八年级数学上册 角平分线教学设计(2) 新人教版

合集下载

最新人教版八年级数学上册《第1课时角平分线的性质》优质教案

最新人教版八年级数学上册《第1课时角平分线的性质》优质教案

12.3角的平分线的性质第1课时角平分线性质一、新课导入1.导入课题:投影教材第48页开头的“思考”中的文字和图形,让学生说明道理后提出问题:你能从“思考”中得到的启示通过运用尺规作一个角的平分线吗?2.学习目标:(1)学会角平分线的画法.(2)探究并认知角平分线的性质.(3)熟练地运用角平分线的性质解决实际问题.3.学习重、难点:重点:角的平分线的性质.难点:运用角平分线的性质解决相关的问题.二、分层学习1.自学指导:(1)自学内容:探究“角平分线的作法”.(2)自学时间:5分钟.(3)自学方法:阅读、作图、总结、归纳.(4)自学参考提纲:①投影中AE平分∠DAB是由什么方法得到∠DAE=∠BAE?证明△ABC≌△ADC(SSS).②由平分角的仪器尝试画∠AOB的平分线.③由导入得到作角平分线的方法:a.作法(1)能得到OM=ON;b.作法(2)能得到MC=NC;c.由SSS方法判定△OMC≌△ONC,得到∠MOC=∠NOC,∴OC是∠AOB的平分线;d.在作法的第二步中,去掉“大于12MN的长”这个条件行吗?不行.2.自学:学生结合自学指导进行探究式学习.3.助学:(1)师助生:①明了学情:利用角平分仪悟出画角平分线的方法,由实物抽象出几何图形,应用了数学里面的建模思想,部分学生理解起来还存在一定的困难.②差异指导: a.引导学生理解角平分仪平分角的道理是证明两角相等,回忆前面证明角相等的方法是证明三角形全等.b.在尺规作图的过程中引导学生运用三角形三边关系定理,理解“大于12MN的长”这个条件.(2)生助生:学生之间相互交流帮助.4.强化:(1)让学生口述角平分线的作法步骤.(2)尝试练习:作出△ABC的三条角平分线(保留作图痕迹,写出作法).(3)练习:平分平角∠AOB,通过作角平分线得到射线OC,然后反向延长OC得到直线CD,直线CD 与直线AB存在什么样的位置关系?互相垂直.(4)给一张三角形纸片,你能不借助任何工具找到某一个角的平分线吗?能,将这个三角形沿过一个顶点的线折叠,使在该顶点的角的两边重合,则该线就是这个角的平分线.1.自学指导:(1)自学内容:探究“角平分线上的点到角的两边的距离相等”.(2)自学时间:5分钟.(3)学习方法:先通过折纸画图、测量得出角平分线的性质,再探究几何证明方法.(4)探究提纲:①如图,OC平分∠AOB,点P是OC上任一点,P点到OA、OB的距离怎么找?过点P分别向OA、OB作垂线,P点与垂足之间的线段的长就是P点到OA、OB的距离.②这两个距离可采用什么方法得到它们的大小关系?证三角形全等,然后得出这两个距离相等.③用你采用的方法,得到了什么结论?结论:角的平分线上的点到角的两边的距离相等..④将性质用图形、几何语言表示(填写下表):图形:已知事项:已知∠AOB,OC是∠AOB的平分线,P为OC上一点,且PD⊥OA,PE⊥OB,垂足分别为D、E.由已知事项推出的事项:PD=PE⑤根据探究的内容,写出已知、求证及证明结论的过程.已知:∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS),∴PD=PE.⑥由上述证明过程,总结证明一个几何命题的一般步骤:1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.2.自学:学生可结合自学指导探究式学习.3.助学:(1)师助生:①明了学情:通过第二层次的学习,学生能够理解角平分线的性质定理,但在证明过程中,大部分学生不习惯把文字语言改成几何语言,教师应了解学生在几何表述中存在的问题.②差异指导:得出结论之后,要通过证明,才能确定命题的正确性,引导学生学会证明文字语言描述的几何题的步骤.(2)生助生:学生之间相互交流帮助.4.强化:(1)用文字及几何语言表述定理;(2)证明题的基本步骤.三、评价1.学生的自我评价:学生相互交谈自己的收获和学习困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课由于采用了动手操作、直观模型的观察以及讨论交流等教学方法.从而有效地增强了学生对角以及角的平分线的感性认识,提高了学生对新知识的理解与感性.所以本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的,不是之处:少数学生在尺规作图上还存在问题,需要在今后的教学与作业中进一步加强巩固和训练.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.角平分线的性质定理:角平分线上的点到角的两边的距离相等.2.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是 (D)A.PC=PDB.OC=ODC.∠CPO=∠DPOD.OC=PO第2题图第3题图第4题图3.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AB=10cm,则△DBE的周长等于(A)A.10cmB.8cmC.6cmD.9cm4.如图,P是∠AOB角平分线上的点,C、D分别是OA、OB上的点,且PC=PD,PE⊥OA于E,PF⊥OB于F,求证:CE=DF.证明:∵OP是∠AOB的平分线,PE⊥OA,PF⊥OB,∴∠PEC=∠PFD=90°,PE=PF,在Rt△PEC 和Rt△PFD中,PC=PD,PE=PF,∴Rt△PEC≌Rt△PFD(HL),∴CE=DF.二、综合应用(第5题10分,第6题20分,共30分)5.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,则下列四个结论:①AD上任意一点到点C、点B的距离相等;②AD上任意一点到AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中,正确的个数是(D)A.1个B.2个C.3个D.4个第5题图第6题图6.如图,在△ABC中,AD为∠BAC的平分线,∠B=90°,DF⊥AC,垂足为F,DE=DC,求证:BE=CF.证明:∵DF⊥AC,∴∠DFA=∠B=90°.∵AD为∠BAC的平分线,∴DB=DF.在Rt△BDE和Rt △FDC中,DE=CD,DB=DF,∴Rt△BDE≌Rt△FDC(HL).∴BE=CF.三、拓展延伸(20分)7.如图,点D、B分别在∠MAN的两边上,C是∠MAN内一点,AB=AD,BC=CD,CE⊥AM于E,CF⊥AN于F.求证:CE =CF.证明:在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).∴∠DAC=∠BAC.∴AC平分∠MAN.∵CE⊥AM,CF⊥AN,∴CE=CF.人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。

12.3 角的平分线的性质(第2课时)八年级上册人教版

12.3 角的平分线的性质(第2课时)八年级上册人教版

素养目标
3. 学会判断一个点是否在一个角的平分线上.
2. 掌握角平分线判定定理内容的证明方法 并应用其解题. 1. 理解角平分线判定定理.
探究新知
素养考点 角平分线的判定的应用
例 如图,要在S区建一个贸易市场,使它到铁路和公路距
离相等, 离公路与铁路交叉处500米,这个集贸市场应建
在何处(比例尺为1︰20000)?
解:作小河与公路夹角的角平分线BM,在BM上 截取BP=1.5 cm,则点P即为所求的工厂的位置
链接中考 如图,已知,BE=CF,BF⊥AC于点F,DE⊥AB于点E,BF, CE交于点D.求证:AD平分∠BAC.
证明:∵BF⊥AC,CE⊥AB, ∴∠BED=∠CFD=90°. 又∵∠BDE=∠CDF, BE=CF, ∴△BDE≌△CDF(AAS) . ∴DE=DF. ∴AD平分∠BAC.
E B
∴∠AOP=∠BOP (全等三角形的对应角相等).
∴点P在∠AOB的平分线上.
探究新知
判定定理:
角的内部到角的两边的距离相等的点在角的平分线上.
应用所具备的条件:
(1)位置关系:点在角的内部;
(2)数量关系:该点到角两边的距离相等.
定理的作用:判断点是否在角平分线上.
应用格式: ∵ PD⊥OA,PE⊥OB,PD=PE. O ∴点P 在∠AOB的平分线上.
∠DAE的平分线上.
E
证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M. G
∵点F在∠BCE的平分线上,FG⊥AE, FM⊥BC.
C
∴FG=FM.
又∵点F在∠CBD的平分线上,
M
F
FH⊥AD, FM⊥BC,
∴FM=FH,∴FG=FH.

八年级数学上册《角平分线的性质和判定定理》教案、教学设计

八年级数学上册《角平分线的性质和判定定理》教案、教学设计
3.思考题:
-如果一个角的平分线同时也是这个角的垂直平分线,那么这个角有什么特殊的性质?请给出证明;
-如果一个角的平分线同时也是另一个角的平分线,那么这两个角之间有什么关系?请给出证明。
4.实践活动:
-与同学合作,设计一个关于角平分线的数学小报,内容包括定义、性质、判定定理以及生活中的应用等;
-利用所学知识,尝试解决实际生活中的问题,如测量角度、划分土地等,并撰写解题报告。
2.学生在运用角平分线判定定理解决问题时的逻辑思维能力和解题技巧;
3.学生在合作交流、动手操作等方面的学习习惯和团队协作能力。
针对学情,教师应采取以下策略:
1.设计富有启发性的问题,引导学生主动探究角平分线的性质;
2.创设生活情境,让学生在实际问题中体会角平分线判定定理的应用;
3.注重个体差异,给予学生个性化的指导,提高学生的自主学习能力;
4.加强课堂讨论与交流,培养学生的团队合作意识和解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:角平分线的性质及其应用,角平分线的判定定理。
2.难点:理解并灵活运用角平分线的性质和判定定理解决实际问题。
(二)教学设想
1.创设情境,激发兴趣:
-通过引入生活中的实例,如折纸、剪纸等,让学生感受角平分线的存在和应用,激发学生的学习兴趣;
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁;
2.作业完成后,进行自查,确保解题过程和答案正确;
3.遇到问题时,与同学讨论,或向老师请教,及时解决疑问;
4.作业提交时间:课后第二天。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角平分线的性质和判定定理的学习具备了一定的基础。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解角平分线的性质和判定定理方面存在困难。

