5-1平面向量的概念
高考数学一轮总复习10年高考真题分类题组5-1平面向量的概念及线性运算平面向量基本定理及坐标表示
5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则( ) A.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ C.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 答案 ABB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .故选A.2.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗B.12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ C.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 A 设BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,则BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-12b+a,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-12a+b,从而BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-12B +B )+(-12B +B )=12(a+b)=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,故选A.3.(2015课标Ⅱ理,13,5分)设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 答案 12解析 由于a,b 不平行,所以可以以a,b 作为一组基底,于是λa+b 与a+2b 平行等价于B 1=12,即λ=12.4.(2015北京理,13,5分)在△ABC 中,点M,N 满足BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .若BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x= ,y= .答案 12;-16解析 由BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),所以BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-23·BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -16BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 又因为BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以x=12,y=-16.5.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λ1BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 .答案 12解析 BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-16BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , ∵BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λ1BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12.6.(2013北京理,13,5分)向量a,b,c 在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则BB= .答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的坐标系,令每个小正方形的边长为1个单位,则A(1,-1),B(6,2),C(5,-1),所以a=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1),b=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(6,2),c=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-3).由c=λa+μb 可得{-1=-B +6B ,-3=B +2B ,解得{B =-2,B =-12,所以BB =4.评析 本题主要考查平面向量的基本定理和坐标运算,考查学生的运算求解能力和在向量中解析法的应用,构建关于λ和μ的方程组是求解本题的关键. 考点二 平面向量基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3),则向量BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)答案 A 根据题意得BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(3,1),∴BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a=(2,4)知2a=(4,8),所以2a-b=(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b-a=(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{B 2=3,2B 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{-B 1+5B 2=3,2B 1-2B 2=2,解之得{B 1=2,B 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2019课标Ⅲ文,13,5分)已知向量a=(2,2),b=(-8,6),则cos<a,b>= . 答案 -√210解析 本题考查平面向量夹角的计算,通过向量的坐标运算考查学生的运算求解能力,体现运算法则与运算方法的素养要素. 由题意知cos<a,b>=B ·B|B |·|B |=√22+22×√(-8)2+62=-√210.6.(2019北京文,9,5分)已知向量a=(-4,3),b=(6,m),且a⊥b,则m= . 答案 8解析 本题考查两向量垂直的充要条件和向量的坐标运算,考查了方程的思想方法. ∵a⊥b,∴a·b=(-4,3)·(6,m)=-24+3m=0, ∴m=8.易错警示容易把两向量平行与垂直的条件混淆.7.(2017山东文,11,5分)已知向量a=(2,6),b=(-1,λ).若a∥b,则λ=. 答案-3解析本题考查向量平行的条件.∵a=(2,6),b=(-1,λ),a∥b,∴2λ-6×(-1)=0,∴λ=-3.8.(2016课标Ⅱ文,13,5分)已知向量a=(m,4),b=(3,-2),且a∥b,则m= . 答案-6解析因为a∥b,所以B3=4-2,解得m=-6.易错警示容易把两个向量平行与垂直的条件混淆.评析本题考查了两个向量平行的充要条件.9.(2014陕西,13,5分)设0<θ<π2,向量a=(sin2θ,cosθ),b=(cosθ,1),若a∥b,则tanθ=.答案12解析∵a∥b,∴sin2θ×1-cos2θ=0,∴2sinθcosθ-cos2θ=0,∵0<θ<π2,∴cosθ>0,∴2sinθ=cosθ,∴tanθ=12.。
2020年高一下学期第1讲:平面向量的基本概念与线性运算(含解析)
4若两个向量相等,则它们的起点和终点分另重合;
5若a//b,b//c,则a//C.
A.0个B.1个C.2个D.3个
2.下列命题中,正确的是()
a.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点总是一平行四边形的四个顶点
十、十muruur r
和0A交于E,设AB占,AO b
(1)用向量a与b表示向量Oc,CD;
…uuumu,亠
(2)若OE OA,求实数的值.
26.如图,已知ABC的面积为14,D、E分别为边AB、BC上的点,且AD:DB BE:EC2:1,AE
(1)求及;
rr uuu
(2)用aLeabharlann b表示BP;(3)求PAC的面积.
动点
uuu
P满足OP
uur
OA
uuur
/AB
(uuu
|AB|
uuur
AC、
-uuu^),
|AC|
[0,),则P的轨迹一定通过
ABC的()
A.外心
B.内心
C.重心
D.垂心
1 2.如图,四边形ABCD是正方形,
延长CD至E,
使得
DE CD.若动点P从点A出发,沿正方形
A点,其中
UUU
AP
UUL
AB
AE,下列判断正确的是()
3
|CB|,
若
AB BC,贝U(
)
2
2
5
5
A .-
B .-
C.
D.
3
3
3
3
5.已知|a11,
rrr
§5-1 平面向量的基本概念
2
.
0
•
x
P ( x1 , y1 )
[举例说明 举例说明] 举例说明
如已知A(2,),B(3,),则 : 6 8 AB =
(3 − 2) + (8 − 6)
2
2
= 5 ; BA =
(2 − 3) + (6 − 8)
2
2
= 5.
[向量的模的计算] 向量的模的计算]
例2:已知平面直角坐标系中,点M(-1,7), 已知平面直角坐标系中, MN 点N(5,-10)求: MN. 10) 解:由两点间的距离公式得: 由两点间的距离公式得:
3、向量的平行与相等 两个向量的方向相同或相反叫做两个向量平行; 两个向量的方向相同或相反叫做两个向量平行; 两个向量的方向相同且模相等叫做两个向量相等. 两个向量的方向相同且模相等叫做两个向量相等. 4、把与 AB 的模相等且方向相反的向量叫做 AB 的 、 负向量:记作- 负向量:记作-BA. ∴AB=-BA . - 5、长度为 0 的向量叫做零向量:零向量方向不确定 、 的向量叫做零向量:零向量方向不确定. 叫做零向量 6、向量的模的计算:即,平面直角坐标系中两点间 向量的模的计算: 的距离公式. 的距离公式.
. P(1,3)
A(0,1)
0
x
(2)∵向量长度就是向量的模, ) 向量长度就是向量的模 的长度就是|AP|,即: ∴AP的长度就是 的长度就是 , |AP|= (1 − 0) 2 + (3 − 1) 2 = 5 ;|0P| = 12 + 32 = 10 .
uuu r PQ 例5: 是以二次函数y = 2 x 2 + 1图象上的顶点P为 uuu r 始点、Q为终点的向量,且 PQ = 2,求Q的坐标。
(完整版)平面向量全部讲义
第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
核按钮(新课标)高考数学一轮复习第五章平面向量与复数
§5.1 平面向量的概念及线性运算1.向量的有关概念(1)向量:既有____________又有____________的量叫做向量,向量的大小,也就是向量的_________(或称模).AB →的模记作____________.(2)零向量:____________的向量叫做零向量,其方向是________的. (3)单位向量:长度等于______________的向量叫做单位向量.a||a 是一个与a 同向的____________.-a|a |是一个与a ________的单位向量.(4)平行向量:方向________或________的________向量叫做平行向量.平行向量又叫________,任一组平行向量都可以移到同一直线上.规定:0与任一向量____________.(5)相等向量:长度____________且方向____________的向量叫做相等向量. (6)相反向量:长度__________且方向__________的向量叫做相反向量. (7)向量的表示方法:用________表示;用____________表示;用________表示. 2.向量的加法和减法 (1)向量的加法①三角形法则:以第一个向量a 的终点A 为起点作第二个向量b ,则以第一个向量a 的起点O 为________以第二个向量b 的终点B 为________的向量OB →就是a 与b 的________(如图1).推广:A 1A 2→+A 2A 3→+…+A n-1A n →=____________.图1图2②平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作▱ABCD ,则以A为起点的__________就是a 与b 的和(如图2).在图2中,BC →=AD →=b ,因此平行四边形法则是三角形法则的另一种形式.③加法的运算性质:a +b =____________(交换律);(a +b )+c =____________(结合律);a +0=____________=a .(2)向量的减法已知向量a ,b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=____________,即a -b 表示从向量b 的终点指向向量a (被减向量)的终点的向量(如图).3.向量的数乘及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作____________,它的长度与方向规定如下:①||λa =____________;②当λ>0时,λa 与a 的方向____________; 当λ<0时,λa 与a 的方向____________; 当λ=0时,λa =____________. (2)运算律:设λ,μ∈R ,则: ①λ(μa )=____________; ②(λ+μ)a =____________; ③λ(a +b )=____________. 4.两个向量共线定理向量a (a ≠0)与b 共线的充要条件是有且只有一个实数λ,使得____________.自查自纠1.(1)大小 方向 长度 ||AB →(2)长度为0 任意(3)1个单位长度 单位向量 方向相反 (4)相同 相反 非零 共线向量 平行 (5)相等 相同 (6)相等 相反 (7)字母 有向线段 坐标2.(1)①起点 终点 和 A 1A n → ②对角线AC →③b +a a +(b +c ) 0+a (2)a -b 3.(1)λa ①|λ||a | ②相同 相反 0 (2)①μ(λa ) ②λa +μa ③λa +λb 4.b =λa设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则当a 为零向量时,a 的方向任意;当a 不为零向量时,a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.故选D .设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解:AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB →+43AC →.故选A .(2015·东北三省联考)在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形解:依题意得AC →=AB →+BC →=AB →+AD →,则BC →=AD →,因此BC ∥AD 且BC =AD ,故四边形ABCD 一定是平行四边形.故选D .(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x=________,y =________.解:在△ABC 中,MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →,所以x =12,y =-16.故填12;-16. (2015·全国)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,∴存在唯一的实数μ∈R ,使得λa +b=μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.∵a ,b 不平行,∴⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.类型一 向量的基本概念给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________.解:①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又∵A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB →∥DC →且|AB →|=|DC →|,可得AB →=DC →.故“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件.③正确.∵a =b ,∴a ,b 的长度相等且方向相同;又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.由a =b 可得|a |=|b |且a ∥b ;由|a |=|b |且a ∥b 可得a =b 或a =-b ,故“|a |=|b |且a ∥b ”不是“a =b ”的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.故填②③.【点拨】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A ,B ,C ,D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c ;⑤两个向量不能比较大小,但它们的模能比较大小.解:①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是任意的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行; ④不正确,如果b 为零向量,则a 与c 不一定平行;⑤正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.故填⑤.类型二 向量的线性运算(1)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 上靠近点B 的一个三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12AD → D.12AB →-23AD →解:在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →,因为点F 为BC 的一个三等分点,所以CF →=23CB →,所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →.故选D .(2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 解:∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c .故选A .【点拨】(1)解题的关键在于搞清构成三角形的三个向量间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧是:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(1)(2015·福建模拟)在△ABC 中,AD →=2DC →,BA →=a ,BD →=b ,BC →=c ,则下列等式成立的是( )A .c =2b -aB .c =2a -bC .c =3a 2-b2D .c =3b 2-a2解:因为在△ABC 中,BC →=BD →+DC →=BD →+12AD →=BD →+12(BD →-BA →)=32BD →-12BA →,所以c =32b-12a .故选D .(2)(2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.BC →D.12BC →解:EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →.故选A .类型三 向量共线的充要条件及其应用已知A ,B ,C 是平面内三个不相同的点,O 是平面内任意一点,求证:向量OA →,OB →,OC →的终点A ,B ,C 共线的充要条件是存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.证明:(1)先证必要性. 若OA →,OB →,OC →的终点A ,B ,C 共线,则AB →∥BC →,∴存在实数m 使得BC →=mAB →,即OC →-OB →=m (OB →-OA →), ∴OC →=-mOA →+(1+m )OB →.令λ=-m ,μ=1+m ,则λ+μ=-m +1+m =1,即存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1. (2)再证充分性. 若OC →=λOA →+μOB →,且λ+μ=1, 则OC →=λOA →+(1-λ)OB →, ∴OC →-OB →=λ(OA →-OB →),即BC →=λBA →, ∴BC →∥BA →,又BC 与BA 有公共点B , ∴A ,B ,C 三点共线.综合(1)(2)可知,原命题成立.【点拨】证明三点A ,B ,C 共线,借助向量,只需证明由这三点A ,B ,C 所组成的向量中有两个向量共线,即证明存在一个实数λ,使AB →=λBC →.但证明两条直线AB ∥CD ,除了证明存在一个实数λ,使AB →=λCD →外,还要说明两直线不重合.注意:本例的结论可作定理使用.(1)已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解:BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →,∴A ,B ,D 三点共线.故选A .(2)设两个非零向量a 与b 不共线,若k a +b 和a +k b 共线,则实数k =________. 解:∵k a +b 和a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.故填±1.(3)(2015·南京模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.解法一:∵G 是△OAB 的重心,∴OG →=13(OA →+OB →)=13m OP →+13nOQ →.由P ,G ,Q 三点共线可得,13m +13n =1,故1m +1n=3.解法二:设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,且λ≠0,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ得1n +1m =3.