1 数的开方
1数的开方(一)平方根

数的开方(一)平方根【知识要点】1.平方根的概念如果一个数x 的平方等于a ,即2x a =,那么这个数x 叫做a 的平方根,也叫二次方根。
即若()20x a a =≥,则x 就称为a 的平方根。
2.平方根的性质①一个正数有两个平方根,它们互为相反数;②零有一个平方根,它是零本身;③负数没有平方根。
3.平方根的表示方法:一个正数a a 叫做被开方数,2叫做根指数;正数a 的负平方根用符号“2时,通常略去不写,所以这两个平方根记作4.算术平方根:正数a 的正的平方根,也叫做a 0a >),0的平方根叫做0的算术平方根。
因此,0的算术平方根为00=。
5.平方根的求法:①利用定义;②利用计算器;③利用估算法。
6.开平方:求一个数的平方根的运算叫做开平方,开平方与平方互为逆运算。
7.开平方的小数点移动规律:如果被开方数的小数点,向右或向左每移动两位,它的平方根的小数点就相应地向右或向左移动一位。
【典型例题】例1 ∵()20.30.09= ∴( )A .0.090.3是的平方根;B .0.090.3是的3倍;C .0.30.09是的一个平方根;D .0.09的平方根是0.3。
例2 求下列各数的平方根:196169,()25-,24125,0.0256。
例3 (1)81的平方根是 ,算术平方根是 ;(2)2)4(-的平方根是 ,算术平方根是 ;(3)(-2.345)2的平方根是 ,算术平方根是 。
例4 (1)122++x x 的平方根为( )A .没有平方根B .(1)x ±+C .0D .1(2)1412-+-x x 的平方根为( ) A .)2(21-±x B .没有平方根 C .0或没有平方根 D .0 (3)一个自然数的一个平方根是m -,那么紧跟它后面的一个自然数的平方根是( )A .1+mB .12+mC .1+±m D .12+±m① 求236和00236.0的值;② 若x =0.4858,求x 的值;③ 若1536106=⨯a ,求a 的值。
1数的开方(基础)

让更多的孩子得到更好的教育 数的开方——平方根、立方根和实数(基础)
1. 在实数-23,0,3,-3.1415,2
π,9,-0.1010010001…(每两个1之间依次多1个0) 这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D .4个
2.估计10的值在( )A .1到2之间 B .2到3之间 C .3到4之间 D .4到5之间
3.在三个数0.5、、中,最大的数是( )
A .0.5
B .
C .
D .不能确定 4.是的平方根,是64的立方根,则=( )
A. 3
B. 7 C .3,7 D. 1,7
二、填空题
5. ()0201112=-++y x 则x y = . 6. 的整数部分是________.
7.若22+-b a 与互为相反数,则a+b 的值为________.
8.已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是1,则
2m cd m
b a +-+的值为________. 9. 的平方根是______;0.0001算术平方根是______;0的平方根是______.
10.
的算术平方根是______;的算术平方根的相反数是______.
11.一个数的平方根是±2,则这个数的平方是______.
12.表示3的______;表示3的______.
13.求下列各式中的.
(1)
; (2);
14.已知
求的值.。
有关开方的知识点总结