人教版数学八年级上册《角平分线性质》教学设计

人教版数学八年级上册《角平分线性质》教学设计

人教版数学八年级上册《角平分线性质》教学设计一. 教材分析《角平分线性质》是人教版数学八年级上册的教学内容。

本节内容主要让学生了解角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质。

通过学习本节内容,为学生进一步学习几何知识打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了角的概念、线段的概念以及一些基本的几何图形。

但学生对角平分线的性质可能还没有直观的认识,因此需要通过实例和几何图形来帮助学生理解和掌握。

三. 教学目标1.知识与技能:使学生了解角平分线的性质,学会用角平分线的性质解决一些简单的问题。

2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.重点:角平分线的性质。

2.难点:角平分线性质的证明和应用。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等,引导学生通过观察、操作、猜想、验证等过程,自主学习角平分线的性质。

六. 教学准备1.教学PPT:制作角平分线性质的PPT,包括角的定义、线段的定义、角平分线的性质等。

2.几何图形:准备一些几何图形,如角、线段、三角形等,用于引导学生观察和操作。

3.学习素材:准备一些关于角平分线性质的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示角的定义和线段的定义,引导学生回顾相关知识。

然后提出问题:“你们知道角平分线是什么吗?角平分线有哪些性质呢?”激发学生的兴趣,引出本节课的主题。

2.呈现(10分钟)通过PPT展示角平分线的性质,并用几何图形进行说明。

引导学生观察和操作,让学生自己发现角平分线上的点到角的两边的距离相等的性质。

在此过程中,教师进行讲解和引导,帮助学生理解和掌握。

3.操练(10分钟)让学生分组进行合作学习,每组选择一个几何图形,用直尺和圆规画出该图形的角平分线,并验证角平分线上的点到角的两边的距离是否相等。

第2课时 角的平分线的判定 教案 2023—2024学年人教版数学八年级上册

第2课时  角的平分线的判定 教案     2023—2024学年人教版数学八年级上册

12.3角的平分线的性质第2课时角的平分线的判定教学内容第2课时角的平分线的判定课时1核心素养目标1.会用数学的眼光观察现实世界:用生活情境导入,提高学生的分析问题和用数学语言总结生活问题的能力,让学生体会数学的应用价值,体会角的平分线的判定在实际生活中的意义.2.会用数学的思维思考现实世界:用生活情境导入,提高学生的分析问题和用数学语言总结生活问题的能力,让学生体会数学的应用价值,培养类比、分类讨论的数学思维.3.会用数学的语言表示现实世界:通过对角的平分线的判定定理的学习,在经历猜想、验证、归纳的学习过程中,体会归纳的数学思想方法,逐步养成用数学语言表达与交流的习惯,感悟数据的意义与价值.知识目标1.探索并证明角的平分线的判定定理.2.能用角的平分线的判定定理解决简单问题.教学重点探索并证明角的平分线的判定定理性质.教学难点准确理解和应用角的平分线的判定定理.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知一、创设情境,导入新知教师叙述:如图,要在S 区建一个风筝主题公园,使它到公路和铁路的距离相等,这个风筝主题公园应建于何处?师生活动:教师分析,把题干解读成数学语言(在∠AOB内是否存在点P,过点P作OA、OB的垂线并交OA、OB于点D、E,使得DP = EP ?),学生独立思考.二、小组合作,探究概念和性质知识点一:角平分线的判定探究新知:角的平分线的判定.设计意图:用生活情境导入,提高学生的分析问题和用数学语言总结生活问题的能力,建立数学模型,让学生体会数学的应用价值.设计意图:回扣导入知识,让学生做到学以致用,同时体会角的平分线的判定定理的作用:判断点是否在角的平分线上.师生活动:教师提问:角的平分线的性质是?学生回答:角的平分线上的点到角的两边的距离相等.教师提问:那么角的内部到角的两边距离相等的点,是否在角平分线上呢?学生独立思考并得出猜想:角的内部到角的两边距离相等的点在角的平分线上.证一证:已知:如图,PD⊥OA,PE⊥OB,垂足分别是D、E,PD = PE. 求证:点P在∠AOB的平分线上.证明:作射线OP.∵PD⊥OA,PE⊥OB,∴∠PDO =∠PEO = 90°.在Rt△PDO和Rt△PEO中,OP = OP (公共边),PD = PE (已知),∴Rt△PDO≌Rt△PEO (HL).∴∠AOP =∠BOP (全等三角形的对应角相等).∴点P在∠AOB的平分线上.师生活动:学生独立完成证明过程,教师进行定义总结:角的平分线判定定理:角的内部到角的两边的距离相等的点在角的平分线上.老师强调:角的内部指的是位置关系;距离相等指的数量关系.几何语言:∵PD⊥OA,PE⊥OB,PD = PE,∴点P在∠AOB的平分线上.回顾导入:如图,要在S区建一个风筝主题公园,使它到公路和铁路的距离相等,并且S离公路与铁路交叉处距离为500 m,这个风筝主题公园应建在何处?师生活动:学生独立思考并解答问题,教师板书总结.变式1:如图,S区内有两条公路和一条铁路,它们两两相交,交点分别为点A,B,C,如果要在△ABC区域内建一个风筝主题公园,使它到三条路的距离相等,这个风筝主题公园应建在何处?师生活动:教师分析:由上题可知到AB,AC距离相等的点在∠BAC的角平分线上,则到BA,BC距离相等的点在∠ABC的角平分线上,它们交于一点P.那么这一点P是否到三边的距离都相等呢?师生活动:教师帮助学生分析题干理清思路,把问题实际应用题转化为数学中证明题:已知:如图,△ABC的角平分线BM,CN相交于点P.求证:点P到三边AB,BC,CA的距离相等.证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD = PE. 同理,PE = PF.∴PD = PE = PF.即点P到三边AB,BC,CA的距离相等.师生活动:教师引导学生分析解题思路,学生独立完成证明过程.可总结出:三角形的三条角平分线交于一点,并且这点到三边的距离相等设计意图:学生通过变式训练学会举一反三,巩固角的平分线的判定定理,引出角的内心的概念.变式2:如图,S区内有两条公路和一条铁路,它们两两相交,交点分别为点A,B,C,如果要在△ABC区域内建一个风筝主题公园,使它到三条路的距离相等,这个风筝主题公园应建在何处?师生活动:学生独立思考,回答问题.(△ABC的三条内角平分线交点处.)变式3:如果要在△ABC区域外建一个风筝主题公园,使它到三条路的距离相等,这个风筝主题公园应建在何处?(画出所有点)师生活动:教师引导学生分析解题思路,学生独立解答并画图.例1如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD. 求证:AD是∠BAC的外角平分线.师生活动:教师引导学生分析解题思路,学生独立完成证明过程.练习:1. (西安阶段)如图,O是△ABC内一点,且点O到三边AB,AC,BC的距离相等,即OF = OE = OD,若∠BAC = 100°,则∠BOC的度数是( )A.140°B. 130°C. 120°D. 110°师生活动:学生独立思考,并完成该题.设计意图:引导出变式3:若将题目条件换成△ABC 区域外,那么风筝主题公园应建在何处?顺势探究外心的概念.设计意图:培养学生举一反三的发散性思维,探究外心的概念.设计意图:巩固角的平分线的判定定理,考查学生应用角的平分线的判定定理解题的能力.设计意图:复习巩固本节课的知识点,考查学生对本节课的掌握情况.BACODEF三、当堂练习,巩固所学练习:2.完成下表:师生活动:学生独立思考并回答,教师翻动PPT.三、当堂练习,巩固所学1. (西安期中)如图,若∠ABC的平分线与△ABC的外角∠ACD的平分线相交于点P,若∠BAC =62°,∠PAC等于_______°.2. (泰州校考) 如图,电信部门要在S区修建一座发射塔P. 按照设计要求,发射塔P到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔P应建在什么位置?在图上标出它的位置. (尺规作图:只保留作图痕迹,不写作图过程).3.(河源校考) 如图,AD = BD,∠CAD + ∠CBD =180°,求证:CD平分∠ACB.设计意图:考查学生对角的平分线判定定理的掌握.设计意图:考查学生运用角的平分线判定定理进行尺规作图的能力.设计意图:考查学生综合运用角的平分线判定定理三角形全等的判定定理,完成简单证明的能力.ABCD板书设计角的平分线的判定1.角的平分线的判定定理:角的内部到角两边距离相等的点在这个角的平分线上.2.作用:判断一个点是否在角的平分线上.3.推论:三角形的角平分线相交于内部一点,该点到三角形三边的距离相等.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图。

人教版数学八年级上册12.3角平分线的性质教学设计

人教版数学八年级上册12.3角平分线的性质教学设计
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成小组,并给出一些实际的几何问题,让学生运用角平分线的性质进行解决。例如,证明一条线段是某个角的平分线,或者求解一个角的度数等。学生会在小组内进行讨论和合作,共同解决问题。通过这样的讨论,学生能够更好地理解和运用角平分线的性质,并培养他们的合作和交流能力。
2.实践性作业:我会设计一些实际问题,让学生运用所学的角平分线性质进行解决。例如,设计一道题目要求学生测量一张纸张的某个角的平分线长度,或者求解一个实际图形中某个角的度数等。通过这样的实践性作业,学生能够将所学的知识运用到实际问题中,提高他们的实践操作能力。
3.合作性作业:我会设计一些需要学生合作完成的作业,让他们在小组内进行讨论和交流。例如,设计一道题目要求学生共同探究角平分线的性质,并用自己的语言进行描述和证明。通过这样的合作性作业,学生能够培养合作和交流的能力,提高他们的团队协作能力。
(三)情感态度与价值观
在本节课的教学中,学生将培养以下情感态度和价值观:
1.对数学学习的兴趣:学生通过观察和实验,发现角平分线的性质,增强对数学学习的兴趣;
2.探究精神:学生在探索角平分线的性质的过程中,培养独立思考和解决问题的能力;
3.合作意识:学生在与同伴的合作与交流中,培养团队协作的能力,提高沟通和表达能力;
4.严谨态度:学生在学习和证明角平分线的性质时,培养严谨的科学态度,注重细节和逻辑性。
二、学情分析
在开展人教版数学八年级上册12.3角平分线的性质的教学之前,对学生的学情进行分析是必要的。首先,学生在之前的学习中已经掌握了角的概念、线段的长度等基础知识,具备了一定的几何图形观察和推理能力。然而,对于角平分线的性质,他们可能还没有直观的认识,需要通过观察、实验和证明来建立。