故填3.1.准确理解向量的概念,请特别注意以下几点: (1)a ∥b ,有a 与b 方向相同或相反两种情形;(2)向量的模与数的绝对值有所不同,如|a |=|b | a =±b ; (3)零向量的方向是任意的,并不是没有,零向量与任意向量平行; (4)对于任意非零向量a ,a||a 是与a 同向的单位向量,这也是求单位向量的方法; (5)向量平行,其所在直线不一定平行,两向量还可能在一条直线上;(6)只要不改变向量a 的大小和方向,可以自由平移a ,平移后的向量与a 相等,所以线段共线与向量共线是有区别的,当两向量共线且有公共点时,才能得出线段共线,向量的共线与向量的平行是一致的.2.向量具有大小和方向两个要素,既能像实数一样进行某些运算,又有直观的几何意义,是数与形的完美结合.向量是一个几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析、判断,这是研究平面向量最重要的方法与技巧.3.向量加法的三角形法则可简记为“首尾相接,指向终点”;减法法则可简记为“起点重合,指向被减向量”;加法的平行四边形法则可简记 “起点重合,指向对角顶点”.4.平面向量的三种线性运算的结果仍为向量,在三种线性运算中,加法是最基本、最重要的运算,减法运算与数乘运算都以加法运算为基础,都可以归结为加法运算.5.对于两个向量共线定理(a (a ≠0)与b 共线⇔存在唯一实数λ使得b =λa )中条件“a ≠0”的理解:(1)当a =0时,a 与任一向量b 都是共线的;(2)当a =0且b ≠0时,b =λa 是不成立的,但a 与b 共线.因此,为了更具一般性,且使充分性和必要性都成立,我们要求a ≠0.换句话说,如果不加条件“a ≠0”,“a 与b 共线”是“存在唯一实数λ使得b =λa ”的必要不充分条件.1.设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |解:由题意a |a |=b|b |表示与向量a 和向量b 同向的单位向量相等,故a 与b 同向共线.故选C .2.已知两个非零向量a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是( )A .-2B .-1C .1D .2解:∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD→共线.设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ且p =-λ,∴λ=1,p =-1.故选B .3.已知O ,A ,M ,B 为平面上四点,且OM →=λOB →+(1-λ)OA →,实数λ∈(1,2),则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上D .O ,A ,M ,B 四点一定共线解:由题意得OM →-OA →=λ(OB →-OA →),即AM →=λAB →.又λ∈(1,2),∴点B 在线段AM 上.故选B .4.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a, AC →=b ,则AD →=( )A .a -12bB.12a -b C .a +12bD.12a +b 解:连接OD ,CD ,显然∠BOD =∠CAO =60°,则AC ∥OD ,且AC =OD ,即四边形CAOD为菱形,故AD →=AO →+AC →=12a +b ,故选D .5.已知平面内一点P 及△ABC ,若PA →+PB →+PC →=AB →,则点P 与△ABC 的位置关系是( )A .点P 在线段AB 上B .点P 在线段BC 上 C .点P 在线段AC 上D .点P 在△ABC 外部解:由PA →+PB →+PC →=AB →得PA →+PC →=AB →-PB →=AP →,即PC →=AP →-PA →=2AP →,所以点P 在线段AC 上.故选C .6.在平行四边形ABCD 中,点E 是AD 的中点,BE 与AC 相交于点F ,若EF →=mAB →+nAD →(m ,n ∈R ),则mn的值为( )A .-2B .-12C .2 D.12解:设AB →=a ,AD →=b ,则EF →=m a +n b ,BE →=AE →-AB →=12b -a ,由向量EF →与BE →共线可知存在非零实数λ,使得EF →=λBE →,即m a +n b =12λb -λa ,又a 与b 不共线,则⎩⎪⎨⎪⎧m =-λ,n =12λ, 消去λ得m n=-2.故选A .7.如图,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=______.解:由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →.又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC →.又AM →=λAB →+μAC →,所以λ+μ=12x +12(1-x )=12.故填12. 8.直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足OP →=OA →+12(AB →+AC →),则|AP →|=________.解:如图,取BC 边中点D ,连接AD ,则12(AB →+AC →)=AD →,OP →=OA →+12(AB →+AC →)⇒OP →=OA →+AD →⇒OP →-OA →=AD →⇒AP →=AD →,因此|AP →|=|AD →|=1,故填1.9.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:BC →=BA →+AD →+DC →=-a +b +12a =b -12a .MN →=MD →+DA →+AN →=-14a +(-b )+12a =14a -b .10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A ,C ,D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A ,C ,D 三点共线,求k 的值.解:(1)证明:∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2=-12(-8e 1-2e 2)=-12CD →,∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A ,C ,D 三点共线. (2)AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2, ∵A ,C ,D 三点共线, ∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →, 即3e 1-2e 2=λ(2e 1-k e 2), 得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.故k 的值为43.11.如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.解:∵A ,M ,D 三点共线, ∴OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①∵C ,M ,B 三点共线,∴OM →=λ2OB →+(1-λ2)OC →=λ2b +1-λ24a ,②由①②可得⎩⎪⎨⎪⎧12λ1=λ2,1-λ1=1-λ24, 解得⎩⎪⎨⎪⎧λ1=67,λ2=37.故OM →=17a +37b .设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解:若C ,D 调和分割点A ,B ,则AC →=λAB →(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于选项A ,若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于选项C ,若C ,D 同时在线段AB 上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C 选项错误;对于选项D ,若C ,D 同时在线段AB 的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C ,D 不可能同时在线段AB 的延长线上,D 选项正确.故选D .。
2023版高考数学一轮总复习5-1平面向量的概念及线性运算平面向量基本定理及坐标表示习题
5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示基础篇固本夯基考点一平面向量的概念及线性运算1.(2017课标Ⅱ,4,5分)设非零向量a,b满足|a+b|=|a-b|,则( )A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|答案 A2.(2022届江西重点中学联考二,5)设e1,e2是两个不共线的平面向量,若a=3e1-2e2,b=e1+ke2,且a与b共线,则实数k的值为( )A.-12B.12C.-23D.23答案 C3.(2018课标Ⅰ,6,5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗C.34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 A4.(2021宁夏吴忠4月模拟,5)如图所示,平行四边形ABCD的对角线相交于点O,E为AO的中点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ,μ∈R),则λ+μ等于( )A.1B.-1C.12D.-12答案 D5.(2021陕西延安重点中学模拟,6)设M是△ABC所在平面上的一点,且EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +32EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +32EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,D是AC的中点,则|EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的值为( )A.13B.12C.1D.2答案 A6.(2020吉林梅河口五中4月模拟,5)在△ABC中,延长BC至点M使得BC=2CM,连接AM,点N为AM上一点且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ+μ=()A.13B.12C.-12D.-13答案 A7.(2022届山西吕梁11月月考,9)如图,△ABC中,点M是BC的中点,点N满足EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AM 与CN交于点D,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ=()A.23B.34C.45D.56答案 C8.(2022届安徽淮南一中月考,9)已知点M是△ABC所在平面内一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则△ABM与△BC M的面积之比为( )A.83B.52C.2D.43答案 C9.(2022届黑龙江八校期中,13)如图,在△ABC中,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,D是BE上的点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则实数x的值为.答案19考点二平面向量基本定理及坐标运算1.(2022届哈尔滨三中期中,3)已知对任意的平面向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(a,b),把EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ 绕其起点A沿逆时针方向旋转角φ得到向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(acosφ-bsinφ,asinφ+bcosφ),叫做把点B绕点A沿逆时针方向旋转角φ得到点P.已知A(1,2),B(1-√2,2+2√2),把点B绕点A沿逆时针方向旋转π4得到点P,则点P的坐标为( )A.(-3,1)B.(-2,1)C.(2,3)D.(-2,3)答案 D2.(2021云南统一检测一,7)已知向量a=(32,1),b=(-12,4),则( )A.a∥(a-b)B.a⊥(a-b)C.(a-b)∥(a+b)D.(a-b)⊥(a+b)答案 B3.(2020陕西咸阳一模,3)在平面直角坐标系中,O为坐标原点,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,12),若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ 绕点O逆时针旋转60°得到向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( ) A.(0,1) B.(1,0)C.(√32,-12) D.(12,-√32)答案 A4.(2022届江苏南通如皋调研,7)如图,已知OA=2,OB=2,OC=1,∠AOB=60°,∠BOC=90°,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE=( )A.√3B.12C.√33D.23答案 C5.(2022届四川绵阳中学模拟二,5)设向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-2),EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(a,-1),EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则1E +2E的最小值为( )A.4B.6C.8D.9答案 C6.(2021全国甲,14,5分)已知向量a=(3,1),b=(1,0),c=a+kb.若a⊥c,则k= .答案-1037.(2018课标Ⅲ,13,5分)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.答案128.(2019上海,9,5分)过曲线y2=4x的焦点F并垂直于x轴的直线分别与曲线y2=4x交于A、B,A在B上方,M为抛物线上一点,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(λ-2)EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ=.答案 39.(2022届云南五华模拟,15)如图,在矩形ABCD中,AB=4,AD=3,以CD为直径的半圆上有一点P,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ+μ的最大值为.答案73综合篇知能转换考法一平面向量线性运算的解题策略1.(2021广西百色重点中学4月模拟,5)已知点P为△ABC所在平面内一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,点Q是线段BP的中点,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗C.16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 D2.(20215·3原创题)△ABC中,点M为AC上的点,且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则1 E -1E的值为( )A.0B.-32C.1D.-1答案 B3.(2022届福州福清西山学校10月月考,8)我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.54a+35bB.35a+45bC.1225a+925bD.1625a+1225b 答案 D4.(2022届河南段考三)已知△ABC 的三个内角分别为A,B,C,动点P 满足EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ·(EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |sin E +EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗|EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |sin E),λ∈(0,+∞),则动点P 的轨迹一定经过△ABC 的( )A.重心B.垂心C.内心D.外心 答案 A5.(2021赣中南五校联考二,15)已知△ABC 的重心为G,过G 点的直线与边AB 和AC 的交点分别为M 和N,若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,且△AMN 与△ABC 的面积的比值为2554,则实数λ= .答案 5或546.(2017江苏,12,5分)如图,在同一个平面内,向量EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的模分别为1,1,√2,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 与EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 与EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角为45°.若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =m EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +n EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (m,n∈R),则m+n= .答案 3考法二 向量共线问题的求解方法1.(2021山西孝义二模,6)已知EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,cosα),EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,0),EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2sinα),若A,B,D 三点共线,则tanα=( )A.-2B.-12C.12D.2答案 A2.(2021太原一模,6)已知梯形ABCD 中,AB∥DC,且AB=2DC,点P 在线段BC 上,若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =56EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λEE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则实数λ=( )A.34 B.23 C.13 D.12 答案 C3.(2021江西上饶2月联考,10)在三角形ABC中,E、F分别为AC、AB上的点,BE与CF交于点Q,且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,延长AQ交BC于点D,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ的值为( ) A.3 B.4 C.5 D.6答案 C4.(2022届河南平顶山月考,10)已知点O为正△ABC所在平面上一点,且满足EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(1+λ)EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,若△OAC的面积与△OAB的面积比为1∶4,则λ的值为( )A.12B.13C.2D.3答案 B5.(2022届拉萨中学月考,15)在△ABC中,点D满足BD=34BC,E点在线段AD上移动,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则t=(λ-1)2+μ2的最小值是.答案9106.(2020吉林桦甸四中等4月联考,15)在△ABC中,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,P为线段AM上任意一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x2+2x+y2的最小值为.答案916应用篇知行合一应用向量在物理中的应用1.(2021山西长治二中月考,3探索创新情境)已知两个大小相等的共点力F1,F2,当它们的夹角为90°时,合力大小为20N,当它们的夹角为120°时,合力大小为( )A.40NB.10√2NC.20√2ND.40√2N答案 B2.(2021咸阳模拟,9生活实践情境)渭河某处南北两岸平行,如图所示.某艘游船从南岸码头A出发向北航行到北岸.假设游船在静水中航行速度大小为|v1|=10km/h,水流速度的大小为|v2|=6km/h.设速度v1与速度v2的夹角为120°,北岸的点A'在码头A的正北方向,那么该游船航行到达北岸的位置应( )A.在A'东侧B.在A'西侧C.恰好与A'重合D.无法确定答案 A。
核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算课件理
解:①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵A→B=D→C,∴|A→B|=|D→C|且A→B∥D→C,又∵A,B,C,D 是不共线的四点,∴四边形 ABCD 为平行四边形;反之,若四边形 ABCD 为平行四边形,则A→B∥D→C且|A→B|=|D→C|,可得A→B=D→C.故“A→B= D→C”是“四边形 ABCD 为平行四边形”的充要条件. ③正确.∵a=b,∴a,b 的长度相等且方向相同;又 b=c,∴b, c 的长度相等且方向相同,∴a,c 的长度相等且方向相同,故 a=c. ④不正确.由 a=b 可得|a|=|b|且 a∥b;由|a|=|b|且 a∥b 可得 a =b 或 a=-b,故“|a|=|b|且 a∥b”不是“a=b”的充要条件,而是 必要不充分条件. 综上所述,正确命题的序号是②③.故填②③.
