2018届人教A版(理) 不等式与推理证明 检测卷 3

合集下载

2018届高中数学人教A版 推理与证明单元测试(Word版,含答案)5

2018届高中数学人教A版 推理与证明单元测试(Word版,含答案)5

2017-2018学年度xx学校xx月考卷一、选择题(共15小题,每小题5.0分,共75分)1.下列平面图形中与空间的平行六面体作为类比对象较合适的是()A.三角形B.梯形C.平行四边形D.矩形2.根据下面一组等式S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,S7=22+23+24+25+26+27+28=175,…可得S1+S3+S5+…+S2n-1等于()A. 2n2B.n3C. 2n3D.n43.用数学归纳法证明等式:1+2+3…+3n=,由n=k的假设到证明n=k+1时,等式左边应添加的式子是()A. 3k+1B. (3k+1)+(3k+2)C. 3k+3D. (3k+1)+(3k+2)+(3k+3)4.欲证不等式-<-成立,只需证()A. (-)2<(-)2B. (-)2>(-)2C. (+)2<(+)2D. (--)2<(-)25.已知f(x)=是奇函数,那么实数a的值等于()A. 1B.-1C. 0D. ±16.如图所示的是一串黑白相间排列的珠子,若按这种规律排列下去,那么第39颗珠子的颜色是()A.白色B.黑色C.白色的可能性大D.黑色的可能性大7.观察下面关于循环小数化分数的等式:=,==,,,据此推测循环小数,可化成分数()A.B.C.D.8.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63等于()A. 192B. 202C. 212D. 2229.记Sk=1k+2k+3k+…+nk,当k=1,2,3,…时,观察下列等式:S 1=n2+n,S 2=n3+n2+n,S 3=n4+n3+n2,S 4=n5+n4+n3-n,S 5=An6+n5+n4+Bn2,….可以推测A-B等于()A.B.C.D.10.下列类比推理的结论正确的是()①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合律”;②类比“平面内,同垂直于一直线的两直线相互平行”,得到猜想“空间中,同垂直于一直线的两直线相互平行”;③类比“设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8成等差数列”,得到猜想“设等比数列{bn}的前n项积为Tn,则T4,,成等比数列”;④类比“设AB为圆的直径,P为圆上任意一点,直线PA,PB的斜率存在,则kPA·kPB为常数”,得到猜想“设AB为椭圆的长轴,p为椭圆上任意一点,直线PA·PB的斜率存在,则kPA·kPB为常数”.A.①④B.①②C.②③D.③④11.下列类比推理中,得到的结论正确的是()A.把log a(x+y)与a(b+c)类比,则有log a(x+y)=log ax+log byB.向量a,b的数量积运算与实数a,b的运算性质|ab|=|a|·|b|类比,则有|a·b|=|a||b|C.把(a+b)n与(ab)n类比,则有(a+b)n=an+bnD.把长方体与长方形类比,则有长方体的对角线平方等于长宽高的平方和12.根据给出的数塔猜测123 456×9+2等于()1×9+2=11,12×9+2=111,123×9+2=1 111,1 234×9+2=11 111,12 345×9+2=111 111.A. 111 111B. 1 111 111C. 1 111 112D. 1 111 11013.用数学归纳法证明1+2+3+…+(3n+1)=,则当n=k+1时左端应在n=k的基础上加上()A. 3k+2B. 3k+4C. (3k+2)+(3k+3)D. (3k+2)+(3k+3)+(3k+4)14.先阅读下面的文字:“求的值时,采用了如下方法:令=x,则有x=,两边同时平方,得1+x=x2,解得x=(负值已舍去)”可用类比的方法,求得1+的值等于()A.B.C.D.15.用数学归纳法证明:++…+≥,从n=k到n=k+1,不等式左边需添加的项是() A.++B.++-C.。