人教版数学八年级上册12.3角的平分线的判定教学设计

人教版数学八年级上册12.3角的平分线的判定教学设计
4.能够运用角的平分线性质解决相关问题,如求角的度数、证明线段相等或比例关系等。
(二)过程与方法
1.采用探究式教学方法,引导学生从实际操作中发现角的平分线的判定定理,培养学生的观察能力和逻辑思维能力。
2.通过小组合作、讨论交流等形式,让学生在合作中学习,提高解决问题的能力和团队协作精神。
3.设计具有梯度性的练习题,使学生在巩固基础知识的同时,逐步提高解题能力,培养良好的学习习惯。
(三)学生小组讨论
1.教学活动:教师给出几个实例,让学生分组讨论如何找出这些角的平分线。
2.小组讨论:学生在小组内分享自己的思考过程,讨论如何运用角的平分线判定定理解决问题。
3.教师指导:教师巡回指导,对学生的疑问进行解答,引导学生运用角的平分线性质解决问题。
(四)课堂练习
1.教学内容:教师布置以下练习题,让学生独立完成。
a.判断题:判断下列各题中,哪个是角的平分线。
b.解答题:已知一个角的度数,求这个角的平分线。
c.应用题:运用角的平分线性质解决实际问题。
2.解答与讲解:教师选取部分学生的答案进行展示和讲解,指出解题过程中的关键步骤和注意事项。
(五)总结归纳
1.教学内容:教师引导学生回顾本节课所学内容,总结角的平分线的定义、性质和判定定理。
1.学生在空间想象力方面的发展水平,引导他们通过实际操作,将抽象的角的平分线概念具体化、形象化。
2.学生在逻辑推理能力上的差异,针对不同水平的学生设计不同难度的问题,使他们在解决问题的过程中逐步提高推理能力。
3.学生在团队合作中的表现,鼓励他们积极参与讨论,学会倾听他人意见,提高沟通能力和团队协作精神。
4.培养学生的创新意识,鼓励他们敢于尝试、勇于探索,形成独立思考的能力。

12.3角的平分线的性质第2课时角平分线的判定教案人教版数学八年级上册

12.3角的平分线的性质第2课时角平分线的判定教案人教版数学八年级上册

12.3角的平分线的性质第2课时角平分线的判定教学目标:1.探究并证明角平分线的判定方法.2.会用角的平分线的判定解决实际问题.3.熟练掌握角的平分线的性质和角的平分线的判定的综合运用.教学重难点:重点:角平分线的判定.难点:三角形的内角平分线的应用.教学过程:课堂导入我们知道,角的平分线上的点到角的两边的距离相等,反过来,到角的两边的距离相等的点是否在这个角的平分线上呢?这节课我们来对这个问题进行探究.讲授新课知识点1角平分线的判定定理角的内部到角的两边的距离相等的点在角的平分线上吗?也就是交换角的平分线的性质中的已知和结论.下面我们证明这个命题的正确性.已知:如图所示,PD⊥OA,PE⊥OB,PD=PE.求证:点P在∠AOB的平分线上(OP平分∠AOB).证明:因为PD⊥OA,PE⊥OB(已知),所以∠PDO=∠PEO=90°.在Rt△PDO和Rt△PEO中,{PO=PO,PD=PE,所以Rt△PDO≌Rt△PEO(HL).所以∠POD=∠POE.即点P在∠AOB的平分线上.[归纳]角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.注意:(1)使用该判定定理的前提是这个点必须在角的内部;(2)角的平分线的判定定理是证明两角相等的重要办法.几何语言:如图所示,因为点P 是∠AOB 内的一点,PD ⊥OA,PE ⊥OB,垂足分别为D,E,且PD=PE, 所以点P 在∠AOB 的平分线OC 上.范例应用例1 如图所示,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路和铁路的交叉处500 m.这个集贸市场应建于何处(在图上标出它的位置,比例尺为1∶20 000)? 解:因为图上距离500=120000, 所以图上距离=0.025 m=2.5 cm.如图所示,P 点即为所求.理由:P 点在这个交叉口的角平分线上,所以P 点到公路与铁路的距离相等.知识点2 角的平分线的性质定理与判定定理的关系点在角的平分线上(角的内部)点到角的两边的距离相等.正确理解两个定理的条件和结论,性质定理和判定定理的条件和结论是相反的,性质定理是证明两条线段相等的依据,判定定理是证明两个角相等的依据.知识点3 三角形三个内角平分线的性质1.如图所示,三角形的三个内角的角平分线已画出,从位置上你能观察出什么结论? 答案:三角形三个内角的平分线的交点位于三角形的内部.2.如图所示,过交点分别作三角形三边的垂线,根据角平分线的性质定理你能得出什么结论? 答案:过交点作的三角形三边的垂线段相等.范例应用例2 如图所示,△ABC 的角平分线AD,BE,:点P 到△ABC 三边AB,BC,CA 的距离相等. 证明:如图所示,过点P 作PM ⊥BC ,PN ⊥AC ,PO ⊥AB ,垂足分别为M ,N ,O.因为AD为△ABC的角平分线,所以PN=PO.因为BE为△ABC的角平分线,所以PM=PO.因为CF为△ABC的角平分线,所以PM=PN.所以PM=PN=PO,即点P到△ABC三边AB,BC,CA的距离相等.课堂训练1.判断题:(1)如图(1)所示,若QM=QN,则OQ平分∠AOB.(×)(2)如图(2)所示,若QM⊥OA于点M,QN⊥OB于点N,则OQ平分∠AOB.(×)2.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(D)处处处处第2题图第3题图3.如图所示,O是△ABC内一点,O到三边AB,BC,CA的距离分别为OF,OD,OE,且OF=OD=OE,若∠BAC=70°,则∠BOC=125°.4.如图所示,:AP平分∠BAC.证明:如图所示,作PQ⊥BC,PM⊥AE,PN⊥AF,垂足分别为Q,M,N.因为P点在∠CBE和∠BCF的平分线上,所以PM=PQ,PN=PQ.所以PM=PN.又PM⊥AE,PN⊥AF,所以AP平分∠BAC.课堂小结1.三角形的三条角平分线的交点有且只有一个,且一定在三角形的内部.2.证明三线共点的思路:先设其中的两线交于一点,再证明该交点也在第三条直线上.3.在三角形内部,要找一点到三边距离相等时,只要作出两个角的平分线,其交点即是.4.角平分线的判定与性质的关系:由角平分线的判定方法知这个结论的逆命题也是正确的,即在三角形内,到三角形三边的距离相等的点是三角形三条角平分线的交点.板书设计第2课时角平分线的判定角平分线的判定{学会用添加辅助线的方法解题判定定理——角的内部到角的两边的距离相等的点在角的平分线上应用——综合利用角的平分线的性质和判定来解决实际问题教学反思本课时教学应重视以下几点:(1)由定理得到它的逆命题,并证明它的正确性,把两个定理正确地运用;(2)尽力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.(3)课堂中,可采用口答、动手做等方式组织学生比赛,教师依据具体情形予以点评指点,查缺补漏,使学生从本质上理解知识.。

