九年级数学上册第三章概率的进一步认识1用树状图或表格求概率利用树状图或列表法求概率素材北师大版剖析
北师大版数学九年级上册 用树状图或表格求概率
第三章概率的进一步认识1 用树状图或表格求概率第1课时用树状图或表格求概率(1)1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算简单事件发生的概率.【教学难点】运用树状图和列表法计算简单事件发生的概率.一、情境导入,初步认识问题1:求概率的基本步骤是什么?问题2:列举一次试验的所有可能结果时,学过哪些方法?【教学说明】对以前所学方法的步骤进行归纳,温故以利知新.二、思考探究,获取新知自主学习:阅读课本P148,这个游戏为什么对三人不公平?请相互交流.【教学说明】通过自主学习、相互交流可提高学生自学的能力.探究甲乙两地之间有A和B两条道路,小亮从甲地到乙地,大刚从乙地到甲地,二人同时出发.如果每人从A和B两条道路中都任选一条,那么他们途中相遇的概率是多少?思考以下问题:小亮从甲地到乙地,有几条路可走,大刚从乙地到甲地,有几条路可走?如果小亮选了A道路,那么这时大刚选的有可能是哪条路?同样,如果小亮选的是B呢?什么情况下,他们才能相遇?小亮走的道路可能是A或B,当小亮选A时,大刚可能是A或B;当小亮选B时,大刚也可能是A或B,画图如下:【归纳结论】上图像一棵横倒的树,我们叫它树状图.由上图可知,所有等可能性的结果共有4种:AA,AB,BA,BB.其中两人相遇的情况有2种,即AA,BB.由已学过的的概率计算方法,可得P(相遇)=2/4=1/2 .所以,他们途中相遇的概率是1/2 .上表中的第一行表示小亮走道路A或B的两种可能,第一列则表示大刚走道路A或B的两种可能,从而在表中列出了本题所有等可能的4种结果,其中二人相遇的结果有两种,即:可得P(相遇)=2/4=1/2.【教学说明】设计探究学习活动,有利于向学生展示解决问题的不同策略,真正体会解决问题的过程,培养学生的创新精神和克服困难的勇气.三、运用新知,深化理解1.在A、B两个盒子里都装入写有数字0、1的两张卡片,分别从每个盒子里任取1张卡片,两张卡片上的数字之积为0的概率是多少?解法1:画树状图从A盒或B盒中任取一张卡片,上面有数字0或1的可能性相等,由树状图可以看出,两张卡片上的数字之积共有4种等可能的结果,其中两数之积为0的结果有3种,于是P(积为0)= 3/4.解法2:完成下表:由上表可知,两张卡片上的数字之积共有4种等可能的结果,积为0的结果有3种.所以P(积为0)=3/4.2.把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两个盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树状图或列表法求解).解:画树状图:由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P(和为偶数)=5/9.列表如下:由上表可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P(和为偶数)=5/9.3.袋中有一个红球和两个白球,它们除了颜色外都相同.任意摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图.(1)请把树状图填写完整.(2)根据树状图可知摸到一红一白两球的概率是______.解答:(1)红白白(2)4/9【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结通过本节课的学习你有什么收获?还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题3.1”中第1、2题.2.完成练习册中相应练习.在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性,以免学生忽略这个条件错误使用树状图或表格求事件发生的概率.第2课时用树状图或表格求概率(2)1.会运用树状图和列表法计算事件发生的概率.2.经历试验、探讨过程,在活动中进一步发展学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算事件发生的概率.【教学难点】树状图和表格法的运用方法.一、情境导入,初步认识(1)从黑桃1和2中摸一张牌,摸到几的可能性大?概率是多少?(2)加上红桃1和2,如果摸得黑桃为1,那么摸到红桃数字为几的可能性大?如果摸得黑桃的数字为2呢?【教学说明】学生交流讨论,利用上节课所学知识解答.二、思考探究,获取新知探究 1 若同时从两组牌中各摸一张出来,共有几种可能性?每种可能性是否相同?概率分别是多少?可能出现的结果(1,1)(1,2)(2,1)(2,2).从上面的树状图可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2)而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.探究2 小颖设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率.(指针指在分界线上则重转)用树状图来说明:用表格来说明:所以,配成紫色的概率P(配成紫色)=3/6=1/2,所以游戏者获胜的概率为1/2.【教学说明】思考讨论,由两位学生板书展示他们的思维过程.通过学生互学感受思维的条理性和实施的有序性,为后续的教学做好准备.三、运用新知,深化理解1.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数恰好是13的概率.解:(1)P(抽到奇数)=3/4;(2)解法一:列表所以组成的两位数恰好是13的概率P=2/12=1/6.解法二:树状图所以组成的两位数恰好是13的概率P=2/12=1/6.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片上分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)的方法计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?解:(1)利用列表法得出所有可能的结果,如下表:由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率P(甲获胜)=5/16.(2)这个游戏对双方不公平,因为甲获胜的概率P(甲获胜)=5/16,乙获胜的概率P(乙获胜)=11/16,5/16≠11/16,所以,游戏对双方是不公平的.3.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于_______;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.解:(1)1/4(2)正确画出树状图(或列表),图略(表略).任意闭合其中两个开关的情况共有1/2种,其中能使小灯泡发光的情况有6种,所以小灯泡发光的概率是1/2.【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结1.本节课你有哪些收获?有何感想?2.用树状图或表格求概率时应注意什么情况?1.布置作业:教材“习题3.2”中第1 、3题.2.完成练习册中相应练习.以现实生活为背景提出问题,激发学生的学习兴趣和主动参与意识.面对这些问题时,鼓励学生主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,使学生感受数学和生活的密切联系,在解决问题的过程中培养学习兴趣和解题能力.。
