一次函数的应用学案

合集下载

《一次函数的应用》导学案

《一次函数的应用》导学案

4.5《一次函数的应用》导学案班级:组别:组名:姓名:【学习目标】1.学会用待定系数法确定一次函数解析式;2.会根据题意求出分段函数的解析式并画出函数图象;3.能灵活运用一次函数及其图象解决简单的实际问题;【学习重难点】灵活运用有关知识解决相关问题【学习过程】一、自主学习1.什么叫一次函数?2.一次函数有哪些性质?3.已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式。

分析:求一次函数y=k x+b的解析式,关键是:求出k、b的值,从已知条件可以列出关于k、b的二元一次方程组,并求出k、b。

解:设这个一次函数的解析式为y=k x+b因为y=k x+b的图象过点(,)与(,),所以解方程组得:这个一次函数的解析式为:4.先设出函数解析式(其中含有未知常数系数)再根据条件列出方程或方程组,求出未知数,从而具体写出这个式子的方法,叫做。

知道两点坐标用此方法可求出函数解析式。

二、自主探究(B级)5.作出分段函数 3x-5 (1≤x≤3)y= 4 (3<x≤5) 的图象14-2x (x>5)6.小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

〖思路点拔〗本题y随x变化的规律分成两段(前5分与后10分)写出y随x变化的函数关系式要分成两部分,画函数图象也要分成两段来画。

解:当0≤x<5时,y= (0≤x<5)或y=当5≤x≤时,y= (5≤x≤ )三、合作探究(C级)7.课本134页例18.若直线y=k x+b与直线y=-2x+1平行,且经过点(3,4),求这条直线的解析式。

四、能力提升(D级)9.已知一次函数y=k x+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上,①求这个一次函数的解析式;②此直线经过哪几个象限?③求直线与坐标轴围成三角形的面积。

人教版八年级下册19.2一次函数的应用(教案)

人教版八年级下册19.2一次函数的应用(教案)
(2)抽象出一次函数模型:例如,在解决行程问题时,学生需要从问题中提取出速度、时间、路程等关键信息,构建出一次函数模型y=vt+b。
(3)图像在坐标平面内的变化规律:教师需要引导学生观察一次函数图像,理解斜率k的正负与图像的增减性之间的关系。如斜率为正时,图像呈现上升趋势;斜率为负时,图像呈现下降趋势。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b是常数,x和y是变量。一次函数在生活中有着广泛的应用,如速度与时间的关系、单价与数量的关系等。
2.案例分析:接下来,我们来看一个具体的案例。假设某商品的单价为5元/个,购买3个的总价是多少?通过这个案例,展示一次函数在实际中的应用,以及如何帮助我们解决问题。
4.在今后的教学中,我会尝试更多元化的教学手段,如利用信息技术辅助教学,让学生在直观、生动的环境中学习一次函数。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
同学们,今天我们将要学习的是《一次函数的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算速度、时间和路程的关系的情况?”(如:计算从家到学校的距离和时间)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数在实际问题中的奥秘。

北师大版初中数学八年级(上)4-4 一次函数的应用(第3课时)(学案+练习)

北师大版初中数学八年级(上)4-4 一次函数的应用(第3课时)(学案+练习)

