八年级数学上册 1.3 平行线的性质(第2课时)教案 浙教版

合集下载

1.3 平行线的性质 课件2(数学浙教版八年级上册)

1.3 平行线的性质 课件2(数学浙教版八年级上册)

上节结论
你记 清楚了吗?
同位角相等,两直线平行
两直线平行,同位角相等。
AB // CD 可得____________
内错角相等,两直线平行 4、如果∠2=∠4,根据________________________ AD // BC 可得_____________ ∠3 =_______ ∠5 , 5、如果_______ 根据内错角相等,两直线平行, 1 2 4 5 C D
B 3 4 1 A C 2 E D
3 如图,D,E分别是AB,AC上的点.若∠1=∠2,则 DE ∥ BC ( 内错角相等,两直线平行 ) ∴ ∠EDB+∠ABC= 180°(两直线平行,同旁内角互补).
A D 1 2 B C E
例3 如图,已知AB∥CD,AD∥BC。判 断∠1与∠2是否相等,并说明理由。 解 ∠1=∠2. 理由如下:
例2 如图,已知∠1=∠2,若直线b⊥m,则直线a⊥m, 请说明理由.
n 解 ∵∠1=∠2(已知)
1 3
m
∴a∥b(同位角相等,两直线平行)
a
4
∴∠3=∠4(两直线平行,同位角相等) ∵b⊥m(已知) ∴∠4=90°(垂直的意义) ∴∠3=90° ∴a⊥m.
2
b
2如图,若∠1=∠2,则 AB ∥ CD (同位角相等,两直线平行 ), ∠3 = ∠4 (两直线平行,内错角相等)。
1 2 3 4
a A b d B
第2题
A
D

E C D 第3题
c
第1题
C
B
• 如图所示, 已知AB//CD ,AD//BC, BF平分 ∠ABC ,DE平分∠ADC, • 则 DE//FB,请说明理由.