最新北师大版初三数学上册第三章概率的进一步认识全单元教案设计含教学反思
第三章 概率的进一步认识1 用树状图或表格求概率教学目标1.了解重复试验时频率可作为事件发生的概率的估计值.2.会借助树状图或列表法计算涉及两步试验的随机事件发生的概率.重点借助树状图或列表法计算涉及两步试验的随机事件发生的概率.难点学会选择适当的方法计算涉及两步试验的随机事件发生的概率.一、情境导入教师:抛掷一枚均匀的硬币,硬币落下后,会出现几种情况?教师:你认为正面朝上和反面朝上的可能性相同吗?二、探究新知1.课件出示:小颖、小明和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?学生分小组进行试验,然后累计各组的试验数据,分别计算“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.教师巡视指导个别有困难的学生.教师:通过刚才的试验,你认为这个游戏公平吗?引导学生思考:在上面掷硬币的试验中,(1)(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)(3)在第一枚硬币正面朝上的情况下,在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?学生分小组讨论后给出答案,教师点评并进一步讲解:为了方便理解,我们通常借助画树状图或画表格列出所有可能出现的结果.①用树状图列出所有可能出现的结果:此图类似于树的形状,所以称为树状图.②用列表法列举所有可能出现的结果:第二枚硬币第一枚硬币 正 反正 (正,正正,正) ) (正,反正,反) )反 (反,正反,正) ) (反,反反,反) )共有4种结果,每种结果出现的可能性相同,其中,小明获胜的结果有1种:种:((正,正正,正)),所以小明获胜的概率是14;小颖获胜的结果有1种:种:((反,反反,反)),所以小颖获胜的概率是14;小凡获胜的结果有2种:种:((正,反正,反)()()(反,正反,正反,正)),所以小凡获胜的概率是24=12.因此,这个游戏对三人是不公平的.教师:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便? 引导学生得出:引导学生得出:(1)(1)(1)利用树状图或表格可以不重复、利用树状图或表格可以不重复、利用树状图或表格可以不重复、不遗漏地列出所有可能出现的结果,从而比较方不遗漏地列出所有可能出现的结果,从而比较方便地求出某些事件发生的概率.便地求出某些事件发生的概率.(2)(2)(2)当试验包含两步时,列表法比较方便,也可以用树状图法;当试验在当试验包含两步时,列表法比较方便,也可以用树状图法;当试验在三步或三步以上时,用树状图法方便.2.课件出示:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)(1)利用画树状图或列表的方法表示游戏所有可能出现的结果.利用画树状图或列表的方法表示游戏所有可能出现的结果. (2)(2)游戏者获胜的概率是多少?游戏者获胜的概率是多少? 学生独立完成后汇报答案,教师点评. 3.课件出示:用如图所示的转盘进行“配紫色”游戏.(1)(1)小颖制作了下图,并据此求出游戏者获胜的概率是小颖制作了下图,并据此求出游戏者获胜的概率是12.(2)(2)小亮则先把转盘小亮则先把转盘A 的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.B 盘 A 盘 红色蓝色红色1 (红1,红,红) ) (红1,蓝,蓝) ) 红色2 (红2,红,红) ) (红2,蓝,蓝) ) 蓝色(蓝,红蓝,红) )(蓝,蓝蓝,蓝) )教师:你认为谁做得对?说说你的理由.学生思考后举手回答,教师点评,并提出问题:用画树状图和列表的方法求概率时应注意些什么? 引导学生得出:用画树状图和列表的方法求概率时应注意各种结果出现的可能性必须相同. 三、举例分析例1 (课件出示教材第62页例1)学生小组内讨论交流,教师板书规范书写过程.解:因为小明和小颖每次出现这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:种:((石头,石头石头,石头)()()(剪刀,剪刀剪刀,剪刀剪刀,剪刀)()()(布,布布,布布,布)),所以小凡获胜的概率为39=13;小明胜小颖的结果有3种:种:((石头,剪刀石头,剪刀)()()(剪刀,布剪刀,布剪刀,布)()()(布,石头布,石头布,石头)),所以小明获胜的概率为39=13; 小颖胜小明的结果也有3种:种:((剪刀,石头剪刀,石头)()()(布,剪刀布,剪刀布,剪刀)()()(石头,布石头,布石头,布)),所以小颖获胜的概率为39=13.因此,这个游戏对三人是公平的.例2 (课件出示教材第67页例2)学生独立完成,教师巡视指导,集体讲评.四、练习巩固1.教材第61页“随堂练习”.2.教材第64页“随堂练习”.3.教材第67页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.利用画树状图和列表的方法求概率时应注意些什么?六、课外作业1.教材第62页习题3.1第1,2题.2.教材第64页习题3.2第2题.3.教材第68页习题3.3第1题.教学反思本节课的内容是利用画树状图和列表的方法求概率.在教学过程中,让学生通过例子比较两种方法的使用条件.体现学生的主体地位,引导学生主动探讨新知识.创造轻松的课堂氛围,使学生愉快地学习.2 用频率估计概率教学目标1.能用试验的方法估计一些复杂随机事件发生的概率.2.理解当试验次数足够大时,试验频率将稳定于理论概率.3.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.重点掌握用频率估计概率的条件及方法. 难点用试验的方法估计复杂随机事件的概率. 一、复习导入1.用列举法求概率的条件是什么? 2.用列举法求概率的方法是什么? 3.A =(事件事件)),P(A)P(A)的取值范围是什么?的取值范围是什么?4.列表法、树状图法是不是列举法,在什么时候运用这种方法? 教师指名学生回答.教师点评:(1)(1)用列举法求概率的条件是:①每次试验中,可能出现的结果是有限的;②每次试验中,各种结果用列举法求概率的条件是:①每次试验中,可能出现的结果是有限的;②每次试验中,各种结果发生的可能性相等.(2)(2)每次试验中,有每次试验中,有n 种可能结果种可能结果((有限个有限个)),发生的可能性相等;事件A 包含m 种结果,则P(A)P(A)==m n. (3)0≤P(A)≤1,其中不可能事件B ,P(B)P(B)==0,必然事件C ,P(C)P(C)==1.(4)(4)列表法、列表法、树状图法是列举法,在列出的所有结果很多或一次试验要涉及3个或更多的因素时采用这种方法.教师:前面的列举法只能在所有可能是等可能并且有限个的大前提下进行,如果不满足这两个条件,是否还可以应用以上的方法呢?这节课我们一起来探究.二、探究新知 1.课件出示:某林业部门要考察某种幼树在一定条件下的移植成活率. (1)(1)能够用列举法求出成活率吗?为什么?能够用列举法求出成活率吗?为什么? (2)(2)用什么方法求出成活率呢?