4 一次函数的应用(第3课时)学习目标1.能通过函数图象获取信息,掌握两个一次函数图象的应用;(重点)2.能利用同一坐标系内两个函数图象的关系,解决简单的实际问题. (难点)自主学习学习任务一 新课导入1.某工程队在“村村通”工程中修建的公路长度y (米)与时间x (天)之间的关系如图1.根据图象提供的信息,可知该公路的长度是 米.图1 图22.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆质量x (千克)与他手中持有的钱(含备用零钱)y (元)的关系如图2所示,结合图象回答下列问题:(1)农民自带的零钱是 ;(2)降价前他每千克土豆出售的价格是 ;(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,他一共带了 千克土豆.学习任务二 探究两个一次函数图象在同一坐标系中的应用1.如图3,l 1反映了某公司产品的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)当销售量为2 t 时,销售收入= 元, 销售成本=元.(2)当销售量为6 t 时,销售收入= 元, 销售成本=元.(3)当x =3时,销售收入= 元,销售成本= 元;盈利(收入-成本)= 元.(4)当销售量等于 时,销售收入等于销售成本.(5)当销售量 时,该公司盈利(收入大于成本);当销售量 时,该公司亏损(收入小于成本).(6) l 1对应的函数表达式是 ,l 2对应的函数表达式是 .分组讨论.k 1表示 ,b 1表示 ;k 2表示 ,b 2表示 .2.我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(如图4①),图4②中l 1,l 2分别表示两船相对于海岸的距离s (n mile)与追赶时间t (min)之间的关系.① ②图4根据图象回答下列问题:(1) 表示B 到海岸的距离与追赶时间之间的关系.(2) 速度快.(3)10 min 内B (填“能”或“不能”)追上A .(4)如果一直追下去,那么B (填“能”或“不能”)追上A .(5)当A 逃到离海岸12 n mile 的公海时,B 将无法对其进行检查.照此速度,B (填“能”或“不能”)在A 逃入公海前将其拦截.(6)l 1与l 2对应的两个一次函数s =k 1t +b 1与s =k 2t +b 2中,k 1,k 2的实际意义分别是 ,可疑船只A 与快艇B 的速度分别是 .合作探究如图5,小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?当堂达标1.如图6,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和运动时间,根据图象可知,快者的速度比慢者的速度每秒快( )A.2.5米B.2米C.1.5米D.1米图6 图7 图52.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.如图7表示的是甲、乙两人前往目的地所行驶的路程s (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶的路程是( )A.0.5千米B.1千米C.1.5千米D.2千米3.一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (时)函数关系的图象是( )A B C D4.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通信时间x (分)与收费y (元)之间的函数关系如图8所示.(1)有月租费的收费方式是 (填“①”或“②”),月租费是 元;(2)分别求出①②两种收费方式中y 与x 之间的函数关系式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.课后提升 如图9,l A 与 l B 分别表示A 步行与B 骑车同一路上行驶的路程s 与时间t 的关系.(1)B 出发时与A 相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)B 出发后经过多少小时与A 相遇?(4)若B 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与A 相遇?在图中表示出这个相遇点C .反思感悟我的收获:我的易错点:图8参考答案当堂达标1.C2.A3.C4.解:(1)①30(2)设y有=k1x+30,y无=k2x,由题意得500k1+30=80,k1=0.1;500k2=100,k2=0.2. 故所求的关系式为y有=0.1x+30;y无=0.2x.(3)由y有=y无,得0.2x=0.1x+30,解得x=300.当x=300时,y有=y无=60.故由题图可知当通话时间在300分钟内时,选择通信收费方式②实惠;当通话时间超过300分钟时,选择通信收费方式①实惠;当通话时间为300分钟时,选择通信收费方式①,②一样实惠.课后提升解:(1)由题图可知,B出发时与A相距10千米.(2)B修理自行车所用的时间为:1.5-0.5=1小时.(3)3小时时两人的路程都是22.5千米,所以,B出发后3小时与A相遇.(4)出发时A的速度为22.5103=256千米/时,B的速度为7.50.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,根据题意得,15x-256x=10,解得x=1213.答:经过1213h与A相遇,图10中点C即为相遇点.图10。

初中数学课教案一次函数的应用

初中数学课教案一次函数的应用

初中数学课教案一次函数的应用初中数学课教案:一次函数的应用一、教学目标1. 理解一次函数的概念及其特点;2. 掌握利用一次函数解决实际问题的方法和步骤;3. 培养学生运用一次函数解决实际问题的能力。

