12.2全等三角形的判定教学课件21
合集下载
人教版《三角形全等的判定》PPT精美课件
∴∠DEC=∠BFE,DE//BF.
熟练利用“边角边”条件证明两个三角形全等.
两种情况是否都能判定两个三角形全等?你能具体说明吗?
AB=A′B′, 在△ADE和△CBF中,
符号语言表示:在△ABC和△A'B'C'中,
B
C
熟练利用“边角边”条件证明两个三角形全等.
∠B=∠B′, AE=CF,
三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).
先画出一个△ABC,再画出一个△A′B′C′,使得AB=A′B′,∠A=∠A′,AC=A′C′(即两边及其夹角分别相等),此时的△ABC和△A′B′C′全等吗?
先画出一个△ABC,再画出一个△A′B′C′,使得 ∴△CAB≌△CDE(SAS).
知识点1 三角形全等的基本事实:边角边(SAS)
在△ADC和△CBA中,
∴∠ACB=∠DFE,BC//EF.
B 在△ADC和△CBA中,
C
B′ C′
总结:(1)一定牢记“边边角”不能判定两个三角形全等,只有两边及其夹角分别相等才能判定两个三角形全等.
四条边相等,四个角都是90°
通过画结图,你论能得出:什么两样的边结论?及其中一边的对角分别相等的两个三角
AB=DC,
形不一定全等. ∴∠DEC=∠BFE,DE//BF.
AB=CB,
∠ABG=∠CBE,
D
GB=EB,
∴ △ABG≌△CBE(SAS), A ∴AG=CE.
C M NG
F B
E
(2)求证:AG⊥CE.
(2)证明: ∵△ABG≌△CBE,
∴∠GAB=∠ECB.
∵∠ABC=∠GBE=90°.
∴在△ABM中,∠AMB+∠GAB=90°. D
熟练利用“边角边”条件证明两个三角形全等.
两种情况是否都能判定两个三角形全等?你能具体说明吗?
AB=A′B′, 在△ADE和△CBF中,
符号语言表示:在△ABC和△A'B'C'中,
B
C
熟练利用“边角边”条件证明两个三角形全等.
∠B=∠B′, AE=CF,
三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).
先画出一个△ABC,再画出一个△A′B′C′,使得AB=A′B′,∠A=∠A′,AC=A′C′(即两边及其夹角分别相等),此时的△ABC和△A′B′C′全等吗?
先画出一个△ABC,再画出一个△A′B′C′,使得 ∴△CAB≌△CDE(SAS).
知识点1 三角形全等的基本事实:边角边(SAS)
在△ADC和△CBA中,
∴∠ACB=∠DFE,BC//EF.
B 在△ADC和△CBA中,
C
B′ C′
总结:(1)一定牢记“边边角”不能判定两个三角形全等,只有两边及其夹角分别相等才能判定两个三角形全等.
四条边相等,四个角都是90°
通过画结图,你论能得出:什么两样的边结论?及其中一边的对角分别相等的两个三角
AB=DC,
形不一定全等. ∴∠DEC=∠BFE,DE//BF.
AB=CB,
∠ABG=∠CBE,
D
GB=EB,
∴ △ABG≌△CBE(SAS), A ∴AG=CE.
C M NG
F B
E
(2)求证:AG⊥CE.
(2)证明: ∵△ABG≌△CBE,
∴∠GAB=∠ECB.
∵∠ABC=∠GBE=90°.
∴在△ABM中,∠AMB+∠GAB=90°. D
人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.
∥
∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.
∥
∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).
人教版八年级数学上册12.2全等三角形判定 (SSS) 课件
归纳:只有一个角对应相等的两 个三角形不一定全等.
观察思考
两个三角形如果满足两个条件对应相等,这两个三 角形是否全等: 第一种情况:
3cm 5cm
3cm 5cm
归纳:两条边对应相等的两个三角形不一定全等.