2018年全国卷3理科数学试题及参考答案-

2018年全国卷3理科数学试题及参考答案-

绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试理科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0 B .{}1 C .{}1,2 D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴= 【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos 2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos 212sin 9αα=-= 【考点】余弦的二倍角公式5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 【答案】C【解析】522x x ⎛⎫+ ⎪⎝⎭的第1r +项为:()521035522rr r r r r C x C x x --⎛⎫= ⎪⎝⎭,故令2r =,则10345240r r r C x x -=【考点】二项式定理俯视方向D.C. B.A.6.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=,可设()2,P θθ+,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈ 注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==,P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 7.422y x x =-++的图像大致为( )【答案】DxxxxyyyyD.C.B.A.OO11OO111111【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛⎫⎪ ⎪⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10为成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3 【答案】B【解析】由题意得X 服从二项分布,即()~10,X p ,由二项分布性质可得()101 2.4DX p p =-=,故0.4p =或0.6,而()()()()64446610104161P x C p p P x C p p ==-<==-即()221p p -<,故0.5p >0.6p ∴=【考点】二项分布及其方差公式9.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2πB .3πC .4πD .6π【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理10.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A .B .C .D .【答案】B【解析】如图,O为球心,F为等边ABC∆的重心,易知OF⊥底面ABC,当,,D O F三点共线,即DF⊥底面ABC时,三棱锥D ABC-的高最大,体积也最大. 此时:6ABCABCABS∆∆⎫⎪⇒==等边,在等边ABC∆中,233BF BE AB===,在Rt OFB∆中,易知2OF=,6DF∴=,故()max163D ABCV-=⨯=【考点】外接球、椎体体积最值11.设12,F F是双曲线()2222:10,0x yC a ba b-=>>的左,右焦点,O是坐标原点,过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为( )AB.2CD【答案】C【解析】渐近线OP的方程为:by xa=,利用点到直线的距离公式可求得2PF b=,(此结论可作为二级结论来记忆),在Rt ABC∆中,易得OP a=,1PF∴=,在1POF∆中,由余弦定理可得:22216cos2a c aPOFac+-∠=,又2cosaPOFc∠= 22262a c a aac c+-∴+=,故cea==【考点】双曲线几何性质、余弦定理解三角形OF ECBAD12. 设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 【答案】B【解析】首先由0.2log y x =单调递减可知0.20.20.20log 1log 0.3log 0.21a =<=<=,同理可知21b -<<-,0,0a b ab ∴+<<,排除C 、D 其次:利用作商法:0.30.30.311log 0.2log 2log 0.41a b ab a b+=+=+=<(注意到0ab <) a b ab ∴+>【考点】利用对数函数单调性确定对数范围、作商法比较大小 二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a = ,()2,2b =- ,()1,c λ=. 若()//2c a b + ,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ=【考点】向量平行的坐标运算14. 曲线()1xy ax e =+在点()0,1处的切线斜率为2-,则______.a =【答案】3-【解析】()'1x xy ae ax e =++,12k a ∴=+=-【考点】切线斜率的计算方法15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0,π的零点个数为_________.【答案】3【解析】[]0,x π∈,3,3666t x ππππ⎡⎤=+∈+⎢⎥⎣⎦,由cos y t =图像可知,当35,,222t πππ=时cos 0t =,即()f x 有三个零点 或者:令362x k πππ+=+,则93k x ππ=+,当0,1,2k =时,[]0,x π∈,故3个零点【考点】换元法(整体法)、余弦函数的图像与性质16. 已知点()1,1M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90AMB ∠= ,则_______.k =【答案】2 【解析】(1) 常规解法:设直线方程为1x my =+,联立214x my y x=+⎧⎨=⎩可求121244y y m y y +=⎧⎨=-⎩,由()()12121212110MB MA y y y y x x x x ⋅=-++++++= ,可得12m =,故2k =(2) 二级结论:以焦点弦为直径的圆与准线相切设AB 中点为N ,则由二级结论可知NM ⊥准线,1N M y y ∴==,故22A B N y y y +==,由点差法可得,42A B k y y ==+ 进一步可得二级结论:AB M k y p ⋅=【考点】直线与抛物线联立(二级结论、点差法)三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m . 【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8655689 9 7 627012234 5 6 6 89 8 7 7 6 5 4 3 3281445 2 11 009(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.0500.010 0.001k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E < ,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:超过m 不超过m第一种生产方式15 5 第二种生产方式515(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积的最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析; 【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)ABC S ∆ 恒定,故要使M ABC V -最大,则M ABC d -最大,结合图象可知M 为弧 CD中点时,M ABC V -最大. 此时取CD 的中点O ,则MO DC ⊥,故MO ⊥面ABCD ,故可建立如图所示空间直角坐标系 则:()0,0,1M ,()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,1,0D -MBCDA()()0,2,0,2,1,1AB MA ==--,∴平面MAB 的法向量为()11,0,2n = ,易知平面MCD 的法向量为()21,0,0n =,故12cos ,5n n <>== , ∴面MAB 与面MCD【考点】面面垂直的判定、三棱锥体积最值、二面角的求法 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明,,FA FP FB 成等差数列,并求该数列的公差. 【答案】(1)见解析;(2)28d =±【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得,()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243ny y k x x n k +=++=+224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++= ,20FP FM ∴+= ,即()1,2P m -,214143m ∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=,1,2114x ∴=±, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(此处用了椭圆的第二定义,否则需要硬算,计算量太大)而32FP =2FA FB FP ∴+=故,,FA FP FB成等差数列.221212214c a c a c d FA FB x x x x a c a c a ⎛⎫⎛⎫=±-=±---=±-=± ⎪ ⎪⎝⎭⎝⎭28d ∴=±【考点】点差法、直线与椭圆联立求解、等差数列、椭圆的第二定义21. (12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)常规方法:当0a =时,()()()()2ln 121f x x x x x =++->-,()()1'ln 111f x x x∴=++-+ ()()2''1xf x x ∴=+,当10x -<<时,()''0f x <;当0x >时,()''0f x >()'f x ∴在()1,0-上单调递减,在()0,+∞上单调递增,而()'00f =, ∴()'0f x ≥恒成立,()f x ∴单调递增,又()00f = ∴当10x -<<时,()0f x <;当0x >,()0f x >改进方法:若0a =,则()()()()()22ln 122ln 12x f x x x x x x x ⎡⎤=++-=++-⎢⎥+⎣⎦令()()2ln 12x g x x x =+-+,则()()()()22214'01212x g x x x x x =-=>++++ 所以()g x 在()0,+∞单增,又因为()00g = 故当10x -<<时,()()00g x g <=,即()0f x <; 当0x >时,()()00g x g >=,即()0f x >;方法对比:若直接求导,那么完全处理掉对数经常需要二次求导,而方法二提出()2x +之后对数单独存在,一次求导就可消掉对数(2) 方法一:极大值点的第二充要条件:已知函数y =()f x 在0x x =处各阶导数都存在且连续,0x x =是函数的极大值点的一个充要条件为前21n -阶导数等于0,第2n 阶导数小于0()()()22ln 12f x x ax x x =+++-()()()21'21ln 111ax f x ax x x +∴=+++-+,()'00f ∴=()()()2234''2ln 11ax ax xf x a x x ++∴=+++,()''00f ∴=()()232661'''1ax ax x a f x x +-++∴=+0x =是()f x 的极大值点,()'''0610f a ∴=+=,16a ∴=-,下证:当16a =-时,0x =是()f x 的极大值点,()()()3163'''1x x f x x -+=+,所以()''f x 在()1,0-单增,在()0,+∞单减 进而有()()''''00f x f ≤=,从而()'f x 在()1,-+∞单减,当()1,0x ∈-时,()()''00f x f >=,当()0,x ∈+∞时,()()''00f x f <= 从而()f x 在()1,0-单增,在()0,+∞单减,所以0x =是()f x 的极大值点.方法二: 0x =是()f x 的极大值点,所以存在0δ>,使得在()(),00,δδ- ,()()00f x f <=,即()()22ln 120x ax x x +++-<当()0,x δ∈时,()ln 10x +>,故()()()()2222ln 122ln 1ln 1xx x x x x a x x x +--+-++<=+,当(),0x δ∈-时,()ln 10x +<,故()()()222ln 1ln 1x x x a x x -++>+即()()()()()()()()()()()22000022ln 11ln 1limlimln 121ln 11ln 111lim lim 42642ln 144ln 141x x x x x x x x x x a x x x x x x x x x x x x x x →→→→-++-++==++++--++===-++++++++(洛必达法则,极限思想)【考点】导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44222x y αππαα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=-⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意;当2πα≠时,设直线:l y kx =-1d =<,即()(),11,k ∈-∞-+∞ ,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=+⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴==cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=+⎪⎩即点P的轨迹的参数方程为23sin 2,,244x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5, 【考点】零点分段求解析式、用函数图象解决恒成立问题xy21.531-0.5O。