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。

人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

平行线的性质(第2课时)教学目标1.能够灵活应用平行线的性质解决问题.2.加深对平行线的三条性质的理解,提高分析问题、解决问题的能力.教学重点掌握平行线的性质.教学难点应用平行线的性质解决问题.教学过程知识回顾平行线的性质1:两直线平行,同位角相等.平行线的性质2:两直线平行,内错角相等.平行线的性质3:两直线平行,同旁内角互补.本节课,我们针对平行线的性质的应用,展开学习.【设计意图】对上节课所学习的平行线的性质进行复习回顾,为本节课题目的讲解提供理论依据.新知探究一、探究学习【问题】1.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG 的度数是().A.70°B.20°C.35°D.40°【师生活动】学生独立分析题目,得到过程如下:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.【答案】C【归纳】(1)在确定两角之间数量关系或求角度的问题中,如果有平行线,那么先考虑平行线的性质;(2)利用平行线的性质求角的度数时,一定要弄清楚所求角与已知角的关系.【问题】2.如图,CD⊥AB于点D,点F是BC上任意一点,FE⊥AB于点E,∠1=∠2,∠3=62°,求∠BCA的度数.【师生活动】教师引导学生对图形进行分析,找到角与角之间的对应关系,进行等量替换,通过平行线的性质与判定综合应用来解答本题.【答案】解:∵CD⊥AB,FE⊥AB,∴∠BEF=∠BDC=90°.∴FE∥CD.∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD.∴DG∥BC.∴∠BCA=∠3=62°.【归纳】遇到平行线的条件时就要联想到角的相等或互补;遇到角的相等或互补时就要联想到两直线平行;遇到垂直的条件时就要联想到垂直的性质.【问题】3.如图,AD是∠BAC的平分线,∠2=∠3,试说明∠3=∠G.【答案】解:∵AD平分∠BAC,∴∠1=∠2.又∵∠2=∠3,∴∠1=∠3.∴GE∥AD(内错角相等,两直线平行).∴∠2=∠G(两直线平行,同位角相等).∴∠3=∠G.【归纳】平行线的性质与判定的选择:(1)由角的关系得到平行,用的是平行线的判定.(2)由两直线平行得到角的关系,用的是平行线的性质.【问题】4.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,则∠1与∠2之间有什么数量关系?说明理由.【答案】解:∠1+∠2=90°.理由如下:∵BE平分∠ABC,CE平分∠BCD,∴∠1=12∠ABC,∠2=12∠BCD.∵AB∥CD,∴∠ABC+∠BCD=180°.∴∠1+∠2=12∠ABC+12∠BCD=12(∠ABC+∠BCD)=12×180°=90°.【归纳】要确定两个角之间的数量关系,关键是看这两个角属于哪一类角,当角不是由两平行线被第三条直线所截而形成的同位角、内错角或同旁内角时,一般要考虑这两个角与这三类角之间有无倍、分关系.【设计意图】前面几道题目涉及到应用平行线的性质进行相关角度的计算,在解决该类问题时,一般要综合应用平行线的判定和性质,灵活求解.【问题】5.如图,已知BE∥CF,∠1=∠2,请判断直线AB与CD是否平行,并说明理由.【师生活动】学生以组为单位,对图形进行分析,写出解题过程并组内纠错.【答案】解:∵BE∥CF,根据“两直线平行,内错角相等”,得∠EBC=∠BCF.又∵∠1=∠2,∴∠1+∠EBC=∠2+∠BCF.即∠ABC=∠BCD.根据“内错角相等,两直线平行”,得AB∥CD.【问题】6.如图,已知AD∥BC,∠A=∠C,试说明AB和CD的位置关系.【答案】解:AB∥CD.理由如下:∵AD∥BC,∴∠C=∠CDE.∵∠A=∠C,∴∠A=∠CDE.∴AB∥CD(同位角相等,两直线平行).【归纳】在利用平行线的性质或判定时,一定要看清楚直线与角的位置关系,分清同位角、内错角、同旁内角是由哪两条直线被哪条直线所截而成的.【设计意图】问题5和问题6主要应用平行线的性质判断边的位置关系,在解决该类问题时,要分清截线和被截线.【问题】7.如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?【师生活动】教师引导学生从梯形的特征去分析,知道两边平行就可以应用平行线的相关知识解决问题.【答案】解:因为梯形上、下两底AB与DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B与∠C互补.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.【问题】8.如图,MN,EF表示两面互相平行的镜子,一束光线AB照射到镜面MN 上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的光线为CD,此时∠3=∠4.试判断AB与CD的位置关系,并说明理由.【答案】解:AB∥CD.理由如下:∵MN∥EF,∴∠2=∠3(两直线平行,内错角相等).∵∠1=∠2,∠2=∠3,∠3=∠4,∴∠1+∠2=∠3+∠4.∵∠1+∠ABC+∠2=180°,∠3+∠BCD+∠4=180°,∴∠ABC=∠BCD.∴AB∥CD(内错角相等,两直线平行).【归纳】实际问题一般要转化为数学问题解决,解决此类问题的关键是利用平行线的性质求有关角的度数.【设计意图】问题7和问题8两题涉及到平行线的性质在实际生活中的应用,解决这类问题的关键是找出平行线,利用平行线的性质求出角的度数.课堂小结板书设计一、应用平行线的性质计算角的度数二、应用平行线的性质判断边的位置关系三、平行线的性质在实际生活中的应用课后任务完成教材第20页练习第2题.。

浙教版八年级数学上册1.3平行线的性质(2)

