八年级数学上册 4.4 第2课时 单个一次函数图象的应用习题课件 (新)北师大
合集下载
新版北师大版八年级数学上册第四章一次函数全章课件
也是x的正比例函数;
(2)由圆的面积公式,得y=πx2,y不是x的正比例函数, 也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5x m3水,因 而y=15+5x,y是x的一次函数,但不是x的正比例函数.
二、新课讲解
例2 我国自2011年9月1日起,个人工资、薪金所得税征 收办法规定:月收入不超过3500元的部分不收税;月收 入超过3500元但不超过5000元的部分征收3%的所得 税……如某人月收入3860元,他应缴纳个人工资、薪金 所得税为(3860-3500)×3%=10.8(元). (1)当月收入超过3500元而又不超过5000元时,写出 应缴纳个人工资、薪金所得税y(元)与月收入x(元)之 间的关系式; (2)某人月收入为4160元,他应缴纳个人工资、薪金所 得税多少元? (3)如果某人本月缴纳个人工资、薪金所得税19.2元, 那么此人本月工资、薪金收入是多少元?
吗?
当t>-273时,t+273>0,即T>0,满足T≧0. 故给定一个大于-273℃的t值,能求出相应的T值.
二、新课讲解
在上面各例中,都有两个变量,给定其中某一个变量 的值,相应地就确定了另一个变量的值.
一般地,如果在一个变化过程中有两个变量x和y,并 且对于变量x的每一个值,变量y都有唯一的值与它对应, 那么我们称y是x的函数,其中x是自变量.
温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有 如下数量关系:T=t+273,T≧0.
(1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热
力学温度T是多少? 根据T=t+273,当t=-43℃时,T=230K;当t=-27℃
时,T=246K;当t=0℃时,T=273K;当t=18℃时, T=291K. (2)给定一个大于-273℃的t值,你都能求出相应的T值
(2)由圆的面积公式,得y=πx2,y不是x的正比例函数, 也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5x m3水,因 而y=15+5x,y是x的一次函数,但不是x的正比例函数.
二、新课讲解
例2 我国自2011年9月1日起,个人工资、薪金所得税征 收办法规定:月收入不超过3500元的部分不收税;月收 入超过3500元但不超过5000元的部分征收3%的所得 税……如某人月收入3860元,他应缴纳个人工资、薪金 所得税为(3860-3500)×3%=10.8(元). (1)当月收入超过3500元而又不超过5000元时,写出 应缴纳个人工资、薪金所得税y(元)与月收入x(元)之 间的关系式; (2)某人月收入为4160元,他应缴纳个人工资、薪金所 得税多少元? (3)如果某人本月缴纳个人工资、薪金所得税19.2元, 那么此人本月工资、薪金收入是多少元?
吗?
当t>-273时,t+273>0,即T>0,满足T≧0. 故给定一个大于-273℃的t值,能求出相应的T值.
二、新课讲解
在上面各例中,都有两个变量,给定其中某一个变量 的值,相应地就确定了另一个变量的值.
一般地,如果在一个变化过程中有两个变量x和y,并 且对于变量x的每一个值,变量y都有唯一的值与它对应, 那么我们称y是x的函数,其中x是自变量.
温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有 如下数量关系:T=t+273,T≧0.
(1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热
力学温度T是多少? 根据T=t+273,当t=-43℃时,T=230K;当t=-27℃
时,T=246K;当t=0℃时,T=273K;当t=18℃时, T=291K. (2)给定一个大于-273℃的t值,你都能求出相应的T值
北师大版八年级数学上册《4.4一次函数的应用》课件(共2课时)
重点: 会用待定系数法确定一次函数的关系表达式 难点:能根据一次函数图像或其他一些情境,灵
活地利用待定系数法确定一次函数的表达式。
1 一次函数
判断:下列函数关系式中的
复
y
是不是
习
x
的一次函数。
( 1) ( 2) ( 3) ( 4) ( 5)
y=-x y = 2x - 1
(√ )
(√ ) (√ ) (√ ) ( ≠)
1 一次函数 教学目标、 重点 、难点 复 习 一次函数 例 题
练一练 作业
正比例 函数
1 一次函数 教学目标、重点、难点
了解两个条件确定一个一次函数,一个条件确 定一个正比例函数,并能由此求出表达式。会用待 定系数法解决简单的现实问题 根据函数的图像确定一次函数的表达式,培养学 生的数形结合能力。
课
时
小
结
本节课我们主要学习了根据已知条件,如何 求函数的表达式: 1、设函数表达式; 2、根据已知条件列出有关 k , b 的方程; 3、解方程,求 k ,b; 4、把 k ,b 代回表达式,写出表达式。
知识回顾:
一次函数图象可获得哪些信息? 1、由一次函数的图象可确定k 和 b 的符号;
2、由一次函数的图象可估计函数的变化趋势;
200
(60,0)
0 10 20 30 40 50
t/天
多角度理解
探索思考?