第十七页,共33页。
下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段; ②向量 a 与向量 b 平行,则 a 与 b 的方向相同或相反; ③向量A→B与向量C→D共线,则 A,B,C,D 四点共线; ④如果 a∥b,b∥c,那么 a∥c; ⑤两个向量不能比较大小,但它们的模能比较大小.
第五页,共33页。
2.向量的加法和减法
(1)向量的加法
①三角形法则:以第一个向量 a 的终点 A 为起点作第二个向量 b,
则以第一个向量 a 的起点 O 为________以第二个向量 b 的终点 B 为 ________的向量O→B就是 a 与 b 的________(如图 1).
推广:A→1A2+A→2A3+…+An→-1An=____________.
第二十二页,共33页。
(1)( 2015·福建模拟 ) 在 △ABC
第一节 平面向量的概念讲义--高三数学一轮复习备考
平面向量与复数第一节平面向量的概念一、课程标准1.向量概念(1)通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义;(2)理解平面向量的几何表示和基本要素.2.向量运算(1)借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义;(2)通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义.理解两个平面向量共线的含义;(3)了解平面向量的线性运算性质及其几何意义;(4)通过物理中功等实例,理解平面向量数量积的概念及物理意义,会计算平面向量的数量积;(5)通过几何直观了解平面向量投影的概念及投影向量的意义.新高考命题方向:主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量基本定理,有时也会有创新的新定义问题;题型以选择题、填空题为主,属于中低档题目,偶尔会在解答题中作为工具出现.考查理性思维、数学探究、数学抽象学科素养.二、知识梳理知识点一向量的有关概念名称定义备注向量既有又有的量;向量的大小叫做向量的(或称)平面向量是自由向量零向量长度为的向量记作,其方向是任意的单位向量长度等于长度的向量非零向量a的单位向量为±a|a|平行向量方向或的非零向量(又叫做共线向量)0与任意向量或共线相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量0的相反向量为01.对于平行向量易忽视两点:(1)零向量与任意向量平行;(2)表示两平行向量的有向线段所在的直线平行或重合,易忽视重合这一情况.2.单位向量的定义中只规定了长度,没有方向限制. 知识点二 向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算法则法则(1)交换律:a +b = (2)结合律:(a +b )+c =减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |= ;当λ>0时,λa 的方向与a 的方向 ;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =λ(μa )=(λμ)a ;(λ+μ)a = ;λ(a +b )=知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得 . 知识点四 平面向量的数量积 1.向量的夹角 定义图示范围共线与垂直已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是θ=0或θ=π⇔ ,⇔a ⊥b• 温馨提醒 •对于两个非零向量a 与b ,由于当θ=0°时,a ·b >0,所以a ·b >0是两个向量a ,b 夹角为锐角的必要不充分条件;a ·b =0也不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b .2.平面向量的数量积 (1)投影向量①如图,设a ,b 是两个非零向量,AB → =a ,CD →=b ,分别过A ,B 作CD 的垂线,垂足分别为A 1,B 1,得到,我们称上述变换为向量a 向向量b 投影,叫做向量a 在向量b 上的投影向量.如图,在平面内任取一点O 作OM → =a ,ON →=b ,过M 作ON 的垂线,垂足为M 1,则就是向量a 在向量b 上的投影向量,设与b 方向相同的单位向量为e ,〈a ,b 〉为θ,则=(|a |cos θ)e .两个向量数量积的几何意义:a ·b 等于a 在b 上的投影数量与b 的模的乘积. (2)向量数量积的运算律①a ·b = ;②(λa )·b =λ(a ·b )= ;③(a +b )·c = .• 温馨提醒 •1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3.在用|a |=a 2 求向量的模时,一定要先求出a 2再进行开方.三、基础自测1.若m ∥n ,n ∥k ,则向量m 与向量k ( )A .共线B .不共线C .共线且同向D .不一定共线 2.已知a·b =-122 ,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33 D .33.(易错题)已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3 C .2 D .05.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA → =a ,OB → =b ,则DC → =________,BC →=________(用a ,b 表示).四、核心题型题型一 平面向量的有关概念及线性运算例1(1) (多选)已知a ,b 是两个单位向量,下列命题中正确的是( )A .|a |=|b |=1B .a ·b =1C .当a ,b 反向时,a +b =0D .当a ,b同向时,a =b(2)设a ,b 都是非零向量,下列四个条件中,一定能使a |a | +b|b |=0成立的是( )A .a =2bB .a ∥bC .a =-13b D .a ⊥b(3)在△ABC 中,D 为AB 的中点,点E 满足EB → =4EC → ,则ED →=( )A .56 AB → -43 AC → B .43 AB → -56 AC → C .56 AB → +43 AC →D .43AB → +56AC →题型二 平面向量共线定理的应用例2(1)已知两个非零向量a ,b 互相垂直,若向量m =4a +5b 与n =2a +λb 共线,则实数λ的值为( )A .5B .3C .52 D .2(2)设a ,b 是不共线的两个向量,已知BA → =a +2b ,BC → =4a -4b ,CD →=-a +2b ,则( )A .A ,B ,D 三点共线 B .B ,C ,D 三点共线 C .A ,B ,C 三点共线 D .A ,C ,D 三点共线(3)已知O 为△ABC 内一点,且AO → =12 (OB → +OC → ),AD → =tAC →,若B ,O ,D 三点共线,则t 的值为( )A .14B .13C .12D .23题型三 平面向量的数量积及应用例3(1)已知在矩形ABCD 中,AB =4,AD =2.若E ,F 分别为AB ,BC 的中点,则DE → ·DF →=( )A .8B .10C .12D .14(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM → =2MA → ,CN →=2NA → ,则BC → ·OM →的值为( )A .-15B .-9C .-6D .0(3) 已知|a |=6,e 为单位向量,当向量a ,e 的夹角θ分别等于45°,90°,135°时,求向量a 在向量e 上的投影向量.(4)(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a·b =1,则|b |=________. (5)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A .3π4B .π4C .π3D .2π3(6)(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.五、变式训练1.如图所示,在直角梯形ABCD 中,DC → =14 AB → ,BE → =2EC → ,且AE → =rAB → +sAD →,则2r +3s =( )A .1B .2C .3D .42..设两个非零向量a 与b 不共线.(1)若AB → =a +b ,BC → =2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A .7B .10C .13D .44.非零向量a ,b ,c 满足a ·b =a ·c ,a 与b 的夹角为π6 ,|b |=4,则c 在a 上的投影向量的长度为( )A .2B .23C .3D .4六、作业一轮复习资料《课时作业》437页 A 组:全部 B 组:2、3。
高考数学一轮复习讲义第五章平面向量概念及线性运算
向量的线性运算
例 2 在△ABC 中,D、E 分别为 BC、AC 边上的中点,G 为 BE 上一点,且 GB=2GE,设A→B=a,A→C=b,试用 a,b 表示 A→D,A→G.
结合图形性质,准确灵活运用三角形法则和平行四边形法则是向 量加减运算的关键. 解 A→D=12(A→B+A→C)=12a+12b; A→G=A→B+B→G=A→B+23B→E=A→B+13(B→A+B→C) =23A→B+13(A→C-A→B)=13A→B+13A→C=13a+13b.
定义
法则(或几 何意义)
运算律
求两个向量 加法
和的运算
三角形 平行四边形
(1)交换律: a+b=b+a
(2)结合律: (a+b)+c= a+(b+c) .
要点梳理
忆一忆知识要点
求 a 与 b 的相
减法 反向量-b 的 和的运算叫做 a 与 b 的差
三角形 法则
a-b=a+(-b)
(1)|λa|= |λ||a| ;
一轮复习讲义
平面向量的概念及线性运算
要点梳理
忆一忆知识要点
1.向量的有关概念
名称
定义
备注
向量
既有大小又有方向的量;向 量的大小叫做向量的长度 平面向量是自由向量
(或称为模)
长度为 0 的向量;其方向
零向量 是任意的
记作 0
非零向量 a 的单位向量
单位向量 长度等于1个单位 的向量
为±|aa|
要点梳理
探究提高
(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即为平行向量,它们均与起点无关. (4)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象移动混为一谈. (5)非零向量 a 与|aa|的关系是:|aa|是 a 方向上的单位向量.