2024~2025学年度八年级数学上册第2课时 角的平分线的判定教学设计

2024~2025学年度八年级数学上册第2课时 角的平分线的判定教学设计

第2课时角的平分线的判定教学步骤师生活动拓展:(1)几何画板动态演示角平分线的判定定理:提出这些概念,学生只教学目标课题12.3第2课时角的平分线的判定授课人素养目标探索并证明角平分线的判定定理:角的内部到角两边距离相等的点在角的平分线上,感受互逆的数学思想,发展学生的推理能力和解题能力.教学重点探索并证明角平分线的判定定理及其运用教学难点区别角的平分线的性质定理和判定定理并灵活运用.教学活动教学步骤师生活动活动一:创设情境,新课引入设计意图结合实际情境提出问题,为引入角平分线的判定定理做铺垫.【情境引入】思考如图,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路与铁路的交叉处500m.这个集贸市场应建于何处(在图上标出它的位置)?聪明的你是否已经猜想到,集贸市场应建在公路和铁路夹角的平分线上呢?这是为什么呢?让我们赶快进入新课,你的疑问就能迎刃而解了.【教学建议】学习了角的平分线的性质之后,学生可能会猜想到答案,无形中将要学的判定定理与性质定理建立了联系,对进入新课的学习起到了推动作用.活动二:合作交流,新知探究设计意图使学生经历探索证明角的平分线的判定定理的过程,感受知识的产生可以来自于数学本身.学会区别角的判定定理与性质定理,并运用判定定理解决问题.探究点1角的平分线的判定问题1:我们知道,角的平分线上的点到角的两边的距离相等,如果交换这个命题的条件和结论,你能得到什么新结论?答:新结论:到角的两边的距离相等的点在角的平分线上.问题2:这个新结论成立吗?请按照上节课总结的证明几何命题的一般步骤,自己证一证这个结论.答:这个结论成立.证明过程如下:如图,P 为∠AOB 内部一点,PD⊥OA 于点D,PE⊥OB 于点E,且PD=PE.求证:点P 在∠AOB 的平分线上.证明:如图,经过点P 作射线OC.∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△PDO 和Rt△PEO 中,OP=OP,PD=PE.∴Rt△PDO≌Rt△PEO (HL).∴∠AOC=∠BOC.∴点P 在∠AOB 的平分线上.概念引入:【教学建议】衔接活动一的思路继续引导,通过逆向思维将角的平分线的性质的题设和结论交换位置,并引导学生利用三角形全等证明这个结论,这就得到了角的平分线的判定定理.这个过程中结合了推理证明,可使学生进一步感受数学知识的系统性和逻辑性.角平分线的实质是符合某种条件的动点的集合,因此利用教具、投影或计算机演示动点运动的过程和规律,更能直观显示其形成过程,有利于学生自己观察,探索新知识,发挥学习的主动性.角的平分线的性质定理和判定定理是互逆定理,教学中不必对学生(2)角的平分线的性质及判定的关系:特别提醒:角的平分线的性质是证两条线段相等的依据,角的平分线的判定是证两角相等的依据,在应用时不要混淆.问题3:根据上述结论,请找到活动一中集贸市场的具体位置.答:集贸市场应建在S 区内,公路和铁路夹角的平分线上,且在图上距离公路和铁路交点处500÷200=2.5个单位长度的位置,如图中点P 所示.【对应训练】如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF 相交于点D.若BD=CD,求证:AD 是∠BAC 的平分线.证明:∵BE ⊥AC ,CF ⊥AB ,∴∠BFD =∠CED =90°∴△BDF≌△CDE(AAS),∴DF=DE.又DF⊥AB,DE⊥AC,∴AD 是∠BAC 的平分线.需认识到这两个定理的条件和结论是相反的,体会互逆的特点并能够加以区别即可.【教学建议】学过角的平分线的判定定理后,自然对于活动一的问题进行了解释,这里要注意比例尺的换算不要出错.教师可引导学生交流探讨,完成后续设置的练习,有利于进一步加强学生对于新知的理解和应用.设计意图使学生经历探究三角形三条角平分线交于一点,且这一点到三条边的距离相等的过程,为运用这个结论打好理论基础.探究点2三角形三条角平分线的关系例1(教材P50例题)如图,△ABC 的角平分线BM ,CN 相交于点P.求证:点P 到三边AB ,BC ,CA 的距离相等.证明:过点P 作PD ,PE ,PF 分别垂直于AB ,BC ,CA ,垂足分别为D ,E ,F.∵BM 是△ABC 的角平分线,点P 在BM 上,∴PD =PE.同理PE =PF.∴PD =PE =PF.即点P 到三边AB ,BC ,CA 的距离相等.问题:想一想,点P 在∠A 的平分线上吗?这说明三角形的三条角平分线有什么关系?答:由于点P 在∠A 的内部,而且PD =PF ,所以点P 在∠A 的平分线上.这说明三角形的三条角平分线交于一点.归纳总结:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.【对应训练】教材P50练习第2题.【教学建议】学生自主完成例1的解题过程,教师进行点评,并提出后面的问题,这也是这个探究点的核心意义——证明了三角形三条角平分线交于一点,这里隐含将三角形的面积与周长之间建立联系.在第十一章学生曾经画图猜想过三角形三条角平分线的特点,在这里就综合利用了角的平分线的性质和判定定理对这个猜想进行了严格证明,体现了数学证明的逻辑性与严密性.九年级上册中还将进一步说明这个交点的意义:它是三角形内切圆的圆心,叫做三角形的内心.教学步骤师生活动内一点,DE⊥AB,DF⊥AC=CD.“随堂小练”册子相应课时随堂训练.师生一起回顾本节课所学主要内容,并请学生回答以下问题:角的平分线的判定定理是什么?你能证明吗?能运用角的平分线的判定定理解题吗?【作业布置】1.教材P51~52习题12.3第1,3,7题.2.《创优作业》主体本部分相应课时训练.第2课时角的平分线的判定1.角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.2.三角形三内角的平分线交于一点,并且这一点到三条边的距离相等.解题大招一与角的平分线的判定有关的计算角的平分线的判定定理为得到角平分线又增加了一种思路,可利用角的平分线的判定定理对说理过程进行简化,不必再通过证三角形全等来进行说明.而三角形三条角平分线交于一点在本课时通过角的平分线的判定定理进行了严格证明,过这个交点分别对三角形三条边作垂线,可得到三条相等的垂线段(设长为h),从而可利用面积法得到三角形的面积S 与周长C 之间的关系:S =12Ch.例1如图,AD ⊥DC ,AB ⊥BC ,若AB =AD ,∠BCD =60°,求∠DAC 的度数.解:∵AB ⊥BC ,AD ⊥DC ,且AB =AD ,∴CA 平分∠BCD.∴∠ACD =12∠BCD =12×60°=30°.又∠ADC =90°,∴∠DAC =90°-∠ACD =90°-30°=60°.例2如图,在Rt △ABC 中,∠C =90°,AP 平分∠BAC ,BD 平分∠ABC ,AP ,BD 交于点O ,过点O 作OM ⊥AC 于点M.若OM =4,△ABC 的周长为32,求△ABC 的面积.解:如图,连接OC ,过点O 分别作OE ⊥AB 于点E ,ON ⊥BC 于点N.∵AP 平分∠BAC ,BD 平分∠ABC ,AP ,BD 交于点O ,∴点O 是△ABC 三条角平分线的交点,∴OE =ON =OM =4.S △ABC =S △AOC +S △BOC +S △AOB=12AC·OM +12BC·ON +12AB·OE =12OM·(AC +BC +AB)=12×4×32=64.解题大招二角的平分线的判定定理的实际应用在确定到三角形三边距离相等的点的位置时,易受到“三角形三条内角平分线的交点到三边的距离相等”的思维定式的影响,误认为这样的点只有一个,且存在于三角形内部.事实上,若题中不存在限制条件,这样的点还有3个,它们是三角形相邻的两个外角(不在同一顶点处)的平分线的交点.例3如图,三条公路l 1,l 2,l 3两两相交于A ,B ,C 三点,现计划修建一个超市,要求这个超市到三条公路的距离相等,可选择的地方有多少处?请画出图形并在图中标示出来.分析:解:可选择的地方有4处.如图:(1)作出△ABC 两个内角的平分线,取其交点为O 1;(2)分别作出△ABC 相邻的两个外角(不在同一顶点处)的平分线,取其交点分别为O 2,O 3,O 4.故可选择的地方有4处,即点O 1,O 2,O 3,O 4.解题大招三角的平分线的性质与判定的综合应用与角的平分线有关的常见的添加辅助线的方法:若OP 为∠AOB 的平分线或要证OP 为∠AOB 的平分线,则可以用下面的方法:例4如图,CB =CD ,∠D +∠ABC =180°,CE ⊥AD 于点E.(1)求证:AC 平分∠DAB ;(2)若AE =10,DE =4,求AB 的长.(1)证明:如图,过点C 作CF ⊥AB 的延长线于点F.∵CE ⊥AD ,CF ⊥AB ,∴∠DEC =∠F =90°.∵∠D +∠ABC =180°,∠CBF +∠ABC =180°,∴∠D =∠CBF.在△CDE 和△CBF ∠DEC =∠F ,∠D =∠CBF ,CD =CB ,∴△CDE ≌△CBF(AAS ),∴CE =CF.又CE ⊥AD ,CF ⊥AF ,∴AC 平分∠DAB.(2)解:由(1)可得△CDE ≌△CBF ,∴BF =DE =4.在Rt △ACE 和Rt △ACF AC =AC ,CE =CF ,∴Rt △ACE ≌Rt △ACF(HL ),∴AF =AE =10,∴AB =AF -BF =10-4=6.培优点与角的平分线的判定定理有关的探究题例(类比探究)如图①,在Rt △ABC 中,∠ACB =90°,∠B =60°,AD ,CE 是△ABC 的角平分线,AD ,CE 相交于点F.(1)请你判断并写出DF 与EF 之间的数量关系,并说明理由.(2)如图②,如果∠ACB 不是直角,其他条件不变,(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.分析:解:(1)DF =EF.理由如下:如图①,过点F 分别作FM ⊥BC 于点M ,FN ⊥AB 于点N ,连接BF ,则∠DMF =∠ENF =90°.∵△ABC 的三条角平分线交于一点,AD ,CE 是△ABC 的角平分线,∴BF 平分∠ABC.∴FM =FN.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =90°-∠ABC =30°,∴∠DAC =12∠BAC =15°,∴∠CDA =90°-∠DAC =75°.又∠ACE =12∠ACB =45°,∴∠NEF =∠BAC +∠ACE =30°+45°=75°,∴∠NEF =∠MDF.在△DMF 和△ENF ∠MDF =∠NEF ,∠DMF =∠ENF ,FM =FN ,∴△DMF ≌△ENF(AAS ),∴DF =EF.(2)DF=EF仍然成立.证明如下:如图②,过点F分别作FM⊥BC于点M,FN⊥AB于点N,连接BF,则∠DMF=∠ENF=∠BNF=90°.∵△ABC的三条角平分线交于一点,AD,CE是△ABC的角平分线,∴BF平分∠ABC.∴FM=FN.由双内角平分线模型可知∠AFC=90°+12∠ABC=90°+30°=120°,∴∠DFE=∠AFC=120°.又∠MFN=360°-∠DMF-∠BNF-∠ABC=360°-90°-90°-60°=120°,∴∠MFN=∠DFE.∴∠MFN-∠DFN=∠DFE-∠DFN,即∠DFM=∠EFN.在△DMF和△ENF DMF=∠ENF,=FN,DFM=∠EFN,∴△DMF≌△ENF(ASA),∴DF=EF.。