2018届高三数学人教A版文复习习题:第七章 不等式、推

2018届高三数学人教A版文复习习题:第七章 不等式、推

单元质检卷七不等式、推理与证明(时间:45分钟满分:100分)一、选择题(本大题共12小题,每小题6分,共72分)1.若2x+2y=1,则x+y的取值范围是()A.[0,2]B.[-2,0]C.[-2,+∞)D.(-∞,-2]2.已知不等式ax2-5x+b>0的解集为,则不等式bx2-5x+a>0的解集为()A. B.C.{x|-3<x<2}D.{x|x<-3或x>2}3.下面四个推理中,属于演绎推理的是()A.观察下列各式:72=49,73=343,74=2 401,…,则72 015的末两位数字为43B.观察(x2)'=2x,(x4)'=4x3,(cos x)'=-sin x,可得偶函数的导函数为奇函数C.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似的,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积之比为1∶8D.已知碱金属都能与水发生还原反应,钠为碱金属,所以钠能与水发生反应4.(2017浙江,4)若x,y满足约束条件则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)5.(2017北京丰台一模,文8)某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是()A.乙,丁B.甲,丙C.甲,丁D.乙,丙6.(2017福建厦门一模,文7)实数x,y满足则z=4x+3y的最大值为()A.3B.4C.18D.247.(2017湖南岳阳一模,文10)已知O为坐标原点,点A的坐标为(3,-1),点P(x,y)的坐标满足不等式组若z=的最大值为7,则实数a的值为()A.-7B.-1C.1D.78.(2017安徽安庆模拟)设实数m,n满足m>0,n<0,且=1,则4m+n()A.有最小值9B.有最大值9C.有最大值1D.有最小值19.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件10.(2017山东菏泽一模,文9)已知实数x,y满足约束条件若z=的最小值为-,则正数a的值为()A. B.1C. D.11.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<log2(a+b)B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b)<a+〚导学号24190983〛12.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多二、填空题(本大题共4小题,每小题7分,共28分)13.观察分析下表中的数据:正方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.14.(2017广东揭阳一模,文11改编)已知抛物线y=ax2+2x-a-1(a∈R)恒过第三象限上一定点A,且点A在直线3mx+ny+1=0(m>0,n>0)上,则的最小值为.15.已知a,b,μ∈(0,+∞),且=1,则使得a+b≥μ恒成立的μ的取值范围是.16.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为n2+n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=n2+n,正方形数N(n,4)=n2,五边形数N(n,5)=n2-n,六边形数N(n,6)=2n2-n,……可以推测N(n,k)的表达式,由此计算N(10,24)= .〚导学号24190984〛单元质检卷七不等式、推理与证明1.D∵2x+2y=1≥2,∴≥2x+y,即2x+y≤2-2.∴x+y≤-2.2.C由题意知a>0,且,-是方程ax2-5x+b=0的两根,∴解得∴bx2-5x+a=-5x2-5x+30>0,即x2+x-6<0,解得-3<x<2,故选C.3.D选项A,B都是归纳推理,选项C为类比推理,选项D为演绎推理.故选D.4.D画出约束条件所表示的平面区域为图中阴影部分所示,由目标函数z=x+2y得直线l:y=-x+z,当l经过点B(2,1)时,z取最小值,z min=2+2×1=4.又z无最大值,所以z的取值范围是[4,+∞),故选D.5.B假设乙的说法是正确的,则丁也是正确的,那么甲丙的说法都是错误的,如果丙是错误的,那么1班、4班都获奖或1班、4班都没有获奖,与乙的说法矛盾,故乙的说法是错误,则丁也是错误的;故说法正确的是甲、丙.6.D画出满足条件的平面区域,如图示:由解得A(3,4),由z=4x+3y得y=-x+z,结合图象得直线过点A(3,4)时,z最大,z的最大值是24,故选D.7.C不等式组的可行域如图阴影部分:O为坐标原点,点A的坐标为(3,-1),点P(x,y),z==3x-y,z=的最大值为7,可得3x-y=7,由可得B(3,2),代入x-y=a,可得a=1.8.C因为=1,所以4m+n=(4m+n)=5+.又m>0,n<0,所以-≥4,当且仅当n=-2m,即m=,n=-1时等号成立,故5+≤5-4=1,当且仅当m=,n=-1时等号成立,故选C.9.B设每件产品的平均费用为y元,由题意得y=≥2=20,当且仅当(x>0),即x=80时等号成立,故选B.10. 实数x,y满足约束条件的可行域如图阴影部分.已知a>0,由z=表示过点(x,y)与点(-1,-1)连线的斜率,且z的最小值为-,所以点A与点(-1,-1)连线的斜率最小,由解得A,z=的最小值为-,即=-,解得a=.故选D.11.B不妨令a=2,b=,则a+=4,,log2(a+b)=log2∈(log22,log24)=(1,2),即<log2(a+b)<a+.故选B.12.B若乙盒中放入的是红球,则须保证抽到的两个均是红球;若乙盒中放入的是黑球,则须保证抽到的两个球是一红一黑,且红球放入甲盒;若丙盒中放入的是红球,则须保证抽到的两个球是一红一黑,且黑球放入甲盒;若丙盒中放入的是黑球,则须保证抽到的两个球都是黑球;又由于袋中有偶数个球,且红球、黑球各占一半,则每次从袋中任取两个球,直到袋中所有球都被放入盒中时,抽到两个红球的次数与抽到两个黑球的次数一定是相等的,故乙盒中红球与丙盒中黑球一样多,故选B.13.F+V-E=2三棱柱中5+6-9=2;五棱锥中6+6-10=2;正方体中6+8-12=2;由此归纳可得F+V-E=2.14.12抛物线y=ax2+2x-a-1(a∈R)恒过第三象限上一定点A,∴A(-1,-3),∴m+n=,又=6+3≥6+6=12,当且仅当m=n=时等号成立.15.(0,16]∵a,b∈(0,+∞),且=1,∴a+b=(a+b)=10+≥10+2=16(当且仅当a=4,b=12时等号成立).∴a+b的最小值为16.∴要使a+b≥μ恒成立,只需16≥μ.∴0<μ≤16.16.1 000由题中数据可猜想:含n2项的系数为首项是,公差是的等差数列,含n项的系数为首项是,公差是-的等差数列,因此N(n,k)=n2+n=n2+n.故N(10,24)=11n2-10n=11×102-10×10=1 000.。