用什么方法求出成活率呢? (3)(3)请完成下表,并求出移植成活率.请完成下表,并求出移植成活率.移植总数移植总数(n) (n)成活数成活数(m) (m)成活的频率成活的频率((mn )10 8 0.8 50 47 270 235 0.817 400 369 75 662 1 500 1 335 0.890 3 500 3 203 0.914 7 000 6 335 900 8 073 14 00012 6280.902学生思考后给出答案,教师点评:(1)(1)由于移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举出求出成活率.由于移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举出求出成活率. (2)(2)应该用频率来估计概率.应该用频率来估计概率. (3)(3)移植成活率大约是移植成活率大约是0.9. 2.课件出示:一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球与白球的比例吗?学生分小组讨论交流并得出可行方案.方案1:每次随机摸出一球并记录颜色,然后将球放回,搅匀,当次数越多,试验频率将稳定于理论概率.方案2:每次随机摸出6个球,并记录其中红球与白球的比例,然后将球放回,搅匀,当次数越多,试验频率将稳定于理论概率.3.课件出示:某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望这种柑橘能够获得利润5 000元,那么在出售柑橘元,那么在出售柑橘((已经去掉损坏的柑橘已经去掉损坏的柑橘))时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.柑橘总 质量质量//千克损坏柑橘 质量质量//千克 柑橘损坏的频率 50 5.50 0.110 100 10.50 0.105 150 15.50 200 19.42 250 24.25 300 30.93 350 35.32 400 39.24 450 44.57 50051.540.103学生完成后给出答案,教师点评. 4.课件出示:一个学习小组有6名男生、名男生、33名女生,老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取,你能设计一种试验来估计“被抽取的3人中有2名男生、名男生、11名女生”的概率吗?学生分小组讨论后给出答案,教师点评分析:因为要做“从这9人中抽取3人”的试验的工作量很大,我们可用下面的方法来估计概率:取9张形状完全相同的卡片,在6张卡片上分别写上1~6来表示男生,在其余的3张卡片上分别写上7~9来表示女生,把9张卡片混合起来并搅拌均匀.从卡片中抽3次,随机抽取,每次抽取1张后放回,并记录结果,经大量重复试验,就能够计算相关频率,估计出“被抽取的3人中有2名男生、名男生、11名女生”的概率.教师:通过上面的学习,你能归纳出什么知识呢?引导学生得出:引导学生得出:(1)(1)(1)当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,可可以通过统计频率来估计概率.(2)(2)在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.三、练习巩固教材第70页“随堂练习”第1,2题. 四、小结1.通过本节课的学习,你有什么收获? 2.用频率估计概率的条件是什么? 3.用频率估计概率的方法是什么? 五、课外作业教材第71页习题3.4第1,2题.教学反思本节课从统计式试验频率的角度去研究一些随机试验中事件的概率,本节课从统计式试验频率的角度去研究一些随机试验中事件的概率,由于此方法不受列举法求概率由于此方法不受列举法求概率的两个条件的限制,所以本节课要强调的是在什么情况下用这种方法,怎么用这种方法求概率也是本节的重点和难点之所在.在教学过程中,让学生通过复习和比较列举法引入:每次试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,利用频率求概率的方法.使学生更清楚地明白这两种方法的使用方法及其特点.课堂上,运用生活中的例子,让学生体验生活中的数学.。
九年级数学上册 第三章 概率的进一步认识 31 用树状图或表格求概率 第1课时 用树状图或表格求概率
第三章概率的进一步认识1用树状图或表格求概率第1课时用树状图或表格求概率的图示,我们改进之后可以形成如下形式:(利用多媒体出示以下内容)处理方式:学生结合自主探究题目,独自思考2分钟左右后在小组内进行讨论交流;然后利用幻灯片对第(1)(2)题找1~2个学生进行回答,第(3)题在学生回答后提出“你能否尝试用图形表示它们的结果?”在学生思考讨论后,根据巡查中学生出现的情况,找3~4个学生在黑板上展示其讨论结果.对学生在黑板上展示的讨论结果中出现的问题,进行针对性的修改,并利用多媒体展示规X地利用“树状图”或“列表法”列举所有可能出现的结果.活动三:开放训练体现应用【应用举例】我们已经能够利用“树状图”或“列表法”来列举一个事件发生可能出现的所有结果,你能利用所学知识帮助小颖解决这个问题吗?请同学们仔细审题,完整地写下你的答案.(多媒体出示学以致用题目)例如图3-1-4,小颖有两件上衣,分别是红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?本环节的设计既让学生练习了用“树状图”或“列表法”求概率的方法,同时又规X了用“树状图”或“列表法”求概率的解题步骤.处理方式:找2个学生在黑板上进行展示,其他学生在练习本上处理,然后针对学生出现的问题进行纠正,在解题过程中,要特别强调列表或树状图后文字语言的描述,从而使解题过程更加规X.【拓展提升】例(回归开始的问题类型,加以巩固提升本节课知识)一个盒子中装有一个红球、一个白球.这些球除颜色外都学生一般相同,从中随机地摸出一个球,记下颜色后放回,再从中随机都会用树状图或摸出一个球.求:表格求出某些事(1)两次都摸到红球的概率;件发生的概率,也(2)两次摸到不同颜色球的概率;能体会到这种方(3)只有一X电影票,通过做这样一个游戏,谁获胜谁就去法的简便性,但是看电影.如果是你,你如何选择?容易忽略各种情处理方式:如果学生没想到这些方法,教师可以以呈现表况出现的可能性格或者提问的方式等引出这些不同的求法,从而引出列表法.用是相同的这个条树状图或表格可以方便地求出某些事件发生的概率.在借助于件.树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的.(续表)【当堂训练】学以致用,当堂。
北师版初中数学九年级上册精品课件 第3章概率的进一步认识 第1课时用树状图或表格求简单事件发生的概率
解 此规则不合理.画树状图如下: 可知等可能的6种结果中,和为偶数的有2种,和为奇数的有4种,
所以 P(甲获 A 名著)=2源自 = 13,P(乙获 A 名著)=46 = 23.
所以乙获得A名著的概率大些,故此规则不合理.
返回首页
【方法归纳】 判断一个规则是否合理或游戏是否公平,就看所涉及的事件在同等条件下 发生的概率是否相等.若概率相等,则这个规则合理或游戏公平,否则就不 合理或不公平.
(x,y)所有可能出现的结果共有6种,分别为(1,2),(1,3),(2,1),(2,3),(3,1),(3,2).
(2)由列表法或树状图法可知,在6种可能出现的结果中,两张卡片上的数字
之和为偶数的有两种情况,即(1,3),(3,1).