观察思考
第二种情况:
老师的这个含300,600的三
角尺和你们的含300,600的 三角尺能重合吗
三边对应相等的两个三角形全等
总结归纳
“边边边”公理
文字叙述:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”)
A
几何语言: 在△ABC和△DEF中, AB=DE,
B
C
D
BC=EF,
CA=FD, ∴
如图,有一个三角形钢架,AB=AC,AD是连接点A
当堂检测
4.若干个正六边形拼成的图形中,下列三角形 与△ACD全等的有( )
A.△BCE B.△ADF C.△ADE D.△CDE
当堂检测
5.如图,点A,D,B,E在同一条直线上,AC=EF, AD=BE,BC=DF,BC与DF交于点O.(1)求证: △ABC≌△EDF.(2)若∠CBE=125°,求∠BOD的 度数.
与BC中点D的支架。求证:AD平分∠BAC
A
解题技巧: ①先找已知条件AB=AC
②再找隐含条件公共边AD
B
D
C
③最后找由已知条件推出的结论BD=CD
例题分析
证明:∵D是BC中点(已知)
∴ BD=DC(线段中点定义) A
在△ABD与△ACD中
AB=AC(已知)
B
BD=CD(已证)
D
C
AD=AD(公共边) ∴ △ABD≌△ACD(SSS)
三角形全等的判定ppt课件
知4-讲
1. 基本事实:两角和它们的夹边分别相等的两个三角形全 等(可以简写成“角边角”或“ASA”).
感悟新知
2. 书写格式:如图12 . 2-8, 在△ ABC 和△ A′B′C′ 中, ∠ B= ∠ B′, BC=B′C′, ∠ C= ∠ C′, ∴△ ABC ≌△ A′B′C′( ASA).
第十二章 全等三角形
12.2 三角形全等的判定
感悟新知
知识点 1 基本事实“边边边”或“SSS”
知1-讲
1. 基本事实:三边分别相等的两个三角形全等(可以简写成 “边边边”或“SSS”). 这个基本事实告诉我们:当三角形的三边确定后, 其形状、大小也随之确定. 这是说明三角形具有稳定性的 依据.
感悟新知
感悟新知
知5-练
例5 如图12.2-11,AB=AE,∠ 1= ∠ 2,∠ C= ∠ D. 求证:△ ABC ≌△ AED.
感悟新知
思路引导:
知5-练
感悟新知
知5-练
技巧点拨:判定两个三角形全等,可采用执果 索因的方法,即根据结论反推需要的条件. 如本 题还缺少∠ BAC= ∠ EAD,需利用已知条件∠ 1= ∠ 2 进行推导.
感悟新知
知2-练
③以点M′为圆心,以MN 长为半径作弧,在∠ BAC 内 部交②中所画的弧于点N′; ④过点N′作射线DN′交BC 于点E. 若∠ B=52°,∠C=83°,则∠ BDE= ___4_5_°__.
感悟新知
知识点 3 基本事实“边角边”或“SAS”
知3-讲
1. 基本事实:两边和它们的夹角分别相等的两个三角形全 等(可以简写成“边角边”或“SAS”).
感悟新知
解:∵∠BAD=∠EAC, ∴∠BAD+∠CAD=∠EAC+∠CAD, 即∠BAC=∠EAD.
12.2三角形全等的判定(ASA和AAS)(共33张PPT)课件
综合应用 -----全等三角形判定
1. 如图,点 E 在 AB 上,∠ 1=∠2 ,∠ 3=∠4 ,那么 CB 等于 DB 吗?为什
么?
C 3 A 1 2 4 D E B
2.如图,AB∥DC,AD∥BC, 说出△ABD≌ △CDB的理由。
A B
D
C
3. 如图,AB=DE,AF=CD,EF=BC, ∠A=∠D, 试说明:BF∥CE
BED CFD (已证)
B
F D E C
BDE CDF (对顶角相等)
BE CF (已知)
\DBDE DCDF (AAS)
\ BD CD (全等三角形对应边相等)
练 习
(3) 如图,AC、BD交于点O,AC=BD,AB=CD. 求证: (1)C B ( 2)OA OD
3、角边角 4、角角边 三步走:
(ASA) (AAS)
A
D
①要证什么; ②已有什么; ③还缺什么。
=
=
B
E C
F
练 习
(1) 图中的两个三角形全等吗? 请说明理由. 全等 因为两角和其中一角的对边对应相等的两 个三角形全等.
