5.2.2平行线的判定—教学设计
5.2.2 平行线的判定教学设计
判定方法 1 应用格式(如图 1 所示) : ∵∠1=∠2(已知) ∴AB∥CD (
1
活动 2 图中,内错角相等可判定两直线平行吗? 如图 1 所示已知∠2=∠3,请说明 AB∥CD。 解:∵∠2=∠3 ( 而_____=_____( ∴_____=_____ ( ∴_____∥_____( 由此你又得出怎样的平行判定?判定方法 2 ) ) ) ) 【教学提示】引导 学生利用判定 1: 同位角相等,两直 线平行和邻补角互 补得出结论。
结论: 两条直线被第三条直线所截, 如果同旁内角互补,那么这两条直线平 行
学习目标 2:平行判定方法的灵活应用 活动 4 学生讨论完成下面题目。 如图, ∠A= 55 °, ∠B=125 °,AD 与 BC 平行吗?AB 与 CD 平行吗?为什么?
学习目标 3:平行判定方法在生活中的应用 应用 1:在如图所示的图中,甲从 A 处沿东偏南 55°方向行走,乙从 B 处沿东偏南 35°方向行走, (1)他们所行道路可能相交吗? (2)当乙从 B 处沿什么方向行走,他们所行道路不相交?请说明其中的理由. 应用 2 甲地侧得乙为北偏东 41.5º方向,如果 甲、乙两地同时开工,那么从乙地出发应按北偏西 ______度施工。
的环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。
4
活动 1:如图,三根木条相交成∠1, ∠2,固 定木条 b、c,转动木条 a , 观察∠1, ∠2 满 足什么条件时直线 a 与 b 平行。
直线 a 和 b 不平行
直线 a∥b
得出结论: 两条直线被第三条直线所截, 如果同位角相等,那么这两条直线 平行.
【教师提示】引导 学生利用判定 1: 同位角相等,两直 线平行和对顶角相 等得出结论。 )
5.2.2平行线的判定教学设计
5.2.2平行线的判定(一)教学过程设计1.观察课本13页图5.2-7,写出木工用角尺画平行线的道理是 .2.如图,∠2=∠4,你能得到a∥c吗?3.如第2题图,.∠1+∠4=180°,你能得到a∥c吗?方法总结:根据2,3题,你能得出什么结论?学生利用两直线平行,角相等,进行简单应用,特别第1出了平行线的判定方法3.利用已学的定理来推理得出的。
了学生自主探究的过程。
判定方法两条直线被第三条直线所截两条直线平行两直线平行判定方法两条直线被第三条直线所截两条直线平行补1.P14页练习T1、2、3;2、如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.(1) (2) (3)3.图2,点E在CD上,点F在BA上,G是AD延长线上一点.(1)若∠A=∠1,则可判断_______∥_______,因为________.(2)若∠1=∠_________,则可判断AG∥BC,因为_________.(3)若∠2+∠________=180°,则可判断CD∥AB,因为____________.4、如图3,图中∠AEF的同位角有哪几个?图中哪两个同位角相等,可得DE∥BC?哪两个同位角相等,可得EF∥BD?收获与感悟:判断两直线平行的方法:(1)平行线的定义:在同一平面内不相交的两条直线平行。
选做题答案:(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。
(3)两直线平行的三中判定方法:作业:课本习题5.2 T1、2、5、6、7、10选做题:你能用一张不规则的纸(比如,如图所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.。
第六课时:5.2.2 平行线的判定 教学设计
第六课时:5.2.2 平行线的判定【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力.【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行. 【学习难点】运用平行线的判定方法进行简单的推理. 【学习过程】 一、学前准备还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、探索思考探索一:请同学们仔细阅读课本P 13页“平行线判定的思考”,你知道在画平行线这一过程中,三角尺所起的作用吗?由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以) 判定方法1(判定公理) 几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD由判定方法1,结合对顶角的性质,我们可以得到: 判定方法2(判定定理)几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD 由判定方法1,结合邻补角的性质,我们可以得到:判定方法3(判定定理) 几何语言表述为:∵ ∠___+∠___=180° ∴ AB ∥CD 练习一:(1题) (2题) (3题)1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____. 