2019年高考数学理科复习§5.1 平面向量的基本概念与线性运算
高考数学大一轮复习 第五章 平面向量、复数 5.1 平面向量的概念及线性运算教案(含解析)
第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
【高考精品复习】第五篇 平面向量 第1讲 平面向量的概念及线性运算
第1讲平面向量的概念及线性运算【高考会这样考】1.考查平面向量的线性运算.2.考查平面向量的几何意义及其共线条件.【复习指导】本讲的复习,一是要重视基础知识,对平面向量的基本概念,加减运算等要熟练掌握,二是要掌握好向量的线性运算,搞清这些运算法则和实数的运算法则的区别.基础梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度等于0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )3.向量的数乘运算及其几何意义(1)定义:实数λ与向量a 的积是一个向量,这种运算叫向量的数乘,记作λa ,它的长度与方向规定如下: ①|λa |=|λ||a |;②当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0.(2)运算律:设λ,μ是两个实数,则①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③ λ(a +b )=λa +λb . 4.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .一条规律一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量. 两个防范(1)向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.双基自测1.(人教A 版教材习题改编)D 是△ABC 的边AB 上的中点,则向量CD →等于( ). A .-BC→+12BA → B .-BC→-12BA → C.BC→-12BA →D.BC→+12BA → 解析 如图,CD→=CB →+BD → =CB→+12BA →=-BC →+12BA →. 答案 A2.判断下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b|.正确的个数是( ). A .1 B .2 C .3 D .4 解析 只有④正确. 答案 A3.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ). A.EF→=OF →+OE → B.EF →=OF →-OE →C.EF→=-OF →+OE → D.EF →=-OF →-OE → 解析 EF →=EO →+OF →=OF →-OE →.答案 B4.(2011·四川)如图,正六边形ABCDEF 中,BA→+CD →+EF →=( ).A .0 B.BE → C.AD→D.CF→ 解析 BA →+CD →+EF →=DE →+CD →+EF →=CE →+EF →=CF →.答案 D5.设a 与b 是两个不共线向量,且向量a +λb 与2a -b 共线,则λ=________.解析 由题意知:a +λb =k (2a -b ),则有:⎩⎨⎧1=2k ,λ=-k ,∴k =12,λ=-12. 答案 -12考向一 平面向量的概念【例1】►下列命题中正确的是( ). A .a 与b 共线,b 与c 共线,则a 与c 也共线B .任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C .向量a 与b 不共线,则a 与b 都是非零向量D .有相同起点的两个非零向量不平行[审题视点] 以概念为判断依据,或通过举反例说明其正确与否.解析 由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,所以B 不正确;向量的平行只要求方向相同或相反,与起点是否相同无关,所以D 不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假设a 与b 不都是非零向量,即a 与b 中至少有一个是零向量,而由零向量与任一向量都共线,可知a 与b 共线,符合已知条件,所以有向量a 与b 不共线,则a 与b 都是非零向量,故选C. 答案 C解决这类与平面向量的概念有关的命题真假的判定问题,其关键在于透彻理解平面向量的概念,还应注意零向量的特殊性,以及两个向量相等必须满足:(1)模相等;(2)方向相同. 【训练1】 给出下列命题:①若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;②若a =b ,b =c ,则a =c ; ③a =b 的充要条件是|a |=|b |且a ∥b ;④若a 与b 均为非零向量,则|a +b |与|a |+|b |一定相等. 其中正确命题的序号是________. 解析 ①②正确,③④错误. 答案 ①②考向二 平面向量的线性运算【例2】►如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则( ). A.AD→+BE →+CF →=0 B.BD→-CF →+DF →=0 C.AD→+CE →-CF →=0 D.BD→-BE →-FC →=0 [审题视点] 利用平面向量的线性运算并结合图形可求. 解析 ∵AB →+BC →+CA →=0,∴2AD →+2BE →+2CF →=0,即AD →+BE →+CF →=0. 答案 A三角形法则和平行四边形法则是向量线性运算的主要方法,共起点的向量,和用平行四边形法则,差用三角形法则.【训练2】 在△ABC 中,AB→=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=( ).A.23b +13cB.53c -23bC.23b -13cD.13b +23c解析 ∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →),∴3AD→=2AC →+AB →∴AD →=23AC →+13AB →=23b +13c . 