解:在DABC和DDBC中
ABC DBC (已知)
A
110
B
A D
A C E
B F
D
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
12.2《直角三角形全等的判定》-(共29张PPT)
(2)∵Rt△ABD≌Rt△CDB, ∴∠ADB=∠CBD, ∴AD∥BC.
例2.已知,如图,AC⊥BC,BD⊥AD.
(1)已知∠CAB=∠ DBA,求证:BC=AD.
(2)已知AC=BD,求证:BC=AD.
证明:
D
C
(1)∵AC⊥BC,BD⊥AD,
∴∠D=∠C=90°. 在△ABC和△BAD中,
(3)∠DAB = ∠CBA( AAS); D
C
(4)∠DBA = ∠CAB (AAS ).
A
B
四、练习:
1.如图,C是路段AB的中点,两人从C同时出发, 以相同的速度分别沿两条直线行走,并同时到 达D,E两地,DA⊥AB,EB⊥AB,D,E与路段 AB的距离相等吗?为什么?
答: D,E与路段AB的距离相等.
求证:AD=BC.
证明:连接DC. ∵ AD⊥AC,BC⊥BD, ∴∠A=∠B=90°. 在Rt△ADC和Rt△BCD中,
DC=CD, AC=BD, ∴Rt△ADC≌Rt△BCD(HL). ∴AD=BC.
例4.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.
求证:ED⊥AC.
证明:∵AE⊥AB,BC⊥AB, ∴∠EAD=∠ABC=90°. 在Rt△EAD和Rt△ABC中,
AD
AB——DE AC——DF
BC——EF
∠A——∠D
B
E
∠B——∠DEF
C
F ∠ACB——∠F
2:我们已经学过判定全等三角形的方法有哪些?
(SSS)、(SAS)、(ASA)、(AAS)
3、思考:
(1)如图:Rt△ACB、与Rt△A1C1B1中,∠C与∠C1是直 角,用我们已经学过的知识,除了两直角相等以外,你还
例2.已知,如图,AC⊥BC,BD⊥AD.
(1)已知∠CAB=∠ DBA,求证:BC=AD.
(2)已知AC=BD,求证:BC=AD.
证明:
D
C
(1)∵AC⊥BC,BD⊥AD,
∴∠D=∠C=90°. 在△ABC和△BAD中,
(3)∠DAB = ∠CBA( AAS); D
C
(4)∠DBA = ∠CAB (AAS ).
A
B
四、练习:
1.如图,C是路段AB的中点,两人从C同时出发, 以相同的速度分别沿两条直线行走,并同时到 达D,E两地,DA⊥AB,EB⊥AB,D,E与路段 AB的距离相等吗?为什么?
答: D,E与路段AB的距离相等.
求证:AD=BC.
证明:连接DC. ∵ AD⊥AC,BC⊥BD, ∴∠A=∠B=90°. 在Rt△ADC和Rt△BCD中,
DC=CD, AC=BD, ∴Rt△ADC≌Rt△BCD(HL). ∴AD=BC.
例4.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.
求证:ED⊥AC.
证明:∵AE⊥AB,BC⊥AB, ∴∠EAD=∠ABC=90°. 在Rt△EAD和Rt△ABC中,
AD
AB——DE AC——DF
BC——EF
∠A——∠D
B
E
∠B——∠DEF
C
F ∠ACB——∠F
2:我们已经学过判定全等三角形的方法有哪些?
(SSS)、(SAS)、(ASA)、(AAS)
3、思考:
(1)如图:Rt△ACB、与Rt△A1C1B1中,∠C与∠C1是直 角,用我们已经学过的知识,除了两直角相等以外,你还
12-2 三角形全等的判定 课件(共25张PPT)
并延长到点,使 = .连接并延长到点,使
和 ∠2 的根据是什么?
AB=DE的根据是什么?
.连接,那么量出的长就是,的距离.为什么?