5.1 平面向量的概念及线性运算、平面向量基本定理-5年3年模拟北京高考
5.1 平面向量的概念及线性运算、平面向量基本定理五年高考考点1 向量的线性运算及几何意义1.(2013陕西.3,5分)设a ,b 为向量,则,|,|||||b a b a =⋅是”“b a //的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2.(2012浙江.5,5分)设a ,b 是两个非零向量. ( ) A .若b a b a b a ⊥-=+则|,||||| B .若,b a ⊥则||||||b a b a -=+C .若|,|||||b a b a -=+则存在实数,λ使得a b λ=D .若存在实数,λ使得||||||,b a b a a b -=+=则λ3.(2012辽宁,3,5分)已知两个非零向量a ,b 满足=+||b a |,|b a -则下面结论正确的是 ( )b a A //. b a B ⊥. ||||.b a C = b a b a D -=+.4.(2011山东,12,5分)设4321,,,A A A A 是平面直角坐标系中两两不同的四点,若),(2131R A A A A ∈=λλ∈=μμ(2141A A A A ),R 且,211=+μλ则称43,A A 调和分割⋅21,A A 已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是 ( )A .C 可能是线段AB 的中点 B.D 可能是线段AB 的中点C.C ,D 可能同时在线段AB 上D.C ,D 不可能同时在线段AB 的延长线上5.(2011上海.17,5分)设54321,,,,A A A A A 是空间中给定的5个不同点,则使054321=++++MA MA MA MA MA 成立的点M 的个数为( )0.A 1.B 5.C 10.D6.(2013四川.12.5分)在平行四边形ABCD 中,对角线AC 与BD 交于点,0D ,A A AB O λ=+则=λ7.(2013江苏.10.5分)设D ,E 分别是△ABC 的边AB ,BC 上的点,.32,21AD BC BE AB ==若1λ= 212,λλλ<+AL 为实数),则21λλ+的值为 8.(2011北京.10.5分)已知向量=-==c b a ),1,0(),1,3(⋅)3,(k 若a-2b 与c 共线,则=k 考点2 平面向量的基本定理及坐标表示1.(2013辽宁.3.5分)已知点A(l ,3),B (4,-1),则与向量AB 同方向的单位向量为 ( ))5,5.(-A )5,5.(-B )5,5.(-C )5,5.(-D 2.(2013重庆.10,5分)在平面上,==⊥||||,2121OB OB AB AB .,121AB AB +=若,21||<则 ||的取值范围是( ))25,0.(A )27,25.(B )2,25.(C )2,27.(D 3.(2012大纲全国.6,5分)△ABC 中,AB 边的高为CD.若=,0,,=⋅=b a b a ===b a 则,2,1|| ( )b a A 3131.- b a B 3232.- b a C 5353.- b a D 5454.- 4.(2012广东,3,5分)若向量),7,4(),3,2(==CA BA 则=BC ( ))4,2.(--A )4,2.(B )10,6.(C )10,6.(--D5.(2012安徽.8,5分)在平面直角坐标系中,点0(0,0),P(6,8),将向量绕点0按逆时针方向旋转43π后得向量,则点Q 的坐标是 ( ) )2,27.(--A )2,27.(-B )2,64.(--C )2,64.(-D6.(2012重庆.6,5分)设,,R y x ∈向量c y b x a ),,1(),1,(==),4,2(-=且,//,c b C a ⊥则=+||b a ( )5.A 10.B 52.C 10.D7.(2010安徽.3,5分)设向量),21,21(),0,1(==b a 则下列结论中正确的是( )智力背景分粟子 三个小女孩一共采集到770颗栗子,她们打算如往常那样,根据她们年龄的大小按比例进 行分配 .以往,当玛丽拿4颗栗子时,尼莉拿3颗;而每当玛丽得到6颗时,苏茜可以拿7颗,试问:每个女孩可以分到多少颗栗子?答案是最小女孩可分到198颗,年纪稍大的分得264颗,最年长的可分得308颗.||||.b a A = 22.=⋅b a B b b a C 与-.垂直 b a D //. 8.(2013北京.13,5分)向量a ,b ,c 在正方形网格中的位置如图所示,若),,(R b a c ∈+=μλμλ则=μλ解读探究知识清单1.既有大小又有方向的量叫做向量,向量可以用有向线段来表示.2.向量B A 的大小,也就是向量B A 的长度(或称模),记作.||3.长度为O 的向量叫做零向量,记作0.长度为1个单位长度的向量叫做单位向量. 4.方向相同或相反的非零向量叫做①____,也叫做②____.规定:O 与任一向量平行.5.长度相等且③____的向量叫做相等向量.6.向量加法的法则:三角形法则和平行四边形法则. 7.向量加法的交换律:a+b=b+a , 向量加法的结合律:(a+b )+c=a+(b+c).8.与a 长度相等,④____ 的向量叫做a 的相反向量,规定:O 的相反向量是09.实数λ与向量a 的乘积||a λ是一个向量,它的长度是a 的||λ倍,即.||||||a a λλ=它的方向:当0>λ时,与a 同向;当0<λ时,与a 反向.显然,当0=λ时,.0=a λ10.设a 、b 是任意向量,μλ、是实数,则实数与向量的积适合以下运算律:a .结合律.;)()(b a a λμμλ= 第一分配律=+a )(μλ.;c a a μλ+第二分配律.)(b a b a λλλ+=+ 11.向量共线的判断:(1)若a 与b 是两个非零向量,则它们共线的充要条件是⑤(2)若a 与b 是两个非零向量,则它们共线的充要条件是存在两个均不是零的实数.,λ使⑥ 12.平面向量基本定理:如果21.e e 是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数,21λλh 使,2211e e a λλ+=其中21e e 、是一组基底. 13.平面向量的坐标运算:(1)若),0)(,(),,(2211=/==b y x b y x a 则,21x x b a ±=±().21y y ± (2)若),,(),,(2211y x B y x A 则⋅--=),(1212y y x x Ak (3)若,),,(R y x a ∈=λ则).,(y x a λλλ= 14.向量平行的坐标表示:(1)如果),,(),,(2211y x b y x a ==则a∥b 的充要条件为⑦智力背景BSD 猎想 数学家总是对诸如222z y x =+这样的代数方程的所有整数解的刻画问题着迷,欧几里得 曾经对这一方程给出完全的解答,但是对于更为复杂的方程,就变得极为困难.事实上,正如马蒂雅谢维 奇指出,希尔伯特第十问题是不可解的,即不存在一般的方法来确定这样的方程是否有一个整数解.当 解是一个阿贝尔簇的点时 ,贝赫和斯维讷通一戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数 z(s)在点s=l 附近的性态.(2)三点),(),,(),,(332211y x C y x B y x A 共线的充要条件为))())((12131312y y x x y y x x -----(.0=【知识拓展】1.向量是自由向量,大小和方向是向量的两个要素,在用有向线段表示向量时,要认识到有向线段的起点的选取是任意的,不要误以为向量是由起点、大小和方向三个要素决定的.一句话,研究向量问题应具有“平移”意识——长度相等、方向相同的向量都是相等向量.2.两个向量的和仍是向量.特别注意的是:在向量加法的表达式中,零向量一定要写成O ,而不应写成O ;在△ABC 中,0=++AF (如图).3.两个向量的差也可用平行四边形法则及三角形法则求得:(如图)用平行四边形法则时,两个向量也是共起点,和向量是起点与它们的起点重合的那条对角线),(而差向量是另一条对角线),(方向是从减向量指向被减向量;用三角形法则时,把减向量与被减向量的起点相重合,则差向量是从减向量的终点指向被减向量的终点.·知识清单答案突破方法方法1 平面向量的线性运算用已知向量来表示另外一些向量是用向量解题的基本功,除利用向量的加、减法,数乘向量外,还应充分利用平面几何的一些定理,因此在求向量时要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解,充分利用相等向量、相反向量和线段的比例关系,把未知向量转化为与已知向量有直接关系的向量来求解.例1 (2012山东聊城二模.10.5分)在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b a ==则等于 ( )b a A 2141.+ b a B 3132.+ b a C 4121.+ b a D 3231.+解题思路解析 如图,,DF AD AF +=由题意知,,31,:3:1:AB DF BE DE =∴== .3132)2121(312121b a b a b a +=-++=∴答案 B【方法点拨】 向量的线性运算法则:向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”,即第二个向量的起点与第一个向量的终点重合,和向量由第一个向量的起点指向第二个向量的终点;向量减法的三角形法则要素是“起点重合,指向被减向量”,即两个向量的起点重合,差向量由减向量的终点指向被减向量的终点;平行四边形法则的要素是“起点重合”,即两个向量的起点相同,和向量的起点也相同,方法2 平面向量共线问题向量共线定理的坐标表示提供了通过代数运算来解决向量共线的方法,也为点共线、线平行问题的处理提供了简单易行的方法,解题时要注意向量共线定理的坐标表示本身具有公式特征,应学会利用这一点来构造函数和方程,以便用函数与方程的思想解题.例2(2012浙江杭州二模.11,4分)已知点A (1,-2),点AB 的中点坐标为(3,1),且与向量),1(λ=a 共线,则=λ解题思路解析 由AB 的中点坐标为(3,1)可知B(5,4),=∴AB ),6,4(又⋅=∴=⨯-∴23,0614,//λλa AB 答案23 【方法点拨】 共线向量的求解方法:向量平行(共线)的充要条件的两种表达形式:b a b b a λ=⇔=/)0(//或.01221=-y x y x可以利用两个向量共线的条件列方程,求未知数的值,智力背景奔跑的狗(一) 一次在德国 苏步青与一位有名的数学家同乘电车时,这位数学象出了一道关于奔 跑的狗的题目让苏教授解答,逸道题是:甲、乙两人同时从相距100千米的两地出发,相向而行.甲每小时走6千米,乙每小时走4千米,甲带了一只狗和他同时出发,狗以每小时10千米的速度向乙奔去,遇到乙立即回头向甲奔去;遇到甲又回头向己奔去,蛊~甲、乙两人相遇时狗才停止问这只狗共跑了多少千米路?对这个问题,苏步青教授略加思索,就算出了正确的答案.三年模拟A 组 2011-2013年模拟探究专项基础测试时间:40分钟 分值:45分一、选择题(每题5分,共20分)1.(2013北京石景山期末)AC 为平行四边形ABCD 的一条对角线,===),3,1(),4,2(A 则 ( ))4,2(⋅A )7,3(⋅B )1,1.(C )1,1.(--D2.(2013辽宁朝阳一模.5)在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,,μλ+=则μλ+ 的值为 ( )21.A 31.B 41.C 1.D 3.(2012辽宁大连沙河口3月模拟.8)非零不共线向量,且,02y x P +=若),(R AB PA ∈=λλ则点Q(x ,y)的轨迹方程是( )02.=-+y x A 012.=-+y x B 022.=-+y x C 022.=-+y x D4.(2012广东佛山三模.5)设a ),1,(),2,1(0-=-=O b a b ,0,0),0,(>>-=为坐标原点,若A 、B 、C 三点共线,则ba 21+的最小值是 ( )二、填空题(每题5分,共15分)5.(2013北京西城高三上学期期末)已知向量==b a ),3,1().3,2(),1,2(=-c 若向量C 与向量b ka +共线,则实数=k6.(2013宁夏吴忠3月.15)在平面直角坐标系中,已知=AB ),1,2(),3,1(-=-AC 则=||BC 7.(2013江苏苏州一模.9)如图,在△ABC 中,点0是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若,C ,B AN n A AM m A ==则n m +的值为三、解答题(共10分)8.(2013山东莱芜一模,17)如图,已知△OCB 中,点C 是以A 为中点的点B 的对称点,D 是将分成2:1的一个内分点,DC 和OA 交于点E ,设.,b a == (1)用a 和b 表示向量;、 (2)若,OA OE λ=求实数λ的值.B 组 2011-2013年模拟探究专项提升测试 时间:45分钟 分值:45分一、选择题(每题5分,共10分)1.(2013陕西黄陵一模.6)已知向量,2(),3,1(=-=),2,1(1-+=-k k 若A 、B 、C 三点不能构成三角形,则实数k 应满足的条件是( )2.-=k A 21.=k B 1.=k C 1.-=k D 2.(2013湖北襄樊=模.8)在△ABC 中,a 、b 、c 分别为B A ∠∠、.、C ∠的对边,且,a b c >>若向量)1,(b a m -=和,c b n -=()1平行,且,54sin =B 当△ABC 的面积为23时,则=b ( ) 231.+A 2.B 4.C 32.+D 二、填空题(每题5分,共10分)3.(2013福建南平一模,14)设,,R y x ∈向量,1),1,((==b x a )4,2(),-=c y 且,//,c b c a ⊥则=+||b a4.(2011陕西西安5月.14)在△ABC 中,已知D 是AB 边上一点,若,3,2λ+==C A 则=λ智力背景奔跑的狗(二) 解答:狗从甲、乙出发时起,直到两人相遇时止,一直在甲、乙之间奔跑,从未停止过.因此它奔跑的时间,就是甲、乙两人从开始行走到相遇时的时间,这就是解答本题的关键.时间知道了,狗跑的路程也就能算出来了.甲、乙两人从开始走到相遇共用100÷(6+4)=lO 小时,所以狗跑的总 路程是10×10 =100千米.三、解答题(共25分)5.(2013吉林松原5月.18)已知平行四边形ABCD ,从平面AB-CD 外一点O 引向量,0k =OD K OH ,OC K C ,B K F ===O O O 求证:(1)四点E ,F ,G ,H 共面; (2)平面ABCD//平面EFGH.6.(2012江西九江5月模拟.17)在□ABCD 中,=A ),1,1(),0,6(点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若),5,3(D =A 求点C 的坐标; (2)当|D |||A =时,求点P 的轨迹.。
5-1新田中学-平面向量
答案:2
4.已知λ,μ∈R,则下列各命题:①λ<0, a≠0时,λa与a的方向一定相反;②λ>0, a≠0时,λa与a的方向一定相同;③λμ>0, a≠0时,λa与μa的方向一定相同;④λμ<0, a≠0时,λa与μa的方向一定相反,则正确命 题的序号为________. 答案:①②③④
答案:(1)0 (2)0 (3)0 (4)0
【例1】 判断下列命题是否正确,不正确 的说明理由. (1)若向量a与b同向,且|a|>|b|,则a>b; (2)若向量|a|=|b|,则a与b的长度相等且方 向相同或相反; (3)对于任意向量|a|=|b|,且a与b的方向相 同,则a=b; (4)由于0方向不确定,故0不能与任意向量 平行;
●易错知识 一、向量的有关概念应用失误. 1.给出下列命题:①若|a|=|b|,则a=b; ②若|a|>|b|,则a>b;③若a=b,则a∥b; ④若a∥b,则a=b;⑤若a=b,则|a|=|b|. 其中,正确命题的序号是________.(把你 认为正确的命题序号都填上) 答案:③⑤
●基础知识 一、向量的有关概念 1.向量:既有大小又有 的量叫做向 方向 量,向量的大小叫做向量的长度(或模). 2.零向量:长度为0的向量叫做零向量,其 方向是 的. 任意 3.单位向量:长度等于1个单位长度 的向量, 是与a同向的单位向量,- 是与a 反向的单位向量.
