第九节圆锥曲线中的最值范围证明问题
人教版数学选择性必修第一册综合复习:圆锥曲线中的最值、范围、证明问题课件

(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接
QE并延长交C于点G.
(i)证明:△PQG是直角三角形;
(ii)求△PQG面积的最大值.
[例1] (课标全国Ⅱ,21,12分)已知点A(-2,0), B(2,0),动点M(x,y)满足直线AM与BM
1
2
的斜率之积为− .记M的轨迹为曲线C.
2
=1.
1. (洛阳统考)已知椭圆C:
2
2
+
2
2
=1(a>b>0), O为坐标原点, F(- 2,0)为椭圆C
2
2
的左焦点,离心率为 , 直线l与椭圆相交于A,B两点.
(2)若M(1,1)是弦AB的中点, P是椭圆C上一点, 求△PAB面积的最大值.
设A(x1,y1), B(x2,y2).
,
y1y2=k x1x2+2k(x1+x2)+4=
,
3+4 2
3+4 2
1 +2 2 +2 1 2 +2 1 +2 +4
所以k1·k2=
·
=
=k2+12,
1
2
1 2
1
49
因为k2∈ , +∞ , 所以k2+12∈
, +∞ ,
4
4
49
所以k1·k2的取值范围是 , +∞ .
4
考向三
令Δ1=16m2-24(m2-4)=0,得m=±2 3.
∵P是椭圆C上一点,
∴P点到AB的最大距离即直线x+2y+2 3 =0到直线l的距离d.
高考数学复习:圆锥曲线中的最值、范围、证明问题

b a
2
2=-
1, 2
所以 a2 =2b2,
又 c=1, a2= b2+ c2,所以 a2= 2, b2= 1,
所以椭圆 E 的标准方程为 x2+ y2= 1. 2
(2)设直线方程为 y= kx+m, 交椭圆于点 P(x1, y1), Q(x2 ,y2 ).
联立方程
y= kx+m, x2+ y2= 1, 2
= 1+ k2
16k2m2 1+ 2k2
设 MF 1 的方程为 x= my- 3,
x=my- 3, 由 x42+ y2= 1
得 (m2+ 4) y2- 2 3my- 1=0,
y1+
y2=
2 m
2+3m4,
故 1
y1y2=- m2+ 4.
设 F1 M 与 F 2N 的距离为 d,
四边形 F1F 2NM 的面积为 S,
则
S=
1 2
(|F
1M
得 (1+ 2k2)x2+ 4kmx+ 2m2 -2= 0,
Δ= 8(2k2+ 1-m2)>0 ,得 2k2+ 1>m2,
x1+
x2=-
1+4km2k2,
x1
x2=
2m2- 2 1+2k2 .
所以 |PQ|= 1+ k2 x1+ x2 2- 4x1x2
= 1+ k2
- 4km 1+ 2k2
2-
8m2- 8 1 + 2 k2
的一个动点,且 |PF 2|的最大值为 2+ 3, E 的离心率与椭圆
Ω:
x2 2
+
y2 8
=
1
的离心率相等
.
(1)求 E 的方程; (2)直线 l 与 E 交于 M ,N 两点 (M ,N 在 x 轴的同侧 ),当 F 1M ∥ F 2N 时,求四边形 F1F2NM 面 积的最大值 .
数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。
知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。
高三总复习数学精品课件 圆锥曲线中的证明、范围(最值)问题

14
【解】 (1)由题意可得ac= 23, 2c=2 3,
解得ac==2,3, 所以 b2=a2-c2=1, 故椭圆 C 的方程为x42+y2=1.
15
(2)证明:设直线 l 的方程为 y=-12x+m,P(x1,y1),Q(x2,y2). 由xy4=2+-y212=x+1,m,消去 y 得 x2-2mx+2(m2-1)=0. 则 Δ=4m2-8(m2-1)=4(2-m2)>0, 且 x1+x2=2m,x1x2=2(m2-1),
7
1.判断正误(正确的打“√”,错误的打“×”) (1)直线 y=kx(k≠0)与双曲线 x2-y2=1 一定相交. (2)与双曲线的渐近线平行的直线与双曲线有且只有一个交点. (3)直线与椭圆只有一个交点⇔直线与椭圆相切. (4)过点(2,4)的直线与椭圆x42+y2=1 只有一条切线.
(× ) (√ ) (√ )
34
技法三 目标函数法
(2020·河北九校第二次联考)椭圆xa22+by22=1(a>b>0)的左焦点为 F,短
轴长为 2
3,右顶点为
A,上顶点为
B,△ABF
的面积为3 2
3 .
(1)求椭圆的标准方程;
(2)过 A 作直线 l 与椭圆交于另一点 M,连接 MF 并延长交椭圆于点 N,当
△AMN 的面积最大时,求直线 l 的方程.
26
联立得y=1-x1mx+1, y=-4(mx+1 1)x-1,
解得点 D 的纵坐标为 yD=- -1144xx2121- +mm22+ -11. 因为点 M 在椭圆 C 上,所以x421+m2=1, 则 yD=0. 所以点 D 在 x 轴上.