在△ 和△ 中,
=
ቐ ∠1 = ∠2
=
∴△ ≌△ ()∴ = .
【结论】因为全等三角形对应边相等,对应角相等,所以证明线段相等或者
第十二单元 全等三角形
12.2 三角形全等的判定
情景导入
根据上一节的学习,我们知道,如果△ ≌△ ′′′,那么它们
的对应边相等,对应角相等。反过来,根据全等三角形的定义,
如果△ 与 △ ′′′满足三条边分别相等,三个角分别相等,即
= ’’, = ’’, = ’’
与△ABD不全等。这说明,有两边和
其中一边的对角分别相等的两个三角
形不一定全等。
教学新知
探索4:先 任 意 画 出 一 个 △ . 再 画 一 个 △ ′′′ , 使 ′′ = ,
∠′ = ∠,∠′ = ∠(即两角和它们的夹边分别相等).把画
好的△ ′′′剪下来,放到△ 上,它们全等吗?
.求证△ ≌△ .
在△ 中,∠ + ∠ + ∠ = 180°,
∴∠ = 180° − ∠ − ∠.
同理∠ = 180° − ∠ − ∠.
又∠ = ∠,∠ = ∠,∴∠ = ∠
在△ 和△ 中,
三角形木架的形状、大小就不变了.就是说,三角形三条边的长度
确定了,这个三角形的形状、大小也就确定了.
例1:在右图所示的三角形钢架中, = ,是连接点与
中点的支架.求证△ ≅△ .
∵是的中点,∴ = .
在△ 和△ 中,
=
ቐ =
和 ∠2 的根据是什么?
AB=DE的根据是什么?
.连接,那么量出的长就是,的距离.为什么?
在△ 和△ 中,
=
ቐ ∠1 = ∠2
=
∴△ ≌△ ()∴ = .
【结论】因为全等三角形对应边相等,对应角相等,所以证明线段相等或者
第十二单元 全等三角形
12.2 三角形全等的判定
情景导入
根据上一节的学习,我们知道,如果△ ≌△ ′′′,那么它们
的对应边相等,对应角相等。反过来,根据全等三角形的定义,
如果△ 与 △ ′′′满足三条边分别相等,三个角分别相等,即
= ’’, = ’’, = ’’
与△ABD不全等。这说明,有两边和
其中一边的对角分别相等的两个三角
形不一定全等。
教学新知
探索4:先 任 意 画 出 一 个 △ . 再 画 一 个 △ ′′′ , 使 ′′ = ,
∠′ = ∠,∠′ = ∠(即两角和它们的夹边分别相等).把画
好的△ ′′′剪下来,放到△ 上,它们全等吗?
.求证△ ≌△ .
在△ 中,∠ + ∠ + ∠ = 180°,
∴∠ = 180° − ∠ − ∠.
同理∠ = 180° − ∠ − ∠.
又∠ = ∠,∠ = ∠,∴∠ = ∠
在△ 和△ 中,
三角形木架的形状、大小就不变了.就是说,三角形三条边的长度
确定了,这个三角形的形状、大小也就确定了.
例1:在右图所示的三角形钢架中, = ,是连接点与
中点的支架.求证△ ≅△ .
∵是的中点,∴ = .
在△ 和△ 中,
=
ቐ =
《三角形全等的判定》PPT教学课件
就是AB的长.为什么? ∵ △ABC≌△EDC(AAS)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
∴DE=AB
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
补充练习
图中的两个三角形全等吗?请说明理由.
(1)
△ADC≌△ABC(ASA)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
探究新知
规律:
两角分别相等且其中一组等角的对边相 等的两个三角形全等(可以简写成“角角边” 或“AAS”).
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
探究新知
例:如下图,点D在AB上,点E在AC上,
AB=AC,∠B=∠C.求证:AD=AE.
激情,这是鼓满船帆的风.风有时会把 船帆吹断;但没有风,帆船就不能航 行.
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
角角边 (AAS)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
随堂练习
1.如图,AB⊥BC,AD ⊥ DC,垂足分别为B,D, ∠1= ∠2.求证: AB=AD.