八年级数学《角平分线的性质2》教案

八年级数学《角平分线的性质2》教案

中学课堂教学设计
年级科总第课时
时间年月日第周星期个性化补充课题12.3角的平分线的性质2
教学目标1、角的平分线的性质
2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
重点难点教学重点::角平分线的性质及其应用.教学难点:灵活应用两个性质解决问题.
课时一课时
教学过程措施一、提出问题:
我们已得角的平分线的性质:
在角的平分线上的点到角的两边的距离相等.
那么到角的两边距离相等的点是否在角的平分线上?
二、探究:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:
[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.
由已知推出的事项:点P在∠AOB的平分线上.
教学过程措施由此我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?
分析:这两个性质已知条件和所推出的结论可以互换.三、思考:
如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
四、例题(同教材)
五、作业设计:
六、板书设计:
七、教学后记:
备注:年级、学科、课时、时间、周次、个性化补充、作业设计、教学后记、板书设计为任课教师必填项目。

12.3《角的平分线的性质(二)》教案-人教版八年级数学上册

12.3《角的平分线的性质(二)》教案-人教版八年级数学上册

12.3《角的平分线的性质(二)》【课标内容】1.获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验.2.体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力.3.了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度.4.探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上.【教材分析】角平分线的概念在第一册的教材中已介绍过,它的性质很重要,在几何里证明线段或角相等时常常用到它们,同时在作图中也运用广泛,刚学过的运用HL定理来证明直角三角形全等的方法为证明角平分线的性质定理和逆定理创造了条件.性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程.【学情分析】本节课教材在学生已探索过的角平分线的基础上,让学生回顾这一性质及探究过程,尝试让学生完成性质定理的证明,并类比研究线段垂直平分线性质定理的逆定理过程,通过让学生构造角平分线性质定理的逆命题引导学生验证这个命题的真假——即证明,再次印证证明的必要性.同时角平分线的性质定理和判定定理又分别是证明线段相等和角相等的方法,对学生后续学习几何有非常大的作用.通过“做一做”,力图使学生掌握尺规作角平分线这一基本作图.并使学生巩固作图的方法和要求,即:写已知、求作、作法,说明理由.【教学目标】1. 角的平分线的性质2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”3.能应用这两个性质解决一些简单的实际问题【教学重点】三角形三个内角的平分线的性质综合运用角平分线的判定和性质定理,解决几何中的问题【教学难点】角平分线的性质定理和判定定理的综合应用【教学方法】五步教学法、引导探究法【课前准备】三角板、多媒体、直尺,圆规【课时设置】一课时【教学过程】一、预学自检互助点拨(阅读教材P49-50,完成以下问题)思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?要求学生思考、交流.实况如下:[生]有一处.在三条公路的交点A、B、C组成的△ABC三条角平分线的交点处.因为三角形三条角平分线交于一点,且这一点到三边的距离相等.而现在要建的货物中转站要求它到三条公路的距离相等.这一点刚好符合.[生]我找到四处.(同学们很吃惊)除了刚才同学找到的三角形ABC内部的一点外,我认为在三角形外部还有三点.作∠ACB、∠ABC 外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点P1在∠CAB的角平分线上,且到l1、l2、l3的距离相等.同理还有∠BAC、∠BCA的外角的角平分线的交点P3;因此满足条件共4个,分别是P、P1、P2、P3.二、合作互学探究新知三、自我检测成果展示1. 到角的两边距离相等的点在上.2. 到三角形三边的距离相等的点是三角形()A.三条边上的高线的交点;B. 三个内角平分线的交点;C.三条边上的中线的交点;D.以上结论都不对.3. 在△ABC中,∠C=90°,AD平分∠BAC,BC=8cm,BD=5cm,则D 到AB的距离是 .4.在以下结论中,不正确的是( )A.平面内到角的两边的距离相等的点一定在角平分线上B.角平分线上任一点到角的两边的距离一定相等C.一个角只有一条角平分线D.角的平分线有时是直线,有时是线段5. 已知:CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,求证 : ∠BAO=∠CAO6. 如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.四、应用提升挑战自我已知:BD⊥AM于点D,CE⊥AN于点E,BD,CE交点F,CF=BF,求证: 点F在∠A的平分线上.【设计意图】充分利用学案资源帮助学生理解、消化、新的知识,能够灵活的运用这节课所学习的内容.五、经验总结反思收获本节课你学到了什么?写出来(【设计意图】教师引导学生总结今天学习的主要内容,关键是区别情况,判断哪一种情况可以判断角平分线上,在学习后进行适当总结有助于学生更加深刻理解内容.)【板书设计】角的平分线的判定【备课反思】本节课开头设计的探究活动,旨在丰富学生对角平分线性质的感知,有利于学生借助直观图从而准确地用文字语言揭示角平分线的性质.由于部分学生常常把“过角平分线上一点向角两边画垂线段”与“过角平分线上一点画角平分线的垂线”混为一谈,因此学生赢正确画出符合要求的图形,从直观上以及三角板的正确使用上都作了恰当的铺垫,同时也为定理的推理论证作准备.通过学生自己动后操作、自己推导、自己发现,从而得到角平分线的性质定理及其逆定理,充分发挥学生的探究意识,使学生在学习中体验并掌握合作交流的学习方法,同时进一步锻炼学生的数学语言表达能力,能写出规范的证明过程.。

八年级数学上人教版《 角的平分线的性质》教案

八年级数学上人教版《 角的平分线的性质》教案

《角的平分线的性质》教案
一、教学目标
1.掌握角的平分线的性质及其简单的应用。

2.培养学生观察、实验、归纳和推理的能力,以及动手操作能力。

3.初步了解“经过证明,得到确定的结论”的方法。

4.体验数学活动充满着探索性和创造性。

二、教学重点
掌握角的平分线的性质及其简单的应用。

三、教学难点
正确画出角的平分线,理解角的平分线的性质。

四、教学方法
1.通过观察、实验、归纳和推理,探究角的平分线的性质。

2.通过实例,介绍经过证明得到确定的结论的方法。

3.通过角平分器的使用,以及用圆规和直尺等工具画角的平分线,使学生能够正
确地画出角的平分线。

4.通过实例,让学生掌握角的平分线的性质的简单应用。

5.通过实例,让学生了解“经过证明,得到确定的结论”的方法。

6.通过实例,让学生体验数学活动充满着探索性和创造性。

7.通过实例,让学生了解数学与现实生活的密切联系。

8.通过实例,让学生理解数学来源于生活并服务于生活。

《角的平分线的性质(2)》名师教案(人教版八年级上册数学)

《角的平分线的性质(2)》名师教案(人教版八年级上册数学)