有关开方的知识点总结开方的定义很简单:如果一个数x的平方等于另一个数y,那么y就是x的平方根。
符号√表示开方,可以理解为“根号”。
比如√9=3,因为3的平方是9。
有时候为了避免歧义,需要在根号下面加上一个正号或者负号,表示正根和负根。
开方的运算规则也很简单,主要有以下几点:1. 正数的开方对于正数来说,它的开方有且只有一个正解。
比如√9=3,因为3的平方是9。
任何一个正数都有一个正的平方根。
2. 负数的开方对于负数来说,它的开方有两个解,一个正数和一个负数。
比如√16=4或者-4,因为4的平方是16,同时-4的平方也是16。
在实际应用中,通常只考虑正数的解。
3. 0的开方0的开方是0,因为0的平方也是0。
这个特殊情况在数学中经常会用到。
开方的运算方法也有多种。
一般来说,可以用牛顿迭代法、二分查找等方法来计算。
对于大型数字或者小数,一般会使用计算器或者电脑来进行开方运算。
在实际应用中,开方经常会用到。
比如在几何学中,计算直角三角形的斜边长度、圆的半径等。
在物理学中,计算速度、加速度等也会用到开方。
在工程学中,计算电路中的电压、电流等也用到开方。
在金融学中,计算利率、贷款等也会用到开方。
开方还有一些重要的性质,比如:1. 开方的运算顺序开方和其他的运算符有不同的优先级。
一般来说,先进行括号内的运算,然后进行乘除法、最后进行加减法。
如果有多个开方运算符,一般从左往右进行计算。
2. 开方的乘法法则(√a) * (√b) = √(a * b)。
也就是说,两个数的开方的乘积等于这两个数的乘积的开方。
3. 开方的除法法则(√a) / (√b) = √(a / b)。
也就是说,一个数的开方除以另一个数的开方等于这两个数的商的开方。
4. 开方的加法法则√a + √b ≠ √(a + b)。
开方是无法直接进行加法运算的。
5. 开方的多重嵌套可以进行多重嵌套的开方运算,比如√(√a)等。
这种情况下,可以通过先进行内层的开方运算,然后再进行外层的开方运算来进行计算。
沪教版数学七年级下册12.2《数的开方》教学设计1

沪教版数学七年级下册12.2《数的开方》教学设计1一. 教材分析《数的开方》是沪教版数学七年级下册12.2章节的内容,本节内容是在学生已经掌握了有理数的乘方、平方根等知识的基础上进行学习的。
数的开方是数学中的一个基本运算,它不仅可以解决一些实际问题,而且是学习更高深数学知识的基础。
本节课的教学内容主要包括平方根的定义、求一个数的平方根的方法以及平方根的性质等。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、平方根等知识,具备了一定的数学基础。
但是,对于平方根的性质和求法,学生可能还不够熟悉。
此外,学生可能对数的开方在实际生活中的应用还不够了解。
三. 教学目标1.知识与技能:理解平方根的定义,掌握求一个数的平方根的方法,理解平方根的性质。
2.过程与方法:通过自主学习、合作交流的方式,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:平方根的定义,求一个数的平方根的方法,平方根的性质。
2.难点:平方根的性质的理解和应用。
五. 教学方法1.自主学习:引导学生自主探究平方根的定义和求法,培养学生的自主学习能力。
2.合作交流:学生进行小组讨论,分享学习心得,提高学生的合作交流能力。
3.实例讲解:通过具体例子,讲解平方根的性质和应用,帮助学生理解和掌握知识。
六. 教学准备1.教学PPT:制作包含平方根的定义、求法、性质等内容的教学PPT。
2.练习题:准备一些有关平方根的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾平方根的定义和求法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示平方根的性质,引导学生初步理解平方根的性质。
3.操练(10分钟)教师提出一些有关平方根性质的题目,让学生在课堂上进行练习,巩固所学知识。
数的开方与二次根式

数与式
第 2 讲 数的开方与二次根式
内容 索引
备考基础 重点突破
温故知新,明确考向 分类讲练,以例求法
易错防范
辨析错因,提升考能
备考基础
返回
考点梳理
平方根、算术平方根与立方根
1.平方根: 一个数 x 的 平方等于 a, 那么 x 叫做 a 的平方根, 记做 x=± a. 2.算术平方根:如果一个正数 x 的平方 等于 a,那么 x 叫做 a 的算术平 方根,记做 x= a.0 的算术平方根是 0. 3.立方根:如果一个数 x 的 立方等于 a,那么 x 叫做 a 的立方根,记做 x= a.
解
答案
类型三
二次根式的计算
【例 3】 (1)(2017· 滨州)下列计算: ①( 2)2=2, ② -22=2, ③(-2 3)2 =12,④( 2+ 3)( 2- 3)=-1,其中结果正确的个数为( D )
A. 1
B. 2
C. 3
D. 4
点拨
根据二次根式的性质可得①、②、③正确;根据平方差公
式可得④正确.
点拨
答案
9 (2)(2017· 天津)计算(4+ 7)(4- 7)的结果等于________ . 点拨 根据平方差公式计算即可.
解
答案
【变式 3】
(1)(2017· 黄冈)计算: 27-6
1 3 . 的结果是 ________ 3
解
3 原式=3 3-6× =3 3-2 3= 3. 3
3
特别提醒
(1)± a表示 a 的平方根, a表示 a 的算术平方根,- a表示 a 的算术 平方根的相反数, a表示 a 的立方根. 3
(2)开平方运算与平方运算是互为逆运算的关系.常用平方运算来检
第章数的开方知识点总结