浙教版八年级数学上册1.3平行线的性质(2)
D
A B
C
B
F E C 图2 D
A
图1
练习二: 填空:如图(1):
∴∠B= ∠ C
AB
CD
(已知), ( 两直线平行,内错角相等).
如图(2):
∠ ADE= ∠ B (已知), ∴ DE BC ( 同位角相等,两直线平行), ∴∠CED+∠ C=180º(两直线平行,同旁内角互补 ).
A A B D C (1) D B (2) E C
D C
解:∠1=∠2 ∠ B A ∵AB∥CD(已知) ∥ (已知) ∴∠1+∠ ∴∠ ∠BAD=180° ° 图1—14 两直线平行,同旁内角互补) (两直线平行,同旁内角互补) ∵AD∥BC(已知) ∥ (已知) ∴∠2+∠ ∴∠ ∠BAD=180° ° 两直线平行,同旁内角互补) (两直线平行,同旁内角互补) ∴∠1=∠ (同角的补角相等) ∴∠ ∠2(同角的补角相等) 讨论: 还有其它解法吗? 如不用“ 两直线平行, 同 讨论 : 还有其它解法吗 ? 如不用 “ 两直线平行 , 旁内角互补”这个性质是否可以解? 旁内角互补”这个性质是否可以解?
D
(2)
∴ ∠3+ ∠4=180 °
平角的意义) 又∵ ∠2+ ∠4=180 ° (平角的意义)
∵ ∠2=∠3 ∠
( 已证 已证)
F
平行线的性质: 性质1:两直线平行,同位角相等. 性质2:两直线平行,内错角相等.
数学表示格式:
已知) ∵ AB ∥ CD (已知 已知 ∴ ∠2=∠3( ∠ ( )
C
做一做: 做一做:
3、如图,已知∠1+∠2=180 ° , 如图,已知∠1+∠ ∠3=65°,求∠4的度数。 3=65° 的度数。

《平行线的性质》数学教案

《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。

2. 通过实例让学生熟练掌握平行线的性质。

3. 培养学生的空间观念和逻辑思维能力。

二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。

2. 教学难点:如何理解和应用平行线的性质。

三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。

- 提出问题,引导学生思考平行线的相关知识。

2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。

- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。

- 鼓励学生动手操作,亲自验证平行线的性质。

4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。

- 对学生的解答进行点评,帮助他们改正错误,加深理解。

5. 小结与反思:
- 引导学生总结本节课的学习内容。

- 鼓励学生分享自己的学习心得,提出疑问或困惑。

四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。

五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。

- 思考如何改进教学方法,提高教学质量。

八年级-浙教版-数学-上册-[教学设计] 第1课时 平行线的性质与判定

八年级-浙教版-数学-上册-[教学设计] 第1课时    平行线的性质与判定

第1章三角形的初步知识1.3 证明第1课时平行线的性质与判定【教学内容】浙教版八年级上册第1.3证明第1课时平行线的性质与判定.【教材分析】推理与证明在初中数学教学中是一个重要内容,里面包含很强的逻辑思维和重要的数学思想.掌握好推理与证明,不但是学生应掌握的数学知识,也是延伸数学应用的一个内容.本节课内容是在已学过的定义、命题、定理、性质、基本事实等基础上开展的,并为后期几何知识的相关证明和推理奠定了基础,在整个初中数学学习阶段具有举足轻重的地位.【学情分析】对数学严谨性的认识具有相对性,而实际上数学的严谨性本身也具有相对性.初中数学教学只能帮助学生认识数学的最基本的内容和方法,因此对数学严谨性也有一个逐步适应和提高的过程.鉴于这个层面,平面几何启蒙阶段的初中生对于推理证明还不太适应,不理解证明的意义,不太懂证明的方法和格式,这些都是需要老师和学生共同克服的问题.推理与证明是在已学过的定义、定理、性质、基本事实等基础上开展的新的知识,而这些对于初中生来说,还是比较抽象的,要学生会正确地应用这些知识来进行新的推理与证明,就要让学生在课堂上能完全明白这些定义、定理、性质、基本事实的意义和用法.【教学目标】1.了解证明的含义;2.体验、理解证明的意义和必要性;3.会根据平行线的性质与判定进行简单的推理论证.【教学重难点】简单的推理证明.【教学方法】自主学习、合作交流、大胆猜想、启发式教学.【教学过程】一、证明的必要性问题1、观察下面图形,你有什么感觉?如上图所示,一组直线a、b、c、d是否都互相平行?问题2、动手测量一下线段AB与线段CD,哪条长?三、证明的步骤已知:如图,DE∥BC,∠1=∠E.求证:BE平分∠ABC.出示例题,先让学生独立思考,然后教师引导学生共同写出证明过程,在此期间,强调证明过程必须有理有据总结归纳:证明几何命题的思路分析根据已知依据所学步步递推证实判断四、题型总结类型一、平行线的判定例1 已知:如图,在四边形ABCD中,AC平分∠BAD,∠1=∠2.证明:AB∥CD.变式跟进1如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.类型二、平行线的性质例2 已知:如图,AB∥CD,EP、FP分别平分∠BEF、∠DFE.求证:∠PEF+∠PFE=90°.变式跟进2 已知:如图所示,直线AB//CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.类型之三平行线的性质与判定的综合例3 已知:如图,∠A=∠C,∠1和∠2互补.求证:AB∥CD.变式跟进3请将下列证明过程补充完整.已知:如图,AD⊥BC,EF⊥BC,垂足分别为DF,∠EGA=∠E.求证:AD平分∠BAC.证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFC=∠ADC=90°(垂直的定义).∴AD∥EF (____________________) .∴ _____= _____(两直线平行,内错角相等),_____= _____(两直线平行,同位角相等).∵ _____= _____(已知),∴ _____________________,∴AD平分∠BAC(____________________).(注重推理过程和理由)。

