完整版圆的基本性质练习培优提高习题.doc

合集下载

浙教版九上数学第3章《圆的基本性质》培优测试卷(解析版)

浙教版九上数学第3章《圆的基本性质》培优测试卷(解析版)

浙教版九上数学第3章《圆的基本性质》培优测试卷(解析版)一、单选题1.若圆的半径是,圆心的坐标是,点的坐标是,则点与的位置关系是( )A. 点P在⊙O外B. 点P在⊙O内C. 点P在⊙O上D. 点P在⊙O外或⊙O上【答案】C【考点】点与圆的位置关系【解析】【解答】解:由勾股定理得:OP= =5.∵圆O的半径为5,∴点P在圆O上.故答案为:C【分析】利用勾股定理求出点P到圆心的距离OP,再根据点与圆的位置关系,就可得出点P与圆O的位置关系。

2.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A. 22°B. 26°C. 32°D. 34°【答案】A【考点】等腰三角形的性质,圆周角定理【解析】【解答】解:连接OC,∵∠A=68°,∴∠BOC=2∠A=136°,∵OB=OC,∴∠OBC ==22°;故答案为:A。

【分析】根据同弧所对的圆心角等于圆周角的2倍求出∠BOC,再根据三角形的内角和及等腰三角形的两底角相等即可算出答案。

3.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则的长()A. B. C. D.【答案】B【考点】圆周角定理,圆内接四边形的性质,弧长的计算【解析】【解答】解:连接OA、OC∵四边形ABCD是⊙O的内接四边形,∠B=135°∴∠B+∠D=180°∴∠D=180°-135°=45°∴∠AOC=2∠D=2×45°=90°∵⊙O的半径为4,∴弧AC的长为:故答案为:B【分析】连接PA、OC,利用圆内接四边形的性质求出∠D的度数,再利用圆周角定理求出∠AOC的度数,然后利用弧长公式就可求出弧AC的长。

4.小明在学了尺规作图后,通过“三弧法”作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是()A. ∠A=60°B. △ACD是直角三角形(第,爱画)C. BC= CDD. 点B是△ACD的外心【答案】C【考点】等边三角形的性质,三角形的外接圆与外心,作图—复杂作图,锐角三角函数的定义【解析】【解答】解:∵分别以A,B为圆心,AB长为半径画弧,两弧的交点为C∴AB=AC=CB∴△ACB是等边三角形∴∠A=60°,故A不符合题意;∵以B为圆心,AB长为半径画弧交AB的延长线于点D∴AB=CB=BD∴∠D=∠BCD∵∠ABC=∠D+∠BCD=60°∴∠BCD=30°∴∠ACD=∠ADB+∠BCD=60°+30°=90°∴∠ACD=90°∴△ACD是直角三角形,故B不符合题意;在Rt△ADC中,∠A=60°∴tan∠A=∴故C符合题意;∵AB=CB=BD∴点B是△ACD的外心故D不符合题意;故答案为:C【分析】由已知条件:分别以A,B为圆心,AB长为半径画弧,两弧的交点为C,易证△ACB是等边三角形,因此可求出∠A的度数,可对A作出判断;再由以B为圆心,AB长为半径画弧交AB的延长线于点D,可知AB=CB=BD,可证得点B是△ACD的外心,可对D作出判断;利用等腰三角形的性质,及三角形外角的性质求出∠D的度数,就可求出∠ACD的度数,可对B作出判断,然后利用解直角三角形就可得到BC 与CD的数量关系,可对C作出判断,综上所述,可得出答案。

九年级数学: 圆的基本性质培优试卷(含答案)

九年级数学: 圆的基本性质培优试卷(含答案)

