5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
合集下载
5.4.1 二维柯西不等式 课件(人教A版选修4-5)
(3) 已知a, b都是正实数,且a +b =1,求证:
1 1 4 a b
例2 (1) 已知2 x y 1, 求x y 的最小值;
2 2
( 2) 已知x y 4, 求3 x 4 y的最大值,最小值.
2 2
(3) 求函数 y 5 x 1 10 2 x 的最大值.
例3 设a , b, c , d R, 证明 : a b c d (a c ) (b d )
2 2 2 2 2 2
观 察
y
P1(a,b)
y P1(a,b) 0
0
P2(-c,-d) x
x P2(c,d)
根据两点间距离公式以及三角形的 边长关系有:
a b c d (a c ) (b d )
2 2 2 2
向量形式:
设 (a, b), (c, d ) 2 2 2 2 则 | | a b , | | c d ac bd 柯西不等式可化为: | | | || |
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2 +b2)(c2 +d2)≥(ac +bd)2 当且仅当ad =bc时,等号成立. 二维形式的柯西不等式的变式: 你能证 明吗?
(1) a b c d ac bd
2 2 2 2
( 2) a b c d ac bd
(x1 x2 ) ( y1 y2 )
2
2
作业 补充:
1.求函数y 2 1 x 2 x 1 的最大值.
2.已知x , y , z R, 且x y z 8, x y z 24, 求证 :
1 1 4 a b
例2 (1) 已知2 x y 1, 求x y 的最小值;
2 2
( 2) 已知x y 4, 求3 x 4 y的最大值,最小值.
2 2
(3) 求函数 y 5 x 1 10 2 x 的最大值.
例3 设a , b, c , d R, 证明 : a b c d (a c ) (b d )
2 2 2 2 2 2
观 察
y
P1(a,b)
y P1(a,b) 0
0
P2(-c,-d) x
x P2(c,d)
根据两点间距离公式以及三角形的 边长关系有:
a b c d (a c ) (b d )
2 2 2 2
向量形式:
设 (a, b), (c, d ) 2 2 2 2 则 | | a b , | | c d ac bd 柯西不等式可化为: | | | || |
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2 +b2)(c2 +d2)≥(ac +bd)2 当且仅当ad =bc时,等号成立. 二维形式的柯西不等式的变式: 你能证 明吗?
(1) a b c d ac bd
2 2 2 2
( 2) a b c d ac bd
(x1 x2 ) ( y1 y2 )
2
2
作业 补充:
1.求函数y 2 1 x 2 x 1 的最大值.
2.已知x , y , z R, 且x y z 8, x y z 24, 求证 :
5.4.1 二维柯西不等式 课件(人教A版选修4-5)
2 2 2 2
向量形式:
设 (a, b), (c, d ) 2 2 2 2 则 | | a b , | | c d ac bd 柯西不等式可化为: | | | || |
2 2 2 2 2
2
思考:一般地, 如图所示,结论是什么?
定理3(二维形式的三角形不等式) ( x1 x3 ) ( y1 y3 ) ( x2 x3 ) ( y2 y3 )
2 2 2 2
( x1 x2 )2 ( y1 y2 )2 例4 设 , , 为平面上的向量, 则
(x1 x2 ) ( y1 y2 )
2
2
作业 补充:
1.求函数y 2 1 x 2 x 1 的最大值.
2.已知x , y , z R, 且x y z 8, x y z 24, 求证 :
2 2 2
4 4 4 x 4, y 4, z 4. 3 3 3 2 2 2 2 2 2 3. 求证: x y y zy z x z 3 xz
例3 设a , b, c , d R, 证明 : a b c d (a c ) (b d )
2 2 2 2 2 2
观 察
y
P1(a,b)
y P1(a,b) 0
0
P2(-c,-d) x
x P2(c,d)
根据两点间距离公式以及三角形的 边长关系有:
a b c d (a c ) (b d )
(3) a b c d ac bd (4)柯西不等式的向量形式 . (5)二维形式的三角形不等式
向量形式:
设 (a, b), (c, d ) 2 2 2 2 则 | | a b , | | c d ac bd 柯西不等式可化为: | | | || |
2 2 2 2 2
2
思考:一般地, 如图所示,结论是什么?
定理3(二维形式的三角形不等式) ( x1 x3 ) ( y1 y3 ) ( x2 x3 ) ( y2 y3 )
2 2 2 2
( x1 x2 )2 ( y1 y2 )2 例4 设 , , 为平面上的向量, 则
(x1 x2 ) ( y1 y2 )
2
2
作业 补充:
1.求函数y 2 1 x 2 x 1 的最大值.