三、向量的加法和减法 1.加法 ①法则:三角形法则,平行四边形法则,加法定义即三 角形法则;以 a,b 为邻边作平行四边形 ABCD(取同一起点), → → → 即AB=a,AD=b,则AC即为 a,b 的和. ②运算性质:
2015高考数学(人教A版)一轮课件:5-1平面向量的概念及其线性运算
3. (2014· 太原五中 2 月月考)若 O 为△ABC 所在平面内一点, → → → 且 3OA+4OB+7OC=0, 则△OAB 和△ABC 的面积之比为( 1 A. 4 1 C.2 1 B.3 2 D.5 )
→ → → → → → 解析: 将 3OA+4OB+7OC=0 变形为 7(OA+OC)=4(OA- → ). OB 如图,以 OA 和 OC 为邻边所作的平行四边形的对角线 OD 和 AB 平行.显然 OD 交 AC 于 AC 的中点,故 O 到 AB 的距离 1 1 是 C 到 AB 距离的2,所以△OAB 和△ABC 的面积之比为2.故选 C.
(5)相等向量:长度相等 且方向相同 的向量. (6)相反向量:与 a 长度相等,方向相反的向量,叫做 a 的 相反向量.
特别提醒:向量是自由向量,在用有向线段表示向量时,要 认识到有向线段的起点的选取是任意的, 不能认为向量也是由起 点、大小和方向三个要素决定的.一句话,研究向量问题应具有 “平衡意识”——长度相等、方向相同的向量都是相等向量.有 向线段仅是向量的直观体现,不能等同于向量.
2→ 1 2 1 → → → 解析:AF=AC+CF=a+3CD=a+3(b-a)=3a+3b.故选 D.
答案:D
题型一
平面向量的有关概念
【例 1】 给出下列四个命题: ①若|a|=|b|,则 a=b 或 a=-b; → =DC → ,则四边形 ABCD 为平行四边形; ②若AB ③若 a 与 b 同向,且|a|>|b|,则 a>b; ④λ,μ 为实数,若 λa=μb,则 a 与 b 共线. 其中假命题的个数为( A.1 B.2 ) C.3 D.4
2.向量的加法运算及其几何意义 → =a,BC →= (1)已知非零向量 a、b,在平面内任取一点 A,作AB
高考数学总复习 5-1 平面向量的概念与线性运算但因为测试 新人教B版
高考数学总复习 5-1 平面向量的概念与线性运算但因为测试新人教B 版1.(文)(2011·宁波十校联考)设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( ) A.P A →+PB →=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB →+PC →=0[答案] B[解析] 如图,根据向量加法的几何意义,BC →+BA →=2BP →⇔P 是AC 的中点,故P A →+PC →=0.(理)(2011·广西六校联考、北京石景山检测)已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,那么( )A.AO →=OD →B.AO →=2OD →C.AO →=3OD → D .2AO →=OD →[答案] A[解析] ∵OB →+OC →=2OD →, ∴2OA →+2OD →=0,∴AO →=OD →.2.(文)(2011·皖南八校联考)对于非零向量a ,b ,“a +b =0”是“a ∥b 的”( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件[答案] A[解析] 若a +b =0,则a =-b ,所以a ∥b ;若a ∥b ,则存在实数λ,使a =λb ,a +b =0不一定成立,故选A.(理)(2011·广东江门市模拟)若四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是( )A .直角梯形B .菱形C .矩形D .正方形[答案] B[解析] 由AB →+CD →=0知,AB →=DC →,即AB =CD ,AB ∥CD .∴四边形ABCD 是平行四边形. 又(AB →-AD →)·AC →=0,∴DB →·AC →=0,即AC ⊥BD , 因此四边形ABCD 是菱形,故选B.3.(文)如图所示,在△ABC 中,BD →=12DC →,AE →=3ED →,若AB →=a ,AC →=b ,则BE →等于( )A.13a +13b B .-12a +14bC.12a +14b D .-13a +13b[答案] B[解析] ∵AE →=3ED →,∴ED →=14AD →,∵BD →=12DC →,∴BD →=13BC →,∴BE →=BD →-ED →=BD →-14AD →=BD →-14(AB →+BD →)=34BD →-14AB →=14BC →-14AB →=14AC →-12AB →=14b -12a .(理)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.13a +23bC.12a +14bD.23a +13b [答案] D[解析] 由条件易知,DF →=13DC →,∴AF →=AC →+CF →=a +23CD →=a +13(b -a )=23a +13b .故选D.4.(2011·福建福州质量检查)如图,e 1,e 2为互相垂直的单位向量,向量a 、b 如图,则向量a -b 可表示为( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2[答案] C[解析] 连接图中向量a 与b 的终点,并指向a 的终点的向量即为a -b ,∴a -b =e 1-3e 2.5.(文)(2011·厦门模拟)已知点M 在平面ABC 内,并且对空间任一点O ,OM →=xOA →+12OB →+13OC →,则x 的值为( )A .0 B.13 C.12 D.16[答案] D[解析] ∵x +12+13=1,∴x =16.(理)(2011·惠州模拟)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=λCA →+μCB →,则μλ的值为( ) A .1 B.12 C .2 D.13 [答案] C[解析] CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →∴λ=13,μ=23,∴μλ=2.6.设OA →=e 1,OB →=e 2,若e 1与e 2不共线,且点P 在线段AB 上,|AP | |P B |=2,如图所示,则OP →=( )A.13e 1-23e 2 B.23e 1+13e 2C.13e 1+23e 2D.23e 1-13e 2 [答案] C[解析] AP →=2PB →,∴AB →=AP →+PB →=3PB →, OP →=OB →+BP →=OB →-13AB →=OB →-13(OB →-OA →)=13e 1+23e 2.7.(2011·山东济南市调研)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.[答案]311[解析] (如图)因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →) =AB →+k (14AC →-AB →)=(1-k )AB →+k4AC →,所以1-k =m ,且k 4=211,解得k =811,m =311.8.(文)(2011·合肥模拟)在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC →=23OA →+13OB →,则|AC →||AB →|=________.[答案] 13[解析] ∵OC →=23OA →+13OB →,23+13=1,∴A 、B 、C 三点共线,∵AC →=OC →-OA →=13OB →-13OA →=13AB →,∴|AC →||AB →|=13. (理)(2011·聊城模拟)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中, λ,μ∈R ,则λ+μ=________.[答案] 43[解析]如图,∵ABCD 是▱,且E 、F 分别为CD 、BC 中点. ∴AC →=AD →+AB → =(AE →-DE →)+(AF →-BF →)=(AE →+AF →)-12(DC →+BC →)=(AE →+AF →)-12AC →,∴AC →=23(AE →+AF →),∴λ=μ=23,∴λ+μ=43.9.(2011·泰安模拟)设a 、b 是两个不共线向量,AB →=2a +pb ,BC →=a +b ,CD →=a -2b ,若A 、B 、D 三点共线,则实数p 的值是________.[答案] -1[解析] ∵BD →=BC →+CD →=2a -b ,又A 、B 、D 三点共线,∴存在实数λ,使AB →=λBD →.即⎩⎪⎨⎪⎧2=2λp =-λ,∴p =-1. 10.(文)如图,在平行四边形ABCD 中,M 、N 分别为DC 、BC 的中点,已知AM →=c ,AN →=d ,试用c 、d 表示AB →、AD →.[解析] 解法一:AD →=AM →-DM →=c -12AB →①AB →=AN →-BN →=d -12AD →②由①②得AB →=23(2d -c ),AD →=23(2c -d ).解法二:设AB →=a ,AD →=b ,因为M 、N 分别为CD 、BC 的中点,所以BN →=12b ,DM →=12a ,于是有:⎩⎨⎧c =b +12ad =a +12b ,解得⎩⎨⎧a =232d -c b =232c -d ,即AB →=23(2d -c ),AD →=23(2c -d ).(理)如图,在△ABC 中,AM AB =1 3,AN AC =1 4,BN 与CM 交于P 点,且AB →=a ,AC →=b ,用a ,b 表示AP →.[分析] 由已知条件可求AM →、AN →,∵BN 与CM 相交于点P ,∴B 、P 、N 共线,C 、P 、M 共线,因此,可以设PN →=λBN →,PM →=μCM →,利用同一向量的两种a ,b 的线性表示及a 、b 不共线求解;也可以设BP →=λBN →,用a 、b ,λ来表示CP →与CM →,利用CP →与CM →共线及a 、b 不共线求解.解题方法很多,但无论什么方法,都要抓住“共线”来作文章.[解析] 由题意知:AM →=12AB →=13a ,AN →=14AC →=14b .BN →=AN →-AB →=14b -a ,CM →=AM →-AC →=13a -b设PN →=λBN →,PM →=μCM →,则PN →=λ4b -λa ,PM →=μ3a -μb .∴AP →=AN →-PN →=14b -(λ4b -λa )=λa +1-λ4b ,AP →=AM →-PM →=13a -(μ3a -μb )=1-μ3a +μb ,∴λa +1-λ4b =1-μ3a +μb ,而a ,b 不共线.∴λ=1-μ3且1-λ4=μ.∴λ=311.因此AP →=311a+211b . [点评] ∵P 是CD 与BE 的交点,故可设DP →=λDC →,利用B 、P 、E 共线,∴BP →与BE →共线,求出λ,从而AP →=AD →+DP →获解.11.(2011·山东青岛质检)在数列{a n }中,a n +1=a n +a (n ∈N *,a 为常数),若平面上的三个不共线的非零向量OA →,OB →,OC →满足OC →=a 1OA →+a 2010OB →,三点A 、B 、C 共线且该直线不过O 点,则S 2010等于( )A .1005B .1006C .2010D .2012[答案] A[解析] 由题意知,a 1+a 2010=1, 又数列{a n }为等差数列,所以S 2010=a 1+a 20102×2010=1005,故选A.12.(文)(2011·安徽安庆模拟)已知点P 是△ABC 所在平面内一点,且满足3P A →+5PB →+2PC →=0,设△ABC 的面积为S ,则△P AC 的面积为( )A.34SB.23SC.12SD.25S [答案] C [分析]由系数3+2=5,可将条件式变形为3(P A →+PB →)+2(PB →+PC →)=0,故可先构造出P A →+PB →与PB →+PC →,假设P 为P ′点,取AB 、BC 中点M 、N ,则PM →=12(P A →+PB →),PN →=12(PB →+PC →),条件式即转化为PM →与PN →的关系.[解析] 设AB ,BC 的中点分别为M ,N , 则PM →=12(P A →+PB →),PN →=12(PB →+PC →),∵3P A →+5PB →+2PC →=0, ∴3(P A →+PB →)=-2(PB →+PC →),∴3PM →=-2PN →,即点P 在中位线MN 上, ∴△P AC 的面积为△ABC 面积的一半,故选C.(理)(2011·东北三校联考)在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为( )A.12B.23C.34D.45[答案] C[解析] ∵CP →=23CA →+13CB →,∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →, ∴2AP →=PB →,因此P 为AB 的一个三等分点,如图所示.∵A ,M ,Q 三点共线, ∴CM →=xCQ →+(1-x )CA → =x2CB →+(x -1)AC →(0<x <1), ∵CB →=AB →-AC →,∴CM →=x 2AB →+(x2-1)AC →.∵CP →=CA →-P A →=-AC →+13AB →,且CM →=tCP →(0<t <1),∴x 2AB →+(x 2-1)AC →=t (-AC →+13AB →), ∴x 2=t 3且x 2-1=-t ,解得t =34,故选C. 13.已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________. [答案] (-2,-1)[解析] 设点B 的坐标为(x ,y ),则有AB →=(x -2,y -3),BC →=(-x,1-y ),因为AB →=-2BC →,所以⎩⎪⎨⎪⎧x -2=2x ,y -3=-2 1-y ,解得x =-2,y =-1.14.