12.3 角的平分线的性质〔2〕〔杨香胜〕一、教学目的〔一〕学习目的1.理解角的平分线的断定定理;2.理解角平分线性质和断定的区别与联络;3.会利用角的平分线的断定进展证明与计算.〔二〕学习重点角平分线的断定及其应用.〔三〕学习难点灵敏应用角平分线的性质和断定解决问题.二、教学设计〔一〕课前设计1.预习任务〔1〕角平分线的断定定理:角的内部到角两边的间隔相等的点在角平分线上〔2〕角平分线断定定理的符号语言:∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2〔OP平分∠MON〕2.预习自测〔1〕到角的两边间隔相等的点在上.〔2〕到三角形三边的间隔相等的点是三角形〔〕A.三条边上的高线的交点B. 三个内角平分线的交点C.三条边上的中线的交点D.以上结论都不对〔3〕在△ABC中,∠C=90°,AD平分∠BAC,BC=5cm,BD=3cm,那么D到AB的间隔是________,∠B=40°,那么∠CDA= .预习自测答案:〔1〕角平分线〔2〕B 〔3〕2cm,65°(二)课堂设计1.知识回忆〔1〕角的平分线性质定理的内容是什么?其中题设、结论是什么?[生] 角的平分线上的点到角的两边的间隔相等;题设是一个点在角平分线上,结论是这个点到角两边的间隔相等.〔2〕角平分线性质定理的作用是证明什么?[生]证明垂线段相等〔3〕填空如图:∵OC平分∠AOB, OA⊥AC,OB⊥BC .∴AC=BC〔角平分线性质定理〕2. 问题探究探究一角平分线的断定●活动①〔回忆旧知,回忆类活动〕把角平分线性质定理的题设、结论交换后,得出什么命题?猜测:它正确吗?由学生抢答,然后师生归纳:到角两边间隔相等的点在角平分线上;它是正确的.【设计意图】由性质到断定强化二者的关系●活动②证明上面的猜测学生根据猜测写出、求证,并画图,而后独立写出证明过程.展示学生的学习成果:: OM⊥PA于A,ON⊥PB于B,AP=BP求证: OC平分∠MON证明:∵PA⊥OM,BP⊥ON∴∠OAP=∠OBP=90°在Rt△AOP和Rt△BOP中∴Rt△AOP≌Rt△BOP〔HL〕∴∠1=∠2∴OC平分∠MON【设计意图】进一步稳固全等三角形的断定.●活动③归纳角平分线的断定定理:到一角的两边的间隔相等的点,在这个角的平分线上.∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2〔OP平分∠MON〕【设计意图】培养学生的归纳概括才能.探究二角平分线性质和断定的区别与联络●活动①现有一条题目,两位同学分别用两种方法证明,他们的做法正确吗?哪一种方法好?: CA⊥OA于A,BC⊥OB于B,AC=BC求证: OC平分∠AOB证法1:∵CA⊥OA,BC⊥OB∴∠A=∠B在△AOC和△BOC中∴△AOC≌△BOC〔HL〕∴∠AOC=∠BOC ∴OC平分∠AOB证法2:∵CA⊥OA于A,BC⊥OB于B, AC=BC∴OC平分∠AOB〔角平分线断定定理〕先让学生答复,最后老师归纳:两种方法都正确,“方法2〞好,证角平分线不再用证三角形全等后再证角相等得出,可直接运用角平分线断定定理.【设计意图】让学生体会角平分线断定定理的作用.●活动②学生结合图形完善表中内容,老师对个别学生教学指导.●活动③提问:角平分线的性质和断定之间有什么关系?先让学生答复,最后由师生归纳:角平分线性质的题设是角平分线断定的结论,角平分线性质的结论是角平分线断定的题设;角平分线性质的作用是证明线段相等,角平分线断定的作用是证明平分角;角平分线性质定理和角平分线断定定理是互为逆定理.【设计意图】培养学生的归纳概括才能.探究三利用角平分线的断定进展证明与计算●活动①〔根底性例题〕今天我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的间隔相等;②到角的两边间隔相等的点在角的平分线上.它们具有互逆性,随着学习的深化,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.例1. :如下图,∠C=∠C′=90°,AC=AC′.求证:〔1〕∠ABC=∠A BC′;〔2〕BC=BC′〔要求:不用三角形全等断定〕.【知识点】角平分线的性质和断定.【思路点拨】由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是∠CBC′平分线上的点,由此可翻开思路.【解题过程】证明:〔1〕∵∠C=∠C′=90°〔〕,∴AC⊥BC,AC′⊥BC′〔垂直的定义〕.又∵AC=AC′〔〕,∴点A在∠CBC′的角平分线上〔到角的两边间隔相等的点在这个角的平分线上〕.∴∠ABC=∠ABC′.〔2〕∵∠C=∠C′,∠ABC=∠ABC′,∴180°-〔∠C+∠ABC〕=180°-〔∠C′+∠ABC′〕即∠BAC=∠BAC′,∵AC⊥BC,AC′⊥BC′,∴BC=BC′〔角平分线上的点到这个角两边的间隔相等〕.【设计意图】区别角平分线的性质和断定.练习:如图,AB=AC,DE⊥AB于E,DF⊥AC于F,且DE=DF.求证:BD=DC【知识点】角平分线的断定;三角形全等的断定和性质.【思路点拨】由DE=DF,可得∠BAD=∠CAD〔角平分线的断定〕,那么△ADB≌△ADC,所以BD=CD【解题过程】证明:∵DE⊥AB,DF⊥AC,且DE=DF∴∠BAD=∠CAD又∵AB=AC,AD=AD∴△ADB≌△ADC∴BD=CD【设计意图】进一步加深对角平分线断定的认识.●活动2 〔提升型例题〕例2.如图,△ABC中,点O是△ABC内一点,且点O到△ABC三边的间隔相等;∠A=40°,那么∠BOC=〔〕A.110°B.120°C.130°D.140°【知识点】角的平分线的断定;角平分线的定义;三角形内角和定理.【思路点拨】由,O到三角形三边间隔相等,得O是内心,再利用三角形内角和定理即可求出∠BOC=的度数.【解题过程】由,O到三角形三边间隔相等,所以O是内心,即三角形角平分线交点,AO、BO、CO都是角平分线,所以有∠CBO=∠ABO=12∠ABC,∠BCO=∠ACO=12∠ACB,∠ABC+∠ACB=180°−40°=140°,∠OBC+∠OCB=70°,∠BOC=180°−70°=110°应选A.【答案】A【设计意图】利用角平分线的断定求有关的角.练习:如图,△ABC中,点O是△ABC内一点,且点O到△ABC三边的间隔相等;∠A=52°,那么∠BOC=〔〕A.128°B.116°C.75°D.52°【知识点】角的平分线的断定;角平分线的定义;三角形内角和定理.【思路点拨】根据三角形内角和定理求出∠ABC+∠ACB=128°,再根据角平分线上的点到角的两边的间隔相等判断出点O是△ABC角平分线的交点,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后在△OBC中,利用三角形内角和定理列式进展计算即可得解.【解答过程】解:如图,∵∠A=52°,∴∠ABC+∠ACB=180°-52°=128°,∵点O到△ABC三边的间隔相等,∴点O是△ABC角平分线的交点,在△OBC中,∠BOC=180°-〔∠OBC+∠OCB〕=180°-64°=116°.故答案为:116°.【答案】B【设计意图】利用角平分线的断定求有关的角.例3. :如图,AD、BE是△ABC的两个角平分线,AD、BE相交于O点.求证:O在∠C的平分线上.【知识点】角的平分线的性质与断定的综合应用.【思路点拨】由AD、BE是△ABC的两个角平分线,可以得到垂线段OG与ON相等,OG与OM相等,再由垂线段ON与OM相等,得到O在∠C的角平分线上. 【解题过程】证明:过O作OG⊥AB,OM⊥BC,ON⊥AC,∵AO平分∠BAC,∴OG=ON,∵BO平分∠ABC,∴OG=OM,∴ON=OM,∴O在∠C的平分线上.【设计意图】进一步理解角平分线的性质与断定的关系.练习:如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP 是△ABC的外角平分线.【知识点】角的平分线的性质与断定的综合应用.【思路点拨】根据角平分线的性质可得PD=PF,PD=PE,由此可得PE=PF,根据角平分线的断定可得PC平分∠BCE【解题过程】证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF〔角平分线上的点到角两边的间隔相等〕,∵点P在∠BAC的角平分线上,PD⊥AD,PE⊥AE,∴PD=PE〔角平分线上的点到角两边的间隔相等〕,∴PF=PE,PF⊥BC,PE⊥AE,∴CP是△ABC的外角平分线〔在角的内部,到角两边间隔相等的点在角的平分线上〕.【设计意图】进一步理解角平分线的性质与断定的关系●活动3 〔探究型例题〕例4. 如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.【知识点】全等三角形的断定和性质;角平分线的断定定理.【思路点拨】由BE=CF, DB=DC,可得Rt△BDE≌Rt△CDF〔HL〕,所以DE=DF,根据平分线的断定定理可得AD是∠BAC的平分线.【解题过程】证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线.【设计意图】进一步体会用角平分线的断定定理证明角相等.练习:如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,BE=CF. 求证:AD 是△ABC的角平分线.【知识点】角平分线的断定;三角形全等.【思路点拨】由D是BC的中点,BE=CF,可得Rt△BDE≌Rt△DCF〔HL〕那么DE=DF,所以AD是△ABC的角平分线.【解答过程】证明:∵DE⊥AB,DF⊥AC,∴△BDE和△CDF是直角三角形.∴Rt△BDE≌Rt△CDF〔HL〕,∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是角平分线.【设计意图】进一步体会用角平分线的断定证明角相等.3. 课堂总结知识梳理〔以课堂内容为根据,结合教学目的的几点要求,对涉及到的知识细致梳理〕〔1〕能证明角平分线断定定理;〔2〕理解角平分线的性质和断定的关系;〔3〕能利用角平分线的性质和断定进展证明和计算.重难点归纳〔本节课的中心知识点在此进展回忆,对课堂上的典型方法、特殊例题进展归纳点拨〕〔1〕理解角平分线性质与断定的关系;〔2〕灵敏利用角平分线性质与断定解决线段和角有关的问题.〔三〕课后作业根底型自主打破1.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.【知识点】角平分线的断定【思路点拨】由CD⊥OA,CE⊥OB,CD=CE,可得∠AOC=∠BOC=30°【解答过程】解:∵CD⊥OA,CE⊥OB,CD=CE,∴∠AOC=∠BOC∵∠AOB=60°,【答案】30°2.如图,在Rt△ABC中,∠B=90°,∠A=40°,DE⊥AC且DB=DE,那么∠BCD=______.【知识点】角平分线的断定;三角形内角和定理。

八年级数学上册《角平分线》教案、教学设计

八年级数学上册《角平分线》教案、教学设计
(2)作业完成情况:评价学生对知识点的掌握程度,以及对尺规作图的熟练程度;
(3)单元测试:通过测试,了解学生对角平分线知识点的掌握情况,以及运用知识解决问题的能力;
(4)课后访谈:了解学生在学习过程中遇到的困难和问题,及时调整教学策略。
4.教学资源:
(1)教材:充分利用课本资源,结合教学目标进行教学设计;
(2)反思自己在学习过程中的收获和不足,为下一节课的学习做好准备。
作业要求:
1.认真完成作业,保持卷面整洁;
2.思考题要结合所学知识,进行深入分析和研究;
3.遇到问题及时与同学、老师交流,提高解决问题的能力;
4.作业提交时间:下周一下午放学前。
(4)应用:设计有针对性的例题和练习,让学生运用角平分线知识解决问题,巩固所学;
(5)拓展:引导学生思考角平分线在其他几何问题中的应用,培养学生的发散思维;
(6)总结:对本节课的知识点进行梳理,强调重难点,帮助学生巩固记忆。
3.教学评价:
(1)课堂表现:关注学生在课堂上的参与程度、积极性和合作精神;
(五)总结归纳
1.教学活动设计:
(1)对本节课的知识点进行梳理,强调重点和难点;
(2)学生分享学习收获和感受,教师给予鼓励和评价;
(3)布置课后作业,巩固所学知识。
2.教学内容:
(1)总结角平分线的定义、性质和判定方法;
(2)回顾尺规作图的方法,强调注意事项;
(3)明确角平分线在实际问题中的应用价值。
五、作业布置
为了巩固本节课所学知识,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第十五章第二节课后练习题1、2、3;
(2)运用尺规作图,作出给定角的平分线,并简要说明作图过程;