2.已知x , y , z R, 且x y z 8, x y z 24, 求证 :
2 2 2
4 4 4 x 4, y 4, z 4. 3 3 3 2 2 2 2 2 2 3. 求证: x y y zy z x z 3 xz
例3 设a , b, c , d R, 证明 : a b c d (a c ) (b d )
2 2 2 2 2 2
观 察
y
P1(a,b)
y P1(a,b) 0
0
P2(-c,-d) x
x P2(c,d)
根据两点间距离公式以及三角形的 边长关系有:
a b c d (a c ) (b d )
(3) a b c d ac bd (4)柯西不等式的向量形式 . (5)二维形式的三角形不等式
5.4一般形式的柯西不等式 课件(人教A版选修4-5)
1 xn
(1 x 1 1 x 2 1 x n ) ( xn
2
1 x1
x2
2
1 x2
x2 1 x2
1 xn
) ≥ ( 1 x1 xn 1 xn
2
x1 1 x1
1 x2
1 xn
) ( x1 x 2 x n ) 1
探究 :从平面向量的几何背景能得到
≥
,
将平面向量的坐标代入,化简后得二维形式的柯西不 等 式 : ( a 12 a 22 ) ( b12 b 22 ) ≥ ( a 1 b1 a 2 b 2 ) 2 , 当 且 仅 当
a 1 b 2 a 2 b1 时,等号成立 . 类似地,从空间向量的几何 背景也能得到 ≥ ,将空间向量的坐标代入,
2
x1
2
1 x1
x2
2
1 x2
xn
2
1 xn
≥
1 n1
补充练习
补充练习: 1.已知实数 a , b , c , d , e 满足 a b c d e 8,
a b c d e 16, 求 e
2 2 2 2 2
的取值范围.
1 4 9 z x y
(a1 a2 an )(b1 b2 bn ) ≥ (a1b1 a2b2 anbb )
2 2 2 2 2 2 2
当且仅当 b i 0 ( i 1 , 2 , , n )或存在一个数
k , 使得 a i kb i ( i 1 , 2 , , n )时 , 等号成立 。
5.4.1 二维柯西不等式 课件(人教A版选修4-5)
2
2
ห้องสมุดไป่ตู้
思考:一般地, 如图所示,结论是什么?
定 理 3( 二 维 形 式 的 三 角 形 不 等 式 ) ( x 1 x 3 ) ( y1 y 3 )
2 2
( x 2 x3 ) ( y2 y3 )
2
2
( x 1 x 2 ) ( y1 y 2 ) 例 4 设 , , 为 平 面 上 的 向 量 ,则 等 号 当 且 仅 当 - 与 - 同 向 时 成 立 .
y zy z
2 2
4 3
x 4,
2 2
4 3
z 4.
x z
2 2
3. 求 证 : x y
3 xz
例 3 设 a , b, c, d R , 证 明 : a b
2 2
c d
2
2
(a c ) (b d )
2
2
观 察
y
P1(a,b)
y P1(a,b) 0
0
P2(-c,-d) x
x P2(c,d)
根据两点间距离公式以及三角形的 边长关系有:
a b
2 2
c d
2
2
(a c ) (b d )
ac bd
向量形式: 设 ( a , b ), ( c , d ) 2 2 则 | | a b , | | ac bd
c d
2
2
柯 西 不 等 式 可 化 为 : | | | | | |
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2 +b2)(c2 +d2)≥(ac +bd)2 当且仅当ad =bc时,等号成立. 二维形式的柯西不等式的变式:
2
ห้องสมุดไป่ตู้
思考:一般地, 如图所示,结论是什么?
定 理 3( 二 维 形 式 的 三 角 形 不 等 式 ) ( x 1 x 3 ) ( y1 y 3 )
2 2
( x 2 x3 ) ( y2 y3 )
2
2
( x 1 x 2 ) ( y1 y 2 ) 例 4 设 , , 为 平 面 上 的 向 量 ,则 等 号 当 且 仅 当 - 与 - 同 向 时 成 立 .
y zy z
2 2
4 3
x 4,
2 2
4 3
z 4.
x z
2 2
3. 求 证 : x y
3 xz
例 3 设 a , b, c, d R , 证 明 : a b
2 2
c d
2
2
(a c ) (b d )
2
2
观 察
y
P1(a,b)
y P1(a,b) 0
0
P2(-c,-d) x
x P2(c,d)
根据两点间距离公式以及三角形的 边长关系有:
a b
2 2
c d
2
2
(a c ) (b d )
ac bd
向量形式: 设 ( a , b ), ( c , d ) 2 2 则 | | a b , | | ac bd
c d
2
2
柯 西 不 等 式 可 化 为 : | | | | | |
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2 +b2)(c2 +d2)≥(ac +bd)2 当且仅当ad =bc时,等号成立. 二维形式的柯西不等式的变式:
高中数学第三章柯西不等式与排序不等式本讲整合课件新人教A版选修4_5
本讲整合
答案:①三维形式的柯西不等式 ②一般形式的柯西不等式 ③乱序和 ④顺序和 ⑤向量形式 ⑥三角不等式
专题一
专题二
专题一:柯西不等式的应用 1.柯西不等式的一般形式为(������12 + ������22+…+���������2���)(������12 + ������22+…+���������2���) ≥(a1b1+a2b2+…+anbn)2,其中ai,bi∈R(i=1,2,…,n).该不等式的形式 简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困 难的不等式的证明问题迎刃而解,也可以用来解决最值问题. 2.利用柯西不等式证明其他不等式的关键是构造两组数,并向着 柯西不等式的形式进行转化,运用时要注意体会拼凑和变形技巧. 3.利用柯西不等式证明不等式,特别是求最值时要注意等号是否 成立.
a3+b3+c3≤������52+������2������5
+
������5+������5 2������2
+
������5+������5 2������2
(当且仅当 a=b=c 时,等号成立).