∴所求概率 P=26 = 13.
返回首页
返回首页
本课结束
第三章 概率的进一步认识
第1课时 用树状图或表格 求简单事件发生的概率
核心重难探究
知识点一 用树状图或表格求简单事件发生的概率 【例1】 小红的衣柜里有2件上衣,1件是长袖,1件是短袖;3条裙子,分别是 黄色、红色、蓝色.她任意拿出1件上衣和1条裙子,正好是短袖和红色裙子 的概率是多大? 思路点拨:先通过列表或画树状图得任意拿出1件上衣和1条裙子的所有等 可能结果,再利用概率公式计算正好是短袖和红色裙子的概率.
返回首页
解 列表如下:
上衣
裙子 黄色
长袖 短袖
(长,黄) (短,黄)
或画树状图如下:
红色 (长,红) (短,红)
蓝色 (长,蓝) (短,蓝)
由表格或树状图可知,共有6种等可能结果,其中正好是短袖上衣和红色裙
子的结果只有1种,故其概率是
1 6
九年级数学 第3章 概率的进一步认识 3.1 用树状图或表格求概率
12/7/2021
第十四页,共九十九页。
知识点 用树状图或表格(biǎogé)求概率
1.(2018四川攀枝花中考)布袋中装有除颜色外没有其他区别的1个红球 和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都 摸出白球的概率是 ( )
A. 4
B.2
C2 .
1 D.
9
9
3
3
12/7/2021
答:七年级特等奖作文被选登在校刊上的概率是 1 .
2
12/7/2021
第九页,共九十九页。
题型二 跨学科问题 例2 如图3-1-5①所示,有一条电路AB由图示的开关控制,任意地闭合 两个开关. (1)请你补全如图3-1-5②所示的树状图; (2)求使电路形成通路的概率.
图3-1-5
12/7/2021
16 4
4.(2016辽宁沈阳中考)为了传承优秀传统文化,某校开展“经典诵读”
比赛活动(huódòng),诵读材料有《论语》《三字经》《弟子规》(分别用字
母A,B,C依次表示这三个诵读材料).将A,B,C这三个字母分别写在3张完
全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面
上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记
成了4组进行活动,该班小明和小亮同学被分在同一组的概率是
.
答案 1
4
解析 设4个组分别是1,2,3,4, 画树状图如图.
根据树状图可知,共有16种等可能的结果,其中小明和小亮同学被分在同一组
的情况有4种,所以小明和小亮同学被分在同一组的概率P= 12/7/2021 第二十八页,共九十九页。
= 4. 1
第十五页,共九十九页。
北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率教案
第三章 概率的进一步认识教案第1课时 用树状图或表格求概率教案1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)一、情景导入游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?二、合作探究探究点:用树状图或表格求概率 【类型一】 两步决定的概率问题明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来. 解:解法1:画树状图如图所示:由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为16;解法2:将可能出现的结果列表如下:裤子上衣 蓝色 黑色 棕色 白色 (白,蓝) (白,黑) (白,棕) 米色(米,蓝)(米,黑)(米,棕)由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为16.方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.【类型二】 两步以上决定的概率问题小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图分析所有可能的结果,如图.由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为127.方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.【类型三】 有无放回试验一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同. (1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个球可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.解:(1)列表如下:第一次第二次白1 白2 红 白1 —— (白2,白1)(红,白1) 白2 (白1,白2) —— (红,白2)红(白1,红)(白2,红)——由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P (两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次白1 白2 红 白1 (白1,白1) (白2,白1) (红,白1) 白2 (白1,白2) (白2,白2) (红,白2) 红(白1,红)(白2,红)(红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P (两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率⎩⎨⎧画树状图法列表法第1课时 用树状图或表格求概率教 学 目 标教学知识点:学习用树状图和列表法计算随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重 点 用树状图和列表法计算随机事件发生的概率.难 点 通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏. 二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢? 小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 23456相应的概率 5151 51 51 51]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用树状图或列表的方法求出:1.将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?2.掷两枚骰子.它们的点数和可能有哪些值?求出点数和为6的概率.探索活动:( 教材P62 例1)小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.。
九年级数学 第三章 概率的进一步认识1 用树状图或表格求概率第2课时 概率与游戏的综合运用教学
12/7/2021
第十六页,共十六页。
第十四页,共十六页。
课堂小结
配紫色
配红色+蓝色=紫色
概率与游戏(yóuxì)的综合应用 判断(pànduàn)游戏公平性 判断游戏参与者获 胜的概率是否相同
12/7/2021
第十五页,共十六页。
内容(nèiróng)总结
3.1 用树状图或表格求概率。3.1 用树状图或表格求概率。2.能将不等可能随机事件转化为等可能随机事件,
(重点、难点)
12/7/2021
第二页,共十六页。
导入新课
小颖为学校联欢会设计一个“配紫色”游戏:如下图是两个可以自由
转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个 转盘,如果转盘A转出红色(hóngsè),转盘B转出了蓝色,那么他就赢了,因 为红色和蓝色在一起配成了紫色.
白红
黄蓝
小亮的做法是解决这类问题的一种常 用方法.
120° 红2 蓝
红1
问题2:用树状图和列表的方法求概率时应注意(zhù yì)些什么? 用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同.
12/7/2021
第八页,共十六页。
例2:一个盒子中装有两个红球,两个白球和一个蓝球,这些球出颜色外都相 同(xiānɡ tónɡ)了.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个
小颖制作(zhìzuò)下图:
开始(kāishǐ)
A盘
蓝色
红色
B盘
蓝色
红色 蓝色
红色
配成紫色的情况有:(红,蓝),(蓝,红)2种.总共有4种结果.