八年级数学上册《角平分线及其画法》教案、教学设计

八年级数学上册《角平分线及其画法》教案、教学设计
(3)反馈式教学:在学生完成任务后,及时给予评价和反馈,指导学生总结经验,调整学习方法。
3.教学步骤:
(1)导入新课:通过展示生活中的实例,引导学生关注角平分线,为新课学习做好铺垫。
(2)自主探究:让学生自主阅读教材,了解角平分线的定义和性质,尝试运用尺规作图法画角平分线。
(3)课堂讲解:针对学生在探究过程中遇到的问题,进行详细讲解,帮助学生掌握重点知识。
3.培养学生具备严谨、细致、踏实的科学态度,提高他们面对困难和挑战时的自信心和毅力。
教学设计:
一、导入新课
1.利用多媒体展示生活中含有角平分线的实物图片,引导学生观察、思考,激发他们的学习兴趣。
2.提问:“什么是角平分线?它在几何图形中有什么作用?”引导学生回顾相关知识,为新课学习做好铺垫。
二、自主探究
这时,我会在黑板上画出一个任意角,让学生思考并尝试回答。在学生回答的基础上,我会引导他们注意到,如果有一条线能够将这个角恰好分成两个相等的部分,那么这条线就是今天我们要学习的角平分线。通过这个实际问题的引入,学生可以直观地感受到角平分线的概念,为新课的学习打下直观的基础。
(二)讲授新知,500字
为了加深学生的理解,我会结合具体的例子,讲解如何利用尺规作图法来画出角平分线。在这个过程中,我会逐步引导学生认识到几何图形的严谨性和美感,并让他们体会到数学在解决问题中的实用性。
四、巩固练习
1.学生完成教材中的练习题,巩固所学知识。
2.教师精选典型例题,引导学生运用角平分线性质解决问题,提高他们的问题解决能力。
五、课堂小结
学生总结本节课所学内容,分享学习心得,教师给予评价和鼓励。
六、课后作业
布置适量的课后作业,巩固学生对角平分线的理解和运用。

人教版八年级数学上册12.2角的平分线的性质教学设计

人教版八年级数学上册12.2角的平分线的性质教学设计
3.运用变式练习和几何证明,巩固学生对角的平分线性质的理解和应用。
-设计不同形式的练习题和证明题,让学生在解答过程中,逐步巩固对角的平分线性质的理解,并能够灵活运用到解题过程中。
(三)情感态度与价值观
1.培养学生严谨的学习态度和逻辑思维能力。
-在教学过程中,强调几何证明的严谨性,要求学生在解答问题时,注意逻辑推理的严密性,培养学生严谨的学习态度。
(五)总结归纳
在本节课的最后,我将带领学生进行以下总结归纳:
1.总结角的平分线的定义、性质及证明方法。
2.强调角的平分线在实际问题中的应用。
3.指出学生在学习过程中存在的问题,提醒他们在今后的学习中需要注意的地方。
4.鼓励学生继续探索几何图形的性质,提高他们的逻辑思维能力和解决问题的能力。
五、作业布置
2.激发学生对数学学科的兴趣,培养其探究精神。
-通过生动有趣的实例和问题,引导学生体验数学的魅力,激发学生对数学学科的兴趣,培养其探究精神和创新意识。
3.培养学生团队合作意识,提高沟通与交流能力。
-在课堂教学中,组织学生进行小组讨论和合作探究,使学生在交流互动中,提高沟通能力,培养团队合作意识。
二、学情分析
(二)教学设想
1.利用多媒体和实物教学,增强直观感受。
-通过动态多媒体演示和实物操作,如使用折纸和直尺等工具,让学生直观感受角的平分线的作用,从而加深对性质的理解。
2.分层次教学,满足不同学生的学习需求。
-对于基础层次的学生,重点在于让他们掌握角的平分线的定义和基本性质;对于提高层次的学生,则引导他们进行性质的证明和应用,解决更复杂的问题。
八年级的学生已经在之前的数学学习中,掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角的平分线的性质的学习,既是对已有知识的巩固,也是对几何图形性质探究能力的进一步提升。然而,由于角的平分线性质涉及到几何证明,学生在逻辑推理和证明过程中可能存在一定困难。因此,在教学过程中,应关注以下几点:

人教版八年级数学上册(教案).2角平分线的判定

人教版八年级数学上册(教案).2角平分线的判定
4.培养学生的数学应用意识:结合生活实际,引导学生运用所学知识解决生活中的数学问题,提高数学应用能力。
5.培养学生的团队合作精神:在小组讨论、交流过程中,培养学生相互协作、共同解决问题的能力。
三、教学难点与重点
1.教学重点
-重点一:角平分线的定义及性质
-学生需要理解并掌握角平分线的定义,即从一个角的顶点出发,把这个角分成两个相等的角的射线。
-强调角平分线的性质,即它将角分成两个相等的角,这是后续解决问题的基础。
-重点二:角平分线的判定定理
-学生需要掌握如果一个射线把一个角分成两个相等的角,那么这个射线就是该角的平分线。
-通过实例讲解,让学生明白判定定理的应用,并在解题过程中加以运用。
-重点三:角平分线在实际问题中的应用பைடு நூலகம்
-学生需要学会将角平分线的概念和判定定理应用于解决实际问题,如几何图形的构造等。
此外,学生小组讨论的成果分享环节也暴露出一些问题。有些小组在分享时表达不够清晰,逻辑性不强。为了提高学生的表达能力和逻辑思维能力,我计划在接下来的课程中增加一些针对性的训练,如组织辩论赛、演讲比赛等。
在总结回顾环节,我发现部分学生对角平分线的应用还是有些模糊。在今后的教学中,我需要多举一些实际例子,让学生更好地理解角平分线在实际问题中的应用。
然而,在新课讲授环节,我发现有些学生对角平分线判定定理的理解不够深入。在今后的教学中,我需要更加注重引导学生通过实际操作和案例分析来掌握这个定理。此外,对于难点部分,我应该增加一些对比和变式的练习,帮助学生更好地突破难点。
在实践活动环节,分组讨论和实验操作进行得比较顺利,学生们也积极参与其中。但我觉得在引导与启发环节,我的问题设置还可以更加开放和有针对性,以激发学生的思维,提高他们的讨论效果。

人教版数学八年级上册《角平分线的判定》教学设计

人教版数学八年级上册《角平分线的判定》教学设计

人教版数学八年级上册《角平分线的判定》教学设计一. 教材分析人教版数学八年级上册《角平分线的判定》是初中数学的重要内容,主要让学生了解角平分线的性质和判定方法。

本节内容是在学生学习了角的概念、垂线的性质等知识的基础上进行学习的,为后续学习几何中的线段和平面的位置关系打下基础。

本节课的主要内容包括角平分线的定义、判定定理及其应用。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对角、线段等基本几何概念有了一定的了解。

但是,对于角平分线的性质和判定方法,学生可能还比较陌生,需要通过实例和操作来加深理解。

此外,学生可能对几何图形的直观感知能力较强,但对于用数学语言来描述和证明几何性质的能力还需加强。

三. 教学目标1.知识与技能:使学生了解角平分线的定义,掌握角平分线的判定方法,能运用角平分线的性质解决一些简单的问题。

2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.重点:角平分线的定义,角平分线的判定方法。

2.难点:角平分线性质的证明,角平分线在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入角平分线,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、操作、猜想、验证,培养学生的思维能力。

3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的合作意识。

六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备。

2.学具:学生用三角板、直尺、圆规。

3.教学素材:角平分线的实例、图片、动画等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的角平分线的实例,如钟表指针、蝴蝶翅膀等,引导学生观察并思考:这些实例中有什么共同特点?从而引出本节课的主题——角平分线。

2.呈现(10分钟)(1)介绍角平分线的定义:角平分线是指从一个角的顶点出发,把这个角分成两个相等的角的射线。

人教版数学八年级上册《角的平分线性质的应用》教学设计

人教版数学八年级上册《角的平分线性质的应用》教学设计

人教版数学八年级上册《角的平分线性质的应用》教学设计一. 教材分析人教版数学八年级上册《角的平分线性质的应用》这一节主要让学生了解角的平分线的性质,并能运用这些性质解决实际问题。

教材通过生活中的实例引入角的平分线概念,然后引导学生探究角的平分线的性质,最后通过大量的练习题让学生熟练掌握角的平分线的性质及其应用。

二. 学情分析学生在学习这一节内容前,已经学习了角的概念、线的概念,对几何图形有一定的认识。

但是,对于角的平分线的性质及其应用,学生可能比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等方式,自主探究角的平分线的性质,并能够运用这些性质解决实际问题。

三. 教学目标1.知识与技能:使学生了解角的平分线的性质,能够运用角的平分线解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等方式,培养学生自主学习的能力和合作意识。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神和创新意识。

四. 教学重难点1.重点:角的平分线的性质。

2.难点:运用角的平分线解决实际问题。

五. 教学方法1.引导探究法:教师引导学生通过观察、操作、思考、交流等方式,自主探究角的平分线的性质。

2.案例教学法:教师通过生活中的实例,引导学生理解角的平分线的性质及其应用。

3.练习法:教师布置适量的练习题,让学生在实践中掌握角的平分线的性质。

六. 教学准备1.教具:三角板、直尺、圆规等。

2.课件:角的平分线的性质及其应用的实例。

七. 教学过程1.导入(5分钟)教师通过生活中的实例,如剪刀、扇子等,引导学生了解角的平分线,并提问:“角的平分线有什么性质呢?”2.呈现(10分钟)教师利用课件呈现角的平分线的性质,并通过几何画板软件动态展示角的平分线的性质,让学生直观地感受角的平分线的性质。