(文)(2010·浙江宁波十校)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM→=12MC →,则MN →=________(用e 1,e 2表示) [答案] -23e 1+512e 2[解析] ∵NC →=14AC →=14e 2,∴CN →=-14e 2,∵BM →=12MC →,BM →+MC →=BC →=AC →-AB →=e 2-e 1,∴MC →=23(e 2-e 1),∴MN →=MC →+CN →=23(e 2-e 1)-14e 2=-23e 1+512e 2.(理)(2010·聊城市模拟)已知D 为三角形ABC 的边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.[答案] -2[解析] 如图,∵D 是BC 中点,将△ABC 补成平行四边形ABQC ,则Q 在AD 的延长线上,且|AQ |=2|AD |=2|DP |,∵P A →+BP →+CP →=BA →+CP →=0,∴BA →=PC →,又BA →=QC →,∴P 与Q 重合, 又∵AP →=λPD →=-2PD →,∴λ=-2.15.(文)已知四点A (x,0)、B (2x,1)、C (2,x )、D (6,2x ). (1)求实数x ,使两向量AB →、CD →共线.(2)当两向量AB →与CD →共线时,A 、B 、C 、D 四点是否在同一条直线上? [解析] (1)AB →=(x,1),CD →=(4,x ).∵AB →∥CD →,∴x 2-4=0,即x =±2. (2)当x =±2时,AB →∥CD →.当x =-2时,BC →=(6,-3),AB →=(-2,1), ∴AB →∥BC →.此时A 、B 、C 三点共线,从而,当x =-2时,A 、B 、C 、D 四点在同一条直线上. 但x =2时,A 、B 、C 、D 四点不共线.(理)(2011·济南模拟)已知△ABC 中,AB →=a ,AC →=b ,对于平面ABC 上任意一点O ,动点P 满足OP →=OA →+λa +λb ,则动点P 的轨迹是什么?其轨迹是否过定点,并说明理由.[解析] 依题意,由OP →=OA →+λa +λb , 得OP →-OA →=λ(a +b ), 即AP →=λ(AB →+AC →).如图,以AB ,AC 为邻边作平行四边形ABDC ,对角线交于O , 则AP →=λAD →,∴A 、P 、D 三点共线,即P 点的轨迹是AD 所在的直线,由图可知P 点轨迹必过△ABC 边BC 的中点(或△ABC 的重心).1.(2010·新乡市模考)设平面内有四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD→=d ,且a +c =b +d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形[答案] D[解析] 解法一:设AC 的中点为G ,则OB →+OD →=b +d =a +c =OA →+OC →=2OG →,∴G 为BD 的中点,∴四边形ABCD 的两对角线互相平分,∴四边形ABCD 为平行四边形.解法二:AB →=OB →-OA →=b -a ,CD →=OD →-OC →=d -c =-(b -a )=-AB →, ∴AB 綊CD ,∴四边形ABCD 为平行四边形.2.(2011·银川模拟)已知a 、b 是两个不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R),那么A 、B 、C 三点共线的充要条件是( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1[答案] D[解析] ∵A 、B 、C 三点共线,∴AB →与AC →共线, ∴存在t ∈R ,使AB →=tAC →, ∴λa +b =t (a +μb )=ta +tμb ,∵a ,b 不共线,∴⎩⎪⎨⎪⎧λ=t1=tμ,即λμ=1.3.设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.[解析] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =5(a +b )=5AB →. ∴AB →、BD →共线,又它们有公共点B ,∴A 、B 、D 三点共线. (2)解:∵ka +b 与a +kb 共线, ∴存在实数λ,使ka +b =λ(a +kb ), ∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.4.已知点O (0,0)、A (1,2)、B (4,5),向量OP →=OA →+tAB →. (1)t 为何值时,点P 在x 轴上? (2)t 为何值时,点P 在第二象限?(3)四边形ABPO 能否为平行四边形?若能,求出t 的值;若不能,说明理由. (4)求点P 的轨迹方程.[解析] ∵OP →=OA →+tAB →=(1,2)+t (3,3) =(1+3t,2+3t ), ∴P (1+3t,2+3t ).(1)∵P 在x 轴上,∴2+3t =0即t =-23.(2)由题意得⎩⎪⎨⎪⎧1+3t <02+3t >0.∴-23<t <-13.(3)∵AB →=(3,3),OP →=(1+3t,2+3t ). 若四边形ABPO 为平行四边形,则AB →=OP →,∴⎩⎪⎨⎪⎧1+3t =32+3t =3,而上述方程组无解, ∴四边形ABPO 不可能为平行四边形. (4)∵OP →=(1+3t,2+3t ), 设OP →=(x ,y ),则⎩⎪⎨⎪⎧x =1+3t y =2+3t ,∴x -y +1=0为所求点P 的轨迹方程.。
高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版
[最新考纲] 1.了解向量的实际背景. 2.理解平面向量的概念,理解两个向量相等的含义. 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解其几何意义. 5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 6.了解向量线性运算的性质及其几何意义.
[考情分析]
[核心素养]
平面向量的相关概念,平面向量的线性运算,共线向 1.数学运算
量定理及其应用仍是 2021 年高考考查的热点,题型仍将是 2.直观想象
选择题与填空题,分值为 5 分.
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.向量的有关概念 (1)向量:既有大小又有 1 __方__向_____的量叫做向量,向量的大小叫做向量的 2 _____模____. (2)零向量:长度为 3 ___0______的向量,其方向是任意的. (3)单位向量:长度等于 4 _1_个__单__位___的向量.
(2)∵ka+b 与 a+kb 共线, ∴存在实数 λ,使 ka+b=λ(a+kb),即(k-λ)a=(λk-1)b. 又 a,b 是两个不共线的非零向量, ∴kλk--λ=1=0,0. ∴k2-1=0.∴k=±1.
|变式探究| 1.若将本例(1)中“B→C=2a+8b”改为“B→C=a+mb”,则 m 为何值时,A,B,D 三点共线? 解:B→D=B→C+C→D=(a+mb)+3(a-b)=4a+(m-3)b, 若 A,B,D 三点共线,则存在实数 λ,使B→D=λA→B, 即 4a+(m-3)b=λ(a+b),∴4m=-λ3,=λ,解得 m=7. 故当 m=7 时,A,B,D 三点共线.
法则(或几何意义)
运算律
交换律:a+b= 8 __b_+__a____;
结 合 律 : (a + b) + c = 9 _a_+__(b_+__c_)_
1平面向量的概念与线性运算练习 新人教B版 试题
5-1平面向量的概念与线性运算基础巩固强化1.(文)(2011·某某十校联考)设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( ) A.PA →+PB →=0 B.PC →+PA →=0 C.PB →+PC →=0 D.PA →+PB →+PC →=0 [答案] B[解析] 如图,根据向量加法的几何意义,BC →+BA →=2BP →⇔P 是AC 的中点,故PA →+PC →=0.(理)已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A.23B.43 C .-3 D .0 [答案] D[解析]CD →=AD →-AC →,DB →=AB →-AD →.∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →.∴32CD →=AB →-AC →, ∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0.2.(2012·某某理,7)设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b | [答案] C[解析] 本小题考查共线向量、单位向量、向量的模等基本概念. 因a |a |表示与a 同向的单位向量,b |b |表示与b 同向的单位向量,要使a |a |=b|b |成立,则必须a 与b 同向共线,所以由a =2b 可得出a|a |=b|b |.[点评] a =-b 时,a 与b 方向相反;a ∥b 时,a 与b 方向相同或相反.因此A 、B 、D 都不能推出a |a |=b|b |.3.已知向量a =(1,3),b =(3,n ),若2a -b 与b 共线,则实数n 的值是( ) A .3+23B .9 C .6 D .3-2 3 [答案] B[解析]2a -b =(-1,6-n ),∵2a -b 与b 共线,∴-1×n -(6-n )×3=0, ∴n =9.4.设平面内有四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b +d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 [答案] D[解析] 解法一:设AC 的中点为G ,则OB →+OD →=b +d =a +c =OA →+OC →=2OG →,∴G 为BD 的中点,∴四边形ABCD 的两对角线互相平分,∴四边形ABCD 为平行四边形.解法二:AB →=OB →-OA →=b -a , CD →=OD →-OC →=d -c =-(b -a )=-AB →,∴AB 綊CD ,∴四边形ABCD 为平行四边形.5.设OA →=e 1,OB →=e 2,若e 1与e 2不共线,且点P 在线段AB 上,|AP ||PB |=4,如图所示,则OP →=( )A.15e 1-25e 2B.25e 1+15e 2C.15e 1+45e 2D.25e 1-15e 2 [答案]C[解析]AP →=4PB →,∴AB →=AP →+PB →=5PB →, OP →=OB →+BP →=OB →-15AB →=OB →-15(OB →-OA →)=45OB →+15OA →=15e 1+45e 2.6.P 是△ABC 内的一点,AP →=13(AB →+AC →),则△ABC 的面积与△ABP 的面积之比为( )A .2B .3 C.32D .6 [答案] B[解析] 由AP →=13(AB →+AC →),得3AP →=AB →+AC →,∴PB →+PC →+PA →=0,∴P 是△ABC 的重心. ∴△ABC 的面积与△ABP 的面积之比为3.7.(2013·某某省惠安三中模拟)已知向量a =(2x +1,4),b =(2-x,3),若a ∥b ,则实数x 的值等于________.[答案]12[解析]∵a ∥b ,∴3(2x +1)-4(2-x )=0,∴x =12.8.已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________. [答案] (-2,-1)[解析] 设点B 的坐标为(x ,y ),则有AB →=(x -2,y -3),BC →=(-x,1-y ),因为AB →=-2BC →,所以⎩⎪⎨⎪⎧x -2=2x ,y -3=-21-y,解得x =-2,y =-1.9.(2012·东北三省四市联考)在△ABC 中,AB =2AC =2,AB →·AC →=-1,若AO →=x 1AB →+x 2AC →(O 是△ABC 的外心),则x 1+x 2的值为________.[答案]136[解析]O 为△ABC 的外心,AO →=x 1AB →+x 2AC →,AO →·AB →=x 1AB →·AB →+x 2AC →·AB →,由向量数量积的几何意义,AO →·AB →=12|AB →|2=2,∴4x 1-x 2=2,①又AO →·AC →=x 1AB →·AC →+x 2AC →·AC →,∴-x 1+x 2=12,②联立①②,解得x 1=56,x 2=43,∴x 1+x 2=136.10.设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.[解析] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →. ∴AB →、BD →共线,又它们有公共点B ,∴A 、B 、D 三点共线. (2)解:∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), ∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.能力拓展提升11.(2012·某某调研)已知△ABC 及其平面内点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .5 [答案] B[解析] 解法1:由已知条件MB →+MC →=-MA →.如图,延长AM 交BC 于D 点,则D 为BC 的中点.延长BM 交AC 于E ,延长CM 交AB 于F ,则E 、F 分别为AC 、AB 的中点,即M 为△ABC 的重心.AM →=23AD →=13(AB →+AC →),即AB →+AC →=3AM →,则m =3.解法2:∵AB →+AC →=MB →-MA →+MC →-MA →=MB →+MC →-2MA →=mAM →,∴MB →+MC →=(m -2)AM →, ∵MA →+MB →+MC →=0,∴(m -2)AM →=AM →,∴m =3.12.如图,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A .(12,12)B .(23,23)C .(13,13)D .