由于高温和连日无雨,某水库蓄水量V
(万米3)和干旱时间t(天)的关系如图:
合作探究:还能用其
V/万米3
它方法解答本题吗? (1)设v=kt+1200 (2)将t=10,V=1000代入 V=kt+1200中求的k= -20 V= -20 t+1200
八年级数学上册(北师大版)第四章第四节《一次函数的应用(第2课时)》课件
全国每年都有大量土地 被沙漠吞没,改造沙漠, 保护土地资源已经成为 一项十分紧迫的任务.
某地区现有土地面积100万 千米2,沙漠面积200万千米2, 土地沙漠化的变化情况如图 所示. 根据图象回答下列问题:
(1)如果不采取任何措施, 那么到第5年底,该地区沙 漠面积将增加多少万千米2?
(10万千米2)
·
20t ( 天 )
根据图象回答下列问题: (7)写出活动开展的第t天节 约的水量y与天数t的函数关系。
()Y 4t 20
课堂小结
今天,你有什么收获?
课外探究
在生活中,你还遇到过哪些可以 用一次函数关系来表示的实际问题? 选择你感兴趣的问题,编制一道数学 题与同学交流。
课外作业:
习题4.6
23天呢?
(3)蓄水量小于400万米3时,将
发生严重干旱警报.干旱多少
天后将发出严重干旱警报?
(4)按照这个规律,预计 持续干旱多少天水库将干 涸?
当得知周边地区的干旱情况后,育才学校的 小明意识到节约用水的重要性,当天在班上 倡议节约用水,得到全班乃至全校师生的积 极响应。
做一做
从宣传活动开始,假设每天参加该活动的家庭 数增加数量相同,最后全校师生都参加了活动, 并且参加该活动的家庭数S(户)与宣传时间t (天)的函数关系如图所示。
·
20t ( 天 )
根据图象回答下列问题: (6)若每户每天节约用水0.1吨, 那么活动第20天可节约多少吨水?
(第20天可节约100吨水)
探究升级
S(户)
从宣传活动开始,假设每天参加 1000 该活动的家庭数增加数量相同, 最后都参加了活动,并且参加该 200 活动的家庭数S(户)与宣传时 0 间t(天)的函数关系如图所示。
北师大版八年级数学上册全套备课课时练习课件:一次函数的应用
举一反三 某种汽车的油箱最多可储油60升,油箱中的余油
量Q(升)与行驶的时间t(小时)之间的关系如图4-4-6 所示,根据图象回答下列问题:
图4-4-6
(1)求油箱中的余油Q与行驶时间t的函数关系,并求 出t的取值范围.
(2)从开始算起,如果汽车每小时行驶60千米,当油 箱中余油10升时,该汽车行驶了多少千米?
4.4 一次函数的应用
学习目标
1. 能通过函数图象获取信息,提高学生的形象思维 能力.
2. 能利用函数图象解决简单的实际问题. 3. 初步体会方程与函数的关系.
课前预习
1. 已知一次函数y=mx+的图象与y轴交于点(0,3), 且y随x值的增大而增大,则m的值是 2 .
2. 如图4-4-1所示,当x=0时,y= 2 ;当y= 0时,x= -2 ;当x> -2 时,y>0;y随x的增大 而 增大 .
图4-4-5 (1)每月行驶的路程在什么范围内时,租国有出租 车公司的车合算? (2)每月行驶的路程等于多少时,租两家车的费用 相同?
(3)如果这个单位估计每月行驶的路程为2 600 km, 那么这个单位租哪家车合算?
解析 本题从给出的两个函数图象中可获取以下信 息:都是一次函数,一个是正比例函数;两条直线交 点的横坐标为1 500,表明当x=1 500时,两个函数值 相等;根据图象可知:x>1 500时,y2>y1;0<x< 1 500时,y2<y1.
图4-4-4
(1)小华买奖品的钱共是多少元?
100元 (2)每个奖品多少元?