27
范围(最值)问题
圆锥曲线中的范围、最值、证明问题 专题

圆锥曲线中的范围、最值、证明问题[压轴大题突破练][明晰考情] 1.命题角度:直线与圆锥曲线的位置关系是高考必考题,范围、最值问题是高考的热点;圆锥曲线中的证明问题是常见的题型.2.题目难度:中高档难度.考点一 直线与圆锥曲线方法技巧 对于直线与圆锥曲线的位置关系问题,一般要把圆锥曲线的方程与直线方程联立来处理.(1)设直线方程,在直线的斜率不确定的情况下要分斜率存在和不存在两种情况进行讨论,或者将直线方程设成x =my +b (斜率不为0)的形式.(2)联立直线方程与曲线方程并将其转化成一元二次方程,利用方程根的判别式或根与系数的关系得到交点的横坐标或纵坐标的关系.(3)一般涉及弦长的问题,要用到弦长公式|AB |=1+k 2·|x 1-x 2|或|AB |=1+1k 2·|y 1-y 2|. 1.已知动点M (x ,y )到点F (2,0)的距离为d 1,动点M (x ,y )到直线x =3的距离为d 2,且d 1d 2=63.(1)求动点M (x ,y )的轨迹C 的方程;(2)过点F 作直线l :y =k (x -2)(k ≠0)交曲线C 于P ,Q 两点,若△OPQ 的面积S △OPQ =3(O 是坐标原点),求直线l 的方程. 解 (1)结合题意,可得d 1=(x -2)2+y 2,d 2=|x -3|. 又d 1d 2=63,即(x -2)2+y 2|x -3|=63,化简得x 26+y 22=1. 因此,所求动点M (x ,y )的轨迹C 的方程是x 26+y 22=1.(2)联立方程组⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2),消去y ,得(1+3k 2)x 2-12k 2x +12k 2-6=0.设点P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=12k 21+3k 2,x 1x 2=12k 2-61+3k2,Δ>0.于是,弦|PQ |=(x 1-x 2)2+(y 1-y 2)2=1+k 2⎝ ⎛⎭⎪⎫12k 21+3k 22-4·12k 2-61+3k 2 =26(k 2+1)1+3k 2, 点O 到直线l 的距离d =|2k |1+k2.由S △OPQ =3,得12×|2k |1+k 2×26(k 2+1)1+3k 2=3,化简得,k 4-2k 2+1=0, 解得k =±1,且满足Δ>0,即k =±1符合题意. 因此,所求直线的方程为x -y -2=0或x +y -2=0.2.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,右焦点为F (1,0).(1)求椭圆E 的标准方程;(2)设点O 为坐标原点,过点F 作直线l 与椭圆E 交于M ,N 两点,若OM ⊥ON ,求直线l 的方程.解 (1)依题意可得⎩⎪⎨⎪⎧1a =22,a 2=b 2+1,解得⎩⎪⎨⎪⎧a =2,b =1.∴椭圆E 的标准方程为x 22+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),①当MN 垂直于x 轴时,直线l 的方程为x =1,设直线与椭圆E 的交点坐标为M ⎝⎛⎭⎫1,22,N ⎝⎛⎭⎫1,-22,此时OM 不垂直于ON ,不符合题意; ②当MN 不垂直于x 轴时,设直线l 的方程为y =k (x -1).联立得方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,Δ>0显然成立. ∴x 1+x 2=4k 21+2k 2,x 1x 2=2(k 2-1)1+2k 2. ∴y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=-k 21+2k 2.∵OM ⊥ON ,∴OM →·ON →=0. ∴x 1x 2+y 1y 2=k 2-21+2k 2=0,∴k =±2.故直线l 的方程为2x ±y -2=0.3.(2017·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (点B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 解 (1)设点F 的坐标为(-c ,0),依题意,得c a =12,p 2=a ,a -c =12,解得a =1,c =12,p =2,于是b 2=a 2-c 2=34.所以椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x .(2)设直线AP 的方程为x =my +1(m ≠0),与直线l 的方程x =-1联立,可得点P ⎝⎛⎭⎫-1,-2m , 故点Q ⎝⎛⎭⎫-1,2m . 将x =my +1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my =0,解得y =0或y =-6m3m 2+4.由点B 异于点A ,可得点B ⎝⎛⎭⎪⎫-3m 2+43m 2+4,-6m 3m 2+4, 由Q ⎝⎛⎭⎫-1,2m ,可得直线BQ 的方程为 ⎝ ⎛⎭⎪⎫-6m 3m 2+4-2m (x +1)-⎝ ⎛⎭⎪⎫-3m 2+43m 2+4+1⎝⎛⎭⎫y -2m =0, 令y =0,解得x =2-3m 23m 2+2,故点D ⎝ ⎛⎭⎪⎫2-3m 23m 2+2,0.所以|AD |=1-2-3m 23m 2+2=6m 23m 2+2.又因为△APD 的面积为62, 故12×6m 23m 2+2×2|m |=62, 整理得3m 2-26|m |+2=0, 解得|m |=63,所以m =±63. 所以直线AP 的方程为3x +6y -3=0或3x -6y -3=0. 考点二 圆锥曲线中的范围、最值问题方法技巧 求圆锥曲线中范围、最值的主要方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.4.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围.解 (1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,椭圆E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意知t >3,k >0,A (-t ,0),设M (x 1,y 1), 将直线AM 的方程y =k (x +t )代入x 2t +y 23=1,得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0. 由x 1·(-t )=t 2k 2-3t 3+tk 2,得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6kt (1+k 2)3k 2+t.由2|AM |=|AN |,得23+tk 2=k3k 2+t, 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧ k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.因此k 的取值范围是(32,2).5.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解 (1)设F (c ,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+14k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12·d ·|PQ |=44k 2-34k 2+1.+4t当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以当△OPQ 的面积最大时,l 的方程为2y ±7x +4=0.6.已知O 为坐标原点,M (x 1,y 1),N (x 2,y 2)是椭圆x 24+y 22=1上的点,且x 1x 2+2y 1y 2=0,设动点P 满足OP →=OM →+2ON →. (1)求动点P 的轨迹C 的方程;(2)若直线l :y =x +m (m ≠0)与曲线C 交于A ,B 两点,求△OAB 面积的最大值. 