浙教版 数学八年级上第1章 电子课本

浙教版 数学八年级上第1章 电子课本

第1章 平行线§1.1同位角、内错角、同旁内角问题:平面上两条直线有哪两种位置关系?(平行和相交) 两条直线和第三条直线相交的关系:像∠1与∠5,它们都在第三条直线 l 3 的同旁,并且分别位于直线l 1,l 2 的相同一侧,这样的一对角叫做同位角。

同位角:∠1和∠5 ∠4和∠8 ∠2和∠6 ∠3和∠7像∠3和∠5分别位于第三条直线l 3 的异侧,并且都在两条直线l 1 与l 2 之间,这样的一对角叫做内错角。

内错角:∠3和∠5 ∠4和∠6像∠3与∠6都在第三条直线l 3 的同旁,并且在直线l 1 与l 2 之间,这样的一对角叫做同旁内角。

同旁内角:∠4和∠5 ∠3和∠6例1 如图,直线DE 截直线AB ,AC ,构成8个角。

指出所有的同位角、内错角和同旁内角。

练一练:1.如图,直线AB ,CD 被直线EF 所截,请找出一对同位角,一对内错角和一对同旁内角。

2.(1)如果把图看成是直线AB ,EF 被直线CD 所截,那么∠1与∠2是一对什么角?∠3与∠4呢?∠ 2与∠4呢? (2)如果把图看成是直线CD ,EF 被直线AB 所截,那么∠1与∠5是一对什么角? (3)哪两条直线被哪一条直线所截,∠2与∠5是同位角?(直线AB 和CD 被直线EF 所截)合作学习:如图1-3:两只手的食子和拇指在同一平面内,它们构成的一对角可以看成是什么角?类似地,你还能用两只手的手指构成同位角和同旁内角吗?例2 如图,直线DE 交∠ABC 的边BA 于点F 。

如果内错角∠1与∠2相等,那么同位角∠1与∠4相等,同旁内角∠1与∠3互补。

请说明理由。

小结: 变式图形,图中的∠1与∠2都是同位角。

图形特征:在形如字母“F ”的图形中有同位角。

变式图形:图中的∠1与∠2都是内错角。

图形特征:在形如“Z ”的图形中有内错角。

3l 1l 2l 1234567812345678A B C D E E FA B DCP Q 12345A BC DE F 1234A BC D E F变式图形:图中的∠1与∠2都是同旁内角。