二、教学重难点1. 重点:一次函数的概念及应用;2. 难点:如何分析实际问题并建立相应的数学模型。

三、教学准备1. 教师准备:复印教材相关知识点的例题和课后习题;2. 学生准备:完成预习任务,准备相关学习资料。

四、教学过程一、导入(10分钟)老师通过引入一些实际问题,例如小明去超市买水果的例子,引起学生对一次函数的关注和思考。

随后,老师提问:“你们认为可以利用一次函数的方法来解决这个问题吗?”鼓励学生积极回答。

二、理论讲解(15分钟)1. 指出一次函数的定义:y = kx + b,其中 k 和 b 是常数,且k ≠ 0。

2. 解释一次函数中 k 的含义:k 代表直线的斜率,表示函数图像的倾斜程度。

3. 介绍一次函数中 b 的含义:b 代表直线和 y 轴的交点,表示函数图像的纵截距。

4. 强调一次函数图像为一条直线的特点,并提供相关的图像和例子加深学生对一次函数的理解。

三、解题演练(30分钟)1. 老师以多个实例的形式,给出一些应用一次函数解决问题的题目,鼓励学生积极思考和尝试解答。

2. 引导学生分析实际问题,提取关键信息,并将其转化为一次函数的表达式。

3. 带领学生画出一次函数的图像,并利用图像解释实际问题,寻找解决方法。

四、拓展应用(20分钟)1. 老师提供一些拓展问题,要求学生利用一次函数解决。

2. 引导学生从实际生活中提取问题,逐步建立一次函数的模型。

3. 帮助学生理解一次函数的应用范围和实际意义,鼓励他们主动思考并解决问题。

五、归纳总结(10分钟)老师带领学生回顾今天所学内容,并归纳总结一次函数的特点和应用方法。

要求学生用自己的话表达出来,加深对知识的理解和记忆。

六、课堂练习(15分钟)在教师的指导下,学生自主完成课后习题,巩固一次函数的应用知识。

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。

有关八年级数学一次函数的应用教案4篇

有关八年级数学一次函数的应用教案4篇

有关八年级数学一次函数的应用教案4篇【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。

原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。

【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。

过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。

情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。

教学难点:在理解的基础上结合数学思想分析、解决问题。

【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。

因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。

一次函数的应用教案

一次函数的应用教案
m=(0≤n≤3,且n为整数)
m=(n≥4, 且n为整数)
知识点拨:此函数为分段函数。
m=80n(0≤n≤3,且n为整数)
m=80×3+(80-5)(n-3)(n≥4, 且n为整数)
m=75n+15
3、甲、乙两个通信公司分别制定了一种手机的收费办法。甲公司规定:每月收取月租费50元,每通话1分钟再收费0.4元;乙公司规定:不收取月租费,每通话1分钟收费0.6元。那么,应当怎样选择通信公司才能节省电话费?(通话不到1分钟按1分钟收费)
分析:此函数为一次函数 (0 ≤x≤18)
经过点A(0,15)、B(18,24)作函数图象
说明:要注意函数自变量的取值范围。本题图象为线段AB,而不是直线。
2、某门市部出售化肥,毎袋售价80元。为了促进销售,规定买3袋按售价计算,从第4袋开始每袋优惠5元。购买这种化肥的总金额m(元)与购买袋数n(袋)的函数解析式为:
五、检测:30页2题。
六、作业:学案的推荐作业。
观察图象
学生回答
y随x的增大而增大
一、二、三象限
A(-2,0) B(0,3)
待定系数法
学生认真审题,
完成1、2题
学生说答案
1000万米3
800万米3
40
60
180c
90c
500——1000米
学生自主学习
小组讨论。
学生板书答案并讲解
教师点拨
学生认真审题
小组讨论
(3)根据实际要求,写出函数定义域
(4)一般可根据定义域的端点来取值,描点(实心还是空心),作出实际问题的函数图像.
三、练习:
1、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为 ( )

学案 7.5 一次函数的简单应用(2)

学案  7.5 一次函数的简单应用(2)