所以配成紫色的概率P = . 1
12/7/2021
北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习
第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。
北师大版初中数学九年级上册第三章知识点
九年级第三章
概率的进一步认识
一、用树状图或表格求概率
知识点1:用列表法求概率
1.列表法:用表格的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能出现的次数和方式,并求出概率。
2.适当条件:当一次试验涉及两个因素,并且可能出现的等可能结果的数目较多时为了不重不漏地列出所有可能的结果,常采用列表法
3.具体步骤:
(1)列表;
(2)计数;确定所有等可能的结果数n和符合要求的结果数m
m
(3)求值利用概率公式P(A)=
n
知识点2:用画树状图法求概率
1.画树状图法:用树状图的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能出现的次数和方式,并求出概率。
2.适当条件:当一次试验涉及两个或者更多因素时,为了不重不漏地列出可能的结果,通常采用画树状图法。
知识点3:游戏的公平性
1.游戏是否公平,即判断双方的概率是否相等
2.把不公平的游戏变公平的方法
改变游戏规则,使双方获胜的概率相等
若游戏中涉及得分情况,先计算出概率后,再根据游戏规则,改变游戏得分,使双方平均每次游戏所得分数相等。
二、用频率估计概率
1.一般地,大量重复试验中,如果事件A 发生频率
n m 稳定于某个常数p ,那么事件A 发生的概率为p 2.P(A)=n
m (当试验的结果有无限多个,或者可能出现的结果发生的可能性不相同时,我们一般通过频率来估计概率)。
九年级数学上册 第三章 概率的进一步认识 1用树状图或表格求概率(第1课时)习题课件 北师大版
知识点二 概率的简单应用 【示范题2】(2013·湛江中考)把大小和形状完全相同的6张卡 片分成两组,每组3张,分别标上数字1,2,3,将这两组卡片分别 放入两个盒子中搅匀,再从中各随机抽取一张. (1)试求取出的两张卡片数字之和为奇数的概率. (2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡 片数字之和为偶数,则乙胜;试分析这个游戏是否公平,请说明 理由.
女2,女1
一共女有220种等男可1能,女出2 现男的2结,女果2,其男中3恰,女好2是女一1男,女一2女的情况有
12种, 所以P(恰好一男一女)= 1 2 3 .
20 5
【想一想】 在一个袋子中取小球的试验中,把第一次取到的球放回袋中和 不放回袋中,这两种情况有区别吗? 提示:有区别.不同点是:在第二次取球时出现的可能性不同.
谢谢观赏
You made my day!
第三章 概率的进一步认识 1 用树状图或表格求概率
第1课时
1.用树状图或表格求概率的两个条件: (1)一次试验中,可能出现的结果为_有__限__多__个. (2)一次试验中,各种结果发生的可能性_相__等__.
2.用树状图或表格求事件概率的三个步骤:
(1)求出该试验所包含的_所__有__结__果__数__n_.
3
知识点一 用树状图或表格求概率
【示范题1】 (2013·绵阳中考)“服务他人,提升自我”,七一
学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)
成立了“交通秩序维护”小分队,若从该小分队中任选两名同
学进行交通秩序维护,则恰好是一男一女的概率是 ( )
A . 1 B . 1 C . 2 D . 3
的条件下,随机摸出一个红球的概率是 3,则袋中有______个
九年级数学上册第三章概率的进一步认识3.1用树状图或表格求概率第3课时利用概率玩转盘游戏素材新版北师大版
第三章概率的进一步认识1用树状图或表格求概率第3课时配紫色游戏素材一新课导入设计情景导入置疑导入归纳导入类比导入激趣同学们,前面我们已经学习了用树状图或列表求简单事件的概率,本节课我们继续来学习用树状图或列表求简单事件的概率,概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.[说明与建议] 说明:通过教师启发,使学生进一步巩固用树状图或列表求概率,有利于明确学习目标.建议:在引入时可以适当添加一些实际问题,从而培养学生应用所学知识解决问题的能力,提高学生分析问题、解决问题的能力.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,如图3-1-27,每个转盘被分成相等的几个扇形.游戏规则:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.图3-1-27(1)利用树状图或列表的方法表示游戏者所有可能出现的结果;(2)游戏者获胜的概率是多少?[说明与建议] 说明:以“配紫色”游戏为主要情境,复习回顾了上节课所学知识,让学生再次经历利用树状图或列表的方法求出概率并解决问题的过程.建议:先让一位学生动手转动转盘,再让另一位学生口述转动转盘A会有几种结果,转动转盘B会有几种结果.然后再让另外两名学生根据自己选择的方法分别表示游戏者所有可能出现的结果,其余学生在练习本上进行画图求解.完成后让其他学生进行点评,教师及时强调画树状图或列表时要不重不漏.素材二教材母体挖掘65页想一想用图3-1-28所示的转盘进行“配紫色”游戏.图3-1-28小颖制作了下图,并据此求出游戏者获胜的概率为12;图3-1-29小亮则先把转盘A 的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.你认为谁做得对?说说你的理由. 【模型建立】转盘游戏中,双转盘游戏倍受命题者的青睐.双转盘问题一般包括数字的奇偶性问题、配色问题及游戏是否公平问题等.【变式变形】1.[杭州中考] 让图3-1-30中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于(C )图3-1-30A .316B .38C .58D .13162.如图3-1-31,有两个可以自由转动的均匀转盘A ,B ,转盘A 被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B 被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:图3-1-31同时自由转动转盘A 与B ,转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A 指针指向3,转盘B 指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.[答案:不公平,其他略]素材三 考情考向分析[命题角度1] 单次抽样的概率初中阶段所考查的概率问题都是有限等可能概率,其概率P(A)=mn (n 是基本事件的总和,m 是满足条件的基本事件数).例 [淮安中考] 一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为__34__.[命题角度2] 多次无放回抽样的概率无放回抽样与有放回抽样的区别在于取出的小球不再放回,其解决方法也有两个:第一个方法是P(A)=mn ,第二个方法是依次算好每次抽取的概率,然后把每次抽取的概率相乘即得多次抽取的概率.例 [玉林中考] 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(C )A .12B .14C .16D .112[命题角度3] 多次有放回型抽样的概率我们举个例子来说明多次有放回型抽样的概率:设袋中有n 个小球,现从中依次摸球,每次摸一个,如果摸出一个后,仍放回原袋中,然后再摸下一个,这种摸球方法就是有放回的抽样.有放回抽样解决的方案有两种:一种是P(A)=mn ,还有一种是先计算第一次摸球的概率,如果摸球n 次就求(P(A))n,(P(A))n就是所求的概率.例 [昆明中考] 九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树状图的方法(只选择其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.[答案:(1)略 (2)13]素材四 教材习题答案P67随堂练习用如图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,配得紫色的概率是多少?