若∠1=∠3,则______∥______,根据是_____ ____. 2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___ 3.根据图3完成下列填空(括号内填写定理或公理) (1)∵∠1=∠4(已知)∴ ∥ ( ) (2)∵∠ABC +∠ =180°(已知)∴AB ∥CD ( ) (3)∵∠ =∠ (已知)∴AD ∥BC ( ) (4)∵∠5=∠ (已知)∴AB ∥CD ( ) ( 图3 )83625147E D CB A C123 4 5DA B探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a ∥b ,你能说明是什么道理吗?结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:在同一平面内,垂直于同一直线的两直线平行.如图,几何语言表述为:∵a ⊥2l ,b ⊥2l∴练习二:1.如图所示,AB ⊥BC ,BC ⊥CD ,BF 和CE 是射线,并且∠1=∠2, 试说明BF ∥CE .三、当堂反馈1.如图所示,在下列条件中,不能判断L 1∥L 2的是( ). A .∠1=∠3 B .∠2=∠3 C .∠4+∠5=180° D .∠2+∠4=180° 2.如图所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系?3.如图所示,已知∠OEB =130°,∠FOD =25°,OF 平分∠EOD ,试说明AB ∥CD .四、学习反思本节课你有哪些收获?b 1 2 a 3 c。
【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思
5.2.2 平行线的判定第1课时一、教学目标【知识与技能】1.通过用直尺和三角尺画平行线的方法理解平行线的判定方法1。
2.能用平行线的判定方法1来推理判定方法2和判定方法3。
3.能够根据平行线的判定方法进行简单的推理。
【过程与方法】经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.【情感态度与价值观】经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】探索并掌握直线平行的判定方法.【教学难点】直线平行的判定方法的应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)图1, 图2中的直线平行吗?你是怎么判断的?相交在同一平面内平行同一平面内,不相交的两直线叫做平行线.判定两条直线平行的方法有两种:定义:在同一平面内,不相交的两条直线叫平行线.平行公理的推论(平行线的传递性):如果两条直线平行于同一条直线,那么两条直线平行.同学们想一想:除应用以上两种方法以外,是否还有其它方法呢?(二)探索新知1.出示课件5-7,探究同位角相等两直线平行教师问:我们已经学习过用三角尺和直尺画平行线的方法.如何画平行线呢?学生答:一、放;二、靠;三、推;四、画.教师问:画图过程中,你发现什么角始终保持相等?学生答:同位角始终保持相等.教师问:直线a,b位置关系如何?学生答:直线a,b位置关系是平行.教师问:将其最初和最终的两种特殊位置抽象成几何图形,你能画出来吗?学生答:如下图所示:教师问:由上面的操作过程,你能发现判定两直线平行的方法吗?师生一起解答:同位角相等,两直线平行.总结点拨:(出示课件8)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法1吗?学生答:∵∠1=∠2,∴l1∥l2.教师总结如下:几何语言:∵∠1=∠2 (已知),∴l1∥l2 (同位角相等,两直线平行).考点1:利用同位角相等判定两直线平行下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.(出示课件9)师生共同讨论解答如下:解:∵∠1=∠7(已知),∠1=∠3 (对顶角相等)∴∠7=∠3(等量代换)∴AB∥CD (同位角相等,两直线平行 .)总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.出示课件10,学生自主练习后口答,教师订正.2.出示课件11,探究内错角相等两直线平行教师问:两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角.由同位角相等可以判定两直线平行,那么,能否利用内错角来判定两直线平行呢?学生答:猜想可以利用内错角来判断两直线平行.教师问:如图,由∠3=∠2,可推出a//b吗?如何推出?师生一起解答:解:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2.(等量代换)∴ a//b(同位角相等,两直线平行).