2.5元 (3)若买20个奖品,还剩多少元?
50元 (4)写出图象的函数关系式.
y=-2.5x+100(0≤x≤40)
新知 2 同一坐标系中,两个一次函数图象的应用
北师大版数学八年级上册 4.4 一次函数的应用
t(s)
典例精析
例1 求正比例函数 y (m 4)xm215 的表达式.
解:由正比例函数的定义知 m2-15=1 且 m-4≠0, ∴ m=-4. ∴ y=-8x.
方法总结:利用正比例函数的定义确定表达式: 自变量的指数为 1,系数不为 0,常数项为 0.
想一想:确定正比例函数的表达式需要几个条件? 一个
北师大版数学八年级上册
第四章 一次函数
4.4 一次函数的应用
第3课时 两个一次函数图象的应用
观察与思考
y
观察下图,你能发现它们三条函数直 线之间的差别吗?
O
x
两个一次函数的应用
引例:l1 反映了某公司产品的销售收入与销售量的关系,
根据图意填空:当销售量为 2 吨时,销售收入=2000元,
y/元
∴在弹性限度内,y = 0.5x + 14.5. 当 x = 4 时,y = 0.5×4+14.5 = 16.5(厘米). 故当所挂物体的质量为 4 千克时弹簧的长度为 16.5 厘米.
归纳总结
解此类题要根据所给的条件建立数学模 型,得出变化关系,并求出函数的表达式, 根据函数的表达式作答.
正比例函数 y = kx(k≠0)
典例精析 例1 某种摩托车加满油后,油箱中的剩余 油量 y (升)与摩托车行驶路程 x (千米)之间的关系如 图所示: y/升
10 8 6 4 2
0 100 200 300 400 500 x/千米
根据图象回答下列问题:
y/升 (1)油箱最多可储油多少升?
10
8 6
解:当 x = 0 时,y = 10.
应用与延伸
试问: (2)加油前每 100 千米耗油多 少升? 加油后每 100 千米耗油多少升?
4.4 一次函数的应用 第2课时 借助单个一次函数图象解决有关问题 北师大版八年级上册数学习题课件
10.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如图所示, 如果汽车一直以前2小时的速度行驶,那么可以提前______h2到达B地.
11.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:
(1)方程kx+b=0的解; (2)式子k+b的值; (3)方程kx+b=-3的解.
A.3 B.4 C.5 D.6
3.某省由于持续高温和连日无雨,水库蓄水量普遍下降,如图所示是某水库蓄水量 V(万立方米)与干旱时间t(天)之间的关系图,请你根据此图填空.
(1)水库原蓄水量是__1_0_0_0__万立方米,干旱持续10天,蓄水量为___8_0_0__万立方米; (2)若水库的蓄水量小于400万立方米时,将发出严重干旱预报,则持续干旱__3_0___天 后,将发出严重干旱预报,按此规律,持续干旱___5_0=0的解是x=3,则函数y=kx+b的图象可能是( C )
9.国内航空规定,乘坐飞机经济舱的旅客所携带行李的质量x(kg)与其运费y(元)之间 是一次函数关系,其图象如图所示,那么旅客可免费携带的行李的最大质量为( A )
A.20 kg B.25 kg C.28 kg D.30 kg
(1)求盒内钱数y(元)与存钱月数x(月)之间的函数表达式(不要求写出x的取值范围); (2)在平面直角坐标系中作出该函数的图象; (3)观察图象回答:按上述方法,该同学经过几个月能存够200元?
解:(1)y=40+20x (2)函数图象如图所示 (3)观察图象可知,该同学经过8个月能存够200元
13.张师傅驾车运荔枝到某地出售,汽车出发前油箱内有油50升,行驶若干小时后, 途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(时)之间的关系如图所示.
北师版八年级数学上册作业课件(BS) 第四章 一次函数 一次函数的应用 第2课时 一次函数的简单应用
A.两人出发1小时后相遇 B.赵明阳跑步的速度为8 km/h C.王浩月到达目的地时两人相距10 km D.王浩月比赵明阳提前1.5 h到目的地
15.某单位举行“健康人生”徒步活动,某人从起点体育村沿建设路到市生态 园,再沿原路返回,设此人距离起点的路程s(千米)与徒步时间t(小时)之间的函数 关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,徒步2小时,根 据图象提供信息,解答下列问题.