解:29.P68习题3.31.用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解:59.2.一个盒子中装有三个红球和两个白球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到相同颜色的球的概率.解:1325.3.有两组卡片,第一组卡片上写有A ,B ,B ,第二组卡片上写有A ,B ,B ,C ,C.分别利用画树状图和列表的方法,求从每组卡片中各抽出一张,都抽到B 的概率.解:树状图法:∴都抽到B 的概率为415.4.设计两个转盘进行“配紫色”游戏,使配得紫色的概率是13.解:略.素材五 图书增值练习专题一 用树状图和列表法计算事件发生的概率1. 一个不透明的口袋中有4个除标号外完全相同的小球,这4个小球分别标号为1,2,3,4.(1)随机摸取一个小球,求恰好摸到标号为2的小球的概率;(2)随机摸取一个小球记下标号然后放回,再随机摸取一个小球,求两次摸取的小 球的标号的和为3的概率. 2. 甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球 的概率是从甲盒中任意摸取一球为蓝球的概率的2倍. (1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.专题二 概率的应用3.(2009·重庆)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认4.小婷和小英做游戏,她们在一个盒子里装了标号为1、2、3、4的四个乒乓球,现在小婷从盒子里随机摸出一个乒乓球后,小英再从盒子里剩下的三个乒乓球中随机摸出第二个乒乓球,如果摸出的乒乓球上的数字和为4或5,则小婷获胜,否则小英获胜,你认为这个游戏对她们公平吗?请说理由. 【知识要点】用树状图和列表法计算涉及两步实验的随机事件发生的概率. 【方法技巧】列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,概率问题要注意分清放回与不放回,结果是完全不一样的. 答案1 解:(1)由图可知:共18块方砖,其中白色8块,黑色10块.故小皮球停留在黑色方砖上的概率是;小皮球停留在白色方砖上的概率是. (2)因为,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率.要使这两个概率相等,可改变第二行第4列中的方砖颜色,黑色方砖改为白色方砖.答案不唯一,回答正确即可.2. 解:(1)显然,随机摸取一个小球,恰好摸到标号为2的小球的概率为14; (2)所以有可能的情况为: (1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).而两次摸取的小球的标号的和为3的情况有(1,2),(2,1),所以其概率为21168. 3. (1)画树状图如下:或列表如下:由树状图或表格可知,所有结果有12种,积为0的有4种,∴P (积为0)=412=13; (2)不公平.∵P (积为奇数)=812=23,P (积为偶数)=412=13,∴该游戏不公平.可以改为:若这两个数的积大于2,小亮赢;否则小红赢.(答案不唯一) 4、可列表1 0 1 32 0 13 3 0 1 34 0 1 3 开始小亮 小红 积13 02639412由表中可以看出:小婷获胜的概率为6÷12=0.5 所以游戏是公平的素材六 数学素养提升“一次抽取2个”概率类问题的探究引例:一个盒子里有6个除颜色外其余都相同的玻璃球,3个红色,1个黄色,2个白色,现随机从盒子中一次取出2个球,求这两个球都是白球的概率是多少?分析;大家知道求解概率问题我们常用列树状图或列表的方法解决.现在我们仍遵循常规的思路来探索解决.我们用A 1、A 2、A 3分别表示3个红球,B 表示黄球,C 1、C 2 表示两个白球,列表如下:列出表格之后有的同学不加深入的思考分析,观察表格便机械地得出共有36种可能的结果,其中一次取出2个白球(C 1C 1、C 1C 2或C 2C 1、C 2C 2)共有4种情况,因而两个球都是白球的概率为P =364=91. 熟不知上述辛辛苦苦探究得到的答案是错误的,原因出在何处呢?仔细分析上述解法,从列表中可以发现:6种情况(11、22、33、、C 1C 1、C 2C 2)根本不会出现,(因为一个球不可能取2次);其次一次取两个球,表中列出的A 2A 1、A 1A 2……等等,实际上是一种情况,因而表格中的以对角线为分界线的右上部分与左下部分是相同的(重复),所以我们计算出现的所有可能的情况时只需选择右上部分情况加以统计即可.共有5+4+3+2+1=15,其中均为白球只有(C 1C 2)1种情况,因此随机从盒子中一次取出2个球,这两个球都是白球的概率为P =151. 爱因斯坦说过:“从新的角度看待旧的问题,需要有创造性的想象能力”.如果我们把表中的表示“球”的字母A 1、A 2、B 、C 1、C 2,看作线段的端点,那么一次取2个球,就可以看作以这2个字母为端点连成一条线段,显然线段A 2A 1、A 1A 2表示同一条线段,从而说明一次取2个球(先取球A 1再取球A 2 与先取到球A 2再取到球A 1)实际上是一种情况,因此一次取2个问题的概率,我们可以借助计算线段的条数模型来计算.。
九年级上册第三章概率的进一步认识3-1用树状图或表格求概率第3课时配紫色游戏教案新版北师大版
3.1用树状图或表格求概率第3课时“配紫色”游戏教学目标1.经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.2.鼓励学生思维的多样性,提高应用所学知识解决问题的能力.教学重难点【教学重点】借助于树状图、列表法计算随机事件的概率.【教学难点】在利用树状图或列表法求概率时,各种情况出现可能性不同时的情况处理.课前准备课件.教学过程一、情景导入为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.二、合作探究探究点一:用表格或树状图求“配紫色”概率用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:由图可知,转动A转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B 转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解.解:将A转盘中“红”区域2等分,B转盘“蓝”区域2等分后列表如下:从表中可知该试验共有12种等可能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P (紫色)=512.方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.探究点二:概率与游戏的综合运用王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果; (2)这个游戏规则对两个球队是否公平?为什么? 解:(1)根据题意画出树状图,如图.(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正; 两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正. 所以P (王铮去足球队)=P (王铮去篮球队)=38.方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小. 三、板书设计概率与游戏的综合运用⎩⎨⎧配紫色判断游戏公平性四、教学反思经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.。
九年级数学 第三章 概率的进一步认识1 用树状图或表格求概率第1课时 用树状图或表格求概率教学
——
(白2,白1) (红,白1)
2
1
白2
(白1,白2)
——
(红,白2)
红 12/7/2021
(白1,红) (白2,红)
——
第十五页,共二十四页。
(2)从箱子(xiāng zi)中任意摸出一个球,将它放回箱子(xiāng zi),搅匀后再
摸出一个球,求两次摸出的球都是白球的概率.
第一次
第二次
白1
白2
12/7/2021
第六页,共二十四页。
由于硬币质地是均匀的,因此抛掷(pāozhì)第一枚硬币出现“正面朝上” 和“反面朝上”的概率相同.无论抛掷第一枚硬币出现怎样的结果,抛掷 第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的.
