函数图像课件1
《函数》第09讲 函数的图像(1)
则函数y=f(x)· g(x)的图像可能是( A )
1.(2012· 四川)函数y=ax-a(a>0,且a≠1) 的图像可能是( B )
2.(2013· 十校联考)函数f(x)=lg(|x|-1)的 大致图像是 (B )
辨识函数的图像可以从以下方面入手:
2 x 2x 1, x 0, (3)∵y x 2 2x 1, x<0, 且函数为偶函数,先用
描点法作出[0,+∞)上的图像,再根据 对称性作出(-∞,0)上的图像,得图像 如图.
【练习】分别画出下列函数的图像:
(1) y=2x-1. (2)y=|x-2|(x+1).
(3)翻折变换
①y=f(x)
保留 x 轴上方图像
把 x 轴下方图像沿 x 轴翻折上去 y= |f(x)| ②y=f(x) .
保留 y 轴右侧的图像 把 y 轴右侧的图像沿 y 轴对称过去
y= f(|x|) .
【例1】画出下列函数的图像:
(1)y=|log2(x+1)|.
2x 1 (2)y x 1
1. 定义域 [ 左右位置
2. 值 域 [ 上下位置 3. 单调性 [ 升降趋势 4. 奇偶性 [ 图象对称 5. 周期性 [ 循环往复 6. 特殊点 [ 必经之路
]
] ] ] ] ]
函数的图像(1)
1
2 3
会作图 会识图
会用图
1.描点法作图 (1)确定函数的定义域; (2)化简函数的解析式; (3)讨论函数的性质即奇偶性、周期性、 单调性、最值(甚至变化趋势); (4)描点连线,画出函数的图像.
2.图像的变换
(1)平移变换 f(x)+k
f(x+h)
正弦函数图像课件
y=sinx
终边相同角的同一三角函数值相等
即: sin(x+2k)=sinx, kZ
x[0,2]
y=sinx
f (x 2k ) f (x) 利用图象平移
xR
y=sinx x[0,2]
y
y=sinx xR
1
-4 -3
-2
- o
-1
函数y=sinx, xR的图象
2
3
4
正弦曲线
5 6 x
3)作正弦函数的简图(在精确度要求不太高时)
y 1
(0,0)o
2
-1
( 2 ,1)
2
五点画图法
( ,0)
3 2
3
( 2 ,-1)
( 2 ,0)
2
x
五点法
x
3
0
2
2
2
0
1
0
-1
0
y=sinx
4)函数的图象变换
y x2
向右平移 一个单位
y
(x
1)2
向下平移 一个单位
y (x 1)2 1
y
o1
x
-1
四. 解题示范
例1:用五点法作函数y=1+sinx, [0,2]的图象
x
0
2
y=sinx 0
1
3
2
2
0
-1
0
1
2
1
y=1+sin
0
1
x
. 2
y=1+sinx, x[0,2]
1.
.
.
.