答案 A考向三 共线向量定理及其应用【例3】►设两个非零向量a 与b 不共线. (1)若AB→=a +b ,BC →=2a +8b ,CD →=3(a -b ). 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.[审题视点] (1)先证明AB →,BD →共线,再说明它们有一个公共点;(2)利用共线向量定理列出方程组求k .(1)证明 ∵AB→=a +b ,BC →=2a +8b ,CD →=3(a -b ).∴BD→=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →. ∴AB→,BD →共线,又它们有公共点,∴A ,B ,D 三点共线. (2)解 ∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两不共线的非零向量, ∴k -λ=λk -1=0.∴k 2-1=0.∴k =±1.平行向量定理的条件和结论是充要条件关系,既可以证明向量共线,也可以由向量共线求参数.利用两向量共线证明三点共线要强调有一个公共点. 【训练3】 (2011·兰州模拟)已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R ),那么A ,B ,C 三点共线的充要条件是( ). A .λ+μ=2 B .λ-μ=1 C .λμ=-1 D .λμ=1解析 由AB→=λa +b ,AC →=a +μb (λ,μ∈R )及A ,B ,C 三点共线得:AB →=t AC →,所以λa +b =t (a +μb )=t a +tμb ,即可得⎩⎨⎧λ=t ,1=tμ,所以λμ=1.故选D.答案 D难点突破11——有关平面向量中新定义问题解题策略从近两年课改区高考试题可以看出高考以选择题形式考查平面向量中新定义的问题,一般难度较大.这类问题的特点是背景新颖,信息量大,通过它可考查学生获取信息、分析并解决问题的能力.解答这类问题,首先需要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,然后应用到具体的解题过程之中,这是破解新定义信息题难点的关键所在.【示例1】► (2012·泰安十校联考)定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np ,下面说法错误的是( ). A .若a 与b 共线,则a ⊙b =0 B .a ⊙b =b ⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D .(a ⊙b )2+(a ·b )2=|a |2|b |2【示例2】► (2011·山东)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下列说法正确的是( ). A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C 、D 可能同时在线段AB 上 D .C 、D 不可能同时在线段AB 的延长线上。
高考数学专题复习《平面向量的概念及线性运算》PPT课件
向量
模等于 1
的向量
a
向量为±|a|
名称
相等的
向量
定 义
备 注
大小 相等 、方向 相同
的向量
两个向 如果两个 非零 向量的方向 相同或相反 ,则
量平行 称这两个向量平行.两个向量平行也称为两个向
两向量只有相等或不相
等,不能比较大小
规定零向量与任一向量
平行(共线)
(共线)
量共线
相反
给定一个向量,把与这个向量方向 相反 、大 零向量的相反向量仍是
.
,而且λa的方向如下:
,
(ⅱ)当λ=0或a=0时,λa= 0
.
实数λ与向量a相乘的运算简称为数乘向量.
(2)数乘向量的定义说明
如果存在实数λ,使得b=λa,则b∥a.
(3)数乘向量的几何意义
数乘向量的几何意义是,把向量沿着它的方向或反方向放大或缩小.特别地,
一个向量的相反向量可以看成-1与这个向量的乘积,即-a=(-1)a.
D.
3.(多选)(2020山东郓城第一中学高三模拟)若点G是△ABC的重心,BC边的
中点为D,则下列结论正确的是(
A.G 是△ABC 的三条中线的交点
B. + + =0
C. =2
D. =
)
答案 ABC
解析 对于 A,△ABC 三条中线的交点就是重心,故 A 正确;对于 B,根据平行四
(4)数乘向量的运算律
设λ,μ为实数,则λ(μa)=(λμ)a;
特别地,我们有(-λ)a=-(λa)=λ(-a).
5.向量的运算律
一般地,对于实数λ与μ,以及向量a,有
(1)λ(μa)= (λμ)a ;(2)λa+μa= (λ+μ)a
(通用版)2019版高考数学一轮复习第五章平面向量第一节平面向量的概念及线性运算实用课件理
(3)若向量 a 与 b 不相等,则 a 与 b 一定不可能都是零 向量. ( √ )
2.填空题 (1)给出下列命题: ①若 a =b ,b =c,则 a =c; ―→ ―→ ②若 A,B,C,D 是不共线的四点,则 AB = DC 是四边形 ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且 a ∥b ; 其中正确命题的序号是________.
B.若|a |>|b |,则 a >b D.若|a |=0,则 a =0
[解析]
(1)长度相等且方向相同的向量叫做相等向量, 故 A 不正
确; 方向相同或相反的非零向量叫做共线向量, 但共线向量不一定在 ―→ ―→ ―→ 同一条直线上,故 B 不正确;显然 C 正确;当 AB ∥ CD 时, AB 所 ―→ 在的直线与 CD 所在的直线可能重合,故 D 不正确. (2)对于 A,当|a |=|b |,即向量 a ,b 的模相等时,方向不一定相 同,故 a =b 不一定成立;对于 B,向量的模可以比较大小,但向量 不可以比较大小,故 B 不正确;C 显然正确;对于 D,若|a |=0,则 a =0,故 D 不正确,故选 C.
答案:C
1 3.如图,△ABC 和△A′B′C′是在各边的 3 处相交的两个全等的等边三角形,设△ABC a 的边长为 a ,图中列出了长度均为 的若干个 3 向量,则 ―→ (1)与向量 GH 相等的向量有________; ―→ (2)与向量 GH 共线,且模相等的向量有________; ―→ (3)与向量 EA 共线,且模相等的向量有________.