(23,12)[答案] C[解析] 解法1:令BF →=λBE →,由题可知:AF →=AB →+BF →=AB →+λBE →=AB →+λ(12AC →-AB →)=(1-λ)AB →+12λAC →;同理,令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ(12AB →-AC →)=12μAB→+(1-μ)·AC →,平面向量基本定理知对应系数相等,可得⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AF →=13AB →+13AC →,故选C.解法2:设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点, ∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝ ⎛⎭⎪⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线,a 、b 不共线, ∴12λ-1-1=1-λ12,∴λ=23,∴AF →=AC →+CF →=b +23CD →=b +23⎝ ⎛⎭⎪⎫12a -b =13a +13b ,故x =13,y =13. 13.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.[答案]23[解析]由图知CD →=CA →+AD →,① CD →=CB →+BD →,②且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →, ∴CD →=13CA →+23CB →,∴λ=23.14.(2012·某某省某某市质检)已知:|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB内,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R +),则mn=________.[答案] 3[解析] 设mOA →=OF →,nOB →=OE →,则OC →=OF →+OE →,∵∠AOC =30°,∴|OC →|·cos30°=|OF →|=m |OA →|=m , |OC →|·sin30°=|OE →|=n |OB →|=3n ,两式相除得:m3n=|OC →|cos30°|OC →|sin30°=1tan30°=3,∴mn =3.15.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ). (1)若A 、B 、C 三点共线,某某数m 的值; (2)若∠ABC 为锐角,某某数m 的取值X 围.[解析] (1)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). ∴AB →=(3,1),AC →=(2-m,1-m ),∵A 、B 、C 三点共线,∴AB →与AC →共线, ∴3(1-m )=2-m ,∴m =12.(2)由题设知BA →=(-3,-1),BC →=(-1-m ,-m ) ∵∠ABC 为锐角,∴BA →·BC →=3+3m +m >0⇒m >-34又由(1)可知,当m =12时,∠ABC =0°故m ∈⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞. 16.(文)已知a =(2x -y +1,x +y -2),b =(2,-2), (1)当x 、y 为何值时,a 与b 共线?(2)是否存在实数x 、y ,使得a ⊥b ,且|a |=|b |?若存在,求出xy 的值;若不存在,说明理由.[解析] (1)∵a 与b 共线, ∴存在非零实数λ使得a =λb ,∴⎩⎪⎨⎪⎧2x -y +1=2λ,x +y -2=-2λ,⇒⎩⎪⎨⎪⎧x =13,y ∈R .(2)由a ⊥b ⇒(2x -y +1)×2+(x +y -2)×(-2)=0⇒x -2y +3=0.① 由|a |=|b |⇒(2x -y +1)2+(x +y -2)2=8.②由①②解得⎩⎪⎨⎪⎧x =-1,y =1,或⎩⎪⎨⎪⎧x =53,y =73.∴xy =-1或xy =359.(理)已知点O (0,0)、A (1,2)、B (4,5),向量OP →=OA →+tAB →. (1)t 为何值时,点P 在x 轴上? (2)t 为何值时,点P 在第二象限?(3)四边形ABPO 能否为平行四边形?若能,求出t 的值;若不能,说明理由. (4)求点P 的轨迹方程.[解析]∵OP →=OA →+tAB →=(1,2)+t (3,3) =(1+3t,2+3t ),∴P (1+3t,2+3t ). (1)∵P 在x 轴上,∴2+3t =0即t =-23.(2)由题意得⎩⎪⎨⎪⎧1+3t <0,2+3t >0.∴-23<t <-13.(3)∵AB →=(3,3),OP →=(1+3t,2+3t ).若四边形ABPO 为平行四边形,则AB →=OP →,∴⎩⎪⎨⎪⎧1+3t =3,2+3t =3.而上述方程组无解,∴四边形ABPO 不可能为平行四边形.(4)∵OP →=(1+3t,2+3t ),设OP →=(x ,y ),则⎩⎪⎨⎪⎧x =1+3t ,y =2+3t .∴x -y +1=0为所求点P 的轨迹方程.1.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为( )A .梯形B .平行四边形C .菱形D .矩形 [答案] A[解析] 由已知得AD →=AB →+BC →+CD →=-8a -2b ,故AD →=2BC →,由共线向量知识知AD ∥BC ,且|AD |=2|BC |,故四边形ABCD 为梯形,所以选A.2.已知|a |=3,|b |=1,且a 与b 同向共线,则a ·b 的值是( ) A .-3 B .0 C .3 D .-3或3 [答案] C[解析]∵a 与b 同向共线,∴a ·b =|a |·|b |cos0=3,选C.3.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →+AC →),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( )A .外心B .垂心C .内心D .重心 [答案] D[解析] 设AB →+AC →=AD →,则可知四边形BACD 是平行四边形,而AP →=λAD →表明A 、P 、D 三点共线.又D 在边BC 的中线所在直线上,于是点P 的轨迹一定通过△ABC 的重心.4.(2012·某某部分重点中学检测)如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则x ·yx +y的值为( )A .3 B.13C .2 D.12[分析] 由M 、N 、G 三点共线知,存在实数λ、μ使AG →=λAM →+μAN →,结合条件AM →=xAB →,AN →=yAC →,可将AG →用AB →,AC →表示,又G 为△ABC 的重心,AG →用AB →,AC →表示的表示式唯一,可求得x ,y 的关系式.[答案] B[解析] 法1:由点G 是△ABC 的重心,知GA →+GB →+GC →=0,得-AG →+(AB →-AG →)+(AC →-AG →)=0,则AG →=13(AB →+AC →).又M 、N 、G 三点共线(A 不在直线MN 上),于是存在λ,μ∈R ,使得AG →=λAM →+μAN →(且λ+μ=1),则AG →=λx AB →+μy AC →=13(AB →+AC →),所以⎩⎪⎨⎪⎧λ+μ=1,λx =μy =13,于是得1x +1y =3,所以x ·y x +y =11x +1y=13.法2:特殊化法,利用等边三角形,过重心作平行于底边BC 的直线,易得x ·y x +y =13. 5.(2012·豫南四校调研考试)已知△ABD 是等边三角形,且AB →+12AD →=AC →,|CD →|=3,那么四边形ABCD 的面积为( )A.32B.332C .33D.932[答案] B [解析]如图,由条件知,CD →=AD →-AC →=12AD →-AB →,∴CD →2=(12AD →-AB →)2,∴3=14AD →2+AB →2-AD →·AB →,∵|AD →|=|AB →|,∴54|AD →|2-|AD →|·|AB →|cos60°=3,解之得|AD →|=2.又BC →=AC →-AB →=12AD →,∴|BC →|=12|AD →|=1,∴|BC →|2+|CD →|2=|BD →|2,∴BC ⊥CD .∴S 四边形ABCD =S △ABD +S △BCD =12×22×sin60°+12×1×3=332,故选B.6.非零向量a =(sin θ,2),b =(cos θ,1),若a 与b 共线,则tan ⎝⎛⎭⎪⎫θ-π4=________.[答案]13[解析]∵非零向量a 、b 共线,∴存在实数λ,使a =λb ,即(sin θ,2)=λ(cos θ,1),∴λ=2,sin θ=2cos θ,∴tan θ=2,∴tan(θ-π4)=tan θ-11+tan θ=13.。
高考数学专题复习五-5.1平面向量的概念及线性运算、平面向量基本定理及坐标表示-模拟练习题(附答案)
专题五 平面向量5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示基础篇考点一 平面向量的概念及线性运算1.(2022吉林第三次调研,5)已知向量a =(4,3),则与向量a 垂直的单位向量的坐标为 ( ) A.(45,35) B.(35,−45)C.(−45,−35)或(45,35) D.(35,−45)或(−35,45) 答案 D2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ =( ) A.3m -2n B.-2m +3n C.3m +2n D.2m +3n 答案 B3.(2022四川绵阳二模,6)已知平面向量a ,b 不共线,AB ⃗⃗⃗⃗⃗ =4a +6b ,BC ⃗⃗⃗⃗⃗ =-a +3b ,CD ⃗⃗⃗⃗⃗ =a +3b ,则( )A.A ,B ,D 三点共线B.A ,B ,C 三点共线C.B ,C ,D 三点共线D.A ,C ,D 三点共线 答案 D4.(2022江西宜春4月联考,7)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且AE ⃗⃗⃗⃗⃗ =38AC ⃗⃗⃗⃗⃗ ,则BE ⃗⃗⃗⃗⃗ =( )A.58AB ⃗⃗⃗⃗⃗ −38AD ⃗⃗⃗⃗⃗ B.38AB ⃗⃗⃗⃗⃗ −58AD ⃗⃗⃗⃗⃗ C.-58AB ⃗⃗⃗⃗⃗ +38AD ⃗⃗⃗⃗⃗ D.58AB ⃗⃗⃗⃗⃗ +38AD ⃗⃗⃗⃗⃗ 答案 C5.(2023届江西宜春月考,7)已知S △ABC =3,点M 是△ABC 内一点且MA ⃗⃗⃗⃗⃗⃗ +2MB ⃗⃗⃗⃗⃗⃗ =CM ⃗⃗⃗⃗⃗⃗ ,则△MBC 的面积为( )A.14B.13C.34D.12答案 C6.(2023届哈尔滨三中月考二,5)在△ABC 中,点D 是线段BC 上任意一点,且满足AD ⃗⃗⃗⃗⃗ =3AP ⃗⃗⃗⃗⃗ ,若存在实数m 和n ,使得BP ⃗⃗⃗⃗⃗ =mAB ⃗⃗⃗⃗⃗ +nAC ⃗⃗⃗⃗⃗ ,则m +n = ( )A.23 B.13 C.-23 D.−13 答案 C7.(2022贵州适应性考试,14)在平行四边形ABCD 中,AE ⃗⃗⃗⃗⃗ =2ED ⃗⃗⃗⃗⃗ .若CE ⃗⃗⃗⃗⃗ =λBA ⃗⃗⃗⃗⃗ +μBC ⃗⃗⃗⃗⃗ ,则λ+μ= . 答案 23考点二 平面向量基本定理及坐标表示考向一 平面向量基本定理1.(2022江西重点中学联考二,5)设e 1,e 2是两个不共线的平面向量,若a =3e 1-2e 2,b =e 1+ke 2,且a 与b 共线,则实数k 的值为( ) A.-12 B.12 C.−23 D.23 答案 C2.(2022甘肃顶级名校第二次联考,14)如图,在△ABC 中,AN ⃗⃗⃗⃗⃗⃗ =13NC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =13BN ⃗⃗⃗⃗⃗⃗ ,若AP ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则x +4y 的值为 .答案 13.(2022东北三省三校联考(二),14)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG ⃗⃗⃗⃗⃗ =λCB ⃗⃗⃗⃗⃗ +μCD ⃗⃗⃗⃗⃗ (λ,μ∈R ),则λ+μ的取值范围是 . 答案 [1,4]考向二 平面向量的坐标运算1.(2022黑龙江齐齐哈尔第一中学一模,3)已知向量a =(3,-2),b =(m ,1),若a ⊥b ,则a -3b = ( )A.(0,5)B.(5,1)C.(1,-5)D.(152,−5) 答案 C2.(2023届四川内江六中9月联考,1)已知向量a =(1,2),b =(1,1),若c =a +kb ,且b ⊥c ,则实数k =( )A.32B.−53C.53D.−32答案 D3.(2021云南统一检测一,7)已知向量a =(32,1),b =(−12,4),则 ( )A.a ∥(a -b )B.a ⊥(a -b )C.(a -b )∥(a +b )D.(a -b )⊥(a +b ) 答案 B4.(2018课标Ⅲ,13,5分)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ= . 答案 125.(2022合肥二模,13)已知向量AB ⃗⃗⃗⃗⃗ =(-1,2),BC ⃗⃗⃗⃗⃗ =(2t ,t +5),若A ,B ,C 三点共线,则t = . 答案 -16.(2021全国甲,14,5分)已知向量a =(3,1),b =(1,0),c =a +kb.若a ⊥c ,则k = . 答案 -1037.(2022河南中原名校4月联考,13)已知向量a =(-1,1),b =(-2,4),若a ∥c ,a ⊥(b +c ),则|c |= . 答案 3√28.(2023届河南安阳调研测试,13)设向量a =(m ,1),b =(1,2),且|a -b |2=|a |2-|b |2,则实数m = . 答案 39.(2019上海,9,5分)过曲线y 2=4x 的焦点F 并垂直于x 轴的直线分别与曲线y 2=4x 交于A 、B ,A 在B 上方,M 为抛物线上一点,OM ⃗⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +(λ-2)OB ⃗⃗⃗⃗⃗ ,则λ= . 