o
/2
3/2
作函数 y sin x , x [0,2 ] 的图象
《函数》数学PPT课件
经济领域中常见问题建模为函数关系
供需关系
在经济学中,供给和需求是两个重要的概念,它们之间的 关系可以用函数来表示。供给函数和需求函数的交点即为 市场均衡点。
生产成本与产量的关系
在制造业中,生产成本通常与产量有关。随着产量的增加 ,单位产品的成本可能会降低,这可以通过一个递减的函 数来表示。
投资回报与风险的关系
生活中常见问题建模为函数关系
路程、速度和时间的关系
s = vt,其中s是路程,v是速度,t是 时间。这是一个典型的线性函数关系 。
温度随时间的变化
在一天中,气温随时间变化而变化, 可以建立一个以时间为自变量、气温 为因变量的函数关系。
购物总价与数量的关系
总价 = 单价 × 数量。这也是一个线 性函数关系,可以通过函数图像来表 示。
三角函数定义
正弦、余弦、正切等函数 的定义域、值域及基本性 质。
三角函数图像
正弦、余弦、正切函数的 图像及其特点,如周期性 、振幅、相位等。
三角函数关系
同角三角函数关系式,如 平方关系、倒数关系、商 数关系等。
三角函数诱导公式和周期性质
诱导公式
通过角度的加减、倍角、半角等 变换,得到三角函数的诱导公式
当a>0时,二次函数有最小值,无最大值;当a<0时, 二次函数有最大值,无最小值
在实际问题中,可以通过二次函数的最值来解决最优化 问题
03
指数函数与对数函数
指数函数图像与性质
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
指数函数图像
当a>1时,图像在x轴上方,且随 着x的增大而增大;当0<a<1时, 图像在x轴上方,但随着x的增大而 减小。
函数图像ppt课件
03
描点法
根据函数表达式,在坐标 系中逐个描出对应的点(x, y),然后用平滑的曲线将 这些点连接起来。
计算法
利用数学软件或计算器, 输入函数表达式,自动生 成函数图像。
表格法
根据函数表达式和已知数 据,制作表格,然后在坐 标系中根据表格数据绘制 出函数图像。
函数图像的观察与分析
观察图像形状
通过观察函数的图像,可以初 步判断函数的类型(如一次函 数、二次函数、三角函数等)
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复合函数的图像
复合函数的定义与性质
总结词
理解复合函数的定义与性质是绘制和分 析其图像的基础。
VS
详细描述
复合函数是由两个或多个函数的组合而成 的函数。它具有一些特殊的性质,如复合 函数的导数、极限等。了解这些性质有助 于更好地绘制和分析复合函数的图像。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
二次函数的图像
二次函数的定义与性质
总结词
二次函数的定义、性质和 表达式
二次函数的定义
二次函数是指形式为 y=ax^2+bx+c(其中a、 b、c为常数,且a≠0)的 函数。
二次函数的性质
二次函数具有开口方向、 顶点、对称轴等性质,这 些性质决定了函数图像的 形状和位置。
复合函数图像的绘制
总结词
掌握绘制复合函数图像的方法是理解其性质 和应用的必要手段。
详细描述
绘制复合函数图像需要使用数学软件或绘图 工具,如Matlab、GeoGebra等。在绘制 过程中,需要注意函数的定义域、值域以及 函数的单调性、奇偶性等性质。
函数图像专题PPT课件图文
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
一次函数的图像(第1课时)同步课件
函数表达式法: 表示两个变量之间函数关系的式子称为函数表达式.
图像法: 在平面直角坐标系中,以函数的自变量的值为横坐标、对应的函数值为纵
坐标的点所组成的图形叫做这个函数的图像.
2.什么是一次函数?
一般地,形如y=kx+b(k、b 是常数,且k≠0)的函数,叫做一次函数,其中x是自变量,
y
y=-2x+3 5
解:
=+,
(2)
=-+ ,
∴
=
=
,
.
∴交点
坐标为( , )
y=x+2
4
3
2
1
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5
-1
-2
-3
-4
-5
x
新知巩固
2.已知一次函数y=x+2与y=-2x+3 ,
(3)求这两条直线与坐标轴所围成的图形面积.
在平面直角坐标系中描出相应的点;
③连线:顺次连接描出的各点.
5
4
3
2
1
-2 -1 O 1 2 3 4 5
-1
-2
-3
x
尝试与交流
仿照上述方法,在下图中画出y=-x+2的图像.
判断点(0,2)、(2,0)、(3,1)、(-1,3)是否在此函数图像上.
y
①列表:
x
··· -2
-1
0
1
2
···
y
···
3
3
3
平行
6. 直线y=2x+3与直线y=2x-1的位置关系是________.
5.4一次函数的图象(1)课件
——第一课时
浙教版 八年级上
情感态度和价值观目标
学习 目标 能力目标
知识目标
1.经历作图过程,归纳总结作函数 图象的一般步骤,发展学生的总结 概括能力.
2.已知函数的代数表达式作函数 的图象,培养学生数形结合的意 识和能力.
1.经历函数图象的作图过程,初 步了解作函数图象的一般步骤.
-1
3.连线
-2
-3
新教课学讲目解
标
4、观察y=2x与y=-3x的图象,它们有什么异同?你能得出一次
函数的图象特点吗?