解 (1)设点P (x ,y ),则由OP →=OM →+2ON →, 得(x ,y )=(x 1,y 1)+2(x 2,y 2), 即x =x 1+2x 2,y =y 1+2y 2. 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4.故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).又因为x 1x 2+2y 1y 2=0,所以x 2+2y 2=20, 所以动点P 的轨迹C 的方程为x 2+2y 2=20.(2)将曲线C 与直线l 的方程联立,得⎩⎪⎨⎪⎧x 2+2y 2=20,y =x +m ,消去y 得3x 2+4mx +2m 2-20=0.因为直线l 与曲线C 交于A ,B 两点,设A (x 3,y 3),B (x 4,y 4), 所以Δ=16m 2-4×3×(2m 2-20)>0. 又m ≠0,所以0<m 2<30, x 3+x 4=-4m3,x 3x 4=2m 2-203.又点O 到直线AB :x -y +m =0的距离d =|m |2, |AB |=1+k 2|x 3-x 4|=(1+k 2)[(x 3+x 4)2-4x 3x 4]=2×⎝ ⎛⎭⎪⎫16m 29-4×2m 2-203= 169(30-m 2), 所以S △OAB =12169(30-m 2)×|m |2=23×m 2(30-m 2)≤23×m 2+(30-m 2)2=52, 当且仅当m 2=30-m 2,即m 2=15时取等号,且满足Δ>0. 所以△OAB 面积的最大值为5 2. 考点三 圆锥曲线中的证明问题方法技巧 圆锥曲线中的证明问题是转化与化归思想的充分体现.无论证明什么结论,要对已知条件进行化简,同时对要证结论合理转化,寻求条件和结论间的联系,从而确定解题思路及转化方向.7.(优质试题·全国Ⅰ) 设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . (1)解 由已知得F (1,0),l 的方程为x =1. 由已知可得,点A 的坐标为⎝⎛⎭⎫1,22或⎝⎛⎭⎫1,-22. 又M (2,0),所以AM 的方程为y =-22x +2或y =22x - 2. 即x +2y -2=0或x -2y -2=0.(2)证明 当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 则x 1<2,x 2<2,直线MA ,MB 的斜率之和 k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得 k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0,由题意知Δ>0恒成立, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0,从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .8.(优质试题·大庆质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且C 过点⎝⎛⎭⎫3,12. (1)求椭圆C 的方程;(2)设B 1,B 2分别是椭圆C 的下顶点和上顶点,P 是椭圆上异于B 1,B 2的任意一点,过点P 作PM ⊥y 轴于M ,N 为线段PM 的中点,直线B 2N 与直线y =-1交于点D ,E 为线段B 1D 的中点,O 为坐标原点,求证:ON ⊥EN . (1)解 由题设知焦距为23,所以c = 3. 又因为椭圆过点⎝⎛⎭⎫3,12, 所以代入椭圆方程得3a 2+14b 2=1,因为a 2=b 2+c 2,解得a =2,b =1,故所求椭圆C 的方程是x24+y 2=1.(2)证明 设P (x 0,y 0),x 0≠0,则M (0,y 0),N ⎝⎛⎭⎫x 02,y 0. 因为点P 在椭圆C 上,所以x 204+y 20=1.即x 20=4-4y 20. 又B 2(0,1),所以直线B 2N 的方程为y -1=2(y 0-1)x 0x .令y =-1,得x =x 01-y 0,所以D ⎝⎛⎭⎫x 01-y 0,-1.又B 1(0,-1),E 为线段B 1D 的中点, 所以E ⎝⎛⎭⎫x 02(1-y 0),-1.所以ON →=⎝⎛⎭⎫x 02,y 0,EN →=⎝⎛⎭⎫x 02-x 02(1-y 0),y 0+1. 因为ON →·EN →=x 02⎣⎡⎦⎤x 02-x 02(1-y 0)+y 0(y 0+1)=x 204-x 204(1-y 0)+y 20+y 0=1-4-4y 204(1-y 0)+y 0=1-y 0-1+y 0=0,所以ON →⊥EN →,即ON ⊥EN .9.(优质试题·咸阳模拟)已知A (-2,0),B (2,0),点C 是动点,且直线AC 和直线BC 的斜率之积为-34.(1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P ,与直线x =4相交于点Q ,且F (1,0),求证:∠PFQ =90°.(1)解 设C (x ,y ),则依题意得k AC ·k BC =-34,又A (-2,0),B (2,0),所以有y x +2·y x -2=-34(y ≠0),整理得x 24+y 23=1(y ≠0),即为所求轨迹方程.(2)证明 方法一 由题意知,直线l 的斜率存在,设直线l :y =kx +m ,与3x 2+4y 2=12联立得,3x 2+4(kx +m )2=12,即(3+4k 2)x 2+8kmx +4m 2-12=0,依题意得Δ=(8km )2-4(3+4k 2)(4m 2-12)=0, 即3+4k 2=m 2,∴x 1+x 2=-8km3+4k 2,得x 1=x 2=-4km3+4k 2,∴P ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2,而3+4k 2=m 2,得P ⎝ ⎛⎭⎪⎫-4k m ,3m ,又Q (4,4k +m ),F (1,0), 则FP →·FQ →=⎝⎛⎭⎫-4km -1,3m ·(3,4k +m )=0, 知FP →⊥FQ →, 即∠PFQ =90°.方法二 设P (x 0,y 0),则曲线C 在点P 处切线PQ : x 0x 4+y 0y 3=1,令x =4,得Q ⎝⎛⎭⎪⎫4,3-3x 0y 0, 又F (1,0),∴FP →·FQ →=(x 0-1,y 0)·⎝⎛⎭⎪⎫3,3-3x 0y 0=0,知FP →⊥FQ →,即∠PFQ =90°.典例 (12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . ①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 审题路线图基本量法求得椭圆C 的方程(2)①P 在C 上,Q 在E 上――→P ,O ,Q 共线设坐标代入方程―→求出|OQ ||OP |②直线y =kx +m 和椭圆E 的方程联立――→通法研究判别式Δ并判断根与系数的关系→ 用m ,k 表示S △OAB →求S △OAB 最值―――――――→利用①得S △ABQ和S △OAB的关系得S △ABQ 的最大值 规范解答·评分标准 解 (1)由题意知3a 2+14b2=1.又a 2-b 2a =32, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.…………………………………………2分(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ(λ>0),由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=…………………………………………………………………………2.5分②设A (x 1,y 1),B (x 2,y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2,(*) 则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=416k 2+4-m 21+4k 2.