浙江省义乌市下骆宅初级中学八年级数学上册 平行线的性质(1)学案(无答案) 浙教版

浙江省义乌市下骆宅初级中学八年级数学上册 平行线的性质(1)学案(无答案) 浙教版

1.3 平行线的性质(1)〖学习目标〗1.理解:平行线的性质与平行线的判定是互逆关系.2.掌握:平行线的性质.3.应用:会用平行线的性质进行推理和计算.4.通过学习平行线的性质与判定的联系与区别,培养学生事物是普遍联系又是相互区别的辩证唯物主义思想.〖学习过程〗(一)创设情境,复习导入1.如图2-58,2.如图2-59,(1)已知∠1=∠2,则∠2与∠3有什么关系?为什么?(2)已知∠1=∠2,则∠2与∠4有什么关系?为什么?3.如图2-60,一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是142°,第二次拐的角∠C是多少度?分析:第3题是一个实际问题,要给出∠C的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系?(二)探索新知、讲授新课1.请同学们画出直线AB的平行线CD,结合画图过程思考画出的平行线,已有一对同位角的关系是怎样的?利用量角器量一下.得性质:两直线平行,同位角相等.2.请同学们观察图2-62的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?得:两直线平行,内错角相等两直线平行,同旁内角互补(三)尝试反馈,巩固练习已知平行线AB、CD被直线AE所截(1)从∠1=110°,可以知道∠2是多少度?为什么?(2)从∠1=110°,可以知道∠3是多少度?为什么?(3)从∠1=110°,可以知道∠4是多少度,为什么?(四)当堂检测:1.图2-65是梯形有上底的一部分,已知量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?2.如图2-69,已知D是AB上的一点,E是AC上的一点,∠ADE=60°,∠B=60°,∠AED=40°(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?。

5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °,∠ 2 = 70 °(等量代换).
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
当堂巩固
1. 填空:如图,
A
(1)∠1=∠2 时,AB∥CD.
1
(2)∠3= ∠5 或∠4 时,AD∥BC. B
D
5 2
3 C
4 F
解:过点C作CF∥AB,
A
则 _∠__B_=_∠__1( 两直线平行,内错角相等 )
C
又∵AB∥DE,AB∥CF,
D
∴___C_F__∥__D_E___(平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B 1F 2
感受中考
2.(3分)(2021•包头8/26)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B, 过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于( )
A.80°
B.70°
C.60°
D.50°
【 分 析 】 由 题 意 得 , ∠ 2=60° , 由 平 角 的 定 义 可 得 ∠5=70°,再根据平行线的性质即可求解.
c 图1
b
c
a 图2
3. 运用平行线的性质填一填
图形
同a 位 角b
1 2 c
内 错 角
a 3
b
2
c
同 旁
a
内 角
b
42 c
已知 a//b
结果 ∠1 = ∠2

浙教版数学八年级上第一章第一节平行线

浙教版数学八年级上第一章第一节平行线
用符号“//”表示,如直线a与直 线b平行,记作a//b。
平行公理与推论
平行公理
经过直线外一点,有且只有一条直线 与已知直线平行。
推论
如果两条直线都与第三条直线平行, 那么这两条直线也互相平行。
平行线间距离性质
平行线间距离定义
两条平行线中,任意一条直线上的所有点到另一条直线的距离都相等,这个距 离称为平行线间的距离。
06 总结回顾与展望未来
关键知识点总结回顾
平行线的定义和性质
包括平行线的判定方法,如同位角相等、内错角相等、同旁 内角互补等。
平行线的应用
在几何证明和实际问题中的应用,如利用平行线性质证明角 相等、线段成比例等。
易错易混点辨析
平行线与相交线的区别
明确平行线和相交线的定义和性质, 避免混淆。
平行线判定方法的运用
03 平行线在几何图形中应用
平行四边形中平行线应用
利用平行四边形的对 边平行性质,证明线 段平行或求解角度问 题。
在平行四边形中,利 用平行线间的距离相 等性质,解决面积和 长度问题。
通过平行线的性质, 推导平行四边形的对 角线性质,如互相平 分等。
梯形中平行线应用
利用梯形的一组对边平行性质, 证明其他线段平行或求解角度 问题。
实际应用三
在交通规划中,利用平行 线原理来设计道路和桥梁, 确保交通的畅通和安全。
02 判定两直线平行方法
同位角相等判定法
定义
当两条直线被第三条直线 所截,且同位角相等时, 这两条直线平行。
图形表示
在图形中,通常用两条平 行的直线和一条横截线来 表示,同位角用相同的标 记表示。
应用
在证明两条直线平行时, 可以通过证明同位角相等 来实现。