证明: ∵ AB⊥BC,AD ⊥ DC ∴ ∠ B=∠D=90 ° 在△ABC和△ADC中,
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
补充练习
图中的两个三角形全等吗?请说明理由.
29°
29°
(2)
△AEC与△BCD不一定全等
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
∴DE=AB
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
补充练习
图中的两个三角形全等吗?请说明理由.
(1)
△ADC≌△ABC(ASA)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
探究新知
规律:
两角分别相等且其中一组等角的对边相 等的两个三角形全等(可以简写成“角角边” 或“AAS”).
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
探究新知
例:如下图,点D在AB上,点E在AC上,
AB=AC,∠B=∠C.求证:AD=AE.
激情,这是鼓满船帆的风.风有时会把 船帆吹断;但没有风,帆船就不能航 行.
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
角角边 (AAS)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
随堂练习
1.如图,AB⊥BC,AD ⊥ DC,垂足分别为B,D, ∠1= ∠2.求证: AB=AD.
证明: ∵ AB⊥BC,AD ⊥ DC ∴ ∠ B=∠D=90 ° 在△ABC和△ADC中,
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
补充练习
图中的两个三角形全等吗?请说明理由.
29°
29°
(2)
△AEC与△BCD不一定全等
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
12.2直角三角形全等的判定PPT课件
12.2 三角形全等的判定
(HL)
1. 如图:△ABC≌△DEF,指出它们的对应 角、对应边。
AD
B
E
C
F
对应边:AB——DE
AC——DF
BC——EF 对应角:∠A——∠D
∠B——∠DEF ∠ACB——∠F
2. 我们已经学过判定全等三角形的方法有哪些? SSS、SAS、ASA、AAS
创设情景 引入课题
形能全等吗?
画一画:
动手实践 探索规律
任意画一个Rt△ACB ,使∠C﹦90°,再画一个
Rt△A′C′B′ ,使∠C﹦∠C′,B′C′﹦BC,A′B′﹦AB (1)你能试着画出来吗?与小组内的其他同学交流一
(2)把画好的Rt△A′C′B′放到Rt△ACB上, 它们全等吗?你能发现什么规律?
作法:
1. 画∠MC′N=90°; 2. 在射线C′M上取B′C′=BC; 3. 以B′为圆心,AB为半径画弧,交射线C′N于点A′ 4. 连接A′B′,Rt△A′C′B′就是所求作的三角形。
∴Rt△ABC≌Rt△BAD (HL). ∴ BC﹦AD.
1.如图,AB⊥BC,AD⊥DC, AB=AD.
求证:∠1=∠2 . A
12
B
D
C
3.如图,AB=CD,AE⊥BC, DF⊥BC,CE=BF. 求证:AE=DF.
C
D
F E
A
B
2.如图,C是路段AB的中点,两人 从C同时出发,以相同的速度分别 沿两条直线行走,并同时到达D,E 两地,DA⊥AB,EB⊥AB,D,E与路 段AB的距离相等吗?为什么?
直角三角形全等的判定方法: 斜边和一条直角边对应相等的两个直角三角 形全等。简写成“斜边、直角边”或“HL”.
(HL)
1. 如图:△ABC≌△DEF,指出它们的对应 角、对应边。
AD
B
E
C
F
对应边:AB——DE
AC——DF
BC——EF 对应角:∠A——∠D
∠B——∠DEF ∠ACB——∠F
2. 我们已经学过判定全等三角形的方法有哪些? SSS、SAS、ASA、AAS
创设情景 引入课题
形能全等吗?
画一画:
动手实践 探索规律
任意画一个Rt△ACB ,使∠C﹦90°,再画一个
Rt△A′C′B′ ,使∠C﹦∠C′,B′C′﹦BC,A′B′﹦AB (1)你能试着画出来吗?与小组内的其他同学交流一
(2)把画好的Rt△A′C′B′放到Rt△ACB上, 它们全等吗?你能发现什么规律?