答案 310.(2022湘豫名校4月联考,13)已知向量a =(-1,3),b =(2x ,-x ),其中x ∈R ,则|a -b |的最小值为 . 答案 √5综合篇考法一 平面向量的线性运算1.(2021贵州安顺模拟,5)如图,在正六边形ABCDEF 中,M 为DE 的中点,设AC ⃗⃗⃗⃗⃗ =a ,AF ⃗⃗⃗⃗⃗ =b ,则AM ⃗⃗⃗⃗⃗⃗ =( )A.54a -34b B.-34a +54b C.54a +34b D.34a +54b 答案 D2.(2022届江苏南通如皋调研,7)如图,已知OA =2,OB =2,OC =1,∠AOB =60°,∠BOC =90°,若OB ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOC ⃗⃗⃗⃗⃗ ,则x y= ( )A.√3B.12 C.√33D.23答案 C3.(2021皖江名校4月联考,10)在△ABC 中,AC ⊥AB ,AB =2,AC =1,点P ,M 是△ABC 所在平面内一点,AP ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |+2AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |,且满足|PM ⃗⃗⃗⃗⃗⃗ |=1,若AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,则2λ+μ的最小值是 ( )A.3+√2B.5C.1D.3−√2 答案 D4.(2023届河南名校诊断测试一,10)已知△ABC 中,BO ⃗⃗⃗⃗⃗ =2OC ⃗⃗⃗⃗⃗ ,过点O 的直线分别交射线AB ,AC 于不同的两点M ,N ,则△AMN 与△ABC 的面积之比的最小值为 ( )A.2√23B.49C.89 D.2答案 C5.(2022山西大同重点中学4月联考,14)在△ABC 中,若AD 是∠BAC 的平分线,且D 在边BC 上,则有ABAC =BDDC ,称之为三角形的内角平分线定理.已知在△ABC 中,AC =4,BC =6,AB =8,P 是△ABC 的内心,且AP ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则xy = . 答案8816.(2022昆明五华模拟,15)如图,在矩形ABCD 中,AB =4,AD =3,以CD 为直径的半圆上有一点P ,若AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为 .答案 737.(2017江苏,12,5分)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =mOA ⃗⃗⃗⃗⃗ +nOB ⃗⃗⃗⃗⃗ (m ,n ∈R ),则m +n = .答案 3考法二 向量共线问题1.(2021山西孝义二模,6)已知AB ⃗⃗⃗⃗⃗ =(-1,cos α),BC ⃗⃗⃗⃗⃗ =(2,0),CD ⃗⃗⃗⃗⃗ =(2,2sin α),若A ,B ,D 三点共线,则tan α=( )A.-2B.-12 C.12 D.2 答案 A2.(2022安徽蚌埠三模,11)如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A.1B.57C.1417D.56答案 C3.(2022江西九大名校3月联考,9)在△ABC 中,点D 在线段AC 上,且满足|AD |=13|AC |,点Q 为线段BD 上任意一点,若实数x ,y 满足AQ ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则1x+1y的最小值为 ( )A.4B.4√3C.8D.4+2√3 答案 D4.(2021江西上饶2月联考,10)在三角形ABC 中,E 、F 分别为AC 、AB 上的点,BE 与CF 交于点Q ,且AE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,延长AQ 交BC 于点D ,AQ ⃗⃗⃗⃗⃗ =λQD ⃗⃗⃗⃗⃗⃗ ,则λ的值为 ( ) A.3 B.4 C.5 D.6 答案 C5.(2022豫北名校联盟4月联考,14)如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外一点D ,若OC ⃗⃗⃗⃗⃗ =mOA⃗⃗⃗⃗⃗ +nOB ⃗⃗⃗⃗⃗ ,则m +n 的取值范围为 .答案 (-1,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.(2012·泰安模拟)在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形[答案] C[解析] AD →=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →, ∴AD →∥BC →,且|AD →|=2|BC →|, ∴ABCD 为梯形.故选C.2.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13 C .-13 D .-23 [答案] A[解析] ∵AD →=2DB →,∴CD →-CA →=2(CB →-CD →), ∴CD →=13CA →+23CB →.又∵CD →=13CA →+λCB →,∴λ=23.3.(2011·四川理,4)如图,正六边形ABCDEF 中,BA →+CD →+EF →=( )A .0 B.BE →C.AD →D.CF →[答案] D[解析] 本题主要考查向量的加法,原式=BA →+AF →+EF →=BF →+CB →=CF →,故选D.4.(文)已知向量a ,b 不共线,c =ka +b (k ∈R),d =a -b .如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向 [答案] D[解析] 考查向量相等及向量平行的条件. ∵c ∥d ,∴c =λd ,∴ka +b =λ(a -b ),∴⎩⎪⎨⎪⎧k =λ1=-λ,∴k =-1,λ=-1.故选D. (理)下列命题中真命题是( ) ①a ∥b ⇔存在唯一的实数λ,使得a =λb②a ∥b ⇔存在不全为0的实数λ1和λ2使λ1a +λ2b =0③a 与b 不共线⇔若λ1a +λ2b =0,则λ1=λ2=0 ④a 与b 不共线⇔不存在实数λ1、λ2,使得λ1a +λ2b =0 A .①或③ B .②或③ C .①或④ D .②或④[答案] B5.(2010·全国卷Ⅱ)△ABC 中,点D 在AB 上,CD 平分∠ACB ,若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( )A.13a +23bB.23a +13bC.35a +45bD.45a +35b [答案] B[解析] 由角平分线定理得|AD →||DB →|=21,即AD →=2DB →,即AC →+CD →=2(DC →+CB →), ∴3CD →=2CB →+CA →,∴CD →=23a +13b .6.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在( )A .△ABC 的内部B .AC 边所在直线上 C .AB 边所在直线上D .BC 边所在直线上 [答案] B[解析] 本题考查平面向量的共线问题,由CB →=λPA →+PB →得CB →-PB →=λPA →,∴CP →=λPA →.则CP →与PA →为共线向量,又CP →与PA →有一个公共点P ,∴C 、P 、A 三点共线,即点P 在直线AC 上.故选B.二、填空题 7.化简:(1)AB →-AD →-DC →=________ (2)(AB →-CD →)-(AC →-BD →)=________ [答案] CB →,0[解析] 运用三角形法则求和向量时,应“始终相接,始指向终”;求差向量时,应“同始连终,指向被减”.(1)AB →-AD →-DC →=DB →-DC →=CB →(2)解法1:(AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=(AB →+BD →)-(AC →+CD →)=AD →-AD →=0.解法2:(AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.8.若AB →=3a ,CD →=-5a ,且|AD →|=|BC →|,则四边形ABCD 的形状是________.[答案] 等腰梯形[解析] ∵AB →=3a ,CD →=-5a ,∴AB →=-35CD →,∴AB →∥CD →,且|AB →|≠|CD →|, ∴四边形ABCD 为梯形.又∵|AD →|=|BC →|,∴ABCD 为等腰梯形.三、解答题9.已知向量a =2e 1-3e 2,b =2e 1+3e 2,c =2e 1-9e 2,其中e 1,e 2为两个非零不共线向量.问:是否存在这样的实数λ,μ,使向量d =λa +μb 与c 共线?[分析] 运用向量共线的条件,确定是否存在实数k ,使是d =kc . [解析] d =λa +μb =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(3μ-3λ)e 2.要使c ∥d ,则应存在实数k ,使d =kc ,即(2λ+2μ)e 1+(3μ-3λ)e 2=k (2e 1-9e 2)=2ke 1-9ke 2,∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,∴λ=-2μ.故存在这样的实数λ,μ,满足λ=-2μ,就能使d 与c 共线.一、选择题1.(文)(2011·上海文,18)设A 1,A 2,A 3,A 4是平面上给定的4个不同点,则使MA 1→+MA 2→+MA 3→+MA 4→=0成立的点M 的个数为( )A .0B .1C .2D .4[答案] B[解析] 本题考查向量运算.设A 1A 2中点P ,A 3A 4中点Q ,则MA 1→+MA 2→=2MP →,MA 3→+MA 4→=2MQ →, ∴2MP →+2MQ →=0,即MP →=-MQ →,M 为PQ 中点,所以有且只有一个点适合条件.(理)(2011·上海理,17)设A 1,A 2,A 3,A 4,A 5是平面上给定的5个不同点,则使MA 1→+MA 2→+MA 3→+MA 4→+MA 5→=0成立的点M 的个数为( )A .0B .1C .5D .10[答案] B[解析] 本题考查向量基本概念以及重心的意义.重心的定义为:若O 为任意一点,M 为重心,则OM →=OA 1→+OA 2→+…+OA n→n ,只有重心满足条件,所有不等于重心的点有OP →=OM →+MP →,故只有该点是重心时才能为零向量,而重心只有一个,故满足条件的点只有一个.选B.2.(2012·营口一模)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直 [答案] A[解析] AD →+BE →+CF →=AB →+BD →+BC →+CE →+BF →-BC →=AB →+13BC →+BC →-23AC →-13AB →-BC →=23(AB →-AC →)+13BC →=23CB →+13BC →=-13BC →,故选A.二、填空题3.在△ABC 所在的平面内有一点P ,满足PA →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比是________.[答案] 23[解析] 由PA →+PB →+PC →=AB →,得PA →+PB →+BA →+PC →=0,即PC →=2AP →,所以点P 是CA 边上的三等分点,如图所示.故S △PBC S △ABC =PC AC =23.4.(2012·苏北四市联考)在△ABC 中,点M 满足MA →+MB →+MC →=0,若AB →+AC →+mAM →=0,则实数m 的值为______.[答案] -3[解析] 由MA →+MB →+MC →=0知M 为△ABC 的重心,设BC 的中点为D ,则有AB →+AC →=2AD →,而AM →=23AD →,故2AD →+23mAD →=0,∴m =-3.三、解答题5.如图所示,点E 、F 分别为四边形ABCD 的对角线AC 、BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.[解析] 如图所示,取AB 中点P ,连接EP 、FP .在△ABC 中,EP 是与BC 平行的中位线, ∴PE →=12BC →=12a .在△ABD 中,FP 是与AD 平行的中位线, ∴PF →=12AD →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF → =-12a -12b =-12(a +b ).6.设两个非零向量e 1,e 2不共线,已知AB →=2e 1+ke 2,CB →=e 1+3e 2,CD →=2e 1-e 2.若A ,B ,D 三点共线,试求k 的值.[解析] BD →=CD →-CB →=2e 1-e 2-(e 1+3e 2)=e 1-4e 2.若A ,B ,D 三点共线,则AB →∥BD →,从而存在唯一实数λ,使AB →=λBD →,即2e 1+ke 2=λ(e 1-4e 2),整理得(2-λ)e 1=-(k +4λ)e 2,∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧2-λ=0,k +4λ=0,解得⎩⎪⎨⎪⎧λ=2,k =-8.即k 的值为-8时,A ,B ,D 三点共线.7.如图,E 是平行四边形ABCD 边AD 上一点,且AE →=14AD →,F 为BE与AC 的交点.设AB →=a ,BC →=b ,若BF →=kBE →,AF →=hAC →,求k 、h 的值.[解析] AC →=AB →+BC →=a +b ,∴AF →=hAC →=ha +hb ,BF →=BA →+AF →=-a +ha +hb =(h -1)a +hb ,又BF →=kBE →=k (BA →+AE →)=k (-a +14b )=-ka +k 4b ,∴(h -1)a +hb =-ka +k4b ,∴⎩⎨⎧h -1=-k h =k 4,解得⎩⎪⎨⎪⎧k =45h =15.。