…………………………………………………………………8分因为直线y =kx +m 与y 轴交点的坐标为(0,m ),1+4k 1+4k =2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2.……………………………………………………………………9分 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)和(**)可知0<t ≤1, 因此S =2(4-t )t =2-t 2+4t ,……………………………………………………………10分故0<S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值2 3.………………………11分 由①知,△ABQ 的面积为3S ,所以△ABQ 面积的最大值为6 3.…………………………12分 构建答题模板[第一步] 求曲线方程:根据基本量法确定圆锥曲线的方程;[第二步] 联立消元:将直线方程和圆锥曲线方程联立,得到方程Ax 2+Bx +C =0,然后研究判别式,利用根与系数的关系;[第三步] 找关系:从题设中寻求变量的等量或不等关系;[第四步] 建函数:对范围最值类问题,要建立关于目标变量的函数关系;[第五步] 得范围:通过求解函数值域或解不等式得目标变量的范围或最值,要注意变量条件的制约,检查最值取得的条件.1.(优质试题·全国Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解 (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题意知4k 2+4k 2=8,解得k =-1(舍去)或k =1.因此l 的方程为x -y -1=0.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3), 即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎨⎧y 0=-x 0+5,(x 0+1)2=(x 0-y 0-1)22+16,解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,O 为坐标原点,求△OCD 的面积.解 (1)因为过焦点且垂直于x 轴的直线被椭圆截得的线段长为433,所以2b 2a =433.因为椭圆的离心率为33,所以c a =33, 又a 2=b 2+c 2,可解得b =2,c =1,a = 3.所以椭圆的方程为x 23+y22=1.(2)由(1)可知F (-1,0), 则直线CD 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y 得(2+3k 2)x 2+6k 2x +3k 2-6=0. 设C (x 1,y 1),D (x 2,y 2),所以x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.又A (-3,0),B (3,0), 所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2=8,解得k =±2.从而x 1+x 2=-6×22+3×2=-32,x 1x 2=3×2-62+3×2=0.所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-322-4×0=32, |CD |=1+k 2|x 1-x 2|=1+2×32=332.而原点O 到直线CD 的距离d =|k |1+k 2=21+2=63, 所以△OCD 的面积S =12|CD |×d =12×332×63=324.3.(优质试题·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:|F A →|,|FP →|,|FB →|成等差数列,并求该数列的公差.(1)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k ,得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m .①由题设得0<m <32,故k <-12.(2)解 由题意得F (1,0).设P (x 3,y 3),则 (x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1, y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P ⎝⎛⎭⎫1,-32,|FP →|=32, 于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+3⎝⎛⎭⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|F A →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|F A →|+|FB →|,即|F A →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则2|d |=||FB →|-|F A →||= 12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.4.(优质试题·河南八市测评)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点M ⎝⎛⎭⎫3,32在椭圆C 上.(1)求椭圆C 的方程;(2)若不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值.解 (1) 由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,点M ⎝⎛⎭⎫3,32在椭圆C 上,得⎩⎪⎨⎪⎧c a =12,(3)2a 2+(3)24b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)易得直线OM 的方程为y =12x .当直线l 的斜率不存在时,AB 的中点不在直线y =12x 上,故直线l 的斜率存在.设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12) =48(3+4k 2-m 2)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2. 由y 1+y 2=k (x 1+x 2)+2m =6m 3+4k2, 所以AB 的中点N ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2,因为N 在直线y =12x 上,所以-4km 3+4k 2=2×3m 3+4k 2,解得k =-32, 所以Δ=48(12-m 2)>0,得-23<m <23,且m ≠0, |AB |=1+⎝⎛⎭⎫322|x 2-x 1|=132·(x 1+x 2)2-4x 1x 2=132·m 2-4×m 2-33=39612-m 2,又原点O 到直线l 的距离d =2|m |13, 所以S △OAB =12×39612-m 2×2|m |13=36(12-m 2)m 2≤36(12-m 2+m 2)24=3,当且仅当12-m 2=m 2,即m =±6时等号成立, 符合-23<m <23,且m ≠0, 所以△OAB 面积的最大值为 3.。
圆锥曲线中的最值与范围、证明与探索性问题

点击对应数字即可跳转到对应题目
1
2
3
4
5
配套精练
1.(2024·漳州期初)已知椭圆 C:ax22+by22=1(a>b>0)的左焦点为 F1(- 3,0),且过
点
A
3,12.
(2) 不过原点 O 的直线 l 与 C 交于 P,Q 两点,且直线 OP,PQ,OQ 的斜率成等比
数列.
①求 l 的斜率; ②求△OPQ 的面积的取值范围.