专题一
专题二
例4设a1,a2,a3,a4,a5是互不相同的正整数,
求
M=a1+���2���22
专题一
专题二
例
1
已知
x,y,z
均为正数,求证
3 3
1+1+1
������ ������ ������
≤
1 ������ 2
+
1 ������ 2
答案:①三维形式的柯西不等式 ②一般形式的柯西不等式 ③乱序和 ④顺序和 ⑤向量形式 ⑥三角不等式
专题一
专题二
专题一:柯西不等式的应用 1.柯西不等式的一般形式为(������12 + ������22+…+���������2���)(������12 + ������22+…+���������2���) ≥(a1b1+a2b2+…+anbn)2,其中ai,bi∈R(i=1,2,…,n).该不等式的形式 简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困 难的不等式的证明问题迎刃而解,也可以用来解决最值问题. 2.利用柯西不等式证明其他不等式的关键是构造两组数,并向着 柯西不等式的形式进行转化,运用时要注意体会拼凑和变形技巧. 3.利用柯西不等式证明不等式,特别是求最值时要注意等号是否 成立.
a3+b3+c3≤������52+������2������5
+
������5+������5 2������2
+
������5+������5 2������2
(当且仅当 a=b=c 时,等号成立).
专题一
专题二
例4设a1,a2,a3,a4,a5是互不相同的正整数,
求
M=a1+���2���22
专题一
专题二
例
1
已知
x,y,z
均为正数,求证
3 3
1+1+1
������ ������ ������
≤
1 ������ 2
+
1 ������ 2
5.4二维形式的柯西不等式1 课件(人教A版选修4-5)
1 1 1 2 ≥ a b bc ca 1 1 1 9 ab bc ca 2 2 2 9 ≥ ab bc ca abc a,b,c 各不相等, 等号不可能成立,从而原不等式成立。
y
P ( x1 , y1 ) 1
y
P ( x1 , y1 ) 1
| y1 - y2 |
x
P2 ( x2 , y2 )
O
这个图中有什么 不等关系?
P ( x2 , y2 ) 2
O
| x1 - x2 |
x
柯西不等式的应用举例: 思考 2.已知 4 x 2 9 y 2 36 ,求 x 2 y 的最大值.
二维形式的柯西不等式
有些不等式不仅形式优美而且具有重要的应用价值, 人们称它们为经典不等式. 如均值不等式: a1 a2 an ≥ n a1a2 an (ai R , i 1, 2, , n) . n 本节,我们来学习数学上两个有名的经典不等式:柯 西不等式与排序不等式,知道它的意义、背景、证明方法 及其应用,感受数学的美妙,提高数学素养.
你能简明地写出这个定理的证明?
运用这个定理,我们可以解决以前感觉棘手的问题. 1 1 思考:设 a, b R , a b 1, 求证: ≥ 4 . a b
思考解答
变形
运用这个定理,我们可以解决以前感觉棘手的问题. 1 1 思考 1:设 a, b R , a b 1, 求证: ≥ 4 . a b 证明:由于 a , b R ,根据柯西不等式,得 1 1 1 1 2 (a b)( ) ≥ ( a b ) 4 a b a b 又 a b 1, 1 1 ∴ ≥4 a b
5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
1 1 4 ∴ a b bc a c
例6:若 a, b, c R
a b c 3 求证: bc ca ab 2
分析:左端变形
a b c 1 1 1 bc ca ab
1 1 1 (a b c)( ) bc ca ab
9 ∴只需证此式 2
3 3 3 2 2 2
练习
3.设a1 , a2 ,..., an为正数,求证 a1a2 a2 a3 a3 a1 a1 a2 a3 . a3 a1 a2
练习
4.设a1 , a2 ,..., an为正数,试分别用柯西 不等式与排序不等式证明 a a a a ... a1 a2 ... an . a2 a3 an a1
( x1 y1 ) 2 ( x2 y2 ) 2 ... ( xn yn ) 2
( xi , yi R, i 1,2,..., n).