相同点: 两图象都经过原点
不同点: 函数y=2x的图象经过第一、三象限,从左向右呈上 升状态,函数y=-3x的图象经过第二、四象限,从左 向右呈下降状态。
一次函数的图象特点:
y=2x (-2,-4) (-1,-2)...
y=2x+1 (-2,-3) (0,1)...
新教课学讲目解 3、画一个直角坐标系,并在直角坐标系中画
标
出这组点。
y
y y=2X+1
5
y=2x
7 6
4
5
3
2
4
1
3
-5 -4 -3 -2 -1 0 1 2 3 4 5 -1 -2 -3 -4 -5
x
2
1
-4 -3 -2 -1 0 1 2 3 4 5 x
s=25,这样把自变量t作为点的 50
横坐标,把函数s作为点的纵坐 25
标就得到点(3,25)
0
3 6 6.2
5
甲乙 12 12.5 t(s)
当t=6时,s=50,就得到点(6,50)……,所有这些点就组成 了这个函数的图象。
高中数学函数的图像ppt课件
真题透析 例 (2010 年高考湖南卷)函数 y=ax2+bx 与 y = logb x(ab≠0,|a|≠|b|)在同一直角坐标系中的图
a
像可能是( )
35
【解析】 从对数的底数入手进行讨论,再 结合各个选项的图像从抛物线对称轴的取值 范围进行判断,故选D. 【答案】 D 【名师点评】 (1)本题易出现以下错误:① 忽视 y= logb x 中底数的绝对值,误认为 a,b
(2)图像的左右平移,只体现出x的变化,与x 的系数无关;图像的上下平移,只与y的变化 有关.
19
识图 对于给定函数的图像,可从图像上下左右分布范 围,变化趋势,特殊点的坐标等方面进行判断, 必要时可借助解方程、解(证)不等式等手段进行 判断,未必非要写出函数的解析式进行判断.
20
例2
(2010年高考山东卷)函数y=2x-x2的图像
过点 P 且与 AB 垂直的截面面积记为 y,则 y=
12f(x)的大致图像是(
)
38
解析:选A.先从起始点排除B,D,再用验证 法,当点P为OA的中点时,截面面积大于大圆 面积的一半,即可判定A正确.
39
x+1,x∈[-1,0 2.已知 f(x)=x2+1,x∈[0,1] ,则下 列函数的图像错误的是( )
11
5.已知下列曲线: 以下编号为①②③④的四个方程 ① x- y=0;②|x|-|y|=0;③x-|y|=0; ④|x|-y=0. 请按曲线 A、B、C、D 的顺序,依次写出与 之对应的方程的编号________.
答案:④②①③
12
考点探究•挑战高考
考点突破
作图 1.熟悉基本初等函数的图像. 2.会通过函数的性质确定图像的形状:如奇偶 性→对称性;函数值的正负→x轴上方下方;渐 近线→变化趋势;过哪些特殊点、定点;极值、 最值等.
一次函数的图像(1) 课件
1 (B) m 3
(C) m > 1
(D)m < 1
4、若函数 y 2 x
m 2
为正比例函数,则m=(
-1
),
5、在正比例函数y=4x中, y随x的增大而( 增大 )。在 正比例函数
1 y x 3
中, y随的增大而( 减小 )。
6、任意写一个图象经过二、四象限的正比例函数的解 析式为 ( y=-6x )。
例函数的解析式为 y = 2x 。
达标测试 1.函数y=kx的图象经过点P(3,-1),则k的值为 (D) A .3 B.-3
1 C. 3 1 D.3
2.下列函数中,图象经过原点的为( C ) A.y=5x+1
x C.y=- 5
B.y=-5x-1
x 1 D.y= 5
3.如果函数y=(3m-1)x是正比例函数,且y随x的增 大而增大,那么m的取值范围是( A )
x y=-3x 0 0 -1 3 (-1.5,4.5) 满足
•
5 4
•
(-0.5,1.5)
3
•
• 0
2 1
-3
-2
-1
-1 1
2
3
x
议一议 ( 1 ) 满足关系式y=-3x的x,y所对应的点(x,y)是 否都在它的图象上? 在
( 2 ) 正比例函数y=-3x的图象上的点(x,y)都满足 它的关系式吗? 满足
y=3x增加的更快,因为 |k|值更大 1
2 • (2)正比例函数y=-0.5x和y=-4x中,随着x值的增
大y的值都减小了,其中哪一个减小得更快?你是
如何判断的? y=-4x减小的更快,因为|k|值更大
1.4.1-正弦函数、余弦函数的图像课件
课后作业
X
1.课本习题1.4A组第1题、B组第一题
2.预习三角函数的性质
提高题:当x∈[0,2π]时,求不等式
cos x 1 的解集.