(
)
C.方向相反的向量是共线向量,共线向量不一定是方向相 反的向量 D.共线向量就是相等向量
核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算课件理
解:①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵A→B=D→C,∴|A→B|=|D→C|且A→B∥D→C,又∵A,B,C,D 是不共线的四点,∴四边形 ABCD 为平行四边形;反之,若四边形 ABCD 为平行四边形,则A→B∥D→C且|A→B|=|D→C|,可得A→B=D→C.故“A→B= D→C”是“四边形 ABCD 为平行四边形”的充要条件. ③正确.∵a=b,∴a,b 的长度相等且方向相同;又 b=c,∴b, c 的长度相等且方向相同,∴a,c 的长度相等且方向相同,故 a=c. ④不正确.由 a=b 可得|a|=|b|且 a∥b;由|a|=|b|且 a∥b 可得 a =b 或 a=-b,故“|a|=|b|且 a∥b”不是“a=b”的充要条件,而是 必要不充分条件. 综上所述,正确命题的序号是②③.故填②③.
第十七页,共33页。
下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段; ②向量 a 与向量 b 平行,则 a 与 b 的方向相同或相反; ③向量A→B与向量C→D共线,则 A,B,C,D 四点共线; ④如果 a∥b,b∥c,那么 a∥c; ⑤两个向量不能比较大小,但它们的模能比较大小.
第五页,共33页。
2.向量的加法和减法
(1)向量的加法
①三角形法则:以第一个向量 a 的终点 A 为起点作第二个向量 b,
则以第一个向量 a 的起点 O 为________以第二个向量 b 的终点 B 为 ________的向量O→B就是 a 与 b 的________(如图 1).
推广:A→1A2+A→2A3+…+An→-1An=____________.
第二十二页,共33页。
(1)( 2015·福建模拟 ) 在 △ABC
考点19 平面向量的概念及其线性运算、平面向量的基本定理及向量坐标运算 【2019年高考数学真题分类】
温馨提示:此题库为Word 版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word 文档返回原板块。
考点19 平面向量的概念及其线性运算、平面向量的基本定理及向量坐标运算一、选择题1.(2019·全国卷Ⅰ理科·T7同2019·全国卷Ⅰ文科·T8)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A. B. C. D.π6π32π35π6【命题意图】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归的思想,以及数学运算等数学素养.【解题指南】先由(a -b )⊥b 得出向量a ,b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【解析】选B .设夹角为θ,因为(a -b )⊥b ,所以(a-b )·b=a ·b-b 2=0,所以a ·b=b 2,所以cos θ===,又θ∈[0,π],所以a a ·b |a |·|b ||b |22|b |212与b 的夹角为,故选B .π3【题后反思】对向量夹角的计算,先计算出向量的数量积及各个向量的模,再利用向量夹角公式求出夹角的余弦值,最后求出夹角,注意向量夹角范围为[0,π].2.(2019·全国卷Ⅱ理科·T3)已知=(2,3),=(3,t ),||=1,则·= ( ) A.-3 B.-2 C.2 D.3【命题意图】考查向量的坐标运算,向量的模,以及向量的数量积运算.【解析】选C .因为=-=(1,t -3),又因为||=1,即12+(t -3)2=12,解得t =3,所以=(1,0),故·=2. 3.(2019·全国卷Ⅱ文科·T3)已知向量a =(2,3),b =(3,2),则|a-b |= ( )A. B.2 C.5 D.5022【命题意图】考查向量的坐标运算以及向量的模,属于容易题.【解析】选A .由向量a =(2,3),b =(3,2),可得a -b =(-1,1),所以|a -b |==.12+122。
2019高考数学一轮复习 第五章 1-第一节 平面向量的概念及其线性运算
AD的中点,若 AO
=λ AB
+μ BC
,其中,λ,μ∈R,则λ+μ等于
(
)
A.1 B. 1 C. 1 D. 2
2
3
3
(2)在△ABC中,点M,N满足 AM
=2 MC
, BN
= NC
.若 MN
=x AB
+y AC
,则x=
,y=
.
考点突破
栏目索引
答案 (1)D (2) 1 ;- 1
小叫做向量的③ 长度 (或④ 模 )
响
零向量 长度为⑤ 0 的向量;其方向是任意的 单位向量 长度等于⑦ 1个单位 的向量
记作⑥ 0 非零向量a的单位向量为± | aa |
平行向量 方向⑧ 相同 或⑨ 相反 的非零向量
0与任意向量 平行 或共线
共线向量 ⑩ 方向相同或相反 的非零向量又叫做共线 向量
|| b
b
|,
不是a=b的充要条件.
⑤不正确.若b=0,则a与c不一定共线.
考点突破
栏目索引
规律总结 理解向量有关概念的五个关键点 (1)向量定义的关键是方向和长度. (2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是方向没有限制,但长度都是一个单位长度. (5)零向量的关键是方向没有限制,长度是0,规定零向量与任何向量共 线.