知识点2:从一次函数图象中获取信息 6.一项工程,甲、乙两人合作5 h后,甲被调走,剩余的部分由乙继续完成, 设这项工程的全部工作量为1,工作量与工作时间之间的函数关系式如图所示,那 么甲的工作效率是( B)
A.110
B.115
C.210
D.310
7.今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一 段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的 函数关系如图所示.下列说法错误的是( C )
A.乙的速度是4米/秒 B.离开起点后,甲、乙两人第一次相遇时,距离起点12米 C.甲从起点到终点共用时83秒 D.乙到达终点时,甲、乙两人相距68米
12.某通讯公司提供了两种移动电话收费方式:方式1:收月基本费20元,再 以每分钟0.1元的价格按通话时间计费;方式2:收月基本费20元,送80分钟通话 时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:
易错点:忽视题中所求问题的关键词“提前”致误 10.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如 图所示,如果汽车一直快速行驶,那么可以提前__2_小时到达B地.
11.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑 步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距 离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是( D )
15.某单位举行“健康人生”徒步活动,某人从起点体育村沿建设路到市生态 园,再沿原路返回,设此人距离起点的路程s(千米)与徒步时间t(小时)之间的函数 关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,徒步2小时,根 据图象提供信息,解答下列问题.
知识点2:从一次函数图象中获取信息 6.一项工程,甲、乙两人合作5 h后,甲被调走,剩余的部分由乙继续完成, 设这项工程的全部工作量为1,工作量与工作时间之间的函数关系式如图所示,那 么甲的工作效率是( B)
A.110
B.115
C.210
D.310
7.今年五一节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一 段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的 函数关系如图所示.下列说法错误的是( C )
A.乙的速度是4米/秒 B.离开起点后,甲、乙两人第一次相遇时,距离起点12米 C.甲从起点到终点共用时83秒 D.乙到达终点时,甲、乙两人相距68米
12.某通讯公司提供了两种移动电话收费方式:方式1:收月基本费20元,再 以每分钟0.1元的价格按通话时间计费;方式2:收月基本费20元,送80分钟通话 时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:
易错点:忽视题中所求问题的关键词“提前”致误 10.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如 图所示,如果汽车一直快速行驶,那么可以提前__2_小时到达B地.
11.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑 步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距 离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是( D )
4.4 一次函数的应用 北师大版数学八年级上册知识考点梳理课件
函数;
(2)画图象:画出一次函数的图象;
(3)找交点:找出一次函数的图象与 x
轴交点的横坐标,即为一元一次方程的解
4.4 一次函数的应用
返回目录
归纳总结
考
点
(1)一般情况下将一元一次方程转化为 kx+b=0 的形式
清
单 后,可设 y=kx+b,将求方程的解转化为求一次函数图象与
解
读 x 轴交点的横坐标;(2)一次函数 y=kx+b,当 y=m 时,
难
例 1
A,B 两地相距 300 km,甲、乙两辆火车分别
题
型 从 A,B 两地同时出发,相向而行.如图,L ,L 分别表
1
2
突
破 示两辆火车离 A 地的距离 s(km)与行驶时间 t(h)的
关系.
(1)写出 L1,L2 的函数表达式;
(2)求两辆火车什么时间相遇;
(3)求两辆火车什么时间相距100 km.
将(1,40)代入,得 m=40,所以 L2 的表达式为
s=40t;
4.4 一次函数的应用
(2)根据题意,得-60t+300=40t,解得 t=3.
重
难
答:两辆火车行驶 3 h 时相遇;
题
型
(3)由题意,得相遇前相距 100 km:-60t+300突
破 40t=100,解得 t=2;
相遇后相距 100 km:40t-(-60t+300)=100,解得
4.4 一次函数的应用
● 考点清单解读
● 重难题型突破
4.4 一次函数的应用
考
点
清
单
解
读
■考点一
返回目录
(2)画图象:画出一次函数的图象;
(3)找交点:找出一次函数的图象与 x
轴交点的横坐标,即为一元一次方程的解
4.4 一次函数的应用
返回目录
归纳总结
考
点
(1)一般情况下将一元一次方程转化为 kx+b=0 的形式
清
单 后,可设 y=kx+b,将求方程的解转化为求一次函数图象与
解
读 x 轴交点的横坐标;(2)一次函数 y=kx+b,当 y=m 时,
难
例 1
A,B 两地相距 300 km,甲、乙两辆火车分别
题
型 从 A,B 两地同时出发,相向而行.如图,L ,L 分别表
1
2
突
破 示两辆火车离 A 地的距离 s(km)与行驶时间 t(h)的
关系.