y2
1 y1 2
O
π
5 2π x
-பைடு நூலகம் 3 2
23
0
,
3
U
5
3
,2
变式 当x∈[0,2π]时,求不等式
sin x 1 的解集.
y2
1
3pπ
π
2
2π
回顾(一)
分别指出 sin a , cos a , tan a 的三角函
数线? y PT
正弦线MP
A(1,0) 余弦线OM
-1
OM
xx
正切线AT
回顾:(二)
• 作函数图象的基本步骤?
作正弦函数 y=sinx (x∈R) 的图象
(一)先作出函数 y sin x, x 0,2 的图象
1、描点法
1)
三.用五点法作y=sinx , x∈[ π ,π ]的简
图 x
-π
π 2
0
π
2π
sin x 0 -1 0 1 0
y1
.
-π
π
2.
.
O -1
.
.
π πx
2
y
三、正弦函数y=sinx, x∈R的图象
1-
6
4
2
o
2
4
6
x
-1-
正弦曲线
-
-
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……,
2
2
-
1
3
精美获奖课件54《一次函数的图像》课件(1)
精美获奖课件54《一次函数的图像》课件一、教学内容本节课的内容为《一次函数的图像》,选自人教版八年级数学下册第十一章第一节。
详细内容包括:一次函数的定义、图像及其性质;一次函数图像的绘制方法;一次函数图像在实际问题中的应用。
二、教学目标1. 让学生掌握一次函数的定义、图像及其性质,能熟练绘制一次函数的图像。
2. 培养学生运用一次函数图像解决实际问题的能力,提高学生的数学思维。
3. 培养学生合作交流、动手实践的能力。
三、教学难点与重点教学难点:一次函数图像的绘制方法,一次函数图像在实际问题中的应用。
教学重点:一次函数的定义、图像及其性质。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:直尺、圆规、量角器。
五、教学过程1. 导入:通过展示一次函数在实际生活中的应用实例,激发学生兴趣,引出本节课的主题。
2. 新课导入:(1)讲解一次函数的定义,引导学生理解并掌握。
(2)通过例题讲解,让学生学会一次函数图像的绘制方法。
3. 随堂练习:(1)让学生独立绘制一次函数的图像。
4. 应用拓展:(1)展示一次函数在实际问题中的应用,引导学生学会运用。
(2)分组讨论,让学生互相交流,提高解决问题的能力。
(1)让学生回顾本节课所学内容,加深对一次函数的认识。
六、板书设计1. 定义:一次函数的定义。
2. 图像:一次函数的图像及其性质。
3. 绘制方法:一次函数图像的绘制方法。
4. 应用:一次函数在实际问题中的应用。
七、作业设计1. 作业题目:情境一:小明骑自行车去学校,速度为4km/h,行驶1小时后,距离学校还有6km。
情境二:小华买了一个玩具车,原价100元,每过一年,价值降低10元。
2. 答案:(1)略。
(2)情境一:y = 4x + 10;情境二:y = 10x + 100。
八、课后反思及拓展延伸1. 反思:本节课学生对一次函数的定义和图像绘制方法掌握较好,但在实际问题中的应用还需加强。
2. 拓展延伸:(1)引导学生探究一次函数图像的平移、伸缩变换。
高中阶段常见函数图像(高清)(1)
图像
函数表达式
y ln x x
y ln x x
函数极值点
1, 1
y x ln x
函数极值点
1 e
,
1 e
y ln x x
函数极值点
e,
1 e
y x ln x
函数极值点
e, e
y ex x
过定点
0,1
y ex x
函数极值点
0,1
y ex x
函数极值点
1, e
y ln x x 1
函数极值点
e, e
ln x x 1
y ln x 1 ex
函数极值点
0,1 ln x 1 ex
函数表达式
y sin x
y ex x 1
函数极值点
e,
1 e
ex x 1
y ex x 1
过定点
0,1