圆锥曲线中的最值与范围、证明与探索性问题
研题型 能力养成
研题型 能力养成 举题说法
举题说法
目标 1 最值与范围问题
1 (2023·淮北一模节选)已知椭圆 Γ:ax22+by22=1(a >b>0),A,F 分别为 Γ 的左顶点和右焦点,O 为坐 标原点,以 OA 为直径的圆与 Γ 交于点 M(第二象限), |OM|=a2. (1) 求椭圆Γ的离心率e;
+
y2)
+
(2
-
m)2
=
9(t2+1) 3t2-1
-
12t2(2-m) 3t2-1
+
(2
-
m)2
=
(3m2-3)t23-t2-(m12-4m-5),
→→
→→
若MP·MQ为定值,则有 3m2-3=3(m2-4m-5),解得 m=-1,此时MP·MQ=0.当直
线 l 与 x 轴重合时,则 P,Q 为双曲线的两顶点,不妨设点 P(-1,0),Q(1,0).对于
2
(2023·泰安期末)已知椭圆
E:ax22+by22=1(a>b>0)过
A1,
26,B
3, 22两点.
(2) 已知 Q(4,0),过 P(1,0)的直线 l 与 E 交于 M,N 两点,求证:||MNPP||=||MNQQ||.
圆锥曲线中的最值、范围问题

圆锥曲线中的最值、范围问题圆锥曲线中最值问题的两种类型和两种解法 (1)两种类型①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种解法①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.[典例] (2018·武昌调研)已知椭圆的中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与直线AB 相交于点D ,与椭圆相交于E ,F 两点.(1)若ED ―→=6DF ―→,求k 的值; (2)求四边形AEBF 的面积的最大值. [思路演示]解:(1)由题设条件可得,椭圆的方程为x 24+y 2=1,直线AB 的方程为x +2y -2=0.设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2, 由⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1得(1+4k 2)x 2=4, 解得x 2=-x 1=21+4k 2.① 由ED ―→=6DF ―→,得x 0-x 1=6(x 2-x 0), ∴x 0=17(6x 2+x 1)=57x 2=1071+4k 2.由点D 在直线AB 上,得x 0+2kx 0-2=0,∴x 0=21+2k. ∴21+2k =1071+4k2,化简,得24k 2-25k +6=0, 解得k =23或k =38.(2)根据点到直线的距离公式和①式可知,点E ,F 到AB 的距离分别为d 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2),d 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2),又|AB |=22+12=5, ∴四边形AEBF 的面积为S =12|AB |(d 1+d 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k 2=21+4k1+4k 2=21+44k +1k≤21+424k ·1k =22,当且仅当4k =1k (k >0),即k =12时,等号成立.故四边形AEBF 的面积的最大值为2 2. [解题师说]由于四边形AEBF 中的四个顶点中,A ,B 为已知定点,E ,F 为直线y =kx 与椭圆的交点,其坐标一定与k 有关,故四边形AEBF 的面积可用直线y =kx 的斜率k 表示,最后通过变形,利用基本不等式求最值.[应用体验]1.已知椭圆C 的左、右焦点分别为F 1(-1,0),F 2(1,0),且F 2到直线x -3y -9=0的距离等于椭圆的短轴长.(1)求椭圆C 的方程;(2)若圆P 的圆心为P (0,t )(t >0),且经过F 1,F 2,Q 是椭圆C 上的动点且在圆P 外,过点Q 作圆P 的切线,切点为M ,当|QM |的最大值为322时,求t 的值. 解:(1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).依题意可知,2b =|1-9|2=4,所以b =2.又c =1,故a 2=b 2+c 2=5, 故椭圆C 的方程为x 25+y 24=1.(2)由题意,圆P 的方程为x 2+(y -t )2=t 2+1.设Q (x 0,y 0),因为PM ⊥QM ,所以|QM |=|PQ |2-t 2-1=x 20+(y 0-t )2-t 2-1=-14(y 0+4t )2+4+4t 2. 若-4t ≤-2, 即t ≥12,当y 0=-2时,|QM |取得最大值, |QM |max =4t +3=322,解得t =38<12(舍去).若-4t >-2,即0<t <12, 当y 0=-4t 时,|QM |取最大值,且|QM |max =4+4t 2=322,解得t =24.综上可知,当t =24时,|QM |的最大值为322.(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[典例] (2018·合肥质检)已知点F 为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.[思路演示]解:(1)由题意,得a =2c ,b =3c , 则椭圆E 的方程为x 24c 2+y 23c2=1.由⎩⎨⎧x 24+y 23=c 2,x 4+y 2=1得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M ,∴Δ=4-4(4-3c 2)=0,解得c 2=1, ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)得M ⎝⎛⎭⎫1,32, ∵直线x 4+y2=1与y 轴交于P (0,2),∴|PM |2=54.当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|PA |·|PB |⇒λ=45.当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2-12=0消去y ,得(3+4k 2)x 2+16kx +4=0, 则x 1x 2=43+4k2,且Δ=48(4k 2-1)>0, ∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ, ∴λ=45⎝⎛⎭⎫1+13+4k 2,∵k 2>14,∴45<λ<1.综上可知,实数λ的取值范围是⎣⎡⎭⎫45,1. [解题师说]在关系式λ|PM |2=|PA |·|PB |中,P ,M 为已知定点,而A ,B 两点是动直线l 与椭圆的交点,故λ与直线l 的斜率有关,应考虑建立λ关于k 的函数关系式求解.[应用体验]2.已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1―→·PF 2―→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.解:(1)依题意,设椭圆E 的方程为y 2a 2+x 2b 2=1(a >b >0),半焦距为c .∵椭圆E 的离心率等于223,∴c =223a ,b 2=a 2-c 2=a 29. ∵以线段PF 1为直径的圆经过F 2, ∴PF 2⊥F 1F 2. ∴|PF 2|=b 2a.∵9PF 1―→·PF 2―→=1,∴9|PF 2―→|2=9b 4a2=1.由⎩⎨⎧b 2=a 29,9b4a 2=1,解得⎩⎪⎨⎪⎧a 2=9,b 2=1,∴椭圆E 的方程为y 29+x 2=1.