第章数的开方知识点总结数的开方是数学中的一个重要概念,它表示一个数的平方根。
在解决各种数学问题以及实际生活中的应用中,数的开方常常用到。
本文将对数的开方的基本概念、性质、计算方法以及其应用进行总结。
一、数的开方的基本概念数的开方是指求一个数的平方根。
对于非负实数a,如果有一个非负实数x,使得x的平方等于a,那么x就是a的平方根,记作√a。
二、数的开方的性质1.非负数的开方是唯一的。
即对于任意非负实数a,只有一个非负实数x,使得x的平方等于a。
2.平方根是非负实数。
即对于任意非负实数a,它的平方根也一定是非负实数。
三、数的开方的计算方法1.分解因数法:将被开方数分解成若干个互质的因数的乘积,然后对每个因数分别开方。
2.二分逼近法:从区间的两个端点开始,取区间中点作为试探值,然后逐步逼近所要求的平方根。
3.等差平方根法:根据等差数列的性质,可通过等差数列的特点,或相邻两项之间的差值关系,直接计算出平方根的近似值。
四、数的开方的应用1.几何学中的应用:如计算正方形的对角线长度、长方形的对角线长度等。
2.物理学中的应用:如计算速度、加速度等。
3.统计学中的应用:如计算标准差等。
4.工程学中的应用:如计算电路的电阻、计算建筑物的面积等。
五、注意事项1.负数的开方是复数,不是实数。
正数的开方是唯一的,但负数的开方有两个解,一正一负。
2.有时候需要对数的开方进行近似计算,可以使用牛顿迭代法等方法。
六、数的开方的扩展1.平方根的概念可以扩展到其他次方根的概念,如立方根、四次方根等。
2.对于复数,也可以进行开方运算,得到复数的开方。
总之,数的开方是数学中一个重要的概念,它有着广泛的应用。
通过对数的开方的基本概念、性质、计算方法以及应用的总结,我们可以更好地理解数的开方,并能够灵活运用数的开方解决各种数学问题以及实际生活中的应用。
第一单元 数与式 第5课时 数的开方及二次根式

第一单元 数与式第5课时 数的开方及二次根式考点知识清单考点一 数的开方1.算术平方根:非负数x 满足x 2=a(a ≥0),则x 叫做a 的算术平方根,记作①____________。
2.平方根:若x 2=a(a ≥0),则x 叫做a 的平方根,记作②_____________。
3.立方根:如果x 3=a ,那么x 叫做a 的立方根(或三次方根),记作③_____________。
【温馨提示】1.一个正数有两个平方根,它们互为相反数,0的平方根与算术平方根都是0本身,负数没有平方根。
2.一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.考点二 二次根式的有关概念1.二次根式:式子a (④__________)叫做二次根式。
【温馨提示】a (a ≥0)其实就是a 的算术平方根。
2.最简二次根式:同时满足以下两个条件:被开方数都不含⑤___________,也不能含能开得尽方的因数或因式。
【温馨提示】分母中含有根式的不是最简二次根式。
如21的最简形式应为22。
考点三 二次根式的性质三个重要性质(1)a (a ≥0)是⑥_______________;(2)=2)(a ⑦______________(a ≥0);(3)=2a ⑧________________。
积的算术平方根 )0,0(≥≥⋅=b a b a ab商的算术平方根 ).0,0(≥>=b a ab a b【温馨提示】2)(a 与2a 的被开方数的取值范围是不相同的,前者a ≥0,后者a 为任意实数。
考点四 二次根式的运算【温馨提示】二次根式运算的结果必须是最简二次根式,若含有分母,则分母中不能含有根号。
题型归类探究类型一 数的开方与估算(易错点)【典例1】(1)(2018·安顺)4的算术平方根是( ) A.2±B.2C.±2D.2(2)(2018·昆明)黄金分割数215-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面。
数的乘方与开方的运算