2018 年全国 III 卷数学(理)答案及解析

2018 年全国 III 卷数学(理)答案及解析

a1 = 1 ,
an = 2n −1 或 an =
( −2 )
n −1
S = 63 , (2) mn −1 ∴ 当通项公式为 an = 2 时, 1 − 2
(1 − 2 ) = 63
m
,得 m =6
当通项公式为
an =
( −2 )
n −1
1 − ( −2 )m = 63 m −1) 2m = 188 ( + 1 2 时, ,得 ,
− x + x + 2 的图像大致为( 7.函数 y =
4 2

A.
B.
C.
D.
【答案】D 【考点】函数图像以及性质 【难易程度】基础题 【解析】当 x=1 时,函数值大于 0,排除 A、B;因为 F(x)=F(-x),函数为偶函数,图像关于 y 轴
−4 x 3 + 2 x =0 ,解得 x=0、 、 对称, 令F '( x) =
,函数在(-∞,
)单调递增, (
,0)
单调递减, (0, )单调递增, ( ,+∞)单调递减,故选 D。
8.某群体中的每位成员使用移动支付的概率都为 体的 10 位成员中使用移动支付的人数, A. 0.7 【答案】B 【考点】二项分布概率与方差 【难易程度】基础题 【解析】使用移动支付符合二项分布, B.0.6
是带卯眼的木构件的俯视图可以是(