浙教版数学八年级上册1.2《定义与命题》说课稿

浙教版数学八年级上册1.2《定义与命题》说课稿

浙教版数学八年级上册1.2《定义与命题》说课稿一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。

本节内容是在学生已经掌握了实数、不等式等基础知识的基础上进行讲授的,是学生学习数学语言和逻辑推理的重要基础。

本节课的主要内容是让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于实数、不等式等概念有一定的了解。

但是,学生对于抽象的数学概念的理解还存在一定的困难,需要通过具体的例子和实际操作来帮助学生理解和掌握。

此外,学生的逻辑思维能力和判断能力还在发展中,需要通过教师的引导和培养。

三. 说教学目标1.知识与技能目标:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。

2.过程与方法目标:通过学生的自主学习、合作交流和教师的引导,培养学生的逻辑思维能力和判断能力。

3.情感态度与价值观目标:让学生体验到数学的乐趣,培养学生对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题。

2.教学难点:让学生能够判断一个命题是真命题还是假命题。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主学习、合作交流和教师的引导相结合的教学方法。

同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个具体的例子,引出定义和命题的概念,激发学生的兴趣。

2.自主学习:让学生自主阅读教材,理解定义和命题的概念,并尝试判断一些简单的命题的真假。

3.合作交流:让学生分组讨论,分享自己的理解和判断,互相学习和交流。

4.教师引导:教师通过讲解和示范,引导学生理解和掌握定义和命题的概念,并教会学生如何判断一个命题是真命题还是假命题。

5.练习巩固:让学生进行一些相关的练习,巩固所学知识。

八年级数学上册 平行线单元复习课件 浙教版

八年级数学上册 平行线单元复习课件 浙教版
谢谢观赏
You made my day!
我们,还在路上……
ห้องสมุดไป่ตู้
E
D
F
C
A
B
例4: 如图,BD⊥AC,EF⊥AC,D、F分别为 垂足,∠1=∠2,试说明∠ADG =∠C 。
A
D
G
F
1
C
2
E
B
说能出你这节课的收获和体验让大家 与你分享吗?
目的: 1、平行线的性质和判定的应用。 2、正确规范的表达,理由充分因果关系正确。 3、综合法和分析法的综合使用。
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月1日星期二2022/3/12022/3/12022/3/1 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/12022/3/12022/3/13/1/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/12022/3/1March 1, 2022 4、享受阅读快乐,提高生活质量。2022/3/12022/3/12022/3/12022/3/1
△ABC的外角∠CAD,判断AE与BC是否平行,
并说明理由。
D
A
E
B
C
例2: 如图,AE平分∠BAC,CE平分∠ACD,且 AE⊥CE,试问AB与CD是否平行,并说明理由。
A
B
2
1E
C
D
例3: 如图,A、F、C、D四点在一直线上, AF = CD,AB//DE,且AB = DE,判断 EF和BC是否平行,并说明理由。

数学教案-平行线分线段成比例定理 (第二课时)

数学教案-平行线分线段成比例定理 (第二课时)

数学教案-平行线分线段成比例定理(第二课时)(其次课时)一、教学目标1.使同学在理解的基础上把握平行线分线段成比例定理及其推论,并会敏捷应用. 2.使同学把握三角形一边平行线的判定定理. 3.已知线的成已知比的作图问题. 4.通过应用,培育识图力量和推理论证力量. 5.通过定理的教学,进一步培育同学类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是平行线分线段成比例定理和推论及其应用. 2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用. 四、课时支配1课时五、教具学具预备投影仪、胶片、常用画图工具. 六、教学步骤【复习提问】叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式). 【讲解新课】在黑板上画出图,观看其特点:与的交点A在直线上,依据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:平行于的边BC的直线DE截AB、AC,所得对应线段成比例. 在黑板上画出左图,观看其特点:与的交点A在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:平行于的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例. 综上所述,可以得到:推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 如图,(六个比例式). 此推论是判定三角形相像的基础. 注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,假如已知,DE是截线,这个推论包含了下图的各种状况. 这个推论不包含下图的状况.后者,教学中如同学不提起,可不必向同学交待.(考虑改用投影仪或小黑板)例3 已知:如图,,求:AE. 教材上采纳了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即:. 让同学思索,是否可直接未出AE(找同学板演). 【小结】1.知道推论的探究方法. 2.重点是推论的正确运用七、布置作业(1)教材P215中2. (2)选作教材P222中B组1. 八、板书设计。