(2)∵直线x =-12与x 轴垂直,且由已知得直线l 与直线x =-12相交,∴直线l 不可能与x 轴垂直,∴设直线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,9x 2+y 2=9得(k 2+9)x 2+2kmx +(m 2-9)=0. ∵直线l 与椭圆E 交于两个不同的点M ,N , ∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0, 即m 2-k 2-9<0. 则x 1+x 2=-2kmk 2+9. ∵线段MN 被直线2x +1=0平分,∴2×x 1+x 22+1=0,即-2km k 2+9+1=0.由⎩⎪⎨⎪⎧m 2-k 2-9<0,-2km k 2+9+1=0得⎝⎛⎭⎫k 2+92k 2-(k 2+9)<0.∵k 2+9>0,∴k 2+94k 2-1<0,∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝⎛⎭⎫π3,π2∪⎝⎛⎭⎫π2,2π3.1.(2018·广东五校协作体诊断)若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C (-1,0)的直线l 交椭圆于不同两点A ,B ,且AC ―→=2CB ―→,当△AOB 的面积最大时,求直线l 的方程.解:(1)由题意知,c +b2=3⎝⎛⎭⎫c -b 2, 所以b =c ,a 2=2b 2, 所以e =ca =1-⎝⎛⎭⎫b a 2=22.(2)设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为x =ky -1(k ≠0),因为AC ―→=2CB ―→,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即2y 2+y 1=0.①由(1)知,a 2=2b 2,所以椭圆方程为x 2+2y 2=2b 2.由⎩⎪⎨⎪⎧x =ky -1,x 2+2y 2=2b 2消去x ,得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2k k 2+2.②由①②知,y 2=-2k k 2+2,y 1=4kk 2+2.因为S △AOB =12|y 1|+12|y 2|,所以S △AOB =3·|k |k 2+2=3·12|k |+|k |≤3·122|k |·|k |=324,当且仅当|k |2=2,即k =±2时取等号,此时直线l 的方程为x =2y -1或x =-2y -1, 即x -2y +1=0或x +2y +1=0. 2.(2018·惠州调研)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),若S △PAM ∶S △PBN =λ,求实数λ的取值范围.解:(1)因为BF 1⊥x 轴,所以点B ⎝⎛⎭⎫-c ,-b2a , 由⎩⎪⎨⎪⎧a =2,b2a (a +c )a 2=b 2+c 2,=12,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1.(2)因为S △PAM S △PBN =12|PA |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN =2|PM ||PN |=λ,所以|PM ||PN |=λ2(λ>2),所以PM ―→=-λ2PN ―→.由(1)可知P (0,-1),设直线MN :y =kx -1⎝⎛⎭⎫k >12, M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx -1,x 24+y 23=1消去y ,化简得(4k 2+3)x 2-8kx -8=0.则⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM ―→=(x 1,y 1+1),PN ―→=(x 2,y 2+1),则x 1=-λ2x 2.将x 1=-λ2x 2代入(*)可得,(2-λ)2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),则1<(2-λ)2λ<4,且λ>2,解得4<λ<4+23, 所以实数λ的取值范围为(4,4+23).3.(2018·广西三市第一次联考)已知右焦点为F 2(c,0)的椭圆C :x 2a 2+y 2b2=1(a >b >0)过点⎝⎛⎭⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝⎛⎭⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.解:(1)∵椭圆C 过点⎝⎛⎭⎫1,32,∴1a 2+94b2=1,① ∵椭圆C 关于直线x =c 对称的图形过坐标原点,∴a =2c , ∵a 2=b 2+c 2,∴b 2=34a 2,②由①②得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)依题意,直线l 过点⎝⎛⎭⎫12,0且斜率不为零,故可设其方程为x =my +12. 由⎩⎨⎧x =my +12,x 24+y 23=1消去x ,并整理得4(3m 2+4)y 2+12my -45=0.设E (x 1,y 1),F (x 2,y 2),M (x 0,y 0), ∴y 1+y 2=-3m3m 2+4,∴y 0=y 1+y 22=-3m2(3m 2+4), ∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m 4m 2+4.①当m =0时,k =0; ②当m ≠0时,k =14m +4m,∵4m +4m =4|m |+4|m |≥8,∴0<|k |≤18,∴-18≤k ≤18且k ≠0.综合①②可知,直线MA 的斜率k 的取值范围是-18,18.4.已知圆x 2+y 2=1过椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b2=1相交于A ,B 两点.记λ=OA ―→·OB ―→,且23≤λ≤34. (1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解:(1)由题意知2c =2,所以c =1.因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1.(2)因为直线l :y =kx +m 与圆x 2+y 2=1相切, 所以原点O 到直线l 的距离为|m |12+k 2=1, 即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.λ=OA ―→·OB ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是⎣⎡⎦⎤-1,-22∪⎣⎡⎦⎤22,1. (3)|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =2-2(2k 2+1)2, 由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23, 即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23。
圆锥曲线的热点问题—最值、范围、证明问题

23,
当且仅当4t =3t,即 t2=34时等号成立,此时 k2=73,所以△OAB 面积的最大值为
3 2.
索引
思维升华
求最值常用的方法有两种:①几何法,若题目的条件和结论能明显体现图形 的几何特征及意义,则考虑利用图形的性质来解决;②代数法,若题目的条 件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数 的最值.