我们可以(kěyǐ)用树状图或表格表示所有可能出现的结果.
树状图
No 结果,每种结果出现的可能性相同.其中:。解:解法一: 画树状图如图所示:。解:用树状图分析所有可能的结果,
如图:。——。解:(1)列表如下:。(红,红)。(3,3)。两个试验因素或分两步进行的试验.。利用概率公式进行 计算.
Image
12/7/2021
第二十四页,共二十四页。
3.会用概率的相关知识解决实际问题.
12/7/2021
第二页,共二十四页。
导入新课
做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票. 三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:
小明(xiǎo mínɡ)
小颖
小凡
连续抛掷两枚均匀的硬币,如果(rúguǒ)两枚正面朝上,则小明获胜; 如果(rúguǒ)两枚反面朝上,则小颖获胜;如果(rúguǒ)一枚正面朝上、一枚 反面朝上,小凡获胜.
九年级数学上册 第三章 概率的进一步认识 1 用树状图或表格求概率 利用树状图或列表法求概率素材 (
利用树状图或列表法求概率。
答案:
画树状图是列举事件的所有可能结果的重要方法。
树状图是将实验中的第一步的结果写在第一层,第二步的结果写在第二层,以此类推,把所有事件可能的结果一一列出,其特点直观又有条理性。
列表法也是列举随机事件的所有可能结果的重要方法,当事件涉及两步时,将其中一个步骤作为行,另一个步骤作为列,列出表格,最后将事件所有可能的结果列在表格中。
【举一反三】
典题:(2014·舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.
思路导引:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.
标准答案:解:由题意可画出树状图:
,
所有的可能有9种,两人同坐3号车的概率为:.
故答案为:.
1。
北师大版九年级数学上册《概率的进一步认识——用树状图或表格求概率》教学PPT课件(3篇)
例题精讲
知识点 1 利用画树状图法或列表法求复杂的等可能事件的概率 例1 (教材 P64 随堂练习)有三张大小一样而画面不同的画片,先将每 一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在 第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个 盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.
知识点 2 不同颜色球的数目不等的摸球游戏中的概 率
例2 (教材 P67 例 2)一个盒子中装有两个红球,两个白球 和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球, 记下颜色后放回,再从中随机摸出一个球,求两次摸到的球 的颜色能配成紫色的概率.
【思路点拨】(红色和蓝色可以配成紫色)画树状图展示 所有 25 种等可能的结果数,再找出红色和蓝色的结果数,根 据概率公式求解.
不遗漏
2. 判断游戏公平性,先计算游戏双方获胜的概率,如果 概率相等,则游戏公平;如果不相等,则游戏不公平.
第三章 概率的进一步认识
3.1 用树状图或表格求概率
第3课时
教学目标
能借助画树状图或列表计算与转盘有关的配色游戏及数 目不等型游戏中的概率.(重难点)
课前预习
预习反馈
1. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两
上的数字之和为 5 的概率是 3 .
例题精讲 知识点 1 转盘配紫色游戏中的概率
例1 小明和小亮用下面两个可以自由转动的转盘做“配 紫色”游戏(红色和蓝色在一起能配成紫色),同时随机转动这 两个转盘,若能配成紫色,则小明胜,否则小亮胜,这个游 戏对双方公平吗?请用列表或画树状图的方法说明理由.
北师大版九年级上册第三章概率的进一步认识知识点归纳及例题含答案
北师大版九年级上册第三章概率的进一步认识知识归纳及例题【学习目标】1.进一步认识频率与概率的关系,加深对概率的理解;2.会用列表和画树状图等方法计算简单事件发生的概率;3.能利用重复试验的频率估计随机事件的概率;4.学会运用概率知识解决简单的实际问题. 【知识点梳理】要点一、用树状图或表格求概率 1.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 知识点诠释:(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同. 2.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 知识点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等; (2)如果都相等,再确定所有可能出现的结果的个数n 和其中出现所求事件A 的结果个数m ; (3)用公式计算所求事件A 的概率.即P (A )=. 知识点二、用频率估计概率 1.频率与概率的定义频率:在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值.概率:事件A 的频率接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值. 知识点诠释:(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量nm nm重复试验的条件下可以近似地作为这个事件的概率;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的. 3.利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.知识点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.类型一、用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .B .C .D .【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少. 举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( ) A .B .C .D .【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是( ). A .BC D【答案】 D.2. (2016•大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .B .C .D .【思路点拨】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.13141234141312143413【答案】C.【解析】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为:=.故选C .【总结升华】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.举一反三:【变式1】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为( )A .B .C .D . 【答案】D.【变式2】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.【答案】P (停在阴影部分)=. 类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是( ) A. 频率等于概率 B. 当试验次数很大时,频率稳定在概率附近 C. 当试验次数很大时,概率稳定在频率附近 D. 试验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的. 【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近. 【总结升华】概率是频率的稳定值,而频率是概率的近似值.1918291323类型三、利用频率估计概率4. 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:落在“铅笔”的频率(2)请估计,当很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到 1°)【答案与解析】(1) 0.68、0.74、0.68、0.69、0.6825、0.701;(2) 0.70;(3) 由(1)的频率值可以得出P(获得铅笔)=0.70;(4) 0.70×360°=252°.【总结升华】(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.5.(2015春•泰兴市期末)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).【思路点拨】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【答案与解析】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率==50%;该球是蓝球的概率==30%,所以可能性从小到大排序为:①③②.【总结升华】用频率估计概率,强调“同样条件,大量试验”. 举一反三:【变式1】为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条. 【答案】条 .【变式2】一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是白球的概率. (2)若从箱子中任意摸出一个球是红球的概率为,则需要再加入几个红球? 【答案】类型四、概率的简单应用6. 把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王胜;当张牌面数字不相同时,小李胜.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.【思路点拨】(1)问属于古典概型;(2)问可以采用列表法或树状图法列出所有的可能,计算小王和小李各自取胜的概率,再去做判断. 【答案与解析】(1)P (抽到牌面数字4)=;(2)游戏规则对双方不公平,理由如下:53一共有9种可能的结果,每种结果发生的可能性相等,∴P(牌面数字相同)=;P(牌面数字不相同)=,∴小李胜的概率要大,游戏不公平.【总结升华】列表法可以不重不漏地列出所有可能的结果.举一反三:【变式】(2015•漳州)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【答案】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∵P(小明获胜)==;(2)∵P(小明获胜)=,∵P(小东获胜)=1﹣=,∵这个游戏不公平.23。
用树状图或表格求概率课件
3.1 用树状图或表格求概率
1
回顾与思考
频率与概率的关系
当试验次数很多时,一个事件 发生频率稳定在相应的概率附 近.因此,我们可以通过多次试验 ,用一个事件发生的频率来估计 这一事件发生的概率.