浙教版教材数学八年级上册知识点总结(初二数学教研组)

浙教版教材数学八年级上册知识点总结(初二数学教研组)

浙教版教材数学八年级上册知识点总结初二数学教研组八年级上册数学知识点浙教版教材数学八年级上册知识点总结(初二数学教研组)一、平行线同位角内错角同旁内角平行线判定方法:两条直线被第三条直线所截,若果同位角相等,那么这两条直线平行。

简单地说,同位角相等,两直线平行。

两条直线被第三条直线所截,若果内错角相等,那么这两条直线平行。

简单地说,内错角相等,两直线平行。

两条直线被第三条直线所截,若果同旁内角互补,那么这两条直线平行。

简单地说,同旁内角互补,两直线平行。

平行线的性质:两条平行线被第三条直线所截,同位角相等。

简单地说,两直线平行,同位角相等。

两条平行线被第三条直线所截,内错角相等。

简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

简单地说,两直线平行,同旁内角互补。

两条直线平行,一条直线上的点到另一条直线的距离处处相等。

二、特殊三角形两边相等的三角形叫等腰三角形。

等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。

等腰三角形的性质:等腰三角形的两个底角相等。

也就是说,在同一个三角形中,等边对等角。

等腰三角形的顶角平分线、底边上的中线和高互相重合,简称等腰三角形三线合一。

等腰三角形的判定:如果一个三角形有两个角相等,那么这个三角形是等腰三角形。

简单地说,在同一个三角形中,等角对等边。

三边都相等的三角形是等边三角形。

等边三角形是特殊的等腰三角形,也叫正三角形。

等边三角形的性质:等边三角形的内角都相等,且等于60°;反过来,三个内角都等于60°的三角形一定是等边三角形。

等边三角形是轴对称图形,等边三角形每条边上的中线、高和所对角的平分线都三线合一,它们所在的直线都是等边三角形的对称轴。

有一个角是直角的三角形叫做直角三角形。

直角三角形的两个锐角互余。

反过来,有两个角互余的三角形是直角三角形。

两条直角边相等的直角三角形叫做等腰直角三角形。

直角三角形斜边上的中线等于斜边的一半。

浙教版八年级上册数学教学进度表

浙教版八年级上册数学教学进度表
数学学科八年级上册教学进度表
周次
日期
教学内容
课时
预备周
8.24~8.28
教师暑期师德学习
1
8.29~9.4
始业教育
2
9.5~9.11
开学第一课;1.1同位角、内错角、同旁内角;1.2平行线的判定(1)(2);1.3平行线的性质(1)
5
3
9.12~9.18
1.3平行线的性质(2);1.4平行线之间的距离;练习;复习
5.1认识不等式;5.2不等式的基本性质;5.3一元一次不等式(1)(2)(3);
5
12
11.14~11.20
练习;5.4一元一次不等式组(1)(2);练习;复习
5
13
11.21~11.27
考核;试卷分析;6.1探索确定位置的方法;6.2平面直角坐标系(1)(2);
5
14
11.28~12.4
6.3坐标平面内的图形变换(1)(2);复习;考核;试卷分析
5
8
10.17~10.23
3.1认识直棱柱;3.2直棱柱的表面展开图;3.3三视图;3.4由三视图描述几何体;考核;
9
10.24~10.30
试卷分析;4.1抽样;4.2平均数;4.3中位数和众数;4.4方差和标准差
5
10
10.31~11.6
4.5统计量的选择与应用;复习(1)(2);期中考试
3
11
11.7~11.13
5
19
1.2~1.8
期末复习
5
20
1.9~1.15
期末考试,学期结束工作
21
1.16~1.22
1月16日(农历十二.二十三)寒假开始
4

1.2平行线的判定(第2课时)教案(浙教版初中数学八年级上册)