学案 7.5一次函数的简单应用(2)班级 姓名【我们要掌握的】两个函数图象的交点坐标即为两个函数解析式联立的 的解. 1. 函数y =kx +b (k 、b 为常数)的图象如图所示,则关于x 的不等式kx +b >0的解集是………………………………………………( )A. x >0B. x <0C. x <2D. x >2 2. 直线y =2x -4与x 轴的交点坐标是 .3.对于一次函数y=-x +5,当y >0时, x 的取值范围是 .4. 已知直线y =2x -4和直线y =-3x +1交于一点(1,-2), 则方程组{2431x y x y -=+=的解是 .【我们要完成的】【例1】利用函数图象解二元一次方程组{2335x y x y -=-+=.经过这个题目,你有什么收获 【变式训练】1. 请在同一直角坐标系内作出一次函数y=-2x +3与正比例函数y =2x 的图象,直线y=-x +3与直线y =2x 的交点坐标是 _______,方程组 {232y x y x =-+= 的解是___ ___.【例2】甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图. 根据图象解决下列问题:(1) 谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2) 分别求出甲、乙两人的行驶速度;(3) 在什么时间段内,两人均行驶在途中(不包括起点和终y =-3x +5341-12yx2314-20y =12x +32点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x 的方程或不等式(不化简,也不求解):① 甲在乙的前面;② 甲与乙相遇;③ 甲在乙后面.经过这个题目,你有什么收获 【变式训练】2. 图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡. 使用这两种租书,租书金额y (元)与租书时间x (天)之间的关系如图所示.(1) 分别写出用租书卡和会员卡租书的金额y (元)与租书时间x (天)之间的函数解析式;(2) 两种租书方式每天租书的收费分别是多少元? (3) 若两种租书卡的使用期限均为一年,则在这一年中如何选取这两种租书方式比较划算?随堂自测1.如图,直线y=kx+b 交坐标轴于A , B 两点,则不等式kx+b >0的解是( ) A. x >-2 B. x >3 C. x <2 D. x <32.如图,以两条直线l 1,l 2的交点坐标为解的方程组是…………………( )Oy (元)x (天)1002050租书卡会员卡1530 35 40xy (km ) 4O1l 2l 第4题图A .11x y x y -=⎧⎨2-=⎩,B .121x y x y -=-⎧⎨-=-⎩,C .121x y x y -=-⎧⎨-=⎩,D .121x y x y -=⎧⎨-=-⎩,3.无论m 为何实数,直线y=x +2m 与y=-x +4的交点不可能在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4.某校组织七年级同学到距学校4km 的效外春游,一部分同学步行,另一部分同学骑自行车,如图,l 1,l 2分别表示步行和骑车的同学前往目的地所走的路程y (km)与所用时间x (min)之间的函数图象,则以下判断错误的是………………………………( )A. 骑车的同学比步行的同学晚出发15minB. 骑车的同学用了35min 才到达目的地C. 步行的同学速度为6km/hD. 骑车的同学从出发到追上步行的同学用了15min 5.已知一次函数y=kx+b 的图象如图所示,当x <1时,y 的取值范围是…( ) A. -2<y <0 B. -4<y <0 C. y <-2 D. y <-46. 已知函数y =-2x +8,当x 时,y >4;当x 时,y ≤-2.7. 如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断8秒前甲在乙的 .(填”前面”或”后面”).8.如图,已知函数y =3x +b 和y =ax -3的图象交于点P (-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________.9. 已知一次函数y =3x +p 和y=x+q 的图象都经过点A (-2,0),且与y 轴分别交于B 、C 两点,求△ABC 的面积.10. 2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.第7题图第5题2-4xy(1) 哪个队先到达终点?乙队何时追上甲队? (2) 在比赛过程中,甲、乙两队何时相距最远?课堂小结:经过这堂课你有什么收获? 创新应用17.如图9,M 是边长为4的正方形AD 边的中点,动点P 自A 点起,由A →B →C →D 匀速运动,直线MP 扫过正方形所形成的面积为y ,点P 运动的路程为x ,请解答下列问题:(1) 当x =1时,求y 的值;(2) 就下列各种情况,求y 与x 之间的函数关系式:①0≤x ≤4;②4<x ≤8;③8<x ≤12.(3) 在给出的直角坐标系(如图)中,画出(2)中函数的图像.A C DEB路程/千米时间/时1.5160.5 2.5214035200121648yx812416121648yx812416。

一次函数的应用(2)导学案

一次函数的应用(2)导学案

高楼中学八年级数学科导学案班级109 备课日期:2014年5月4日学习日期:2014年5月7日教师姓名王再清课型新授课课题一次函数的应用(2)学习目标1、在具体情景中,会建立一次函数模型。