例1 已知 a1 , a2 , a3 ,..., an 都是实数,求证:
1 2 2 2 2 (a1 a2 ... an ) a1 a2 ... an . n
1 1 4 a b
注意应用公式: 1 1 ( a b )( ) 4 a b
练习:
1.已知2x 3 y 6,
2 2
求证x 2 y 11 2.已知a b 1,
2 2
求证|a cos b sin | 1
作业
第37页,第1,5,6题
二 一般形式的 柯西不等式
二维形式的柯西不等式): (a2+b2)(c2+d2)≥(ac+bd)2
三维形式的柯西不等式):
(a a a ) (b b b )
5.4.1 二维柯西不等式 课件(人教A版选修4-5)
(x1 x2 ) ( y1 y2 )
2
2
作ห้องสมุดไป่ตู้ 补充:
1.求函数y 2 1 x 2 x 1 的最大值.
2.已知x , y , z R, 且x y z 8, x y z 24, 求证 :
2 2 2
4 4 4 x 4, y 4, z 4. 3 3 3 2 2 2 2 2 2 3. 求证: x y y zy z x z 3 xz
2 2 2 2
向量形式:
设 (a, b), (c, d ) 2 2 2 2 则 | | a b , | | c d ac bd 柯西不等式可化为: | | | || |
(3) a b c d ac bd (4)柯西不等式的向量形式 . (5)二维形式的三角形不等式
2 2 2 2
( x1 x3 ) ( y1 y3 ) ( x2 x3 ) ( y2 y3 )
2 2 2
2
证 | | | | |cos | | | | cos | | | | || | | |, 即 | | | || |
等号当且仅当 - 与 - 同向时成立.
小结:
(1)二维形式的柯西不等式 (a b )(c d ) (ac bd ) (a , b, c, d R)
2 2 2 2 2
当且仅当ad bc时,等号成立.
( 2) a 2 b2 c 2 d 2 ac bd
定理1(二维形式的柯西不等式):
5.4.1 二维柯西不等式 课件(人教A版选修4-5)
等号当且仅当 - 与 - 同向时成立.
小结:
(1)二维形式的柯西不等式 (a b )(c d ) (ac bd ) (a , b, c, d R)
2 2 2 2 2
当且仅当ad bc时,等号成立.
( 2) a 2 b2 c 2 d 2 ac bd
2 2 2 2
向量形式:
设 (a, b), (c, d ) 2 2 2 2 则 | | a b , | | c d ac bd 柯西不等式可化为: | | | || |
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2 +b2)(c2 +d2)≥(ac +bd)2 当且仅当ad =bc时,等号成立. 二维形式的柯西不等式的变式: 你能证 明吗?
(1) a b c d ac bd
2 2 2 2
( 2) a b c d ac bd
(3) 已知a, b都是正实数,且a +b =1,求证:
1 1 4 a b
例2 (1) 已知2 x y 1, 求x y 的最小值;
2 2
( 2) 已知x y 4, 求3 x 4 y的最大值,最小值.
2 2
(3) 求函数 y 5 x 1 10 2 x 的最大值.
证 | | | | |cos | | | | cos | | | | || | | |, 即 | | | || |
(x1 x2 ) ( y1 y2 )
2
2
作业 补充
第三讲 柯西不等式与排序不等式 章末复习方案 课件(人教A选修4-5)
又由柯西不等式,有 1 1 1 + +„+ < 2n n+1 n+2 1 1 1 1 +1 +„+1 n+12+n+22+„+2n2 <
2 2 2
1 1 nn-2n=
2 . 2
[例 2]
设 a,b,c,d 为不全相等的正数.
1 1 1 1 求 证 : + + + a+b+c b+c+d c+d+a d+a+b 16 > . 3a+b+c+d [证明] 记 s=a+b+c+d,则原不等式等价于 s s s s 16 + + + > . s-d s-a 1 1 1 即[4s-(a+b+c+d)]· ( + + + )≥16, s-d s-a s-b s-c s s s s 16 于是 + + + ≥ , s-d s-a s-b s-c 3 等号成立⇔s-d=s-a=s-b=s-c⇔a=b=c=d. 因题设 a,b,c,d 不全相等,故取不到等号, 1 1 1 1 16 即 + + + > . a+b+c b+c+d c+d+a d+a+b 3a+b+c+d
2 2 2
点击下图片 进入:
答案:C
3.设 x、y、z,满足 x2+2y2+3z2=3,则 x+2y+3z 的最大值 是 A.3 2 3 C. 2 2 B.4 D.6 ( )
解析:构造两组数:x, 2y, 3z 和 1, 2, 3, 由柯西不等式得[x2+( 2y)2 +( 3z)2][12+( 2)2+( 3)2]≥(x +2y+3z)2, ∴(x+2y+3z)2≤18, ∴-3 2≤S≤3 2. 答案:A
利用不等式解决最值,尤其是含多个变量的问题,是
一种常用方法.特别是条件最值问题,通常运用平均值不等
式、柯西不等式、排序不等式及幂平均不等式等,但要注意
第三讲 柯西不等式与排序不等式 章末复习方案 课件(人教A选修4-5)
答案:25
7.已知a,b,x,y>0,且 ab=4,x+y=1,则(ax+
by)· (bx+ay)的最小值为________.