索引
类型二 范围问题
例2 如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x
上存在不同的两点A,B满足PA,PB的中点均在C上.
(1)设AB中点为M,证明:PM垂直于y轴; 证明 设 P(x0,y0),A14y21,y1,B14y22,y2. 因为 PA,PB 的中点在抛物线上,所以 y1,y2 为方程y+2y02=4·14y2+2 x0, 即 y2-2y0y+8x0-y20=0 的两个不同的实根. 所以 y1+y2=2y0,即y1+2 y2=y0,因此 PM 垂直于 y 轴.
索引
(2)若 P 是半椭圆 x2+y42=1(x<0)上的动点,求△PAB 面积的取值范围. 解 由(1)可知yy11+ y2=y2= 8x02-y0,y20, 所以 PM=18(y21+y22)-x0=43y20-3x0,|y1-y2|=2 2(y02-4x0). 因此,△PAB 的面积 S△PAB=21PM·|y1-y2|=342(y20-4x0)32. 因为 x20+y420=1(-1≤x0<0), 所以 y20-4x0=-4x20-4x0+4∈[4,5], 因此,△PAB 面积的取值范围是6 2,15410.
索引
思维升华
求参数的取值范围问题常用的方法有两种:①不等式(组)法,根据题意结合图 形列出所讨论的参数满足的不等式(组),通过不等式(组)得出参数的取值范围; ②函数值域法,用某变量的函数表示所讨论的参数,通过讨论函数的值域求 得参数的取值范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)证明:因为点F1,F2是椭圆C1的两个焦点,故F1(-1,0),
F2(1,0).
又点F1,F2是椭圆C2上的点,将F1或F2的坐标代入C2的方程得λ=
1 2.
设点P的坐标是(x0,y0),
由点P是椭圆C2上的点,知x220+y20=12,
①
∵直线PF1和PF2的斜率分别是k,k′(k≠0,k′≠0),
[全析考法]
利用判别式构造不等关系求范围
[例1]
已知m>1,直线l:x-my-
m2 2
=
0,椭圆C:
x2 m2
+y2=1,F1,F2分别为椭圆C
的左、右焦点.
(1)当直线l过右焦点F2时,求直线l的方程; (2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重 心分别为G,H,若原点O在以线段GH为直径的圆内,求实数m
此时|S1-S2|=2||y2|-|y1||=2|y2+y1|=2|k(x2+1)+k(x1+1)| =2|k(x2+x1)+2k|=31+2|4kk| 2,
因为
k≠0
,
上
式
=
12 |k3|+4|k|
≤
2
12 3
= 12 = 2 12
3
|k|·4|k|
当且仅当k=± 23时等号成立,所以|S1-S2|的最大值为 3.
(2)设P(x0,y0),依题意,知抛物线过点P的切线与l平行时,△ABP
的面积最大,又y′=-x,所以-x0=2,
故x0=-2,y0=-12x20=-2,所以P(-2,-2).
此时点P到直线l的距离d=
|2×-2--2-2| 22+-12
=
4 5
=
45 5
.由
y=2x-2, x2=-2y,
得x2+4x-4=0,故x1+x2=-4,x1x2=-4,
∴kk′=x0y+0 1·x0y-0 1=x20y-20 1,
②
由①②可得kk′=-12,即k·k′为定值.
(2)直线PF1的方程可表示为y=k(x+1)(k≠0),与椭圆C1的方程联
y=kx+1, 立,得到方程组x22+y2=1, 消去y得(1+2k2)x2+4k2x+2k2-2
=0.设A(x1,y1),B(x2,y2),则x1+x2=-1+4k22k2,x1x2=12+k2-2k22.
所以|AB|=
1+k2 ×
× -42-4×-4=4 10.
x1+x22-4x1x2 =
1+22
4 所以△ABP面积的最大值为
1 (2017·山东高考)在平面直角坐标系xOy中,已知椭圆
C:
x2 a2
+
y2 b2
=1(a>b>0)的离心率为
2 2
,椭圆C截直线y=1所得
(1)当直线l的倾斜角为45°时,求线段CD的长; (2)记△ABD与△ABC的面积分别为S1和S2,求|S1- S2|的最大值.
[解] (1)由题意,c=1,b2=3, 所以 a2=4,所以椭圆 M 的方程为x42+y32=1, 易求直线方程为 y=x+1,联立方程,得x42+y32=1,
y=x+1, 消去 y,得 7x2+8x-8=0, 设 C(x1,y1),D(x2,y2),Δ=288,x1+x2=-87, x1x2=-87, 所以|CD|= 2|x1-x2|= 2 x1+x22-4x1x2=274.
3.[考点三]如图,已知点F1,F2是椭圆C1:x22 +y2=1的两个焦点,椭圆C2:x22+y2=λ经过 点F1,F2,点P是椭圆C2上异于F1,F2的任意 一点,直线PF1和PF2与椭圆C1的交点分别是A,B和C,D.设 AB,CD的斜率分别为k,k′. (1)求证:k·k′为定值; (2)求|AB|·|CD|的最大值.
[方法技巧]
当题目中给出的条件和结论的几何特征不明显,则可 以建立目标函数,再求这个函数的最值.求函数最值的常 用方法有配方法、判别式法、单调性法、三角换元法等.
利用基本不等式求最值
[例3] (2018·太原模拟)已知椭圆M:xa22+y32=1(a>0) 的一个焦点为F(-1,0),左、右顶点分别为A,B.经过点 F的直线l与椭圆M交于C,D两点.
因为-12<x<32,所以直线AP斜率的取值范围是(-1,1).