总结点拨:(出示课件12)判定方法2:两条直线被第三条直线所截 ,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行).考点2:利用内错角相等判定两直线平行完成下面证明:如图所示,CB平分∠ACD,∠1=∠3. 求证:AB∥CD. (出示课件13)学生独立思考后,师生共同解答.证明:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.出示课件14,学生自主练习后口答,教师订正.3.出示课件15,利用同旁内角互补判定两直线平行教师问:如图,如果∠1+∠2=180°,你能判定a//b吗?学生答:能判定a//b.教师问:请写出解答过程.学生答:证明:∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角的性质),∴∠2=∠3(同角的补角相等) .∴a//b(同位角相等,两直线平行) .总结点拨:(出示课件16)判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).考点3:利用同旁内角互补判定两直线平行如图:直线AB、CD都和AE相交,且∠1+∠A=180º .求证:AB//CD .(出示课件17)学生独立思考后,师生共同解答.证明:∵∠1+∠A=180º(已知),∠1=∠2 (对顶角相等),∴∠2+∠A=180º(等量代换)∴AB∥CD.(同旁内角互补,两直线平行).师生共同归纳:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.出示课件18,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件19-26)练习课件第19-26页题目,约用时20分钟.(四)课堂小结(出示课件27) ),),(五)课前预习预习下节课(5.2.2第2课时)的相关内容.知道判定平行线的方法,会灵活应用平行线的判定方法解决问题.七、课后作业1、教材第14页练习第1,2题.2、七彩课堂第18-19页第5、6、9题.八、板书设计:1.知识梳理平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行2.考点讲解考点1 考点2 考点3教学反思:成功之处:1.本节课从学生所熟悉的知识----平行线的画法入手,引入平行线的判定方法1,在此基础上提出:两条直线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。
七年级数学下册《5.2.2 平行线的判定》教学设计
平行线的判定一、教学内容及分析(一)教学内容:平行线的判定。
(二)教学内容分析:本节课学习的内容是平行线的判定,即同一平面内,依据同位角或内错角相等、同旁内角互补,判定两条直线平行的位置关系。
其核心是同位角相等,两直线平行线的判定。
关键是引导同窗会用平行线的三个判定方式解决相关问题。
由于上节课熟悉了平行线的概念,会借助方格纸、利用直尺、三角板用多种方式画平行线,经历了在操作活动中探讨图形性质的进程,初步把握了平行线的有关性质,并用自己的语言加以描述,初步具有了有层次地试探与表达的能力,在此基础上,进一步探讨两直线平行的条件,要求同窗会进行简单推理。
因此本节课的教学重点是平行线的判定方式,并会应用其进行简单推理。
二、教学目标及解析(一)教学目标1.经历探讨直线平行条件的进程。
2.把握两直线平行的三个判定,并能应用它们进行简单推理,解决相关问题。
(二)教学目标分析:1.经历探讨直线平行条件的进程,是指结合平行线的画法,引出判定方式1,同位角相等,两直线平行,并由此通过简单推理得出方式1和方式2。
2.把握两直线平行的三个判定,是指既能分清楚判定的条件与结论,还要对判定结论的依据初步明白得。
由于后续内容还涉及应用判定证明,因此对两直线平行的判定定位应该是能进行简单推理,并会解决相关问题。
三、问题诊断及分析同窗在应用平行线的判定进行简单推理时可能会碰到困难,具体表此刻用符号语言进行简单推理,不仅要求言必有据,还要用到之前学过的“同角的补角相等”、“对顶角相等”、“邻补角的概念”等相关知识,同窗关于这种新的表达方式可能不适应,或可不能应用之前学过的相关知识,因此可能感觉困难。
要克服这可能碰到的困难,关键是引导同窗去发觉由角与角的数量关系得出两直线的平行关系,从具体例子动身,让同窗会如此分析、试探,不管是由判定方式1通过简单推理得出方式二、3,仍是例题、习题,都要引导同窗自己去完成,不断观看、尝试、反思,形成简单的推理模式,从而克服可能碰到的困难。
人教版数学七年级下册《5-2-2平行线的判定》教学设计
人教版数学七年级下册《5-2-2平行线的判定》教学设计一. 教材分析《5-2-2平行线的判定》是人教版数学七年级下册第五章第二节的内容,主要讲述了同位角相等、内错角相等、同旁内角互补三种情况下两条直线平行的判定方法。
这部分内容是学生学习平行线的重要基础,对于学生理解平面几何的基本概念和性质具有重要意义。