A.
B.
C. 【答案】A 【考点】三视图 【难易程度】基础题
D.
【解析】卯眼的空间立体图如图,同时需要注意在三视图中,看不见的线用虚线表示, 故答案选 A
4、若
,则


A. 【答案】B

2018届高三数学(理)一轮总复习练习-第六章不等式与推理证明6-2Word版含答案

2018届高三数学(理)一轮总复习练习-第六章不等式与推理证明6-2Word版含答案

课时规范训练[A 级 基础演练]1.不等式x 2>x 的解集是( )A .(-∞,0)B .(0,1)C .(1,+∞)D .(-∞,0)∪(1,+∞)解析:选D.由x 2>x ,得x (x -1)>0.所以解集为(-∞,0)∪(1,+∞),故选D.2.(2017·山东临沂模拟)不等式(x -1)(2-x )≥0的解集为( )A .{x |1≤x ≤2}B .{x |x ≤1或x ≥2}C .{x |1<x <2}D .{x |x <1或x >2}解析:选A.由(x -1)(2-x )≥0可知(x -2)(x -1)≤0,所以不等式的解集为{x |1≤x ≤2}.3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3解析:选 A.由题意得,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},则不等式x 2+ax +b <0的解集为{x |-1<x <2}.由根与系数的关系求得,a =-1,b =-2,所以a +b =-3,故选A.4.(2017·武汉模拟)一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围是( )A .(-3,0)B .(-3,0]C .[-3,0]D .(-∞,-3)∪[0,+∞)解析:选 A.由一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0.综上,满足一元二次不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0).5.不等式|x (x -2)|>x (x -2)的解集是 .解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}6.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1},则a 的值为 . 解析:∵(1-a )x 2-4x +6>0的解集是{x |-3<x <1},∴1-a <0,即a >1.于是原不等式可化为(a -1)x 2+4x -6<0,a -1>0,其解集为{x |-3<x <1}.则方程(a -1)x 2+4x -6=0的两根为-3和1.由⎩⎪⎨⎪⎧a >1,-3+1=-4a -1,-3×1=-6a -1, 解得a =3. 答案:37.已知函数f (x )=⎩⎨⎧x 2, x <0,x +1,x ≥0,则不等式f (x )>4的解集为 . 解析:当x <0时,解x 2>4,得x <-2;当x ≥0时,解x +1>4,得x >3.所以不等式f (x )>4的解集为(-∞,-2)∪(3,+∞).答案:(-∞,-2)∪(3,+∞)8.已知函数f (x )=ax 2+2ax +1的定义域为R .求a 的取值范围.解:∵函数f (x )=ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎨⎧a >0,Δ=(2a )2-4a ≤0, 解得0<a ≤1,综上可知,a 的取值范围是[0,1].9.已知函数f (x )=mx 2-mx -1.①若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围;②若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解:①由题意可得m =0或⎩⎨⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].②∵f (x )<-m +5⇔m (x 2-x +1)<6,∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立, 只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数. 则g (x )在[1,3]上为减函数,∴[g (x )]min =g (3)=67,∴m <67.所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67. [B 级 能力突破]1.已知函数f (x )=⎩⎨⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( ) A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:选A.法一:当x ≤0时,x +2≥x 2,∴-1≤x ≤0; ①当x >0时,-x +2≥x 2,∴0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.法二:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].2.关于x 的不等式ax -b >0的解集是⎝ ⎛⎭⎪⎫12,+∞,则关于x 的不等式ax -2b -x +5>0的解集是( )A .(1,5)B .(1,+∞)C .(-∞,5)D .(-∞,1)∪(5,+∞)解析:选A.不等式ax -b >0的解集是⎝ ⎛⎭⎪⎫12,+∞⇒a >0,且a -2b =0,则不等式ax -2b -x +5>0等价于x -1-x +5>0⇔(x -1)(x -5)<0⇔1<x <5,故选A. 3.(2017·广西南宁模拟)在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析:选C.(x -a )⊗(x +a )<1对任意实数x 成立,即(x -a )(1-x -a )<1对任意实数x 成立.∴x 2-x -a 2+a +1>0恒成立,∴Δ=1-4(-a 2+a +1)<0,∴-12<a <32.4.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为 .解析:设x <0,则-x >0,于是f (-x )=(-x )2-4(-x )=x 2+4x ,由于f (x )是R 上的奇函数,所以-f (x )=x 2+4x ,即f (x )=-x 2-4x ,且f (0)=0,于是f (x )=⎩⎨⎧x 2-4x , x >0,0, x =0,-x 2-4x , x <0.当x >0时,由x 2-4x >x 得x >5;当x <0时,由-x 2-4x >x 得-5<x <0,故不等式的解集为(-5,0)∪(5,+∞).答案:(-5,0)∪(5,+∞)5.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为 .解析:(1)由题意知f (x )=x 2+ax +b=⎝ ⎛⎭⎪⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞),∴b -a 24=0,即b =a 24.∴f (x )=⎝ ⎛⎭⎪⎫x +a 22.又∵f (x )<c .∴⎝ ⎛⎭⎪⎫x +a 22<c , 即-a 2-c <x <-a 2+c .∴⎩⎪⎨⎪⎧-a 2-c =m , ①-a 2+c =m +6. ②②-①,得2c =6,∴c =9.答案:96.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ),当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.那么当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)由函数F (x )=f (x )-x 的两个零点为m ,n ,得f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .。

2018高考数学(文理通用版)一轮复习检测第六章 不等式、推理与证明 第3讲 Word版含答案

2018高考数学(文理通用版)一轮复习检测第六章 不等式、推理与证明 第3讲 Word版含答案

第六章第三讲组基础巩固一、选择题.(·辽宁沈阳四校联考)下列各点中,与点()位于直线+-=的同一侧的是( ).() .(-).(-) .(,-)[解析]点()使+->,点(-)使+->,所以此两点位于+-=的同一侧.故选.[解法总结]作平面区域时要“直线定界,测试点定域”,当不等式无等号时直线画成虚线,有等号时直线画成实线.若直线不过原点,测试点常选取原点..(·辽宁省铁岭市协作体高三上学期第三次联考数学试题)已知变量,满足约束条件(\\(+-≤-+≥--≤))则=+的最大值为( ) ....[解析]先根据约束条件画出可行域,再利用几何意义求最值,=+表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.解:作图易知可行域为一个三角形,其三个顶点为(),(),(-,-),验证知在点()时取得最大值当直线=+过点()时,最大是,故选..(·石家庄高三年级摸底考试)已知,满足约束条件(\\(+≤,-≤,-+≥))则下列目标函数中,在点()处取得最大值的是( ).=-+.=-.=-.=+[解析]画(\\(+≤-≤-+≥))的线性区域求得,,三点坐标为()、()、(-,-)由于只在()处取得最大值否定、、,故选..(·浙江)在平面上,过点作直线的垂线所得的垂足称为点的直线上的投影.由区域(\\(-≤,+≥,-+≥))中的点在直线+-=上的投影构成的线段记为,则=( )....[解析]作出不等式组所表示的平面区域如图中阴影部分所示,过点,分别作直线+-=的垂线,垂足分别为,,则四边形为矩形,又(,-),(-),所以===.故选..(·四川成都模拟)某企业拟生产甲、乙两种产品,已知每件甲产品的利润为万元,每件乙产品的利润为万元,且甲、乙两种产品都需要在,两种设备上加工.在每台设备、每台设备上加工件甲产品所需工时分别为和,加工件乙产品所需工时分别为和,设备每天使用时间不超过,设备每天使用时间不超过,则通过合理安排生产计划,该企业在一天内的最大利润是( ).万元.万元.万元.万元[解析]设每天生产甲、乙两种产品分别为件,件,企业获得的利润为万元,则,满足约束条件(\\(+≤,+≤,,∈,))且=+.。