解 析 : [( ax )2 + ( by )2]· bx )2 + ( ay )2]≥( ax · bx + [( by· ay)2=( ab· x+ ab· 2=ab(x+y)2=ab+ (x∈(0, ))的最小值为________. 2 1-2x 2 9 22 32 解析:y=x+ = + 1-2x 2x 1-2x
22 32 =( + )[2x+(1-2x)] 2x 1-2x 2 3 ≥( × 2x+ × 1-2x)2=25. 2x 1-2x
a 2b 3c 当且仅当 = = 时取等号. 1 1 3 3 3 1 又 a+2b+3c=13,∴a=9,b= ,c= . 2 3 13 3 ∴ 3a+ 2b+ c有最大值 . 3
10.(创新预测)求实数x,y的值使得(y-1)2+(x+y-3)2+
(2x+y-6)2达到最小值.
解:由柯西不等式,得 (12+22+12)×[(y-1)2+(3-x-y)2+(2x+y-6)2]≥[1× (y-1) +2× (3-x-y)+1× (2x+y-6)]2=1, 1 即(y-1) +(x+y-3) +(2x+y-6) ≥ , 6 y-1 3-x-y 2x+y-6 当且仅当 = = ,即 1 2 1 5 5 x= ,y= 时,上式取等号. 2 6 5 5 故所求 x= ,y= . 2 6
v2 w2 2 u2 ∴82=(u2+v2+w2)2=( · 3+ · 4+ · 5) 3 4 5
4 4 u4 v w ≤( + + )(9+16+25), 9 16 25 4 4 u4 v w 64 32 ∴ + + ≥ = . 9 16 25 50 25
5.4.1 二维柯西不等式 课件(人教A版选修4-5)
(3) 已知a, b都是正实数,且a +b =1,求证:
1 1 4 a b
例2 (1) 已知2 x y 1, 求x y 的最小值;
2 2
( 2) 已知x y 4, 求3 x 4 y的最大值,最小值.
2 2
(3) 求函数 y 5 x 1 10 2 x 的最大值.
2 2 2 2 2
2
思考:一般地, 如图所示,结论是什么?
定理3(二维形式的三角形不等式) ( x1 x3 ) ( y1 y3 ) ( x2 x3 ) ( y2 y3 )
2 2 2 2
( x1 x2 )2 ( y1 y2 )2 例4 设 , , 为平面上的向量, 则
(3) a b c d ac bd (4)柯西不等式的向量形式 . (5)二维形式的三角形不等式
2 2 2 2
( x1 x3 ) ( y1 y3 ) ( x2 x3 ) ( y2 y3 )
2 2 2
2
例3 设a , b, c , d R, 证明 : a b c d (a c ) (b d )
2 2 2 2 2 2
观 察
y
P1(a,b)
y P1(a,b) 0
0
P2(-c,-d) x
x P2(c,d)
根据两点间距离公式以及三角形的 边长关系有:
a b c d (a c ) (b d )
定理2: (柯西不等式的向量形式) 设 , 为平面上的两个向量, 则 | || || |
其中等号当且仅当两个向量共线时成立.
1 1 4 a b
例2 (1) 已知2 x y 1, 求x y 的最小值;
2 2
( 2) 已知x y 4, 求3 x 4 y的最大值,最小值.
2 2
(3) 求函数 y 5 x 1 10 2 x 的最大值.
2 2 2 2 2
2
思考:一般地, 如图所示,结论是什么?
定理3(二维形式的三角形不等式) ( x1 x3 ) ( y1 y3 ) ( x2 x3 ) ( y2 y3 )
2 2 2 2
( x1 x2 )2 ( y1 y2 )2 例4 设 , , 为平面上的向量, 则
(3) a b c d ac bd (4)柯西不等式的向量形式 . (5)二维形式的三角形不等式
2 2 2 2
( x1 x3 ) ( y1 y3 ) ( x2 x3 ) ( y2 y3 )
2 2 2
2
例3 设a , b, c , d R, 证明 : a b c d (a c ) (b d )
2 2 2 2 2 2
观 察
y
P1(a,b)
y P1(a,b) 0
0
P2(-c,-d) x
x P2(c,d)
根据两点间距离公式以及三角形的 边长关系有:
a b c d (a c ) (b d )
定理2: (柯西不等式的向量形式) 设 , 为平面上的两个向量, 则 | || || |
其中等号当且仅当两个向量共线时成立.
人教版选修A4-5数学课件:第三讲 柯西不等式与排序不等式整合 (共15张PPT)
知识网络
专题归纳
高考体验
专题二:排序不等式的应用 1.在利用排序不等式证明相关不等式时,首先考虑构造出两个合 适的有序数组,并能根据需要进行恰当地组合,这需要结合题目的 已知条件及待证不等式的结构特点进行合理选择. 2.根据排序不等式的特点,与多变量间的大小顺序有关的不等式 问题,利用排序不等式解决往往有“化繁为简”的效果. 3.利用排序不等式求最值时,也要关注等号成立的条件,不能忽略.