二. 学情分析七年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。
但学生在学习过程中,可能对平行线的判定方法理解不够深入,需要通过实例分析和练习来加强理解。
三. 教学目标1.理解同位角相等、内错角相等、同旁内角互补三种情况下两条直线平行的判定方法。
2.能够运用平行线的判定方法解决实际问题。
3.培养学生的逻辑思维能力和空间想象力。
四. 教学重难点1.教学重点:掌握三种情况下两条直线平行的判定方法。
2.教学难点:理解平行线判定方法的内在联系和应用。
五. 教学方法1.采用问题驱动法,引导学生通过观察、思考、讨论,探索平行线的判定方法。
2.利用多媒体课件和几何画板,直观展示平行线的判定过程,增强学生的空间想象力。
3.设计丰富的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.多媒体课件和几何画板。
2.练习题及相关教学资料。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的平面几何知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用多媒体课件和几何画板,展示平行线的判定过程,引导学生观察、思考,总结出三种情况下两条直线平行的判定方法。
3.操练(10分钟)教师设计一些练习题,让学生分组讨论、解答,巩固所学知识。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生加深对平行线判定方法的理解。
5.拓展(10分钟)教师引导学生思考平行线在实际生活中的应用,让学生举例说明平行线在其他领域的运用。
6.小结(5分钟)教师带领学生总结本节课所学内容,强调平行线判定方法的重要性。
《5.2.2平行线的判定》教案
课题《5.2.2平行线的判定》教案【教案背景】1、教学对象:七年级学生2、学科:七年级数学下册(新人教版)3、课时:第1课时4、学生情况:目前,虽然我校学生的数学水平参差不齐,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行线的性质及用三角板和直尺画平行线的方法,是具备学好这节课的基础的。
本学期学生初步接触推理证明,逐步养成言之有据的习惯。
【教学课题】数学七年级下册(新人教版)5.2.2平行线的判定,课型:新授课,课时第一节【教学内容分析】"平行线的判定"是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。
本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。
一、教学目标1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。
2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。
二、教学重难点教学重点:探索并掌握直线平行的判定方法。
教学难点:直线平行的判定方法的应用。
三、教学方法利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。
在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。
四、教学过程(一)复习旧知,引入新课1.如图,已知四条直线AB、AC、DE、FG,(1)∠1与∠2是直线_____和直线_____被直线_____所截而成的____角。
5.2.2平行线的判定教案
5.2.2平行线的判定教案教案课题:5.2.2平行线的判定教材:人教版数学七年级下册教材内容分析本课是义务教育课程标准实验教科书浙教版《数学》八年级上册《平行线的判定》第一章第二节。
七年级学过的平行线的继续,是后面研究平移以及几何推理等内内的基础,也是空间与图形的重要组成部分。
教学目标知识 1、掌握两直线平行的判定方法2、了解得到两直线平行的判定方法的证明过程3、进一步规范几何推理语言能力灵活运用两直线平行的判定方法证明直线平行情感体会用实验的方法得出几何性质(规律)的重要性和合理性教学重点掌握两直线平行的判定方法教学难点灵活运用两直线平行的判定方法证明直线平行学情分析学生具有一定的辨别能力、作图能力、简单推理能力教学策略首先创设情景激发求知欲望其次引导活动揭示知识产生过程最后归纳总结板书设计平行线的判定1、同位角相等,两直线平行2、内错角相等,两直线平行3、同旁内角互补,两直线平行4、如果两条直线都垂直于同一条直线,那么这两条直线平行5、如果两条直线都与第三条直线平行,那么这两条直线也互相平行教学过程温故知新1.在同一平面内,____的直线叫做平行线。