(2)设直线AP的斜率为k, 则直线AP的方程为y-14=kx+12, 即kx-y+12k+14=0,因为直线BQ与直线AB垂直, 所以直线BQ的方程为x+ky-94k-32=0,
联立kxx+-kyy+ -1294kk+ -1432= =00, , 解得点Q的横坐标xQ=-2k2k+2+4k1+ 3.
第九节 圆锥曲线中的最值、 范围、证明问题
本节主要包括3个知识点:
1.圆锥曲线中的最值问题;
2.圆锥曲线中的范围问题;
3.圆锥曲线中的几何证明问题.
突破点(一) 圆锥曲线中的最值问题
突破点(二) 圆锥曲线中的范围问题
012453
突破点(三) 圆锥曲线中的几何证明问题 全国卷5年真题集中演练——明规律 课时达标检测
(2)当直线 l 的斜率不存在时,直线方程为 x=-1,
此时△ABD 与△ABC 面积相等,|S1-S2|=0; 当直线 l 的斜率存在时,设直线方程为 y=k(x+1)(k≠0),
联立方程,得x42+y32=1, y=kx+1,
消去 y,得(3+4k2)x2+8k2x+4k2-12=0, Δ>0,且 x1+x2=-3+8k42k2,x1x2=43k+2-4k122,
因此t+1t ≥130, 当且仅当t=3时等号成立,此时k=0,所以||NNDF||22≤1+3=4, 由(*)得- 2<m< 2且m≠0,故||NNDF||≥12, 设∠EDF=2θ,则sin θ=||NNDF||≥12, 所以θ的最小值为π6. 从而∠EDF的最小值为π3,此时直线l的斜率是0. 综上所述:当k=0,m∈(- 2,0)∪(0, 2)时,∠EDF取到 最小值π3.
[方法技巧]
利用基本不等式求最值的策略 (1)求最值问题时,一定要注意对特殊情况的讨论.如 直线斜率不存在的情况,二次三项式最高次项的系数的讨 论等. (2)利用基本不等式求函数的最值时,关键在于将函数 变形为两项和或积的形式,然后用基本不等式求出最值.
[全练题点]
1.[考点一]如图所示,已知直线l:y=kx-2与 抛物线C:x2=-2py(p>0)交于A,B两点,O 为坐标原点,―O→A +―O→B =(-4,-12). (1)求直线l和抛物线C的方程; (2)抛物线上一动点P从A到B运动时,求△ABP面积的最大值.
又N(0,-m),所以|ND|2=-2k22k+m12+2k2m+1+m2, 整理得|ND|2=4m221k+2+3k12+2 k4, 因为|NF|=|m|,所以||NNDF||22=4k42+k2+3k21+2 1=1+28kk22++132. 令t=8k2+3,t≥3. 故2k2+1=t+4 1,所以||NNDF||22=1+11+6tt2=1+t+11t6+2. 令y=t+1t ,所以y′=1-t12. 当t≥3时,y′>0,从而y=t+1t 在[3,+∞)上单调递增,
建立目标函数求最值
[例2] (2017·浙江高考)如图,已知抛
物线x2=y,点A -12,14 ,B 32,94 ,抛物 线上的点P(x,y) -12<x<32 .过点B作直线 AP的垂线,垂足为Q.
(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.
[解]
(1)设直线AP的斜率为k,k=xx2+-1214=x-12,
|AB|=
1+k2|x1-x2|=
1+k2
x1+x22-4x1x2=2
21+k2 1+2k2 .
同理可求得|CD|=
21+4k2 1+2k2
,则|AB|·|CD|=
44k4+5k2+1 1+2k22
=
4
1+k12+41k2+4
≤
9 2
,当且仅当k=±
2 2
时等号成立.故|AB|·|CD|
的最大值为92.
最小,最小值为|PA|+|PB|-2R =8;连接PA,PB并延长,分别
与圆相交于两点,此时|PM|+|PN|最大,最大值为|PA|+|PB|+2R
=12,即最小值和最大值分别为8,12. [答案] C
[方法技巧]
当题目中给出的条件有明显的几何特征,考虑用图 象性质来求解,即利用曲线的定义、几何性质以及平面 几何中的定理、性质等解决,该方法叫做几何法.
01 突破点(一) 圆锥曲线中的最值问题
圆锥曲线中的最值问题是高考中的热点问题,常 涉及不等式、函数的值域问题,综合性比较强,解法 灵活多变,但总体上主要有两种方法:一是利用几何 方法,即利用曲线的定义、几何性质以及平面几何中 的定理、性质等进行求解;二是利用代数方法,即把 要求最值的几何量或代数表达式表示为某个些参数 的函数解析式,然后利用函数方法、不等式方法等 进行求解.
的取值范围.
[解] (1)因为直线l:x-my-m22=0经过F2( m2-1,0), 所以 m2-1=m22,得m2=2.
又因为m>1,所以m= 2,
故直线l的方程为x- 2y-1=0.
(2)设A(x1,y1),B(x2,y2),
由mxx=22+myy2+=m12,2,
消去x,得2y2+my+m42-1=0,
则由Δ=m2-8m42-1=-m2+8>0,
知m2<8,且有y1+y2=-m2 ,y1·y2=m82-12. 由于F1(-c,0),F2(c,0),可知Gx31,y31,Hx32,y32. 因为原点O在以线段GH为直径的圆内, 所以―O→H ·―O→G <0,即x1x2+y1y2<0. 所以x1x2+y1y2= my1+m22 my2+m22 +y1y2=(m2+ 1)·m82-12<0.解得m2<4(满足m2<8). 又因为m>1,所以实数m的取值范围是(1,2).