-3-
本讲整合
专题一 专题二
知识网络
专题归纳
高考体验
例 1 已知 x,y,z 均为正数,求证
3 1 3 ������
+ +
������
1
1 ������
≤
1 ������ 2
+
1 ������ 2
+
1 ������ 2
.
分析:根据柯西不等式,构造数组 1,1,1 和
1 1 1 , , 进行证明. ������2 ������2 ������2
即(y-1)2+(x+y-3)2+(2x+y-6)2≥ .
������-1 3-������-������ 2������+������-6 当且仅当 = = , 1 2 1 5 5 即 x= ,y= 时,上式取等号. 2 6 5 5 故所求值为 x= ,y= . 2 6
1 6
-7-
本讲整合
专题一 专题二
3 1 1 1 即 + + 3 ������ ������ ������
≤
1 1 + ������2 ������2
1 + 2. ������
5.4.1 二维柯西不等式 课件(人教A版选修4-5)
定理2: (柯西不等式的向量形式) 设 , 为平面上的两个向量, 则 | || || |
其中等号当且仅当两个向量共线时成立.
例1 (1) 已知a2 +b2 =1, x2 +y2 =1,求证:|ax+by|≤1
(2) 已知a,b为实数,求证: (a4 +b4) (a2 +b2)≥ (a3 +b3)2
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2 +b2)(c2 +d2)≥(ac +bd)2 当且仅当ad =bc时,等号成立. 二维形式的柯西不等式的变式: 你能证 明吗?
(1) a b c d ac bd
2 2 2 2
( 2) a b c d ac bd
证 | | | | |cos | | | | cos | | | | || | | |, 即 | | | || |
2 2 2 2
向量形式:
设 (a, b), (c, d ) 2 2 2 2 则 | | a b , | | c d ac bd 柯西不等式可化为: | | | || |
(3) 已知a, b都是正实数,且a +b =1,求证:
1 1 4 a b
例2 (1) 已知2 x y 1, 求x y 的最小值;
2 2( 2ຫໍສະໝຸດ 已知x y 4, 求3 x 4 y的最大值,最小值.
2 2
(3) 求函数 y 5 x 1 10 2 x 的最大值.
第三讲 柯西不等式与排序不等式 章末复习方案 课件(人教A选修4-5)
a 2b 3c 当且仅当 = = 时取等号. 1 1 3 3 3 1 又 a+2b+3c=13,∴a=9,b= ,c= . 2 3 13 3 ∴ 3a+ 2b+ c有最大值 . 3
10.(创新预测)求实数x,y的值使得(y-1)2+(x+y-3)2+
(2x+y-6)2达到最小值.
解:由柯西不等式,得 (12+22+12)×[(y-1)2+(3-x-y)2+(2x+y-6)2]≥[1× (y-1) +2× (3-x-y)+1× (2x+y-6)]2=1, 1 即(y-1) +(x+y-3) +(2x+y-6) ≥ , 6 y-1 3-x-y 2x+y-6 当且仅当 = = ,即 1 2 1 5 5 x= ,y= 时,上式取等号. 2 6 5 5 故所求 x= ,y= . 2 6
和结论构造恰当的序列,如何排好这个序列是难点所在.
(2)注意等号成立的条件.
π aA+bB+cC π [例 6] 在△ABC 中,试证: ≤ < . 3 2 a+b+c [证明] 不妨设 a≤b≤c,于是 A≤B≤C.
由排序不等式,得 aA+bB+cC=aA+bB+cC, aA+bB+cC≥bA+cB+aC, aA+bB+cC≥cA+aB+bC. 相加,得 3(aA+bB+cC)≥(a+b+c)(A+B+C)=π(a +b+c). aA+bB+cC π 得 ≥ ,① 3 a+b+c
不妨设 1>a1≥a2≥„≥an>0, 则 0<2-a1≤2-a2≤„≤2-an, 1 1 1 且 ≥ ≥„≥ >0, 2-a1 2-a2 2-an
1 1 1 1 ∴S≥n(a1+a2+„+an)2-a +2-a +„+2-a 1 2 n
1 1 1 =n2-a +„+2-a . 1 n 又由算术平均值不等式 ab=4,x+y=1,则(ax+
高二数学人教A版选修4-5课件:第三讲 柯西不等式与排序不等式 整合
后,可利用排序不等式证明.
证明:由题意不妨设 a≥b≥c>0,
由不等式的单调性,知
ab≥ac≥bc,1������
≥
1 ������
≥
1������.
由排序不等式,知 ab×1������+ac×1������+bc×1������
≥ab×1������+ac×1������+bc×1������,
网络构建
专题探究
专题一
专题二
专题三
例
3
设
a,b,c
都是正数,求证������������������
+
������������ ������
+
������������������≥a+b+c.