ex 1 x
y ln 1 1 1 xx
函数极值点
函数表达式
y x2 ex
图像
y
x2 ex
y
ex x2
y ex sin x y ex sin x
4 / 41
y ex sin x y ex sin x
y
sin ex
x
y ex cos x
函数表达式
图像
函数表达式
图像
y ex cos x
y ex cos x
y
cos ex
x
y x2 sin x
y xex
函数极值点
1,
1 e
y
x ex
函数极值点
1,
1 e
图像
1 / 41
函数表达式
函数图像课件 (1)
A.④①②③ C.③④②①
B.①④③② D.①④②③
解析答案
考向三 借助动点变化探究函数图象 例 5:(2015· 全国卷Ⅱ)如图,长方形 ABCD 的边 AB=2,BC=1,O 是 AB 的 中点, 点 P 沿着边 BC, CD 与 DA 运动, 记∠BOP=x,将动点 P 到 A,B 两点距 离之和表示为 x 的函数 f(x),则 y=f(x)的图象大致为( )
函数图像及应用
知识梳理 1.掌握基本初等函数的图象特征,能熟练运用基本初 等函数的图象解决问题. 2.掌握图象的作法:描点法和图象变换. 3.会运用函数的图象理解和研究函数的性质.
利用描点法作函数图象
其基本步骤是列表、描点、连线,首先:①确定函数的 定 义 域 ; ② 化 简 函 数 ________ ; ③ 讨 论 函 数 的 性 质 (___________);其次:列表(尤其注意特殊点、零点、最大 值点、最小值点、与坐标轴的交点);最后:描点,连线.
x R ,满足f (4) f (1) 0, 题3:偶函数 f ( x ) , 且在区间[0,3]和 (3, ) 上分别递减和递增, (, 4) (1, 0) (1,. 4) 则不等式xf ( x) 0 的解集为
变题:“偶函数”变为“奇函数”,改 0,3 为 0,3 ,则不等式 xf ( x) 0 的解集 为 .
识图
函数图象的识别是高考的一个热点内容, 主要考查以下 几个问题:(1)知式选图;(2)知图选式;(3)借助动点变化探 究函数图象. 考向 1 知式选图
【例 3】 (2015· 浙江卷)函数 ≤π 且 x≠0)的图象可能为( )
1 f(x)=x-x cosx(-π
≤x
【解析】
《函数的图像》PPT课件
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
x/分 O 10 20 30 40 50
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
A.
B.
C.
D.
3.李华和弟弟进行百米赛跑,李华比弟弟跑得快,如果两人同 时起跑,李华肯定赢.现在李华让弟弟先跑若干米,图中,分 别表示两人的路程与李华追赶弟弟的时间的关系,由图中信息
可知,下列结论中正确的是( B ) .
A.李华先到达终点 B.弟弟的速度是8米/秒 C.弟弟先跑了10米 D.弟弟的速度是10米/秒
s/米
t/秒
中考实战
甲,乙两同学骑自行车从A地沿同一条路到B地,已知
乙比甲先出发.他们离出发地的距离s/km和骑行时间
t/h之间的函数关系如图所示,给出下列说法:
A.他们都骑了20km;
(1)注水、加热和淋浴分别用了多少 时间? (2)水箱的最大贮水量是多少升? (3)当淋浴开始后15min,水箱中还 有水多少升?
2.小芳今天到学校参加初中毕业会考,从家里出 发走10分到离家500米的地方吃早餐,吃早餐用 了20分;再用10分赶到离家1000米的学校参加考 试.下列图象中,能反映这一过程的是 ( D ).
3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数 轴,水平的一条叫做x轴或横轴,习惯上取向 右 的方向为正方 向, 铅直 的一条叫做 y轴 或 纵轴,取向上的方向为正方向,这就 组成了平面直角坐标系.