2.在同一平面内,两条直线的位置关系是_____或______3.经过已知直线外一点,有且只有____条直线与已知直线平行4.如图,用同位角、内错角、同旁内角填空:∠4与∠8是__________,∠3与∠6是__________,∠4与∠6是__________,平行线的画法放靠推画平行线的判定(1)同位角相等,两直线平行的推导两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.推理格式:∵∠1=∠2∴a∥b(2)内错角相等,两直线平行如果∠3=∠6,可推出AB∥CD吗?如何推出?写出你的推理过程?解:∵∠3=∠2又∵∠3=∠6∴∠2=∠6∴AB∥CD简单说成:内错角相等,两直线平行.推理格式:∵∠3=∠6∴AB∥CD(3)同旁内角互补,两直线平行.如果∠4+∠6=180°,可推出AB∥CD吗?如何推出?写出你的推理过程?解:∵∠4+∠2=180°又∵∠4+∠6=180°∴∠2=∠6∴AB∥CD简单说成:同旁内角互补,两直线平行.推理格式:∵∠4+∠6=180°∴AB∥CD随堂练习一、填空1、如果∠B=∠1,那么AD∥BC2、如果∠D=∠1,那么____∥_____3、如果∠BAD+∠ABC=180°,那么____∥_____二、填空1、如果∠2=∠6,那么____∥_____2、如果∠3+∠4+∠5+∠6=180°,那么____∥_____3、如果∠7=________,那么AD∥BC如果∠7=________,那么AB∥CD三、探究:如图,∠5=∠CDA=∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°1、∵∠5=∠CDA,∴______∥_______2、∵∠5=∠ABC,∴______∥_______3、∵∠2=∠3,∴______∥_______4、∵∠1=∠4,∴______∥_______5、∵∠BAD+∠CDA=180°,∴_____∥______6、∵∠5=∠CDA,∵∠5+∠BCD=180°∠CDA+______=180°∴∠BCD=∠6,∴_____∥______例题探究在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?答:这两条直线平行,理由如下:如图:因为b⊥a,c⊥a,所以∠1=∠2=90°从而b∥c综合应用:1、如图,直线AB、CD、EF被直线MN所截,∠1=∠3,∠1+∠2=180°,CD∥EF吗?解:∵∠1=∠3∴AB∥EF∵∠1+∠2=180°∴AB∥CD∴EF∥CD2、∠1=65°∠2=65°,∠3=115°,证明(1)DE∥BC(2)DF∥AB解:∵∠1=∠2=65°∴DE∥BC∵∠4=∠1=65°∴∠4+∠3=180°∴DF∥AB归纳:平行线的判定方法1、同位角相等,两直线平行2、内错角相等,两直线平行3、同旁内角互补,两直线平行4、如果两条直线都垂直于同一条直线,那么这两条直线平行5、如果两条直线都与第三条直线平行,那么这两条直线也互相平行布置作业完成试题卷。
人教版七年级数学下册教案5.2.2平行线的判定
今天我们在课堂上学习了平行线的判定,回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于平行线定义的讲解,我是否让学生们充分理解了“同一平面内”和“永不相交”这两个关键条件?在讲解过程中,我是否通过生动的例子让学生们感受到这两个条件的必要性?我想在今后的教学中,可以尝试让学生们自己举例,加深对平行线定义的理解。
三、教学难点与重点
1.教学重点
-平行线的定义:准确理解平行线的概念,掌握其基本属性。
-平行线的判定方法:掌握同位角相等、内错角相等、同旁内角互补三种判定方法,并能够熟练运用。
-实际应用:能够将判定方法应用于解决实际问题,如判断给定图形中的直线是否平行。
举例解释:
-在讲解平行线的定义时,教师需强调“同一平面内”和“永不相交”两个关键条件,确保学生对平行线概念的理解准确无误。
人教版七年级数学下册教案5.2.2平行线的判定
一、教学内容
本节课选自人教版七年级数学下册第五章5.2.2节,主要教学内容包括:
1.平行线的定义:在同一平面内,两条永不相交的直线叫做平行线。
2.平行线的判定方法:
a)同位角相等,两直线平行;
b)内错角相等,两直线平行;
c)同旁内角互补,两直线平行。
3.举例说明如何运用以上判定方法判断两条直线是否平行。
-对于平行线的判定方法,教师应通过具体例题详细讲解每种方法的适用场景和操作步骤,使学生能够熟练掌握并应用于解题过程中。
2.教学难点
-理解和区分同位角、内错角、同旁内角:学生对这些角度概念的理解往往存在困难,需要通过具体图形和实例进行讲解。
-空间想象能力的培养:在判断平行线时,学生需要具备一定的空间想象能力,这对于部分学生来说可能是个难点。
七级数学下册《5.2.2 平行线的判定》教案 (新版)新人教版