分析:不等式的左边可以分为数组
ab,ac,bc
和1
������
,
1 ������
,
1������,排出顺序
即所证不等式������������
������
+
������������ ������
+
������������������≥a+b+c
成立(当且仅当
a=b=c
时,等
号成立).
专题一
专题二
专题三
网络构建
专题探究
专题三 利用不等式解决最值问题
利用不等式解决最值问题,尤其是含多个变量的问题,是一种常用方法.特别是条件最值问题,通常运用平均 值不等式、柯西不等式、排序不等式及幂平均不等式等,但要注意取等号的条件能否满足.
−
1 2������
<
柯西不等式与排序不等式复习课件-高二下学期数学人教A版选修4-5
xi3
n
2
1
1i , j n
1
1
2
xi
xi x j
n 1
满足
x x
i 1
i i 1
x1 xn n
●
【证明提示】:
● 由排序不等式与柯西不等式易证之
n
n
n
xi x 2j
xi3
xi3
2
2
2
1
1i , j n
1i , j n
1i , j n
是(
1
● A.43
)
50
B. 19
C.
50
69 D.172
● 解:
● 由柯西不等式得
● [( x +8) 2 +2( y -2) 2 +( z +10) 2 ][8 2 +2(-2) 2 +10 2 ]
● ≥[8( x +8)+(-4)( y -2)+10( z +10)] 2 =29584 ,
x 8
a 4 2a 2b b 5
2
2
3
● 所以 4a a 2 a 2b b 3
a 4 2a 2b b 5
● 的最大值是2.
2
4a 2 a 2 a 2b b 3
2
2a 2a b 2ab
3
2
3 2
2
达标题 :
● 例题4.已知x, y, z∈R,且8 x -4 y +10 z =172,则( x +8) 2 +2( y-2 ) 2 +( z +10) 2 的最小值
● 证明:不妨设
505
a
n
2
1
1i , j n
1
1
2
xi
xi x j
n 1
满足
x x
i 1
i i 1
x1 xn n
●
【证明提示】:
● 由排序不等式与柯西不等式易证之
n
n
n
xi x 2j
xi3
xi3
2
2
2
1
1i , j n
1i , j n
1i , j n
是(
1
● A.43
)
50
B. 19
C.
50
69 D.172
● 解:
● 由柯西不等式得
● [( x +8) 2 +2( y -2) 2 +( z +10) 2 ][8 2 +2(-2) 2 +10 2 ]
● ≥[8( x +8)+(-4)( y -2)+10( z +10)] 2 =29584 ,
x 8
a 4 2a 2b b 5
2
2
3
● 所以 4a a 2 a 2b b 3
a 4 2a 2b b 5
● 的最大值是2.
2
4a 2 a 2 a 2b b 3
2
2a 2a b 2ab
3
2
3 2
2
达标题 :
● 例题4.已知x, y, z∈R,且8 x -4 y +10 z =172,则( x +8) 2 +2( y-2 ) 2 +( z +10) 2 的最小值
● 证明:不妨设
505
a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1 1 1) 9
2
又a、b、c各不相等,故等号不能成立 ∴原不等式成立。
例5 若a>b>c 求证:
1 1 4 ab bc ac
1 1 1 1 证明: c)( (a ) [(a b) (b c)]( ) a b bc a b bc 2 (1 1) 4
y
P1(x1,y1)
y P1(x1,y1) 0
0
P2(x2,y2) x
x P2(x2,y2)
根据两点间距离公式以及三角形的 边长关系:
x y x y ( x1 x2 ) ( y1 y2 )
2 1 2 1 2 2 2 2 2
2
定理3(二维形式的三角不等式) 设 x , y , x , y R ,那么 1 2 1 2
1 1 4 a b
注意应用公式: 1 1 ( a b )( ) 4 a b
练习:
1.已知2x 3 y 6,
2 2
求证x 2 y 11 2.已知a b 1,
2 2
求证|a cos b sin | 1
作业
第37页,第1,5,6题
二 一般形式的 柯西不等式
(a b) (c d ) ( ac bd ) 2 (a, b, c, d为非负实数)。
向量形式: m (a, b), n (c, d ) m n | m | | n | cos m n ac bd 2 2 | m | a b 2 2 | n | c d | m n || m | | n | | cos || m | | n |
(a1b1 a2b2 ... anbn )
2
定理 设 a1, a2 , a3 ,...,an , b1, b2 , b3 ,...,bn 是实数,则
2 2 2 2 (a12 a2 ... an ) (b12 b2 ... bn )
(a1b1 a2b2 ... anbn ) 2
1 1 4 ∴ ab bc ac
例6:若 a, b, c R
a b c 3 求证: bc ca ab 2
分析:左端变形
a b c 1 1 1 bc ca ab
1 1 1 (a b c)( ) bc ca ab
9 ∴只需证此式 2
例2 设a1,a2,…,an是n个互不相等的正整数, 求证:
an a2 a3 1 1 1 1 ... a1 2 2 ... 2 2 3 n 2 3 n
证明:设b1,b2,…,bn是a1,a2,…an的一个排列, 且有 b1<b2<…<bn 因为b1,b2,…,bn是互不相等的正整数, 所以b1≥1,b2≥2,…,bn≥n.