2
回顾与思考
概率
概率 事件发生的可能性,也称为事件发生的概率 (probability).
19
问题探究 2.用树状图来研究上述问题
开始
第一次
红
白
第二次
红 白红 白
所有可能出 (红, 红) (红, 白) (白, 红) (白, 白) 现的结果
答: (1)两次都摸到红球的概率是1/4; (2)两次摸到不同颜色的球的概率是2/4或者1/2。
20
用树状图或表格求概率 P62
小明、小颖和小凡做“石头、剪子、布”的游 戏。游戏规则如下: 有小明和小颖做“石头、剪 子、布”的游戏如果两人的手势相同,那么小凡 获胜;如果两人手势不同,那么按照“石头胜剪 子,剪子胜布,布胜石头”的规则决定小明和小 颖中的获胜者。
在上面投掷硬币的实验中。
(3),在第一枚硬币正面朝上的情况下, 第二枚硬币可能出现哪些结果? 他们发 生的可能性是否一样? 如果第一枚硬币 反面朝上呢?
答: 一正一反 一样
答: 一正一反 一样
利用树状图或表格,可以比较方便地 求出某些事件发生的概率.
10
例题欣赏
例1 随机掷一枚均匀的硬币两次,至少有 一次正面朝上的概率是多少?
必然事件发生的概率为1(或100%),记作P(必然事件)=1;
不可能事件发生的概率为0,记作P(不可能事件)=0;
不确定事件发生的概率介于0~1之间,
九年级数学上册第三章概率的进一步认识1用树状图或表格求概率第1课时用树状图或表格求概率练习3(无答案)
九年级数学上册第三章概率的进一步认识1用树状图或表格求概率第1课时用树状图或表格求概率练习3(无答案)(新版)新人教版第1课时用树状图或表格求概率1. “学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.2.北京奥运会吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”,现将5个写有吉祥物名称的小球(小球的形状、大小一样、质地相同)放入一个不透明的盒子内搅匀。
(1)小明从盒子中任取一个球,取到“晶晶”的概率是多少?(2)小明从盒子中随机取出一个球(不再放回盒子中),然后再从盒子中取出第二个球,请你用列表法或者树状图表示出小明两次取到的球所有情况,并求出两次取到的恰好是写有“欢欢”,“迎迎”(不考虑顺序)的概率.3.(小刚和小明玩“石头”、“剪子”、“布”的游戏,游戏的规则为:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势相同,则为平局.(1)玩一次小刚出“石头”的概率是多少?(2)玩一次小刚胜小明的概率是多少?用列表法或画树状图法加以说明.4.有A 、B 两个黑布袋,A 布袋中有四个除标号外完全相同的小球,小球上分别标有数字0, 1,2,3, B 布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A 布袋中随机取出—个小球,用m 表示取出的球上标有的数字,再从B 布袋中随机取出一个小球,用n 表示取出的球上标有的数字.(1)若用(m ,n)表示小明取球时m 与n 的对应值,请画出树状图并写出(m ,n)的所有取值;(2)求关于x 的一元二次方程0212=+-n mx x 有实数根的概率.5.在两个不透明的盒子中,分别装着只有颜色不同的红、白、黑3个小球.从两个盒子中各随机摸出一个小球,请你用画树状图(或列表)的方法,求摸出的两个小球颜色相同的概率.6..某商场在今年“六·一”儿童节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:时才算中奖.请结合“树状图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.7.除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是否相等,并说明理由.8.某中学九年级有8个班,要从中选出两个班代表学校参加社区公益活动.各班都想参加,但由于特定原因,一班必须参加,另外从二至八班中再选一个班.有人提议用如下的方法:在同一个品牌的四个乒乓球上分别标上数字1,2,3,4,并放入一个不透明的袋中,摇匀后从中随机摸出两个乒乓球,两个球上的数字和是几就选几班,你认为这种方法公平吗?请用列表或画树状图的方法说明理由.12349.实验探究:甲、乙两个不透明的纸盒中分别装有形状、大小和质地完全相同的两张和三张卡片.甲盒中的两张卡片上分别标有数字1和2,乙盒中的三张卡片分别标有数字3、4、5.小红从甲盒中随机抽取一张卡片,并将其卡片上的数字作为十位上的数字,再从乙盒中随机抽取一张卡片,将其卡片上的数字作为个位上的数字,从而组成一个两位数.(1)请你画出树状图或列表,并写出所有组成的两位数;(2)求出所组成的两位数是奇数的概率.10.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?11.在一个不透明的盒子里,装有三个分别写有数字6, 2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.12.)一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.13.如图所示,转盘被等分成八个扇形,并在上面依次标有数字1,2,3,4,5,6,7,8.(1)自由转动转盘,当它停止转动时,指针指向的数正好能被8整除的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为43.(注:指针指在边缘处,要重新转,直至指到非边缘处)14.某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B 和化学实验F (记作事件M )的概率是多少?15.有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;(Ⅱ)求摸出的两个球号码之和等于5的概率.16.在一个不透明的口袋中装有红球2个、黑球2个,它们只有颜色不同,若从口袋中一次摸出两个球,求摸到两个都是红球的概率.(要求画出树状图)17.有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用树状图或列表法求概率。
答案:
画树状图是列举事件的所有可能结果的重要方法。
树状图是将实验中的第一步的结果写在第一层,第二步的结果写在第二层,以此类推,把所有事件可能的结果一一列出,其特点直观又有条理性。
列表法也是列举随机事件的所有可能结果的重要方法,当事件涉及两步时,将其中一个步骤作为行,另一个步骤作为列,列出表格,最后将事件所有可能的结果列在表格中。
【举一反三】
典题:(2014·舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.
思路导引:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.
标准答案:解:由题意可画出树状图:
,
所有的可能有9种,两人同坐3号车的概率为:.
故答案为:.
1。