1.2平行线的判定(第2课时)教案(浙教版初中数学八年级上册)

1.2平行线的判定(2)〖教学目标〗◆1、使学生掌握平行线的第二、三个判定方法.◆2、能运用所学过的平行线的判定方法,进行简单的推理和计算.◆3、使学生初步理解;“从特殊到一般,又从一般到特殊”是认识客观事物的基本方法. 〖教学重点与难点〗◆教学重点:本节教学的重点是第二、三个判定方法的发现、说理和应用. ◆教学难点:问题的思考和推理过程是难点. 〖教学过程〗一、从学生原有认知结构提出问题如图,问21l l 与平行的条件是什么?在学生回答的基础上再问:三线八角分为三类角, 当同位角相等时,两直线平行,那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢?这就是我们今天要学习的问题.(板书课题)学生会跃跃欲试,动脑思考.教师引导学生:将内错角或同旁内角设法转化为利用同位角相等. 二、运用特殊和一般的关系,发现新的判定方法 1.通过合作学习,提出猜想.①若图中,直线AB 与CD 被直线EF 所截,若∠3=∠4,则AB 与CD 平行吗? 你可以从以下几个方面考虑:⑴我们已经有怎样的判定两直线平行的方法? ⑵有∠3=∠4,能得出有一对同位角相等吗? 由此你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法二: 两条直线被第三条直线所截,如果内错角相等,则两条直线平行. 教师并强调几何语言的表述方法 ∵∠3=∠4∴AB ∥CD (内错角相等,两条直线平行)EF4 A B CD13 21 2 3EFG AB C D1 3 2H然后,完成“做一做”∠1=121°, ∠2=120°,∠3=120°。

说出其中的平行线,并说明理由。

②若图中,直线AB 与CD 被直线EF 所截,若∠2+∠4=180°,则AB 与CD 平行吗? 你可以由类似的方法得到正确的结论吗? 由此你又获得怎样的判定平行线的方法?要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法三: 两条直线被第三条直线所截,如果同旁内角互补,则两条直线平行. 教师并强调几何语言的表述方法 ∵∠2+∠4=180°∴AB ∥CD (同旁内角互补,两条直线平行)当学生都得到正确的结论后,引导学生猜想:同旁内角互补,两条直线平行. 2.例题教学,体验新知例2.如图,∠C+∠A=∠AEC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质
【教学目标】
◆知识目标:理解掌握平行线的性质并能应用
◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。

◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

【教学重点、难点】
◆重点:平行线的性质是重点
◆难点:例4是难点
【教学过程】
一、知识回顾:
1、平行线的判定
2、平行线的性质
二、1.合作学习:
如图,直线AB∥CD,并被直线EF所截。

∠2与∠3相等吗?∠3与∠4的和是多少度?
思考下列几个问题:
(1)图中有哪几对角相等?
(2)∠3与∠1有什么关系?∠4与∠2有什么关系?
2.你发现平行线还有哪些性质?
平行线的性质:
两条平行线被第三条直线所截,内错角相等。

简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

简单地说,两直线平行,同旁内角互补。

3.做一做:
如图,AB,CD被EF所截,AB∥CD(填空)
若∠1=120°,则∠2= ()
∠3= -∠1= ()
4.例3 如图1-14,已知AB∥CD,AD∥BC。

判断∠1与∠2是否相等,并说明理由。

思考下列几个问题:
(1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?
(2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?
(3)那么∠1与∠2是否相等?为什么?
解:∠1=∠2
∵AB∥CD(已知)
∴∠1+∠BAD=180°(两直线平行,同旁内角互补)
∵AD∥BC(已知)
∴∠2+∠BAD=180°(两直线平行,同旁内角互补)
∴∠1=∠2(同角的补角相等)
讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?
5.练一练:(P.14课内练习1、2)
6.例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。

∠CBD与∠D相等吗?请说明理由。

思考下列几个问题:
(1)AB与CD平行吗?为什么?
(2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?
(3)∠CBD与∠ABD相等吗?为什么?
教学反思
学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理.所以理解由判定公理推出判定定理的证明过程是重点,也是难点.。

相关文档
最新文档