平行线的判定一、教学目标知识目标:熟练掌握平行线的判定方法,并会运用.能力目标:1、通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.2、遇到一个新问题时,能把它转化为已知的(或已解决的)问题.二、重点:平行线的判定方法及运用三、难点:用数学语言表达简单的说理过程四、教学过程:(一)创设情境,引入课题通过让学生观察两组图片,让学生体会到研究图形时,不能仅靠直觉.那么怎样判定两直线平行呢?(设疑)从而引出课题(二)合作交流,探究新知1、以模型演示,引导学生观察,、猜想,从而让学生感知同位角相等两直线平行2、由平行线的画法,让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.练习(1)3、合作交流:若图中,直线AB与CD被直线EF所截,若∠3=∠4,则AB与CD平行吗?若图中,直线AB与CD被直线EF所截,若∠2+∠4=180°,则AB与CD平行吗?由此得到:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.练习(2)总结平行线的判定方法寻找直线平行的同位角相等条件内错角相等同旁内角互补(三)例题讲解课本P36例1、巩固新知,规范学生步骤.2、引出平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线平行(四)实际应用,解决问题木工师傅用直尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?(五)课堂达标(六)方法总结,畅谈收获①平行线的判定方法1:同位角相等,两直线平行②平行线的判定方法2:内错角相等,两直线平行③平行线的判定方法3;同旁内角互补,两直线平行如果两条直线都与第三条直线平行,那么这两条直线平行(七)布置作业课本习题1、2、3小题。
人教版数学七年级下册5.2.2《平行线的判定》教学设计2
人教版数学七年级下册5.2.2《平行线的判定》教学设计2一. 教材分析人教版数学七年级下册5.2.2《平行线的判定》是学生在学习了直线、射线、线段以及相互之间的关系的基础上,进一步研究平行线的性质和判定。
本节课主要让学生掌握平行线的判定方法,培养学生的观察能力、操作能力和推理能力。
教材通过丰富的图片和实例,引发学生的兴趣,引导学生探究平行线的判定方法,从而提高学生的数学素养。
二. 学情分析学生在之前的学习中已经掌握了直线、射线、线段的基本概念,对图形的认识有一定的基础。
但是,对于平行线的判定方法,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对图形的直观判断较为容易,但对于严谨的数学推理可能还有一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,通过适当的引导和启发,帮助学生理解和掌握平行线的判定方法。
三. 教学目标1.知识与技能:使学生掌握平行线的判定方法,能够运用平行线的性质和判定方法解决实际问题。
2.过程与方法:通过观察、操作、推理等方法,培养学生的观察能力、操作能力和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的运用。
四. 教学重难点1.重点:平行线的判定方法。
2.难点:对平行线判定方法的灵活运用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,引发学生的兴趣,引导学生探究平行线的判定方法。
2.启发式教学法:在教学过程中,教师适时提出问题,引导学生思考和探究,激发学生的学习兴趣。
3.合作学习法:学生进行小组讨论和操作,培养学生的合作意识和团队精神。
4.实践操作法:让学生亲自动手操作,加深对平行线判定方法的理解。
六. 教学准备1.教学课件:制作精美的课件,展示平行线的判定方法。
2.教学素材:准备一些图片和实例,用于引导学生探究平行线的判定方法。
3.学生活动材料:准备一些操作材料,让学生进行实践操作。
4.板书设计:设计合理的板书,突出平行线的判定方法。
5.2.2平行线的判定—教学设计
5.2.2平行线的判定一、基本信息二、教学目标(1)知识与技能目标:让学生经历学习的过程探索归纳出平行线判定的方法,并能运用。
(2)过程与方法目标:经历观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理表达能力。
(3)情感态度目标:让学生在合作探究学习的过程中体验成功的喜悦;在感悟数学美的同时激发学习兴趣和信心;发展学生的符号感和有条理推理的能力。
三、学习者分析学生在七年级下册已经认识了平行线,并初步探究了两直线平行的条件,并具备了初步的作图能力,对平行线的理解也比较充分,能较顺利的解决相关简单的实际问题,但对问题的分析还处于简单的说理层面。
同时,在本章的学习中,学生已认识并了解了命题的条件和结论,以及公理、定理等相关概念,已具备学习本节课的知识基础。
但对于命题的证明,不论是问题形式还是解决方法,学生都还非常陌生,更缺乏通过合情推理来判断结论正确与否的能力。
四、教学重难分析及解决措施1、重点:平行线的判定:同位角相等,两直线平行。
2、难点:性质和判定的区分,用数学语言表达简单的说理过程。
3、关键:掌握“三线”与“八角”之间的内在联系教学手段上,一开始借用“平行线的画法”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。