作法:
1. 画∠MC′N=90°; 2. 在射线C′M上取B′C′=BC; 3. 以B′为圆心,AB为半径画弧,交射线C′N于点A′ 4. 连接A′B′,Rt△A′C′B′就是所求作的三角形。
∴Rt△ABC≌Rt△BAD (HL). ∴ BC﹦AD.
1.如图,AB⊥BC,AD⊥DC, AB=AD.
求证:∠1=∠2 . A
12
B
D
C
3.如图,AB=CD,AE⊥BC, DF⊥BC,CE=BF. 求证:AE=DF.
C
D
F E
A
B
2.如图,C是路段AB的中点,两人 从C同时出发,以相同的速度分别 沿两条直线行走,并同时到达D,E 两地,DA⊥AB,EB⊥AB,D,E与路 段AB的距离相等吗?为什么?
直角三角形全等的判定方法: 斜边和一条直角边对应相等的两个直角三角 形全等。简写成“斜边、直角边”或“HL”.
人教版八年级数学上册12.2全等三角形的判定 课件
画弧,交O′A′于点C′;
B D
O
C
A O′
C′ A′
知识点2 用尺规作一个角等于已知角
③以点C′为圆心,CD 长为半径画弧,与②中所画 的弧交于点D′;
B
D
D′
O
C
A O′
C′ A′
知识点2 用尺规作一个角等于已知角 ④ 过点D′画射线O′B′,则∠A′O′B′=∠AOB.
B D
B′ D′
O
C
若不是,则需要满足几个条件呢?
知识点1 三角形全等判定“边边边”
【探究1】当满足一个条件时,△ABC 与△A'B'C'全等吗?
①满足一条边相等时
②满足一个角相等时
(不能)
(不能)
【结论】只有一条边或一个角对应相等的两个三角形不一定全等
知识点1 三角形全等判定“边边边”
【探究2】当满足两个条件时,△ABC 与△A'B'C'全等吗?
三个条件
① 三边 ② 三角 ③ 两边一角 ④ 两角一边
知识点1 三角形全等判定“边边边”
【探究3】当满足三边相等时,△ABC 与△A'B'C'全等吗?
先任意画出一个△ABC.再画出一个 △A′B′C′,使 A′B′ =AB,B′C′ =BC, A′C′ =AC.把画好的△A′B′C′ 剪下 来,放到△ABC上,它们全等吗?
课堂演练
例 工人师傅常用角尺平分一个任意角. 做法如下:如图,∠AOB是一个任 意角,在边OA,OB上分别取 OM=ON,移动角尺,使角尺两边 相同的刻度分别与点M,N重合.过 角尺顶点C的射线OC便是∠AOB的 平分线.为什么?
【课本P37 练习 第2题】
B D
O
C
A O′
C′ A′
知识点2 用尺规作一个角等于已知角
③以点C′为圆心,CD 长为半径画弧,与②中所画 的弧交于点D′;
B
D
D′
O
C
A O′
C′ A′
知识点2 用尺规作一个角等于已知角 ④ 过点D′画射线O′B′,则∠A′O′B′=∠AOB.
B D
B′ D′
O
C
若不是,则需要满足几个条件呢?
知识点1 三角形全等判定“边边边”
【探究1】当满足一个条件时,△ABC 与△A'B'C'全等吗?
①满足一条边相等时
②满足一个角相等时
(不能)
(不能)
【结论】只有一条边或一个角对应相等的两个三角形不一定全等
知识点1 三角形全等判定“边边边”
【探究2】当满足两个条件时,△ABC 与△A'B'C'全等吗?
三个条件
① 三边 ② 三角 ③ 两边一角 ④ 两角一边
知识点1 三角形全等判定“边边边”
【探究3】当满足三边相等时,△ABC 与△A'B'C'全等吗?
先任意画出一个△ABC.再画出一个 △A′B′C′,使 A′B′ =AB,B′C′ =BC, A′C′ =AC.把画好的△A′B′C′ 剪下 来,放到△ABC上,它们全等吗?
课堂演练
例 工人师傅常用角尺平分一个任意角. 做法如下:如图,∠AOB是一个任 意角,在边OA,OB上分别取 OM=ON,移动角尺,使角尺两边 相同的刻度分别与点M,N重合.过 角尺顶点C的射线OC便是∠AOB的 平分线.为什么?
