& &r&
此法常用于推导公式
lim v
r dr
t0 t dt
21
§ 5-2 直角坐标法
2 刚体的运动形式是平移时,任一瞬时刚体上各点 的速度相等
加速度不相等
66
判断题 3 各点都作圆周运动的刚体的运动形式
一定是定轴转动
67
判断题 4 刚体绕定轴转动时,所有点的轨迹都是圆。
68
判断题
5 刚体绕定轴转动时,角加速度为正,表示加速转动; 角加速度为负,表示减速转动。
6 刚体绕定轴转动时,其上各点的速度大小与 点到轴心的距离成正比例关系。
!联想到了什么?
35
§7–3转动刚体内各点的速度和加速度
一 转动刚体内各点的速度和加速度的计算
1 速度计算
s R
v ds R d R
dt dt
d &
dt
vA 各点速度的大小与该点
vD D
A 到轴心的距离成正比
vB 速度的方向垂直于该点到
O
轴心的连线,指向图形
B 转动的一方。
36
§7–3转动刚体内各点的速度和加速度
B
O A
71
1
4.4.滚动摩阻的概念
❖ 要求:了解滚动时存在的阻力的形式?特点?

5
4.4滚动摩阻的概念
一 滚阻力偶和滚阻力偶矩
P
c
rQ A
Fx = 0 Fy = 0
Q - F S= 0 FN- P = 0
发现了什么问题?
P
c
r A MQf
FS
FN
6
相关文档
最新文档