同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性五、教学设计你能说出木工用图中这种叫角尺的工具画平行线的道理吗【活动3】3. 逻辑推理,获得定理;[探究2]已知:如图,∠1=∠2,求证:a 1)我们今天学习了怎样进行平行线的判定 (4)用计算机演示运动变化过程,检验结论;教师提出问题:会不会有某一特定时刻,即使同位角不等两直线也平行呢使学生充分观察,得出结论:当同位角不相等时,两直线不平行;当同位角相等时,两直线就平行. (5)引导学生自己表达出结论,并告诉学生这个结论不需要推理证明:两条直线被第三条直线所截,如果同位角相等,那么就两条直线平行.(6)判定1的简单应用:教师要注意引导学生:如何思考、解决a /b 教师引导学生把此问题分解成如下的小问题 1)目前,解决两条直线平行平行.从“三线八角”这个熟悉的图形入手,借助多媒体课件演示,教师引导、启发学生,在图形的运动变化过程中,感受由一般与特殊之间的关系,进而发现角的数量关系影响着直线的位置关系,为学生验证猜想提供了有利的依据,进而概括出一个基本的事实:同位角相等,两直线平行.设计了一个实际问题,不既让学生感受到生活处处有数学,又能使学生利用已有32ac b 12ba c134B ADCE2)在应用判定方法解决问题时,需要注意什么问题布置作业:(1)1、课本P15页第1、2题2、数学练习册P15-18页的方法有哪些2)如何把“内错角相等”转化成“同位角相等”,进而解决平行问题呢证明:∵∠1=∠2 (已知)∠2=∠3 (对顶角相等)∴∠1=∠3∴ a的知识解决问题,体会到成功的喜悦.学生在教师的引导下,运用转化的思想把新知一步步的转化成旧的问题解决,注重培养这种思想解决推理论证的问题,进而培养学生初步的逻辑推理的能力.规范推理过程,明确步步有依据.体会逻辑推理的必要性和数学的严谨性.m1bac32。
5.2.2 《平行线的判定》教学设计
教学评一体化课时教学设计表(教师个体备课表)为营造轻松愉快的学习氛围,老师准备往墙上挂装饰画,如图所示,老师正在向墙上钉木条,请同学们思考,如果木条b与墙壁的边缘垂直,那么木条a与墙壁的边缘所夹的角为多少度时,才能使木条a与木条b 平行?一、新知建构(板块)问题一:归纳总结平行线的判定方法一活动1:两条不重合的直线的位置关系有哪几种?怎样的两条直线平行?活动2:观察用直尺跟三角尺画平行线的过程,思考:(1)画图过程中,什么角始终保持相等?(2)直线a,b位置关系如何?活动3:归纳平行线的判定方法一问题二:归纳总结平行线的判定方法二、三活动1:内错角相等,证明两直线平行(1分)通过题意抽象出几何图形,写出已知求证并证明(2分)能够运用推理出的结论,结合条件得出新的结论。
(3分)能够得出结论,并说明理由,但书写不够严谨。
(4分)能够准确的得出结论并且理由充分,书写的规范。
(5分)能够准确的运用结论,并帮助没有解决问题的组员理清思路。
活动2:同旁内角互补,证明两直线平行二、迁移运用(板块)在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?为什么?成果集成:(这是课堂小结的策略)判定两条直线平行的方法作业设计:1.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠4=180°,则a∥c 2.如图,给出下列条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;⑤∠B=∠D.其中,一定能判定AB∥CD的条件有 (填写所有正确的序号).3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次向右拐150º,第二次向左拐30ºB.第一次向左拐30º,第二次向右拐30ºC.第一次向右拐130º,第二次向右拐50ºD.第一次向左拐150º,第二次向左拐30º4.如图,直线AB,CD被直线EF所截 .若∠1=120°,∠2=__,则AB//CD.()若∠1=120°,∠3=__,则AB//CD.()5.如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?链接中考1.(2021滨州)如图,在平行四边形ABCD中,BE平分∠ABC交DC于点E.若60∠=︒,则∠DEB的大小为()AA.130°B.125° C.120° D.115°2.(2022滨州)如图,在弯形管道ABCD中,若AB CD∥,拐角122∠=︒,则BCDABC∠的大小为()A.58︒ B.68︒ C.78︒ D.122︒。
5.2.2平行线的判定(一)教学设计
掌握基本事实:两条直线被第三条直线所截,如果同位角相等, 探索并证明平行线的判定定理:两条直线被第三条直线所截,
,那么两直线平行.
教材分析: 图形与几何”部分主要研究的是平面内两个图形的位置和数量关系.在
同一个平面内,两条直线的位置关系有相交和平行两种,平行线的判定是判定两条
是同位角,就可以得到
直线平行,体会一般到
特殊的思想,培养学生
的发散思维.