2018届高中数学人教A版 推理与证明单元测试(Word版,含答案)1

2018届高中数学人教A版 推理与证明单元测试(Word版,含答案)1

2017-2018学年度xx学校xx月考卷一、选择题(共15小题,每小题5.0分,共75分)1.已知{an}为等差数列,a1 006=3,a1+a2+a3+…+a2 011=3×2 011,若{bn}为等比数列,b1 006=3,则{bn}的类似结论是()A.b1+b2+…+b2 011=3×2 011B.b1b2…b2 011=3×2 011C.b1+b2+…+b2 011=32 011D.b1b2…b2 011=32 0112.下面四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数3.已知数列的前几项为1,,,…,它的第n项(n∈N*)是()A.B.C.D.4.某西方国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误5.下面几个类比中正确的有()(1)l1∥l2,l1∥l3⇒l2∥l3类比为a1∥a2,a1∥a3⇒a2∥a3;(2)a≠0,ab=ac⇒b=c类比为a1·a2=a1·a3⇒a2=a3;(3)平面α⊥l1,平面α⊥l2⇒l1∥l2类比为平面α1⊥平面α,平面α2⊥平面α⇒平面α1⊥平面α2;(4)|a+b|≤|a|+|b|类比为|z1+z2|≤|z1|+|z2|(其中z1,z2为复数).A. 0个B. 1个C. 2个D. 3个6.数列4,7,10,13,…,(3n+1)按照如下方式排列413107161922 2528……第i行第j列的记作ai-j,例如a3-3=22,a3-4=25,则a20-4的值是()A. 1 192B. 1 310C. 1 201D. 707.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为08.要证:a2+b2-1-a2b2≤0,只要证明()A. 2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D. (a2-1)(b2-1)≥09.用数学归纳法证明+++…+≥(n∈N*),由n=k到n=k+1时,不等式左边应添加的项是()A.B.+C.+-D.+--10.观察下列的图形中小正方形的个数,则第6个图中和第n个图中有小正方形的个数分别为()A. 28,B. 14,C. 28,D. 12,11.在平面上,若两个正三角形的边长之比为1∶2,则它们的面积之比为1∶4;类似地,在空间中,若两个正四面体的棱长之比为1∶2,则它的体积比为()A. 1∶4B. 1∶6C. 1∶8D. 1∶912.下面使用类比推理正确的是()A.由“a(b+c)=ab+ac”类比推出“cos(α+β)=cosα+cosβ”B.由“若3a<3b,则a<b”类比推出“若ac<bc,则a<b”C.由“平面中垂直于同一直线的两直线平行”类比推出“空间中垂直于同一平面的两平面平行”D.由“等差数列{an}中,若a10=0,则a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)”类比推出“在等比数列{bn}中,若b9=1,则有b1b2…bn=b1b2…b17-n(n<17,n∈N*)”13.在△ABC中,若AC⊥BC,AC=b,BC=a,则△ABC的外接圆半径r=,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA,SB,SC两两互相垂直,SA=a,SB=b,SC=c,则四面体S-ABC的外接球半径R等于()A.B.C.D.14.①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理,作为大前提的是()A.①B.②C.③D.其他15.已知函数f(x)=|sin x|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,令A=,B=.则()A.A>BB.A<BC.A=BD.A与B的大小不确定二、填空题(共5小题,每小题5.0分,共25分)16.在平面几何中,若DE是△ABC中平行于BC的中位线,则有S△ADE∶S△ABC=1∶4.把这个结论类比到空间:若三棱锥A-BCD有中截面EFG∥平面BCD,则VA-EFG∶VA-BCD=________.17.用符号“⇒”或“⇏”填空.(1)a≠0或b≠0________ab≠0;(2)a≠0或b≠0________a2+b2>0;(3)a>-b________(a+b)(a2+b2)>0;(4)a>|b|________a+|b|>0.18.在平面上有如下命题:“O为直线AB外的一点,则点P在直线AB上的充要条件是:存在实数x,y满足=x+y,且x+y=1”,我们把它称为平面中三点共线定理,请尝试类比此命题,给出空间中四点共面定理,应描述为:____________.19.将全体正整数排成如图的一个三角形数阵,按照此排列规律,第10行从左向右的第5个数为________.20.将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.已知直角三角形具有性。