栏目索引
第一节 平面向量的概念及其线性运算
教材研读
总纲目录
1.向量的有关概念 2.向量的线性运算 3.共线向量定理
考点突破
考点一 平面向量的有关概念
高考数学考点与题型知识点5平面向量
平面向量平面向量 (2)第一节平面向量的概念及线性运算 (2)考点一平面向量的有关概念 (3)考点二平面向量的线性运算 (5)考点三共线向量定理的应用 (7)第二节平面向量基本定理及坐标表示 (13)考点一平面向量基本定理及其应用 (14)考点二平面向量的坐标运算 (15)考点三平面向量共线的坐标表示 (16)第三节平面向量的数量积 (22)考点一平面向量的数量积的运算 (23)考点二平面向量数量积的性质 (26)第四节平面向量的综合应用 (33)考点一平面向量与平面几何 (33)考点二平面向量与解析几何 (34)考点三平面向量与三角函数 (35)第五章 平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a|a |和-a|a |.3.向量的线性运算三角形法则 平行四边形法则三角形法则多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.只有a≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P为线段AB的中点,O为平面内任一点,则OP―→=12(OA―→+OB―→).(2)OA―→=λOB―→+μOC―→(λ,μ为实数),若点A,B,C三点共线,则λ+μ=1.考点一平面向量的有关概念[典例]给出下列命题:①若a=b,b=c,则a=c;②若A,B,C,D是不共线的四点,则AB―→=DC―→是四边形ABCD为平行四边形的充要条件;③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [答案] ①②[解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②λa =0(λ为实数),则λ必为零;③λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的个数为( ) A .0B .1C .2D .3解析:选D ①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( )A.34AB ―→-14AC ―→B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→(2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r +3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[答案] (1)A (2)C[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果. (4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( ) A .AD ―→=-13AB ―→+43AC ―→B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→D .AD ―→=43AB ―→-13AC ―→解析:选A 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→. 2.(2019·太原模拟)在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________.解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.答案:43考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→, ∴AB ―→,BD ―→共线. 又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0 C .e 1∥e 2D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上 B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:选D 由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P在射线AB 上,故选D.[课时跟踪检测]1.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ―→+FC ―→=( ) A .AD ―→B.12AD ―→C.12BC ―→ D .BC ―→解析:选A 由题意得EB ―→+FC ―→=12(AB ―→+CB ―→)+12(AC ―→+BC ―→)=12(AB ―→+AC ―→)=AD ―→.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =kd (k <0), 于是λa +b =k []a +(2λ-1)b . 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.设向量a ,b 不共线,AB ―→=2a +p b ,BC ―→=a +b ,CD ―→=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A .-2B .-1C .1D .2解析:选B 因为BC ―→=a +b ,CD ―→=a -2b ,所以BD ―→=BC ―→+CD ―→=2a -b .又因为A ,B ,D 三点共线,所以AB ―→,BD ―→共线.设AB ―→=λBD ―→,所以2a +p b =λ(2a -b ),所以2=2λ,p =-λ,即λ=1,p =-1.4.(2019·甘肃诊断)设D 为△ABC 所在平面内一点,BC ―→=-4CD ―→,则AD ―→=( ) A.14AB ―→-34AC ―→ B.14AB ―→+34AC ―→C.34AB ―→-14AC ―→ D.34AB ―→+14AC ―→解析:选B 法一:设AD ―→=x AB ―→+y AC ―→,由BC ―→=-4CD ―→可得,BA ―→+AC ―→=-4CA―→-4AD ―→,即-AB ―→-3AC ―→=-4x AB ―→-4y AC ―→,则⎩⎪⎨⎪⎧-4x =-1,-4y =-3,解得⎩⎨⎧x =14,y =34,即AD ―→=14AB ―→+34AC ―→,故选B.法二:在△ABC 中,BC ―→=-4CD ―→,即-14BC ―→=CD ―→,则AD ―→=AC ―→+CD ―→=AC ―→-14BC―→=AC ―→-14(BA ―→+AC ―→)=14AB ―→+34AC ―→,故选B.5.在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC ―→=34OA ―→+14OB ―→,则|BC ―→||AC ―→|等于( )A .1B .2C .3D.32解析:选C 因为BC ―→=OC ―→-OB ―→=34OA ―→+14OB ―→-OB ―→=34BA ―→,AC ―→=OC ―→-OA ―→=34OA ―→+14OB ―→-OA ―→=14AB ―→,所以|BC ―→||AC ―→|=3.故选C.6.已知△ABC 的边BC 的中点为D ,点G 满足GA ―→+BG ―→+CG ―→=0,且AG ―→=λGD ―→,则λ的值是( )A.12 B .2 C .-2D .-12解析:选C 由GA ―→+BG ―→+CG ―→=0,得G 为以AB ,AC 为邻边的平行四边形的第四个顶点,因此AG ―→=-2GD ―→,则λ=-2.故选C.7.下列四个结论:①AB ―→+BC ―→+CA ―→=0;②AB ―→+MB ―→+BO ―→+OM ―→=0; ③AB ―→-AC ―→+BD ―→-CD ―→=0;④N Q ―→+Q P ―→+MN ―→-MP ―→=0, 其中一定正确的结论个数是( ) A .1 B .2 C .3D .4解析:选C ①AB ―→+BC ―→+CA ―→=AC ―→+CA ―→=0,①正确;②AB ―→+MB ―→+BO ―→+OM ―→=AB ―→+MO ―→+OM ―→=AB ―→,②错误;③AB ―→-AC ―→+BD ―→-CD ―→=CB ―→+BD ―→+DC ―→=CD ―→+DC ―→=0,③正确;④N Q ―→+Q P ―→+MN ―→-MP ―→=NP ―→+PN ―→=0,④正确.故①③④正确.8.如图,在平行四边形ABCD 中,M ,N 分别为AB ,AD 上的点,且AM ―→=34AB ―→,AN ―→=23AD ―→,AC ,MN 交于点P .若AP ―→=λAC ―→,则λ的值为( ) A.35 B.37C.316D.617解析:选D ∵AM ―→=34AB ―→,AN ―→=23AD ―→,∴AP ―→=λAC ―→=λ(AB ―→+AD ―→)=λ⎝⎛⎭⎫43AM ―→+32AN ―→=43λAM ―→+32λAN ―→.