(1)写出 L1,L2 的函数表达式;
(2)求两辆火车什么时间相遇;
(3)求两辆火车什么时间相距100 km.
将(1,40)代入,得 m=40,所以 L2 的表达式为
s=40t;
4.4 一次函数的应用
(2)根据题意,得-60t+300=40t,解得 t=3.
重
难
答:两辆火车行驶 3 h 时相遇;
题
型
(3)由题意,得相遇前相距 100 km:-60t+300突
破 40t=100,解得 t=2;
相遇后相距 100 km:40t-(-60t+300)=100,解得
4.4 一次函数的应用
● 考点清单解读
● 重难题型突破
4.4 一次函数的应用
考
点
清
单
解
读
■考点一
返回目录
最新北师大版八年级数学上册《单个一次函数图象的应用》优质教学课件
课后研讨
上完这节课,你收获了什么? 有什么样的感悟?与同学相互交 流讨论。
虚心使人进步,骄傲使人落后,我们应当永远 记住这个真理。
——毛泽东
课后作业
1. 从课后习题中选取; 2. 完成练习册本课时的习题.
演示完毕 感谢聆听
讲授新课
一 一次函数图象的应用 引例:由于持续高温和连日无雨,某水库的蓄水量随着 时间的增加而减少.蓄水量V(万m3)与干旱持续时间 t( 天) 的关系如图所示,
回答下列问题
V/万米3 1200
:
(1)水库干旱前的蓄水量是多少
?
1200
1000
(2)干旱持续10天,蓄水量为多少
800
(23,?)
3.近几年来,由于经济和社会发展迅速,用电量越来越多.为缓 解用电紧张,某电力公司特制定了新的用电收费标准,每月用
电量x(度)与应付电费y(元)的关系如图所示. 100 y(元)
75 70 50 25 O 25 50 75 100 x(度)
⑴请你根据图象所描述的信息,分别求出当0≤x≤50 和x>50时 ,y与x的函数表达式;
10万千米2
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始, 第几年底后,该地区将丧失土地资源? 每年新增面积为2万千米2,所以第50年底后将丧失土地资源.
(3)如果从现在开始采取植树造林措 施,每年改造4万千米2 沙漠,那么到第几年底,该地区的 沙漠面积能减少到176万千米2.
第12年底
A.x=-1 B.x=2 C.x=0 D.x=3
【解析】由函数经过点(0,1)可得b=1, 再将点(2,3)代入y=kx+1,可求出k的 值为1,故一次函数的表达式为y=x+1, 再求出方程x+1=0的解为x=-1.
北师大版八年级数学上册《一次函数的图象》一次函数PPT课件(第2课时)
4.画出函数y=x+1的图象,并根据图象回答: (1)x为何值时,y的值为0? (2)y为何值时,x的值为0? (3)x为何值时,y随x的增大而增大?
解:过点(0,1),(-1,0)画出函数图象如图所示.
(1)当x=-1时,y=0. (2)当y=1时,x=0. (3)x取任意实数,y都随x的增大而增大.
y
y=x+1
1
-1 O -1
1
x
课堂小结
一次函数的图象
一次函数y=kx+b的图象是_一__条__直__线___,只要确定两个点,就可画 出一次函数图象. 一次函数y=kx+b的图象也称为__直__线__y_=_k_x_+_b___.
课堂小结
一次函数的性质
一次函数y=kx+b的图象经过__点__(_0_,b_)_. 当_k_>__0__时,y的值随着x值的增大而增大; 当__k_<__0_时,y的值随着x值的增大而减小.
-2
-3
-4 -5
y=-2x+1
2.在同一坐标系中画出函数y=-2x的图象. 比较两个函数图象.
这两个函数的图象形状都是__一__条__直__线_, 并且倾斜程度_相__同___. 函数y=-2x的图象经过原点,函数y=-2x+1 的图象与y轴交于点__(__0_,__1_),它可以看作 由直线y=-2x向___上___平移___1___个单位长 度得到.
k的符号决定直线从左到右呈上升趋势还是下降趋势,
k>0时,呈上升趋势;k<0时,呈下降趋势. b的符号决定直线与y轴交点的位置, b>0时,直线与y轴的交点在x轴的上方; b<0时,直线与y轴的交点在x轴的下方; b=0时,直线经过原点.
相关主题