2018年高考数学理人教A版一轮复习习题:第七章 不等式

2018年高考数学理人教A版一轮复习习题:第七章 不等式

考点规范练35合情推理与演绎推理基础巩固1.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出n 边形的内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④2.命题“因为有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误3.观察(x2)'=2x,(x4)'=4x3,(cos x)'=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)4.设实数a,b,t满足|a+1|=|sin b|=t,()A.若t确定,则b2唯一确定B.若t确定,则a2+2a唯一确定C.若t确定,则sin唯一确定D.若t确定,则a2+a唯一确定5.(2016湖北七市3月联合调研)小赵、小钱、小孙、小李四位同学被问到谁去过长城时, 小赵说:我没去过; 小钱说:小李去过;小孙说:小钱去过; 小李说:我没去过.假定四人中只有一人说的是假话,由此可判断一定去过长城的是()A.小赵B.小李C.小孙D.小钱6.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为()A.2 011B.2 012C.2 013D.2 0147.(2016全国甲卷,理15)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.〚导学号37270340〛8.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.9.(2016山东潍坊一模)观察下列各式:1+1+1+……照此规律,当n∈N*时,1++…+< .10.(2016山东日照一模)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得100的所有正约数之和为.能力提升11.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“及格”“不及格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人〚导学号37270341〛12.类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=a x-a-x,C(x)=a x+a-x,其中a>0,且a≠1,下面正确的运算公式是()①S(x+y)=S(x)C(y)+C(x)S(y)②S(x-y)=S(x)C(y)-C(x)S(y)③2S(x+y)=S(x)C(y)+C(x)S(y)④2S(x-y)=S(x)C(y)-C(x)S(y)A.①②B.③④C.①④D.②③13.(2016湖北重点中学高三第一次联考)已知“整数对”按如下规律排一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是()A.(7,5)B.(5,7)C.(2,10)D.(10,1) 〚导学号37270342〛14.(2016河南郑州三模)已知数列{a n},{b n}满足a1=,a n+b n=1,b n+1=,n∈N*,则b2016= .〚导学号37270343〛高考预测15.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是.参考答案考点规范练35合情推理与演绎推理1.C解析①是类比推理,②④是归纳推理,③是非合情推理.2.C解析∵大前提“有些有理数是无限循环小数”不是全称命题,∴不符合三段论的推理方式,∴推理形式错误,故选C.3.D解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).4.B解析当t=0时,sin b=0,即b=kπ,k∈Z,所以b2不确定,故A错;sin=sin=0或1或-1,故C错;当t=2时,|a+1|=2,解得a=1或a=-3,所以a2+a=2或a2+a=6,故D错;因为|a+1|=t,所以a2+2a=t2-1;当t确定时,t2-1唯一确定,即a2+2a唯一确定,故B正确.5.D解析由题意可知,小钱的说法与小李的说法矛盾,必有一个人说了假话.又由四人中只有一人说了假话,可知小赵和小孙的说法正确,故可知小钱去过.故选D.6.B解析根据题图所示的规则排列,设第一层的一个数为a,则第二层的三个数为a+7,a+8,a+9,第三层的五个数为a+14,a+15,a+16,a+17,a+18,这9个数之和为a+3a+24+5a+80=9a+104.结合选项可知,只有当9a+104=2 012时,a=212是自然数.故选B.7.1和3解析由丙说的话可知,丙的卡片上的数字可能是“1和2”或“1和3”.若丙的卡片上的数字是“1和2”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和3”,此时与甲说的话一致;若丙的卡片上的数字是“1和3”,则由乙说的话可知,乙的卡片上的数字是“2和3”,甲的卡片上的数字是“1和2”,此时与甲说的话矛盾.综上可知,甲的卡片上的数字是“1和3”.8.A解析由丙的说法“三人去过同一城市”知乙至少去过一个城市,而甲说去过的城市比乙多,且没去过B城市,因此甲一定去过A城市和C城市.又乙没去过C城市,所以三人共同去过的城市必为A,故乙去过的城市就是A.9解析观察前几个不等式,可知不等式右边的分母从2,3,4逐渐增大到n+1,分子从3,5,7逐渐增大到2n+1,故答案为10.217解析类比求36的所有正约数之和的方法,可知100的所有正约数之和可按如下方法得到:因为100=22×52,所以100的所有正约数之和为(1+2+22)(1+5+52)=217.11.B解析用A,B,C分别表示优秀、及格和不及格.显然,语文成绩得A的学生最多只有一人,语文成绩得B的也最多只有1人,得C的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.12.B解析经验证易知①②错误.依题意,注意到2S(x+y)=2(a x+y-a-x-y),S(x)C(y)+C(x)S(y)=2(a x+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).13.B解析在平面直角坐标系中,将各点按顺序连线,如图所示:可得(1,1)为第1项,(1,2)为第1+1=2项,(1,3)为第1+1+2=4项,(1,4)为第1+1+2+3=7项,(1,5)为第1+1+2+3+4=11项,……依此类推得到:(1,11)为第1+1+2+3+4+5+6+7+8+9+10=56项,故第57项为(2,10),第58项为(3,9),第59项为(4,8),第60项为(5,7).14解析∵数列{a n},{b n}满足a1=,a n+b n=1,b n+1=,n∈N*,∴b1=1-a1=,b n+1=∴b2=,b3=,b4=,…,∴b n=,∴b2 016=15.甲解析由题意可知丙说的话与丁说的话互相矛盾,必有一个人说了真话.又四人中只有一人说真话,可知甲和乙都说了假话.又只有一人偷了珠宝,故偷珠宝的人是甲.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 组 基础演练
1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2ab
B.1
a +1
b
>2
ab
C.b a +a b
≥2
D .a 2+b 2>2ab
解析:选C.因为ab >0,所以b a >0,a b >0,即b a +a b
≥ 2
b a ·a
b
=2(当且仅当a =b 时等号成立),所以选C. 2.已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.1
2 C.34
D.23
解析:选B.∵0<x <1,∴1-x >0. ∴x (3-3x )=3x (1-x )≤3⎝
⎛⎭⎪⎫x +1-x 22=3
4. 当且仅当x =1-x ,即x =1
2
时取等号.
3.若函数f (x )=x +1
x -2(x >2)在x =a 处取最小值,则a 等于( )
A .1+ 2
B .1+ 3
C .3
D .4
解析:选C.f (x )=x +1x -2=x -2+1x -2
+2. ∵x >2,∴x -2>0. ∴f (x )=x -2+
1
x -2
+2≥2 x -2 ·
1
x -2+2=4, 当且仅当x -2=
1
x -2
,即x =3时,“=”成立. 又f (x )在x =a 处取最小值.∴a =3.
4.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( )
A.43
B.53 C .2
D.54
解析:选C.由x >0,y >0知4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,故选C.5.已知a >0,b >0,a +b =2,则y =1a +4
b
的最小值是( )
A.72 B .4 C.92
D .5
解析:选C.y =1a +4b =12(a +b )⎝ ⎛⎭⎪⎫1a +4b =52+12⎝ ⎛⎭⎪⎫4a b +b a ≥52+1
2×2
4a
b ·b a =9
2
,当且仅当4a b =b a ,即a =23,b =4
3时,不等式取等号,故选C.
6.已知2x +2
y
=1,(x >0,y >0),则x +y 的最小值为( )
A .1
B .2
C .4
D .8解析:选D.∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y =4+2⎝ ⎛⎭⎪⎫
x y +y x ≥4+4
x y ·y x
=8.
当且仅当x y =y x
,即x =y =4时取等号. 7.若2x +2y =1,则x +y 的取值范围是( ) A . B .
C .
解析:选D.∵2x +2y ≥22x +y ,2x +2y =1, ∴22x +y ≤1,∴2x +y ≤1
4=2-2,
∴x +y ≤-2.
即(x +y )∈(-∞,-2].
8.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =ab C.ab <v <
a +
b 2
D .v =
a +
b 2
解析:选A.设甲、乙两地相距s ,则小王往返两地用时为s a +s b
,从而v =
2s
s a +s b