∵点M ,N ,P 三点共线,∴43λ+32λ=1,则λ=617.故选D. 9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:因为向量λa +b 与a +2b 平行,所以可设λa +b =k (a +2b ),则⎩⎪⎨⎪⎧λ=k ,1=2k ,所以λ=12.答案:1210.若AP ―→=12PB ―→,AB ―→=(λ+1)BP ―→,则λ=________.解析:如图,由AP ―→=12PB ―→,可知点P 是线段AB 上靠近点A 的三等分点,则AB ―→=-32BP ―→,结合题意可得λ+1=-32,所以λ=-52.答案:-5211.已知平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b .答案:b -a -a -b12.(2019·长沙模拟)在平行四边形ABCD 中,M 为BC 的中点.若AB ―→=λAM ―→+μDB ―→,则λ-μ=________.解析:如图,在平行四边形ABCD 中,AB ―→=DC ―→,所以AB ―→=AM ―→+MB ―→=AM ―→+12CB ―→=AM ―→+12(DB ―→-DC ―→)=AM ―→+12(DB ―→-AB ―→)=AM ―→+12DB ―→-12AB ―→,所以32AB ―→=AM ―→+12DB ―→,所以AB ―→=23AM ―→+13DB ―→,所以λ=23,μ=13,所以λ-μ=13.答案:1313.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2.(1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-ke 2,且B ,D ,F 三点共线, ∴存在实数λ,使BF ―→=λBD ―→, 即3e 1-ke 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2), 则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.[解] ∵BA ―→=OA ―→-OB ―→=a -b , BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b , ∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→ =23OD ―→=23a +23b , ∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组. (2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q ―→=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A 由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b . 2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→(0<λ<1), 由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知, m +n =-2λ,所以m +n ∈(-2,0). 答案:(-2,0)考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b , ∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________. 解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.答案:-1 -12.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.答案:72[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2). a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.(2019·唐山模拟)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:选D 设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD , ∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)[课时跟踪检测]1.(2019·昆明调研)已知向量a =(-1,2),b =(1,3),则|2a -b |=( ) A.2 B .2 C.10D .10解析:选C 由已知,易得2a -b =2(-1,2)-(1,3)=(-3,1),所以|2a -b |=(-3)2+12=10.故选C.2.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).3.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b ”的充分不必要条件,选A.4.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( ) A.12AC ―→+13AB ―→ B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→ D.16AC ―→+32AB ―→解析:选C 如图,因为EC ―→=2AE ―→,所以EC ―→=23AC ―→,所以EM ―→=EC ―→+CM ―→=23AC ―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=12AB ―→+16AC ―→.5.已知点A (8,-1),B (1,-3),若点C (2m -1,m +2)在直线AB 上,则实数m =( ) A .-12 B .13 C .-13D .12解析:选C 因为点C 在直线AB 上,所以AC ―→与AB ―→同向.又AB ―→=(-7,-2),AC ―→=(2m -9,m +3),故2m -9-7=m +3-2,所以m =-13.故选C.6.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .22 B.2 C .2 D .42解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.7.已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→, 点C 在线段AB 上,∠AOC =30°.设OC ―→=m OA ―→+n OB ―→(m ,n ∈R ),则m n等于( )A.13 B .3 C.33D.3 解析:选B 如图,由已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→,可得AB =2,∠A =60°,因为点C 在线段AB 上,∠AOC =30°,所以OC ⊥AB ,过点C 作CD ⊥OA ,垂足为点D ,则OD =34,CD =34,所以OD ―→=34OA ―→,DC ―→= 14OB ―→,即OC ―→=34OA ―→+14OB ―→,所以mn=3.8.(2019·深圳模拟)如图,在正方形ABCD 中,M 是BC 的中点,若AC ―→=λAM ―→+μBD ―→,则λ+μ=( )A.43B.53C.158D .2解析:选B 以点A 为坐标原点,分别以AB ―→,AD ―→的方向为x 轴,y 轴的正方向,建立平面直角坐标系(图略).设正方形的边长为2,则A (0,0),C (2,2),M (2,1),B (2,0),D (0,2),所以AC ―→=(2,2),AM ―→=(2,1),BD ―→=(-2,2),所以λAM ―→+μBD ―→=(2λ-2μ,λ+2μ),因为AC―→=λAM ―→+μBD ―→,所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.9.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5, ∴m -n =2-5=-3. 答案:-310.已知向量a =(1,m ),b =(4,m ),若有(2|a |-|b |)(a +b )=0,则实数m =________. 解析:因为a +b =(5,2m )≠0,所以由(2|a |-|b |)(a +b )=0得2|a |-|b |=0, 所以|b |=2|a |,所以42+m 2=212+m 2,解得m =±2. 答案:±211.