又因
1 1 1 1 ... 2 2 2 3 n2
由排序不等式,得:
an bn a2 a3 b2 b3 a1 2 2 ... 2 b1 2 2 ... 2 2 3 n 2 3 n 1 1 1 1 1 1 11 2 2 3 2 ... n 2 1 ... 2 3 n 2 3 n
当且 仅当 (i=1, 2,…, n) 或存 在一
ai kbi
bi 0
一般形式的三角不等式
x y z
2 1 2 1 2 1
x y z
2 2 2 2 2
2 2 2
( x1 x2 ) ( y1 y2 ) ( z1 z 2 )
2 2 2 x12 x2 ... xn 2 2 y12 y2 ... yn
练习
1.设a1 , a2 ,..., an为实数,证明: a1c1 a2c2 ... an cn a a ... a ,
2 1 2 2 2 n
其中c1 , c2 ,..., cn是a1 , a2 ,..., an的任一排列。
练习
2.已知a, b, c为正数,用排序不等式证明 2(a b c ) a (b c) b (a c) c (a b).
m n || m | | n | |
2 2 2
ac bd a b c d
2
定理2: (柯西不等式的向量形式)
| || | | |
设α,β是两个向量,则 当且仅当β是零向量,或存在实数k, 使α=kβ时,等号成立.
观 察
3 3 3 2 2 2
练习
3.设a1 , a2 ,..., an为正数,求证 a1a2 a2 a3 a3 a1 a1 a2 a3 . a3 a1 a2
练习
4.设a1 , a2 ,..., an为正数,试分别用柯西 不等式与排序不等式证明 a a a a ... a1 a2 ... an . a2 a3 an a1
反序和≤乱序和≤顺序和
例1 :有10人各拿一只水桶去接水,设水 龙头注满第i(i=1,2,…,10)个人的水桶需 要ti分,假定这些ti各不相同。 问:只有一个水龙头时,应该如何安排10 人的顺序,使他们等候的总时间最少? 这个最少的总时间等于多少?
解:总时间(分)是 10t1+9t2+…+2t9+t10 根据排序不等式,当t1<t2<…<t9<t10时, 总时间取最小值。 即:按水桶的大小由小到大依次接水, 则10人等候的总时间最少。 最少的总时间是: 10t1+9t2+…+2t9+t10
二维形式的柯西不等式): (a2+b2)(c2+d2)≥(ac+bd)2
三维形式的柯西不等式):
(a a a ) (b b b )
2 1 2 2 2 3 2 1 2 2 2 3
( a1b1 a2b2 a3b3 )
2
n维形式的柯西不等式): 2 2 2 2 2 2 (a1 a2 ... an ) (b1 b2 ... bn )
( x1 y1 ) 2 ( x2 y2 ) 2 ... ( xn yn ) 2
( xi , yi R, i 1,2,...,n).
例1 已知 a1 , a2 , a3 ,..., an 都是实数,求证:
1 2 2 2 2 (a1 a2 ... an ) a1 a2 ... an . n
例2 已知a,b,c,d是不全相等的正数,证明:
a b c d >ab+bc+cd+da.
2 2 2 2
例3 已知x+2y+3z=1,求 的最小值。
x y z
2 2
2
例4:设a、b、c为正数且各不相等。 求证: 2 2 2 9 ab bc ca abc 1 1 1 证明: 2(a b c)( ) ab bc ca 1 1 1 [(a b) (b c) (c a)]( ) ab bc ca
即可
三 排序不等式
定理(排序不等式,又称排序定理) 设a1 a2 ... an,b1 b2 ... bn为两组 实数c1 , c2 是b1 , b2 ...bn的任一排列, 那么: a1bn a2bn 1 ... anb1 a1c1 a2 c2 ... an cn a1b1 a2b2 ... anb.n 当且仅当a1 a2 ... an或b1 b2 ... bn时, 反序和等于顺序和。
x y x y ( x1 x2 ) ( y1 y2 )
2 1 2 1 2 2 2 2 2
2
例题
例1.已知a,b为实数,证明:
(a4+b4) (a2+b2)≥ (a3+b3)2
例2.求函数y 5 x 1 10 2 x的最大值.
例3.设a,b∈R+,a+b=1,求证
第三讲
柯西不等式与 排序不等式
一 二维形式的 柯西不等式
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则
(a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
你能证明吗?
推论
a 2 b2 c 2 d 2 ac bd a 2 b2 c 2 d 2 ac | | bd
2 1 2 2 2 n 1 2 n