2ab
a +b
. ∵0<a <b ,∴ab <a +b 2

2ab a +b >2ab
2b
=a , ∴
2a +b <1ab
,即2ab a +b <ab ,∴a <v <ab . 9.下列不等式一定成立的是( ) A .lg ⎝
⎛⎭⎪⎫
x 2+14>lg x (x >0)
B .sin x +1
sin x ≥2(x ≠k π,k ∈Z )
C .x 2+1≥2|x |(x ∈R ) D.
1
x 2+1
>1(x ∈R ) 解析:选C.应用基本不等式:x ,y ∈R +,
x +y 2
≥xy (当且仅当x =y 时取等号)
逐个分析,注意基本不等式的应用条件及取等号的条件. 当x >0时,x 2+14≥2·x ·1
2
=x ,
所以lg ⎝ ⎛⎭⎪⎫
x 2+14≥lg x (x >0),故选项A 不正确;
运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;
当x =0时,有
1
x 2+1
=1,故选项D 不正确. 10.已知不等式(x +y )⎝ ⎛⎭⎪⎫
1x +a y ≥9对任意正实数x , y 恒成立,则正实数a 的最
小值是( ) A .2 B .4C .6
D .8
解析:选B.(x +y )⎝ ⎛⎭⎪⎫
1x +a y =1+a +y x +ax y ≥1+a +2a ,∴当1+a +2a ≥9时不
等式恒成立,故a +1≥3,a ≥4.
B 组 能力突破
1. 函数y =x 2+2
x -1(x >1)的最小值是( )
A .23+2
B .23-2
C .2 3
D .2
解析:选A.∵x >1,∴x -1>0.
∴y =x 2+2x -1=x 2-2x +2x +2x -1
=x 2-2x +1+2 x -1 +3x -1
= x -1 2+2 x -1 +3x -1
=x -1+
3
x -1
+2≥2 x -1
3
x -1
+2 =23+2.
当且仅当x -1=3
x -1
,即x =1+3时,取等号.
2.设x ,y 均为正实数,且32+x +3
2+y =1,则xy 的最小值为( )
A .4
B .4 3
C .9
D .16
解析:选D.由
32+x +32+y
=1得xy =8+x +y . ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即
xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16. 3.已知x >1,则x +
4
x -1
的最小值为________. 解析:∵x >1,∴x -1>0, ∴x +
4x -1=(x -1)+4x -1
+1≥4+1=5, 当且仅当x -1=4
x -1
即x =3时等号成立. 答案:54.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.
解析:依题意得,a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20. 答案:20
5.若点A (1,1)在直线mx +ny -2=0上,其中mn >0,则1m +1
n
的最小值为
__________.
解析:由已知得m +n =2,所以1
m +1
n =12(m +n )·⎝ ⎛⎭⎪⎫1m +1n =12⎝

⎭⎪⎫2+n m +m n ≥
12⎝


⎪⎫
2+2n m ×m n =2,当且仅当m =n =1时取等号. 答案:2
6.已知a >0,b >0,若不等式2a +1
b ≥m
2a +b
恒成立,则m 的最大值是________.
解析:∵a >0,b >0, ∴2a +1b ≥m 2a +b
恒成立,等价于m ≤5+
2a
b

2b
a
恒成立.
又5+
2a
b +
2b
a
≥5+24=9,
当且仅当2a b =2b
a
,即a =b 时,等号成立.
∴m ≤9,则m 的最大值为9. 答案:9。

相关文档
最新文档