(2019·南昌模拟)已知向量a =(m ,n ),b =(1,-2),若|a |=25,a =λb (λ<0),则m -n =________.解析:∵a =(m ,n ),b =(1,-2), ∴由|a |=25,得m 2+n 2=20, ① 由a =λb (λ<0),得⎩⎪⎨⎪⎧m <0,n >0,-2m -n =0, ②由①②,解得m =-2,n =4. ∴m -n =-6. 答案:-612.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:1213.在平面直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A ―→+PB ―→+PC ―→=0,求|OP ―→|;(2)设OP ―→=m AB ―→+n AC ―→(m ,n ∈R ),用x ,y 表示m -n .解:(1)∵P A ―→+PB ―→+PC ―→=0,P A ―→+PB ―→+PC ―→=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得x =2,y =2, 即OP ―→=(2,2),故|OP ―→|=2 2.(2)∵OP ―→=m AB ―→+n AC ―→,AB ―→=(1,2),AC ―→=(2,1). ∴(x ,y )=(m +2n,2m +n ),即⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x .第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π]. 当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律 (1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c表示一个与c共线的向量,a·(b·c)表示一个与a共线的向量,而c与a不一定共线.5.平面向量数量积的性质设a,b为两个非零向量,e是与b同向的单位向量,θ是a与e的夹角,则(1)e·a=a·e=|a|cos θ.(2)a⊥b⇔a·b=0.(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地,a·a=|a|2或|a|=a·a.(4)cos θ=a·b|a||b|.(5)|a·b|≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则(1)|a|=x21+y21;(3)a⊥b⇔x1x2+y1y2=0;(2)a·b=x1x2+y1y2;_ (4)cos θ=x1x2+y1y2x21+y21x22+y22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a+b)·(a-b)=a2-b2;(2)(a±b)2=a2±2a·b+b2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).考点一平面向量的数量积的运算[典例](1)(2018·新乡二模)若向量m=(2k-1,k)与向量n=(4,1)共线,则m·n=()A .0B .4C .-92D .-172(2)(2018·天津高考)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12, ∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN . ∵BM ―→=2MA ―→,CN ―→=2NA ―→, ∴AM AB =AN AC =13. ∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→). ∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2) =3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0. 故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[答案] (1)D (2)C[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解.[题组训练]1.(2019·济南模拟)已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1 C.6D .22解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0, ∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.(2019·南昌调研)已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55B .-55C .-255D .-355解析:选D 由a =(1,2),可得|a |=5, 由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0, ∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1, ∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.答案:14考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)(2019·昆明适应性检测)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .22D .3(2)(2019·福州四校联考)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,故选D.(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2, ∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,故选D. [答案] (1)D (2)D考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________.[解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b |a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3. [答案] (1)A (2)2π3考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)A (2)712[解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.(2018·深圳高级中学期中)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1解析:选B ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B.2.(2018·永州二模)已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12 B .1 C.2D .2解析:选A ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a-b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.(2019·益阳、湘潭调研)已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________.解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cos θ=a ·b |a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 答案:-15[课时跟踪检测]1.已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a-b )等于( )A .2B .-1C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32, ∴a ·b =-3,b ·(2a -b )=2a ·b -b 2=-18.2.已知平面向量a =(-2,3),b =(1,2),向量λa +b 与b 垂直,则实数λ的值为( ) A.413 B .-413C.54D .-54解析:选D ∵a =(-2,3),b =(1,2),∴λa +b =(-2λ+1,3λ+2).∵λa +b 与b 垂直,∴(λa +b )·b =0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-54.3.