八下数学:函数的图像PPT课件
2 2.5 4 6.25
3… 9…
用平滑曲线去连接画 出的点
2 3 4 5x
这样我们就得到了一幅表示S与x关系的图. 图中每个点都代表x的值与S的值的一种对应关系。
如点(2,4)表示x=2时S=4。
归纳
函数的图象的意义:
一般地,对于一个函数,如果把自变量 与函数的每对对应值分别作为点的横坐标和 纵坐标,那么坐标平面内由这些点组 成的图形就是这个函数的图象。
函数图象可以数形结合地研究函数,给我们带来便利。
归纳
函数图象的画法:
1、列表
列出自变量与函数的对应值表。 注意:自变量的值(满足取值范围),并取适当.
2、描点 3、连线
建立直角坐标系,以自变量的值为横坐标, 相应的函数值为纵坐标,描出表格中数值 对应的各点 按照横坐标从小到大的顺序把描出的点用 平滑曲线依次连接起来
你能解释x>0这个范围是怎样确定的吗?
从式子s = x2来看,边长x越大,面积 s 也越大。能不能 用图象直观的反映出来呢?
1、列表: 2、描点:
3、连线:
S = x2(x>0)
x0
0.5
1 1.5
s 0 0.25
1 2.25
s
5
4
3
用空心圈表示不在曲
线的点
2
1
-5 -4 -3 -2 -1 0
1
-1
巩固
1、画出函数 y = x + 0.5 的图象 解: 1、列表
x … -3 -2
-1
0 1 2 3…
y … -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 …
2、描点 3、连线
请画出函数y= x+0.5的图象
人教版数学八年级下册函数的图像(第1课时)教学课件
停留了5 min;③甲、乙两组同时到达景点;④相遇后,乙组的速度
小于甲组的速度.根据图象信息,以上说法正确的
有 ①②
.
s/km
55
乙 甲
t/min O 10 20 30 40 50 60 70
第二十九页,共三十三页。
课堂检测 拓广探索题
某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)
由小到的大顺序,把所描出的各
第十二页,共三十三页。
巩固练习
(1)在所给的平面直角坐标系中画出函数 y 1 x的图象.
2
(先填写下表,再描点、连线)
x … -3 -2 -1 0 1 2 3 …
y
…
3 2
-1 1
2
பைடு நூலகம்
0
1 2
1
3
2…
(2)点P(5,2)
不在 该函数的图象
y 3
(tú xiànɡ)上(填“在”或“不在”). 2
第四页,共三十三页。
探究新知
知识点 1 函数(hánshù)的图象
写出正方形的面积S与边长x的函数解析式,并确定 (quèdìng)自变量x的取值范围.
S=x2 (x>0)
x 0 0.5 1 1.5 2 2.5 3 3.5 4
S 0 0.25 1 2.25 4 6.25 9 12.25 16
第五页,共三十三页。
第二十二页,共三十三页。
连接(liánjiē)中考
甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后
,乙车才沿相同路线行驶.乙车先到达(dàodá)B地并停留1h后,再以原
速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.某人早上进行登山活动,从山脚到山顶休息一会儿又 沿原路返回,若用横轴表示时间t,纵轴表示与山脚距离 D h,那么下列四个图中反映全程h与t的关系图是( )
3.小芳今天到学校参加初中毕业会考,从 家里出发走10分到离家500米的地方吃早餐,吃 早餐用了20分;再用10分赶到离家1000米的学 校参加考试.下列图象中,能反映这一过程的 是( D ) .
y/米 y/米 y/米 y/米 1500 1500 1500 1500
1000
1000
10001000来自500500500
500
x/分 O 10 20 30 40 50 O 10 20 30 40 50
x/分 O 10 20 30 40 50
x/分 O 10 20 30 40 50
x/分
A
B
C
D
4.某装水的水池按一定的速度放掉水池的一 半后,停止放水并立即按一定的速度注水,水 池注满后,停止注水,又立即按一定的速度放 完水池的水。若水池的存水量为v(立方米), 放水或注水的时间为t(分钟),则v与t的关 系的大致图象只能是( ) A
5.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘 米,则下列3幅图象中能大致刻画出这枝蜡烛点燃 后剩下的长度h(厘米)与点燃时间t之间的函数关 系的是( C ).