2、会运用所建立的模型进行预测。

3、学会观察、比较的方法,养成探索、交流、合作的习惯。

学习重点在具体情景中,会建立一次函数模型。

学习难点会运用所建立的函数模型进行预测。

预习指导1、独立预习课本P135----P136内容2、组内讨论并完成本课时的导学案预习自测1、根据课本P135的男子撑杆跳高记录,为什么可以建立一次函数模型?2、为什么用课本P135的公式①预测的1988年奥运会男子撑杆跳高记录高于了实际记录?我的疑问课堂活动设计合作交流展示质疑例1:小虎在中考前夕练习立定跳远,今年1、2、3、4月份成绩如下表:月份 1 2 3 4成绩(m) 2.23 2.26 2.29 2.32(1)你能为小虎的立定跳远成绩y(m)与时间t(月份)之间的关系建立函数模型吗?请求出函数表达式。

(2)用所求出的函数表达式预测小虎在今年6月份的立定跳远成绩。

(3)能用所求出的表达式预测小虎在明年12月份的立定跳远成绩吗?为什么?点拨释疑拓展延伸例2:如图所示,是某校一电热淋浴器水箱中的储水量y(升)与供水时间t(分)之间的关系。

y(升)15050O 10 50 t(分)(1)请建立储水量y(升)与供水时间t(分)的函数模型;(2)用所建立的模型预测30分钟后水箱里有多少升水?总结归纳达标测评1、下列数据是弹簧挂重物后伸长的记录,当在弹性限度内挂30kg时,弹簧长()重物质量(kg)0 1 2 3 4 (30)弹簧长度(cm)12 12.5 13 13.5 14 ... ?A.26cmB.26.5cmC.27cmD.27.5cm2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间的关系如图所示。

一次函数的应用学案

一次函数的应用学案

6.5 一次函数的应用(2)一、学习目标1、进一步训练学生的识图能力2、能利用函数图象解决简单的实际问题。

二、学习重点一次函数图象的应用。

自主学习,探究新知课本p164如图,L1反映了某公司产品的销售收入与销售量的关系, L 2反映了该公司产品的销售量的关系,根据图象填空。

①当销售量为2吨时,销售收入=_______元,销售成本=_____元;②当销售量为6吨时,销售收入=________元,销售成本=_____元;③当销售量等于______时,销售收入等于销售成本;④当销售量________时,该公司赢利(收入大于成本);当销售量_______时,该公亏损(收入小于成本);⑤L1对应的函数表达式是_______;L2对应的函数表达式是________________。

小组交流展示探究二我边防局接到情报,近海外有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,课本p165图:在下图中,L1,L2分别表示两船相对于海岸的距离S(海里)与追赶时间t(分)之间的关系。

根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A、B哪个速度快?(3)15分内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查。

照此速度,B能否在A逃入公海前将其拦截?自主学习小组交流你能用其他方法解决上题中的问题(1)至(5)吗?(二)课堂练习某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止. 结合风速与时间的图像,回答下列问题:(1)在y 轴( )内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?(3)求出当x≥25时,风速y (千米/时)与时间x (小时)之间的函数关系式.(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?知识梳理,整体构建本节课你有什么收获?分层检测,实时达标课本习题6.8 1.2分层作业,深化新知练习册6.8 1.2.3必4选((小时)。

北师大版八年级上册4.4一次函数的应用(教案)

北师大版八年级上册4.4一次函数的应用(教案)
此外,学生在解决实际问题时,对于待定系数法的应用还不够熟练,这也是我需要在课后重点辅导的部分。我将通过更多具体例子的讲解,帮助他们理解待定系数法的原理,并能够灵活运用到解题过程中。
-强调将实际问题抽象成数学模型的过程。
2.教学难点
-待定系数法求解一次函数解析式的理解和应用。
-难点在于如何从实际问题中抽象出两个方程组成,进而求解k和b的值。
-通过具体例子,解释如何列出方程组,并指导学生进行求解。
-一次函数在实际问题中的应用,如最值问题、效益问题和路程问题。
-难点在于如何将实际问题转化为数学表达式,并找出函数的最大值或最小值。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率k和截距b这两个重点。对于难点部分,如待定系数法求解一次函数解析式,我会通过具体例子和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如归一问题或计算公式问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图象的绘制及其性质。
-通过案例分析,指导学生如何确定变量之间的关系,并求解最值。
-对一次函数性质的理解,尤其是斜率k对图象的影响。
-难点在于理解斜率k与函数增减性之间的关系。
-通过图象观察和实例分析,帮助学生理解斜率k的正负如何决定函数的增减性。
-数形结合的解题思路。
-难点在于如何将抽象的数学问题与直观的图象结合起来,以简化问题解决过程。
-在求解一次函数解析式的过程中,培养逻辑推理和数学运算能力
-通过对一次函数性质的学习,提升抽象逻辑思维能力
4.增强学生的几何直观和空间观念,提高数形结合的解题能力。