【课本P37 练习 第2题】
三角形全等的判定ppt课件
追问1:这个尺规作图的方法利用了上节课中的哪个知识点?
追问2:根据前面的操作,你能探究到什么结论?
例1. 如图,有一池塘,要测池塘两端A、B的距离,可先在平 Nhomakorabea上取一个可以
直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两
个木桩上,两个木桩离旗杆底部的距离相等吗?
解:BD=CD
在Rt△ABD 和 Rt△ACD 中,
AB=AC
AD=AD
∴Rt△ABD≌Rt△ACD(HL)
∴ BD=CD
例1.如图,AC⊥BC,BD⊥AD,AC =BD.求证:BC =AD.
(1)
AD = BC
( HL );
(2)
AC = BD
( HL );
(3) ∠DAB = ∠CBA
( AAS );
(4) ∠DBA = ∠CAB
( AAS ).
D
A
C
B
对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个三
特殊方法
角形就全等了?
HL定理
SSS
一
般
方
法
SAS
AAS
AAS
直角三角形全等
问题:三角分别相等的两个三角形全等吗?
追问:证明两个三角形全等的方法有哪些?
评价3.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.
求证:AB=AD.
∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
在△ABC和△ADC中,
追问2:根据前面的操作,你能探究到什么结论?
例1. 如图,有一池塘,要测池塘两端A、B的距离,可先在平 Nhomakorabea上取一个可以
直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两
个木桩上,两个木桩离旗杆底部的距离相等吗?
解:BD=CD
在Rt△ABD 和 Rt△ACD 中,
AB=AC
AD=AD
∴Rt△ABD≌Rt△ACD(HL)
∴ BD=CD
例1.如图,AC⊥BC,BD⊥AD,AC =BD.求证:BC =AD.
(1)
AD = BC
( HL );
(2)
AC = BD
( HL );
(3) ∠DAB = ∠CBA
( AAS );
(4) ∠DBA = ∠CAB
( AAS ).
D
A
C
B
对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个三
特殊方法
角形就全等了?
HL定理
SSS
一
般
方
法
SAS
AAS
AAS
直角三角形全等
问题:三角分别相等的两个三角形全等吗?
追问:证明两个三角形全等的方法有哪些?
评价3.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.
求证:AB=AD.
∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
在△ABC和△ADC中,
三角形全等的判定ppt课件
∴△ABC≌△A1B1C1(AAS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴△ADE≌△CBF ∴∠A=∠C
DE=BF
小结归纳
2
1. 三边对应相等的两个三角形全等 (边边边或SSS);
2.证明全等三角形书写格式:①准备条件; ②三角形全等书写的三步骤。
3、证明是由题设(已知)出发,经过一步步 的推理,最后推出结论正确的过程。
独立 作业
教材P15
走进名校P 拓展探究
-1.2.9
画法: 1.画线段AB=3㎝; 2.分别以A、B为圆心,4㎝和6㎝长为半径画弧,两 弧交于点C; 3. 连接线段AC、BC.
理性提升
全等三角形的判定定理1: 三边对应相等的两个三角形全等, 简写为“边边边”或“SSS”。
+
A 在△ABC和△ DEF中 AB=DE
BC=EF
CA=FD ∴ △ABC ≌△ DEF(SSS)
当堂测试
如图,已知AB=CD,AD=CB,E、F分别是AB,CD 的中点,且DE=BF. 求证:①△ADE≌△CBF,②∠A=∠C D F C 证明:∵点E,F分别是AB,CD的中点 1 1 ∴AE= AB, CF = CD 2 2 ∵AB=CD ∴AE=CF A B E
在△ADE与△CBF中 AE=CF AD=CB
B D
C
E
F
判断两个三角形全等的推理过程,叫做证明三角形 全等。
思考:你能用“边边边”解释三角形具 有稳定性吗?