已知向量a ,b 满足|a |=1,b =(2,1),且a ·b =0,则|a -b |=( ) A.6 B.5 C .2D.3解析:选A 因为|a |=1,b =(2,1),且a ·b =0,所以|a -b |2=a 2+b 2-2a ·b =1+5-0=6,所以|a -b |= 6.故选A.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(a +c )∥b ,c ⊥(a +b ),则c =( ) A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 解析:选D 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1), 因为(a +c )∥b ,则有-3(1+m )=2(2+n ), 即3m +2n =-7,又c ⊥(a +b ),则有3m -n =0,联立⎩⎪⎨⎪⎧3m +2n =-7,3m -n =0.解得⎩⎨⎧m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73. 5.(2018·襄阳调研)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A.⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞B.⎝⎛⎭⎫12,+∞ C .(-∞,-2)∪⎝⎛⎭⎫-2,12D.⎝⎛⎭⎫-∞,12解析:选C 不妨令i =(1,0),j =(0,1),则a =(1,-2),b =(1,λ),因为它们的夹角为锐角,所以a ·b =1-2λ>0且a ,b 不共线,所以λ<12且λ≠-2,故选C.6.(2019·石家庄质检)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选A ∵|a +b |=|a -b |,∴|a +b |2=|a -b |2,∴a ·b =0.又|a +b |=2|b |,∴|a +b |2=4|b |2,|a |2=3|b |2,∴|a |=3|b |,cos 〈a +b ,a 〉=(a +b )·a |a +b ||a |=a 2+a ·b |a +b ||a |=|a |22|b ||a |=|a |2|b |=32,故a +b 与a 的夹角为π6. 7.(2018·宝鸡质检)在直角三角形ABC 中,角C 为直角,且AC =BC =1,点P 是斜边上的一个三等分点,则CP ―→·CB ―→+CP ―→·CA ―→=( )A .0B .1 C.94D .-94解析:选B 以点C 为坐标原点,分别以CA ―→,CB ―→的方向为x 轴,y 轴的正方向建立平面直角坐标系(图略),则C (0,0),A (1,0),B (0,1),不妨设P ⎝⎛⎭⎫13,23,所以CP ―→·CB ―→+CP ―→·CA ―→=CP ―→·(CB ―→+CA ―→)=13+23=1.故选B.8.(2019·武汉调研)已知平面向量a ,b ,e 满足|e |=1,a ·e =1,b ·e =-2,|a +b |=2,则a ·b 的最大值为( )A .-1B .-2C .-52D .-54解析:选D 不妨设e =(1,0),则a =(1,m ),b =(-2,n )(m ,n ∈R),则a +b =(-1,m +n ),所以|a +b |=1+(m +n )2=2,所以(m +n )2=3,即3=m 2+n 2+2mn ≥2mn +2mn =4mn ,当且仅当m =n 时等号成立,所以mn ≤34,所以a ·b =-2+mn ≤-54,综上可得a ·b的最大值为-54.9.已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角的正弦值为________.解析:∵a ·(a +b )=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3, ∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-c os 2〈a ,b 〉=32. 答案:3210.(2018·湖北八校联考)已知平面向量a ,b 的夹角为2π3,且|a |=1,|b |=2,若(λa +b )⊥(a -2b ),则λ=________.解析:∵|a |=1,|b |=2,且a ,b 的夹角为2π3,∴a ·b =1×2×⎝⎛⎭⎫-12=-1,又∵(λa +b )⊥(a -2b ),∴(λa +b )·(a -2b )=0,即(λa +b )·(a -2b )=λa 2-2b 2+(1-2λ)a ·b =λ-8-(1-2λ)=0,解得λ=3.答案:311.(2018·合肥一检)已知平面向量a ,b 满足|a |=1,|b |=2,|a +b |=3,则a 在b 方向上的投影等于________.解析:∵|a |=1,|b |=2,|a +b |=3, ∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =3, ∴a ·b =-1,∴a 在b 方向上的投影为a ·b |b |=-12.答案:-1212.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→·(OB ―→-OA ―→)=(OA ―→+AC ―→)·AB ―→=OA ―→·AB ―→+AC ―→·AB ―→=2cos 3π4+24×2=-12. 答案:-1213.(2019·南昌质检)设向量a ,b 满足|a |=|b |=1,且|2a -b |= 5. (1)求|2a -3b |的值;(2)求向量3a -b 与a -2b 的夹角θ.解:(1)∵|2a -b |2=4a 2-4a ·b +b 2=4-4a ·b +1=5,∴a ·b =0, ∴|2a -3b |=4a 2-12a ·b +9b 2=4+9=13.(2)cos θ=(3a -b )·(a -2b )|3a -b ||a -2b |=3a 2+2b 29a 2+b 2×a 2+4b 2=510×5=22,∵θ∈[0,π],∴θ=π4.。
皮皮高考系列----5.1平面向量的概念及线性运算、平面向量的基本定理
第一节平面向量的概念及线性运算、平面向量的基本定理一、向量的概念:既有大小又有方向的量叫向量。
有二个要素:大小、方向.二、向量的表示方法:1. 几何表示法:用有向线段表示---(有向线段:具有方向和长度的线段);2. 字母表示法:用字母、等表示;3. 坐标表示法:分别取与轴、轴方向相同的两个单位向量、作为基底。
任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,叫做向量的(直角)坐标,记作(其中叫做在轴上的坐标,叫做在轴上的坐标)特别地,,,。
;若,,则,三、向量的有关概念1.零向量:长度为0的向量叫零向量,记为;2.单位向量:长度为1个单位长度的向量,叫单位向量.(注:就是单位向量)3.相等向量:长度相等且方向相同的向量叫相等向量.4.相反向量:长度相等且方向相反的向量叫相等向量.5.平行(共线)向量:方向相同或相反的非零向量叫平行向量;我们规定与任一向量平行.性质:是唯一)(其中)6.垂直向量:两向量的夹角为性质:(其中)向量的正交分解:把一个向量分解为两个互相垂直的向量。
四、向量的加法、减法:1. 向量的加法(1)平行四边形法则:(起点相同的两向量相加,常要构造平行四边形)(2)三角形法则(3)多边形法则(三角形法则的推广)两个以上的非零向量相加:……即个向量……首尾相连成一个封闭图形,则有……2.向量的减法向量加上的相反向量,叫做与的差。
即:-= + (-);差向量的意义:= , =, 则=3.平面向量的坐标运算:若,,则,,。
4.向量加法的运算律:交换律:+=+;结合律:(+) +=+ (+)5.常用结论:(1)若,则D是AB的中点(2)||²+||²=2(||²+||²)(3)或G是△ABC的重心,则点G其中A(x1,y1),B(x2,y2),C(x3,y3)五、向量的模:1、定义:向量的大小,记为 || 或 ||2、模的求法:若,则 ||若,则 ||3、性质:(1);(实数与向量的转化关系)(2),反之不然(3)三角不等式:(4)(当且仅当共线时取“=”)即当同向时,;当反向时,(5)平行四边形四条边的平方和等于其对角线的平方和,即六、实数与向量的积:实数λ与向量的积是一个向量,记作:λ(1)|λ|=|λ|||;(注意:实数与向量不能求和求差)(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=;(3)运算定律λ(μ)=(λμ),(λ+μ)=λ+μ,λ(+)=λ+λ七、平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2。
2019版高考数学复习平面向量第一节平面向量的概念及其线性运算课件文
∴存在实数λ,使ka+b=λ(a+kb),
即(k-λ)a=(λk-1)b.