巩固 1、画出函数 y = x + 0.5 的图象
解: 1、列表
x … -3 -2 -1 0 1 2 3
… …
y … -2.5 -1.5
因为过(a,0)画y轴平行线与图形曲线只有一个交 点。即x=a时,y有唯一的值与其对应。符合函数意 义. 图(2)曲线不表示y是x的函数. 因为过点(a,0)画y轴平行线,与图中曲线有三个 交点,即x=a时,y有三个值与其对应,不符合函数 意义.
Ⅲ.随堂练习 P104练习
Ⅳ.课时小结
本节通过两个活动,学会了分析图象信息,解答有 关问题.通过例题学会了用描点法画出函数图象,这 样我们又一次利用了数形结合的思想.
x y
… …
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
… …
根据表中数值描点(x,y),并用光滑曲线连结这些点.
从函数图象可以看出,直线从左向右上升,即当x由小变 大时,y=x+0.5随之增大.
6 (2)y= (x>0) x
自变量的取值范围x>0 列表:
x y
… 0.5 1 1.5 2 2.5 3 2.4 … 12 6 4
2.25 4 6.25 9
如果我们在直角坐标系中,将你所填表格中的自变量x 及对应的函数值S当作一个点的横坐标与纵坐标,即可在 坐标系中得到一些点。
x S=x2 (x>0)
但 同 实 时 际 表根 … 0 0.25 1 2.25 4 6.25 9 上 示据 我 描 与 们 S 出 9 描 的 2 的 S=x (x>0) 出 对点 的 应想 6.25 点 关象 只 出 用空心圈表 系 4 能 的其 示不在曲线 是 2.25 他 点 上的点 有 有点 1 限 0.25 的 无 0 11325 3 数位 x多 2 2 2 个 个置
3、图象法:直观地反映了函数随 自变量的变化而变化的规律。
• 例 一个水库的水位在最近5h内持续上涨。下表记录 了这5h内6个时间点的水位高度,其中t表示时间,y 表示水位高度。 (1)在平面直角坐标系中描出表中数据对应的点,这 些点是否在一条直线上?由此你能发现水位变化有什 么规律吗? (2)水位高度y是否为时间t的函数?如果是,试写出 一个符合表中数据的函数解析式,并画出这个函数的 图象。这个函数能表示水位的变化规律吗? (3)据估计这种上涨规律还会持续2h,预测再过2h水位 高度将为多少米?
二、自主探究
我们先来思考这样一个问题:
正方形的边长x与面积S的函数关系式为 其中自变量x的取值范围是
sx,
2
x>0
。
你能解释x>0这个范围是怎样确定的吗? 因为x表示的实际含义是正方形的边 长,边长只能为正。
计算并填写下表: x 0 0.5 1 1.5 2 2.5 3 S=x2(x>0) 0 0.25 1
t/h y/m
0 3
1 3.3
2 3.6
3 3.9
4 4.2
5 4.5
(二).小明从家里出发,外出散步,到一个公共阅 报栏前看了一会报后,继续散步了一段时间,然后 回家.下面的图描述了小明在散步过程中离家的距 离s(米)与散步所用时间t(分)之间的函数关系. 请你由图具体说明小明散步的情况.
解:
小明先走了约3分钟, 到达离家250米处 的一个阅报栏前看 了5分钟报,又向前 走了2分钟,到达离 家450米处返回, 走了6分钟到家。
3 4 … 2 1.5 …
据表中数值描点(x, y)并用光滑曲线连结这些点,就得到图象.
从函数图象可以看出,曲线从左向右下降,即当x由小变大 6 随之减小. 时, y= x
我们来总结归纳一下描点法画函数图象的一般步骤
第一步:列表.在自变量取值范围内选定一些值.通过 函数关系式求出对应函数值列成表格. 第二步:描点.在直角坐标系中,以自变量的值为横 坐标,相应函数值为纵坐标,描出表中对应各点. 第三步:连线.按照坐标由小到大的顺序把所有点用 平滑曲线连结起来.