一次函数的应用(导学案)

一次函数的应用(导学案)

八年级数学学导学案年级八班级学科数学课题 4.4一次函数的应用(2)第2 课时总3 课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1、能通过函数图象获取信息,解决简单的实际问题.(重难点)2、通过学生对图象的认识,进一步提高学生数形结合意识。

学法指导温故知新1、确定正比例函数与一次函数表达式时,应该注意什么?教学流一、知识探究1、由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V(万米3) 与干旱持续时间t(天)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?二、合作讨论例某种摩托车的油箱加满油后,油箱中剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中剩余油量小于 1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?程三、随堂训练看图填空:(1)当y=0时,x=;(2)直线对应的函数表达式是;(3)一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?四、课堂小结本节课你有什么收获?五、作业布置:课堂检测1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为( )A.4 B.1 C.2 D.-32.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是( )A B C D3.如图是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象,观察图象,从中得到如下信息,其中不正确的是( )A.学校离小明家1 000米B.小明用了20分钟到家C.小明前10分钟走了路程的一半D.小明后10分钟比前10分钟走得快4.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程. 盒内原来有40元,2个月后盒内有80元.求盒内钱数y(元)与存钱月数x之间的函数关系式(不要求写出x的取值范围);5、一次函数y=kx+b的图象与y轴相交于点(0,-3),且方程kx+b=0的解为x=2,试求这个一次函数的表达式.教后反思。

一次函数的应用(1)导学案

一次函数的应用(1)导学案

目 标 重点 3,会运用一次函数的思想解决实际问题,提高解决问题的能力。
难点
我知

阅读理解:
某物体沿一个斜坡下滑,它的速度 v(米/秒)与其下滑时间 t(秒)的关系如
图所示
v/(m/s)
5
自温
(1)写出 v 与 t 之间的关系式?
主故
(2)下滑 3 秒时物体的速度是多少?
学能 习知
O 2
t/s
新 分析:要求 v 与 t 之间的关系式,首先应观察图象,确定它是正比例函数的图
年级 八 编制人
神木县第五中学导学案
班级
学科 数学 课题
§ 4.4 一 次 函 数 图 象 ຫໍສະໝຸດ 应 用 (一)第 1 课时总
审核人
使用时间 第 周星期 使用者
课堂 环节 流程
具体内容
学法指导
学啥 1, 了解一个条件确定一个正比例函数,两个条件确定一个一次函
学 我知
数。

情 2, 会用待定系数法求出一次函数和正比例函数的表达式。(重难点)
学 合 所挂物体的质量为 4 千克时的弹簧的长度。
、作
群、
学探

总结:用待定系数法求一次函数表达式的步骤: (1)设函数表达式 y=kx+b;
(2)根据已知条件列出关于 k,b 的方程;
(3)解方程;
(4)把求出的 k,b 值代回到表达式中即可。
1,如图某汽车行驶的路程 s (km)与时间 t (min)的函数关系图,观察
(1)确定正比例函数的表达式需要几个条件?

(2)确定一次函数的表达式呢?
模仿秀:
学自 例 1:在弹性限度内,弹簧的长度 y(厘米)是所挂物体的质量 x(千

一次函数的应用导学案(1)

一次函数的应用导学案(1)

§5.4一次函数的应用(1)一.《目标解读:》基础目标:1.能根据实际问题中变量之间的关系,确定一次函数关系式.2.能将简单的实际问题转化为数学问题(建一次函数),从而解决实际问题.3.在应用—次函数解决问题的过程中,体会数学的抽象性和应用的广泛性.重点:一次函数图象的应用难点:培养学生用“数形结合”的思想方法解决数学问题的能力.二.《自主探究:》1、已知一次函数y=90x+5,则当x=2时, y= ,当y =365时, x= 。