又a,b是两个不共线的非零向量,
∴k-λ=λk-1=0.
∴k2-1=0.
∴k=±1.
方法技巧
1.共线向量定理的应用
(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的
值.
(2)若a,b不共线,则λa+μb=0的充要条件是λ=μ=0,这一结论结合待定系数
AD
=
AB
+
BD
=
AB
+
2
BC
=c+
2
(b-c)=
2
b+
1
c.故选D.
3
3
33
2-2
(2017北京海淀一模)在△ABC中,点D满足
AD
=2
AB
-
AC
,则(
D
)
A.点D不在直线BC上 B.点D在BC的延长线上
C.点D在线段BC上 D.点D在CB的延长线上
答案 D
AD
=2
AB
-
AC
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得
b=λa .
1.下列说法正确的是 ( C )
A.
AB
∥
CD
就是
AB
所在的直线平行于
CD
所在的直线
B.长度相等的向量叫相等向量
C.零向量长度等于0
D.共线向量是在同一条直线上的向量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若a与b是两个非零向量,则它们共线的充要条件是有且只有一个实 数λ,使得⑤ b=λa ; (2)若a与b是两个非零向量,则它们共线的充要条件是存在两个均不是 零的实数λ、μ,使⑥ λa+μb=0 .
方法技巧
方法 1 平面向量的线性运算技巧和数形结合的方法
1.解题的关键在于搞清构成三角形的三个向量间的相互关系,能熟练地 找出图形中的相等向量,能熟练地运用相反向量将加减法相互转化. 2.用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位 置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果. 3.适当选择基底是解题关键.
1 n m, n 2, ∴ n 2 解得 故选B. m 1, , 5 5
方法 2 向量共线问题的解决方法
1.两非零向量共线是指存在实数λ使两向量可以互相表示. 2.向量共线的充要条件中要注意当两向量共线时,通常只有非零向量才 能表示与之共线的其他向量,要注意待定系数法和方程思想的运用. 3.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共 线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.
OC =λ OA +μ OB 且λ+μ=1.特别地,当λ=μ= 4.A、B、C三点共线⇔ 时,C为
1 2
线段AB的中点. 例2 (2017广东七校联考,5)已知向量i,j不共线,且 AB =i+mj, AD =ni+j,m
≠1,若A,B,D三点共线,则实数m,n应满足的条件是 ( C )
高考理数
第五章 平面向量
§5.1 平面向量的基本概念与线性运算
知识清单
考点一
名称 向量
平面向量的基本概念与线性运算
定义 表示法
1.向量的有关概念及表示法
既有大小又有方向的量叫向量;向量的 向量: AB
大小叫 做向量的长度(或模) 零向量 长度为0的向量叫零向量;其方向是任 意的 单位向量 平行向量 长度等于1个单位的向量 方向相同或相反的非零向量
A.m+n=1 B.m+n=-1 C.mn=1 D.mn=-1
解题导引
解析 因为A、B、D三点共线,所以 ∥ , 存在非零实数 λ , 使得 AB AD AB =
AD ,即i+mj=λ(ni+j),所以(1-λn)i+(m-λ)j=0,又因为i与j不共线,所以 λ
1 λn 0, 则mn=1,故选C. m λ 0,
模:① |AB |
记作0
常用e表示 a与b共线可记为② a∥b 0与任一向量共线 ;
共线向量 相等向量 相反向量
平行向量又叫做共线向量 长度相等且方向相同的向量 长度相等且方向相反的向量 a=b a与b互为相反向量,则a=-b; 0的相反向量为0
2.平面向量的线性运算
考点二
向量共线的判断:
向量的共线问题
1 ,若P是直线 例1 (2017河北衡水中学三调考试,6)在△ABC中, AN = NC 4 2 ,则实数m的值为 ( B ) BN上的一点,且满足 AP =m AB + AC 5
C.1
D.4
解析 根据题意设 = n ( n ∈ R), 则 = + = + n = + n ( BP BN AP AB BP AB BN AB AN n 2 1 AB )= AB +n AB + AP =m AB + AC ,又 AC , - AC AB =(1-n) 5 5 5