八年级 数学
第十一章 函数
14.1.3 函数的图象1
课堂练习
┅ ┅
6 1、作出函数y= x (x>0) 的图象。
解(1)列表: (2)描点: (3)连线:
X y
┅ ┅
0.5 12
1 6
1.5 4
2 3
2.5 2.4
3 2
3.5 1.7
4 1.5
5 1.2
6 1
归纳 表示函数关系的方法:
1、解析法:准确地反映了函数与 自变量之间的数量关系。 2、列表法:具体地反映了自变量 与函数的数值对应关系。
0 0.5 1 1.5 2 2.5 3
…
x s
这样我们就得到了一幅表示S与x关系的图. 图中每个点都代表x的值与S的值的一种对应关系。 如点(2,4)表示x=2时 S=4。
八年级 数学
第十一章 函数的图象 第十四章 函数
函数的图象 一般的,对于一个函数,如果 把 自变量 与函数的每对对应值分别 作为点的横、纵坐标,那么坐标平 面内由这些 点组成的图形,就是这 个函数的图象。
上图中的曲线即为函数
sx
2
(x>0)的图象.
函数图象可以数形结合地研究函数,给我们带来便利。
活动一
下图是自动测温仪记录的图象,它反映了北京的春季某
天气温T如何随时间t的变化而变化。你从图象中得到了哪
些信息?
T/℃ 8
-3
0
4
14 时间
24
t/时
横坐标表示 时间 ,纵坐标表示 温度 温度T 随 时间t 的变化而变化?
尝试练习: 课本P103思考题。
解答 解:1.由题意可知,开始时壶内有一定量水,最终漏 完,即开始时间z=0时,壶底水面高y≠0.最终漏完即 时间小到某一值时y=0. 故(1)图错. 又因为壶内水面高低影响水的流速,开始漏得快,逐 渐慢下来. 所以(3)图更适合表示这个函数关系.
2.图(1)曲线表示y是x的函数.
北京的春季某天气温 T 随时间 如图所示:
t 变化而变化的规律
1.哪个时间温度最高?是多少度? 2.哪个时间温度最低?是多少度? 3.什么时间段温度在下降?什么时间段温度 在上升? 5. x轴的交点表示什么? 4.曲线与 温度在零度以下的时间长呢?还是在零度以 上的时间长?
T/℃
8
O
4
14
3
24
从家到菜地 从玉米地回家 从菜地到玉米地
y/千 米
2
1.1
o
15 25
37
55
80
从玉米地回家
从家到菜地 从菜地到玉米地 给玉米 地锄草
在菜地浇水
y/千 米
2
1.1
o
15
25
37
55
80
x/分
你能回答下列问题了吗?
1.从家到菜地用了多少时间?
千 米
2
菜地离小明家有多远?
2.小明给菜地浇水用了多少 时间?
列表 2、画函数图象的步骤: 描点 连线
七、作业
• 必做:课本P107第7题。
• 思考:课本P103“思考1”。
例:在下列式子中,对于x的每个确定的值。y有唯一 的对应值,即y是x的函数.请画出这些函数的图象。
(1)y=x+0.5
解:
6 (2)y= (x>0) x
(1)y=x+0.5
x取值范围是全体实数值, 列表如下:
1.1
o
15 25
37
55
80
x/分
菜地离玉米地有多远?
3.从菜地到玉米地用了多少时间?
4.小明给玉米地锄草用了多少时间? 5.玉米地离家有多远? 小明从玉米地回家的平均速度是多少?
(一)、选择题: 1.如果A、B两人在一次百米赛跑中,路程s(米) 与赛跑的时间t(秒)的关系如图所示,则下列说 法正确的是( C ) (A) A比B先出发 (B) A、B两人的速度相同 (C) A先到达终点 (D) B比A跑的路程多
s/km
20
乙 甲 A.1个 B.2个
O
0.5
1
2
2.5
t/h
C.3个
D.4个
龟兔赛跑
领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉, 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但已 经来不及了,乌龟先到达了终点………现在用 S 1和 S 2 分别表示乌龟、兔子所走的路程,t为时间,则下列 图象中,能够表示S 和t之间的函数关系式的是(C )