3.操练(10分钟)教师布置一些练习题,让学生独立完成,检验学生对角的平分线性质的理解和掌握程度。

4.巩固(10分钟)教师学生进行小组讨论,分享各自解题的心得和方法,巩固角的平分线的性质。

人教版数学八年级上册《角的平分线的性质(2)》教学设计

人教版数学八年级上册《角的平分线的性质(2)》教学设计

人教版数学八年级上册《角的平分线的性质(2)》教学设计一. 教材分析人教版数学八年级上册《角的平分线的性质(2)》这一节,是在学生已经掌握了角的平分线的概念和性质的基础上进行教学的。

本节课的主要内容是进一步探究角的平分线的性质,包括角的平分线上的点到角的两边的距离相等,以及角的平分线与角的对边的关系。

这些性质对于学生后续学习几何知识有着重要的铺垫作用。

二. 学情分析学生在学习本节课之前,已经掌握了角的平分线的概念,对于角的平分线的性质有一定的了解。

但是,对于角的平分线性质的深入理解以及灵活运用还需要进一步的引导和培养。

此外,学生对于几何图形的观察和分析能力也需要在本节课中得到锻炼和提高。

三. 教学目标1.知识与技能:使学生理解和掌握角的平分线上的点到角的两边的距离相等的性质,以及角的平分线与角的对边的关系。

2.过程与方法:培养学生的观察能力、分析能力以及推理能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.教学重点:角的平分线上的点到角的两边的距离相等的性质,角的平分线与角的对边的关系。

2.教学难点:角的平分线性质的证明,以及灵活运用角的平分线性质解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入角的平分线的性质,激发学生的学习兴趣。

2.问题驱动法:引导学生提出问题,并通过小组合作、讨论的方式解决问题。

3.几何画图法:利用几何画图工具,直观地展示角的平分线的性质。

4.讲解法:对于角的平分线的性质进行详细的讲解,确保学生理解。

六. 教学准备1.教学课件:制作角的平分线的性质的课件,包括文字、图片、动画等。

2.几何画图工具:准备直尺、圆规、三角板等几何画图工具。

3.练习题:准备与角的平分线性质相关的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个生活实例,如建筑设计中测量角度的问题,引导学生思考角的平分线的性质。

提问:“角的平分线有什么特殊的性质呢?”从而引出本节课的主题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线一、学生知识状况分析学生的知识技能基础:通过上节的学习,学生对于角平分线性质定理和逆定理均有一个很深的了解和理解,在此基础上本节主要是通过例题来巩固定理和逆定理的应用,提高学生证明推理能力。

二、教学任务分析本节课的教学目标是:1.知识目标:(1)证明与角的平分线的性质定理和判定定理相关的结论.(2)角平分线的性质定理和判定定理的灵活运用.2.能力目标:(1)进一步发展学生的推理证明意识和能力.(2)培养学生将文字语言转化为符号语言、图形语言的能力.(3)提高综合运用数学知识和方法解决问题的能力.3.情感与价值观要求①能积极参与数学学习活动,对数学有好奇心和求知欲.②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.4.教学重点、难点重点①三角形三个内角的平分线的性质.②综合运用角平分线的判定和性质定理,解决几何中的问题.难点角平分线的性质定理和判定定理的综合应用.三、教学过程分析本节课设计了五个教学环节:第一环节:设置情境问题,搭建探究平台;第二环节:展示思维过程,构建探究平台;第三环节:例题讲解;第四环节:课时小结;第五环节:课后作业。

第一环节:设置情境问题,搭建探究平台问题l 习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?能证明自己发现的结论一定正确吗?于是,首先证明“三角形的三个内角的角平分线交于一点”.当然学生可能会提到折纸证明、软件演示等方式证明,但最终,教师要引导学生进行逻辑上的证明。

第二环节:展示思维过程,构建探究平台已知:如图,设△ABC的角平分线.BM、CN相交于点P,证明:P点在∠B AC的角平分线上.证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE(角平分线上的点到这个角的两边的距离相等).同理:PE=PF.∴PD=PF.∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上).∴△ABC的三条角平分线相交于点P.在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?(PD=PE=PF,即这个交点到三角形三边的距离相等.)于是我们得出了有关三角形的三条角平分线的结论,即定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.下面我通过列表来比较三角形三边的垂直平分线和三条角平分线的性质定理问题2如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的?l 3l 21l C BA要求学生思考、交流。

实况如下:[生]有一处.在三条公路的交点A 、B 、C 组成的△ABC 三条角平分线的交点处.因为三角形三条角平分线交于一点,且这一点到三边的距离相等.而现在要建的货物中转站要求它到三条公路的距离相等.这一点刚好符合.[生]我找到四处.(同学们很吃惊)除了刚才同学找到的三角形ABC 内部的一点外,我认为在三角形外部还有三点.作∠ACB、∠ABC 外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点P 1在∠CAB 的角平分线上,且到l 1、l 2、l 3的距离相等.同理还有∠BAC、∠BCA 的外角的角平分线的交点P 3;因此满足条件共4个,分别是P 、P 1、P 2、P 3P1P l 3l 21l C BA教师讲评。

第三环节:例题讲解 [例1]如图,在△ABC 中.AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE⊥AB,垂足为E .(1)已知CD=4 cm ,求AC 的长;(2)求证:AB=AC+CD .分析:本例需要运用前面所学的多个定理,而且将计算和证明融合在一起,目的是使学生进一步理解、掌握这些知识和方法,并能综合运用它们解决问题.第(1)问中,求AC 的长,需求出BC 的长,而BC=CD+DB ,CD=4 cIn ,而BD 在等腰直角三角形DBE 中,根据角平分线的性质,DE=CD=4cm ,再根据勾股定理便可求出DB 的长.第(2)问中,求证AB=AC+CD .这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE ,所以需证AC=AE ,CD=BE .(1)解:∵AD 是△ABC 的角平分线,∠C=90°,DE⊥AB.∴DE=CD=4cm(角平分线上的点到这个角两边的距离相等).∵∠AC=∠BC ∴∠B=∠BAC(等边对等角).∵∠C=90°,∴∠B=12×90°=45°. ∴∠BDE=90°—45°=45°.∴BE=DE(等角对等边).在等腰直角三角形BDE 中BD=2DE 2.=4 2 cm(勾股定理),∴AC=BC=CD+BD=(4+42)cm.(2)证明:由(1)的求解过程可知,Rt△ACD≌Rt△AED(HL 定理)∴AC=AE.∵BE=DE=CD,∴AB=AE+BE=AC+CD.[例2]已知:如图,P 是么AOB 平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C 、D .求证:(1)OC=OD ;(2)OP 是CD 的垂直平分线. P D AEC O B证明:(1)P 是∠AOB 角平分线上的一点,PC⊥OA,PD⊥OB,∴PC=PD(角平分线上的点到角两边的距离相等).在Rt△OPC 和Rt△OPD 中,OP =OP ,PC =PD ,∴Rt△OPC ≌Rt△OPD (HL 定理).∴OC=OD(全等三角形对应边相等).(2)又OP是∠AOB的角平分线,∴OP是CD的垂直平分线(等腰三角形“三线合一”定理).思考:图中还有哪些相等的线段和角呢?第四环节:课时小结本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题.第五环节:课后作业习题1.9第1、2题四、教学反思本节对学生能力的要求很高,如例1中问题作为教师要善于利用这个典型例题,加以发挥,使例题的功能得以体现,达到以点带线,以线带面的功效。

如果课堂时间允许还可以将该题加以改变,用多种方法证明和求解。

中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

(请学生讨论这几种字体的特点?)古文字是一种以象形为主的字体。

②今文字系统隶书——草书——行书——楷书到了秦末、汉初这一时期,各地交流日见繁多而小篆书写较慢,不能满足需要,隶书便在这种情况下产生了,隶书另一层意思是平民使用,同时还出现了一种草写的章草(独草),这时笔墨纸都已出现,对书法的独立创作起到了积极的推动作用。

狂草在魏晋出现,唐朝的张旭、怀素将它推向顶峰;行书出现于晋,是一种介于楷、行之间的字体;楷书也是魏晋出现,唐朝达到顶峰,著名的书法家有欧阳询、颜真卿、柳公权。

(请学生谈一下对今文字是怎样理解的?),教师进行归纳:它们的共同特点是已经摆脱了象形走向抽象化。

B主要书体的形式特征①古文字:甲骨文,由于它处于文明的萌芽时期,故字形错落有致辞,纯古可爱,目前发现的总共有3000多字,可认识的约1800字。

金文,处在文明的发展初期,线条朴实质感饱满而丰腴,因它多附在金属器皿上,所以保存完整。

石鼓文是战国时期秦的文字,记载的是君王外出狩猎和祈祷丰年,秦篆是一种严谨刻板的纯实用性的字体,艺术价值很小。

②今文字:隶书是在秦篆严谨的压抑下出现的一种潇洒开放型的新字体,课本图例《张迁碑》结构方正,四周平稳,刚劲沉着,是汉碑方笔的典范,章草是在隶书基础上更艺术化,实用化的字体,索靖《急就章》便是这种字体的代表作,字字独立,高古凝重,楷书有两大部分构成:魏碑、唐楷魏碑是北魏时期优秀书法作品的统称。

《郑文公碑》和《始平公造像》是这一时期的代表,前者气势纵横,雄浑深厚,劲健绝逸是圆笔的典型;唐楷中的《醴泉铭》法度森严、遒劲雄强,浑穆古拙、浑厚刚健,《神策军碑》精练苍劲、风神整峻、法度谨严,以上三种书体分别代表了唐楷三个时期的不同特点。

《兰亭序》和《洛神赋》作者分别是晋代王羲之、王献之父子是中国书法史上的两座高峰,前者气骨雄骏、风神跌宕、秀逸萧散的境界,后者在技法上达到了由拙到巧、笔墨洗练、丝丝入扣的微妙的境界。

相关文档
最新文档