数的乘方与开方的运算数的乘方与开方是数学中常见的运算方式,它们在实际生活和科学研究中具有重要意义。
本文将探讨数的乘方与开方的概念、运算规则以及应用场景。
一、数的乘方的概念与运算规则数的乘方是指一个数自乘若干次的运算,常用的表示方法为a^n,其中a为底数,n为指数。
乘方的运算规则包括:1. 同底数相乘:a^m * a^n = a^(m+n)。
即相同底数的乘方,将指数相加。
2. 幂的乘积:(a^m)^n = a^(m*n)。
即乘方的指数相乘。
3. 幂的乘方:(a*b)^n = a^n * b^n。
即乘方运算可以分别应用于底数,再将结果相乘。
二、数的开方的概念与运算规则数的开方是指一个数的平方根(二次方根)或n次方根的运算。
常用的表示方法为√a或a^(1/n),其中a为被开方数,n为开方次数。
开方的运算规则包括:1. 二次方根:√a * √a = a。
即一个数的二次方根相乘等于该数。
2. 一次方根:√a = a^(1/2)。
即一个数的一次方根等于该数的二次方。
三、数的乘方与开方的应用场景1. 科学计算中常用的指数表示法:科学计算中经常出现极大或极小的数,采用乘方运算可以简化表示,提高计算效率。
例如,光速的近似值为3×10^8 米/秒,可以使用乘方运算来表示。
2. 几何图形的计算:例如计算正方形的面积、立方体的体积等,都需要应用乘方运算。
而计算边长或体积的开平方则需要应用开方运算。
3. 根据数据推断规律:通过观察一组数据中的规律,可以使用乘方与开方运算来推断未知数据。
例如,根据过去几年的销售数据,可以使用乘方运算来预测未来销售额的增长趋势。
4. 物理学中的运动规律:例如牛顿运动定律中的加速度、力的计算等,涉及到速度的乘方与开方运算。
总结:数的乘方与开方是数学中常见的运算方式,它们具有广泛的应用场景。
通过乘方运算,我们可以简化大数的表示,提高计算效率;而开方运算可以用来求解几何图形的边长、体积等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的开方
问题一: 请同学们回忆一下,已知正方形的边长,如何求出正方形的面积?
如果正方形的边长为2,正
方形的面积是多少?
求出正方形的边长吗?
1.已知正方形的面积为
25cm 2,正方形的边长是多少?
你能求出来吗?
2.已知正方形的面积为a ,
正方形的边长是多少?结合前
一个问题说说如何求?
设正方形的边长是x ,试写出x 与a 的关系式.
把问题的实质表述出来.
问题四: 上面两个问题中,我们对“求出的数”给出一个称呼:
如果一个数的平方等于a ,那么这个数叫做a 的平方根.
1.求一个数,这个数的平方等于25. 2.求一个数,这个数的平方等于a . 正方形的边长是x ,它的面积为x 2, 已知正方形的面积为a ,
∴ x 与a 的关系式是 x 2=a . 正方形的面积为:边长×边长.
∵ 5×5=25,即52=25, ∴ 正方形的边长是5cm .
正方形面积为:边长×边长.
∵ 2×2=4, ∴ 正方形的面积是4cm 2.
例如,5叫做25的平方根;
x叫做a的平方根.
事实上,平方根的定义隐含着数学方法:
平方根的定义
给出了求一个数的平方根的方法.。