3简单推理,得出判定方法
问ห้องสมุดไป่ตู้4:两条直线被第三条直
师生共同
线所截,除了同位角还得到了内错
角和同旁内角.
思考:由同位角相等,可以判
定两条直线平行,那么能否利用内
错角来判定两条直线平行呢?如
果/2=/3,能得出aIIb吗?
追问1:你能用文字语言表达
直线平行的依据,是今后研究其它判定方法的基础.
图形的判定”讨论的是确定某种图形需要什么条件, 它和 图形的性质”是几何中 研究的两个重要方面,平行线的判定是学生对图形的判定的第一次系统的研究,对
今后其它图形的判定研究有一定的示范的作用.
对于平面内两条直线平行的位置关系,教科书首先引人一个基本事实(平行 公理),即过直线外一点有且只有一条直线与已知直线平行,以此为出发点探讨平 行线的判定和平行线的性质.对于平行线的判定,教科书首先结合推三角尺做平行 线的方法给出 同位角相等,两直线平行”,教学上为了降低难度, 把这个方法作为 扩大的公理给出,并由此推理得出内错角相等,两直线平行 ”和 同旁内角互补,
个图形用文字语言归纳出平行线
的判定方法吗?
追问:你能结合图形语言把以
上文字语言用符号表示吗?
人教版数学七年级下册5.2.2《平行线的判定》教学设计4
人教版数学七年级下册5.2.2《平行线的判定》教学设计4一. 教材分析《人教版数学七年级下册5.2.2》这一节主要让学生掌握平行线的判定方法。
通过学习,学生能够理解平行线的概念,并能够运用判定方法判断两条直线是否平行。
本节课的内容是初中的基础知识点,对于学生来说比较抽象,需要通过实例和练习来理解和掌握。
二. 学情分析七年级的学生已经学习了直线、射线、线段等基本概念,对于图形的认知有一定的基础。
但是,对于平行线的判定,学生可能刚开始接触,理解起来可能会有困难。
因此,在教学过程中,需要通过实例和练习来帮助学生理解和掌握。
三. 教学目标1.知识与技能:使学生掌握平行线的判定方法,能够运用判定方法判断两条直线是否平行。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:平行线的判定方法。
2.难点:如何判断两条直线是否平行。
五. 教学方法1.情境教学法:通过生活实例和图形模型,引导学生直观地理解平行线的概念和判定方法。
2.启发式教学法:通过提问和讨论,激发学生的思维,引导学生主动探索和发现。
3.互动式教学法:引导学生参与课堂活动,培养学生的团队协作能力和自主学习能力。
六. 教学准备1.准备相关的图形模型和实例,以便在课堂上进行展示和讲解。
2.准备练习题,以便在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过生活实例引入平行线的概念,让学生直观地理解平行线的含义。
2.呈现(10分钟)展示相关的图形模型和实例,引导学生观察和思考,引导学生发现平行线的判定方法。
3.操练(10分钟)让学生分组进行讨论和操作,运用判定方法判断给出的直线是否平行。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成练习题,巩固对平行线判定的理解和掌握。
教师选取部分学生的作业进行点评和讲解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2.2平行线的判定
一、基本信息
二、教学目标
(1)知识与技能目标:让学生经历学习的过程探索归纳出平行线判定的方法,并能运用。
(2)过程与方法目标:经历观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理表达能力。
(3)情感态度目标:让学生在合作探究学习的过程中体验成功的喜悦;在感悟数学美的同时激发学习兴趣和信心;发展学生的符号感和有条理推理的能力。
三、学习者分析
学生在七年级下册已经认识了平行线,并初步探究了两直线平行的条件,并具备了初步的作图能力,对平行线的理解也比较充分,能较顺利的解决相关简单的实际问题,但对问题的分析还处于简单的说理层面。
同时,在本章的学习中,学生已认识并了解了命题的条件和结论,以及公理、定理等相关概念,已具备学习本节课的知识基础。
但对于命题的证明,不论是问题形式还是解决方法,学生都还非常陌生,更缺乏通过合情推理来判断结论正确与否的能力。
四、教学重难分析及解决措施
1、重点:平行线的判定:同位角相等,两直线平行。
2、难点:性质和判定的区分,用数学语言表达简单的说理过程。
3、关键:掌握“三线”与“八角”之间的内在联系
教学手段上,一开始借用“平行线的画法”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。
同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性
五、教学设计
∵,
∴(垂直的定∴。