理性提升
例11. 如下图,△ABC是一个刚架,AB=AC,
AD是连接A与BC中点D的支架。 求证:△ ABD≌ △ ACD
方法构想
要证明△ ABD≌ △ ACD,首先看 这两个三角形的三条边是否对应相等。
D
B
C
E
F
①AB=DE ② BC=EF ③ CA=FD ④ ∠A= ∠D ⑤ ∠B=∠E ⑥ ∠C= ∠F
创设情境
小明家的衣橱上镶有两块全等的三角
形玻璃装饰物,其中一块被打碎了,妈妈
让小明到玻璃店配一块回来,请你说说小
明该怎么办?
理性提升
1.只给一个条件(一组对应边相等或一组对应角相等)。
①只给一条边:
11.2全等三角形的判定①
学习
目标
1.掌握三角形全等的“边边边”定理. 2.了解三角形的稳定性. 3.经历探索三角形全等条件的过程,体会利 用操作、• 归纳获得数学结论的过程.
预习
探路
1.你能用尺规作两个三角形全等吗? 2.什么是”边边边”定理.你能说说它的作用 吗?
创设情境
1、 什么叫全等三角形? 能够重合的两个三角形叫 全等三角形。 2、 全等三角形有什么性质? A
∴ △AEB ≌ △ ADC (sss)
我们利用前面的结论,还可以得到作一个角等于已知 角的方法。
例3:已知∠AOB 求作:∠A′O′B′=∠AOB
D O B A O′ D′ B′ A′
C C′ 作法:1、以点O为圆心,任意长为半径画弧,分别交 OA,OB于点C、D; 2、画一条射线O′A′,以点O′为圆心,OC 长为半径画弧,交O′A′于点C′; 3、以点C′为圆心,CD长为半径画弧,与第2 步中所画的弧交于点D′; 4、过点D′画射线O′B′,则 ∠A′O′B′=∠AOB
A
B 方法构想
E
D
C
两个三角形中已经的两组边对应 相等,只需要再证第三条边对应相 等就行了.
例2:如图,AB=AC,AE=AD,BD=CE, 求证:△AEB ≌ △ ADC。 证明:∵BD=CE
A
∴ BD-ED=CE-ED, 即BE=CD。 在△AEB和△ADC中, AB=AC
AE提升
例11. 如下图,△ABC是一个刚架,AB=AC,
AD是连接A与BC中点D的支架。 求证:△ ABD≌ △ ACD
证明:∵D是BC的中点
∴BD=CD 在△ABD与△ACD中 AB=AC(已知) BD=CD(已证) AD=AD(公共边) ∴△ABD≌△ACD(SSS)
例2:如图,AB=AC,AE=AD,BD=CE, 求证:△AEB ≌ △ ADC。
证明:在△ABC与△ADC中 A AB=AD
BC=DC AC=AC ∴ △ABC≌ △ADC C B D
在△ABC与△DCB中 AB=CD
BC=CB
AC=BD ∴ △ABC≌ △DCB
A
D
B
C
中考链接
1
已知如图:AC=FE,BC=DE,点A,D,B,F 在一条直线上,AD=FB 求证:△ABC ≌△ FDE,
小结归纳
1
全等三角形证明的基本步骤:
①分析已有条件,准备所缺条件:
证全等时要用的间接条件要先证好; ②三角形全等书写三步骤: • 写出在哪两个三角形中 • 摆出三个条件用大括号括起来
• 写出全等结论
2、如图,AB=CD,AC=BD, 随堂练习 △ABC和△DCB是否全等?试 说明理由。 1、已知:如图,AB=AD,BC=CD, 解:△ABC与△DCB全等, 求证:△ABC≌ △ADC 理由如下:
②只给一个角:
可以发现按这 些条件画的三 角形都不能保 证一定全等。
60° 60°
60°
2.给出两个条件:
①一边一内角:
30° ②两内角:
30°
30°
30° 50° ③两边:
2cm 4cm
30°
可以发现按这 些条件画的三 50° 角形都不能保 证一定全等。
2cm 4cm
理性提升
想想该如何画?
已知三角形三条边分别是 4cm,5cm,7cm, 画出这个三角形,把所画的三角形分别剪下来, 并与同伴比一比,发现什么?