2.看书P157引入问题,思考下面的问题:(1)汽车行驶的路程包括上行驶的路程和上行驶的路程(2)汽车行驶的路程s(km)与它在高速公路上行驶的时间t(h)之间的关系式是(3)里程表显示本次出行行驶了175km, 175即已知关系式中的变量要求变量3.看P158交流,解答:(1)冲印合计的费用y(元)与加印张数x之间的函数关系式是(2)如果秋游后还结余49.5元,那么冲洗胶卷后还可以加印照片多少张?4.由上面的问题可知:只要根据具体问题列出就可已知自变量的值,求相应的的值;或根据函数值,求出与之对应的的值三.《小组合作:》(1)和本小组同学交流你的思考结果四.《成果展示:》五.《精讲提升:》例1某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

①写出每月电话费y (元)与通话次数x之间的函数关系式;②分别求出月通话50次、100次的电话费;③如果某月的电话费是27.8元,求该月通话的次数。

例2 已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。

已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。

若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。

优质课一次函数的应用(2)导学案

优质课一次函数的应用(2)导学案

一次函数的应用(2)导学案一、温故知新1.设:设一次函数表达式为或者;2.代:将点的坐标代入或者;中,列出关于K、b的方程3.解:解方程求出K、b值;4.定:把求出的、值代回到表达式中即可.二、学习目标①一次函数的实际应用(重点)②一次函数与一元一次方程的关系(难点)③感受“数形结合”思想,锻炼数学应用能力三、自主探究一(想必聪明的你已经跃跃欲试了,准备抢答吧!)多年来,我们不懂得保护环境,严重破坏了生态系统的平衡,持续干旱使草海的储水量随着时间的增加而减少,干旱持续了t(天)与储水量V(万立方米)的关系如下图所示:(1)干旱持续10天后,储水量为(万立方米);连续干旱30天后储水量为(万立方米)。

(2)储水量小于400万立方米时,将发出严重干旱警报,干旱天后,将发出干旱警报。

(3)按照这个规律,预计持续干旱天草海将干涸。

四、自主探究二(咱们都很厉害了,小组加分的好机会哦!)一辆摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示。

根据图象回答下列问题:(1)一箱汽油可供摩托车行驶千米。

(2)摩托车每行驶100千米消耗升汽油。

(3)油箱中的剩余油量小于1升时,摩托车将自动报警。

行驶千米后,摩托车将自动报警。

五、自主探究三(注意与同学交流)看图填空(1)当0x=;y=时,______(2)直线对应的函数表达式是;(3)方程0.5x+1=0的解是;(4)方程0.5x+1=0与一次函数y=0.5x+1有什么联系?六、当堂检测1、我们预测草海干旱60天会干涸,但始终只是预测,你能验证吗?2、右图是老师一段行程中汽车剩余油量V(升)与行驶时间t(小时)的函数关系图,老师这30升油能使汽车行驶小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.4课题学习选择方案(第二课时)
学习目标:
1、运用一次函数知识解决选择方案问题.
2、有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.
3、让学生认识数学在现实生活中的意义,发展学生运用数学知识解决实际问题的能力.
教学重点、难点:
1.建立函数模型。

2.灵活运用数学模型解决实际问题。

教学过程:
知识准备:
有甲乙两种客车,甲种客车每车能装30人,乙种客车每车能装40人,现在有400人要乘车。

1、你有哪些租车方案?
2、只租8辆车,能否一次把客人都运送走?
探索新知:怎样租车
某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。

现有甲、乙两种大客车,它们的载客量和租金如表:
(1)共需租多少辆汽车?
(2)给出最节省费用的租车方案。

分析:1、租车条件:
(1)
(2)
根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。

综合起来可知汽车总数为_____。

设租用x辆甲种客车,则租车费用y(单位:元)是 x 的函数,即
2、讨论:根据问题中的条件,确定自变量x 的取值范围。

3、在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。

巩固练习
根据市场调查分析,为保证市场供应,某蔬菜基地准备安排40个劳力,••用10公顷地种植黄瓜、西红柿和青菜,且青菜至少种植2公顷,•种植这三种蔬菜所需劳动力产下表:
问怎样安排种植面积和分配劳动力,使预计的总产值最高?
组别组号班级评价等级
组别组号班级评价等级。

相关文档
最新文档