2020 九级数学上册 圆 圆的基本性质 培优试卷一 、选择题:1.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠BAC=20°,»»AD DC,则∠DAC 的度数是A .30°B .35°C .45°D .70°2.如图,○O 的半径为1,AD ,BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发(P 点与O 点不重合),沿O →C →D 的路线运动,设AP=x ,sin ∠APB=y ,那么y 与x 之间的关系图象大致是( )3.如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( )A .4B .8C .2D .44.在半径为6cm 的圆中,长为6cm 的弦所对的圆周角...的度数为( ) A .30° B .60° C .30°或150° D .60°或120°5.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为( )A .6.5米B .9米C .13米D .15米6.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )AA.45°B.30°C.75°D.60°7.如图,在平面直角坐标系中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知△ABC的外心坐标应是()A.(0,0) B.(1,0) C.(-2,-1) D.(2,0)8.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为( )A.80°B.100°C.110°D.130°9.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100°B.110°C.120°D.130°10.如图,⊙O的半径是2,直线l与⊙O相交于A.B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A.2B.4 C.4D.811.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.212.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.1.6 B.2 C.2.4 D.2.8二、填空题:13.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.14.如图,⊙O的半径为2,弦AB=,点C在弦AB上,4AC=AB,则OC的长 .15.如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值.16.如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为.17.如图,⊙O的半径是5cm,P是⊙O外一点,PO=8cm,∠P=30º,则AB= cm18.如图所示,在⊙O内有折线OABC,其中OA=4,AB=6,∠A=∠B=60°,则BC的长为.三、解答题:19.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求BC的长;(2)求弦BD的长.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2。

人教版 圆的基本性质提高训练题(含答案)

人教版 圆的基本性质提高训练题(含答案)

人教版第二十四章 24.1圆的有关性质提高训练题(含答案)1、如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.解析:由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;2、如图所示,M N为⊙O的直径,A是半圆上靠近N点的三等分点,B是的中点,P是直径M N上的一动点,圆O的半径为1,观察图形并思考,P A+P B有最小值吗?若有,求出最小值是多少.解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.故答案为:.3、已知圆O的直径CD=10cm,AB是圆O的弦,AB⊥CD,垂足为M,且AB=8cm,求AC的长4、如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.5、如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2 B.﹣2 C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.7、如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.证明:∵∠A+∠BCD=180°,∠BCE+∠BCD=180°.∴∠A=∠BCE.∵BC=BE,∴∠E=∠BCE,∴∠A=∠E,∴AD=DE,∴△ADE是等腰三角形.8、如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是30≤x≤60.9、如图,BC为半圆O的直径,点F是BC上一动点(点F不与B、C重合),A是BF上的中点,设∠FBC=α,∠ACB=β.(1)当α=50°时,求β的度数;(2)猜想α与β之间的关系,并给予证明.解:(1)连接OA,交BF于点M.∵A是BF上的中点,∴OA垂直平分BF.∴∠BOM=90°-∠B=90°-α=40°.∴∠C=12∠AOB=12×40°=20°, 即β=20°.(2)β=45°-12α. 证明:由(1)知∠BOM =90°-α.又∠C =β=12∠AOB, ∴β=12(90°-α)=45°-12α.10、如图,O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6AB =,1AE =,则CD 的长是( )A .B .C .D . 【答案】C【解析】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB 、OD ,如图所示:则DF CF =,132AG BG AB ===, 2EG AG AE ∴=-=,在Rt BOG ∆中,2OG ==,EG OG ∴=,EOG ∴∆是等腰直角三角形,45OEG ∴∠=︒,OE ==,75DEB ∠=︒,30OEF ∴∠=︒,12OF OE ∴==在Rt ODF ∆中,DF ==2CD DF ∴==故选:C .11、如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒【答案】A【解析】解:连接AC ,四边形ABCD 是半圆的内接四边形,18070DAB C ∴∠=︒-∠=︒, DC CB =,1352CAB DAB ∴∠=∠=︒, AB 是直径,90ACB ∴∠=︒,9055ABC CAB ∴∠=︒-∠=︒,故选:A .【知识点】圆周角定理;圆心角、弧、弦的关系;圆内接四边形的性质12、如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC的度数为( )A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵∠ADC =30°,∴∠AOC =2∠ADC =60°.∵AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C , ∴. ∴∠AOC =∠BOC =60°.故选:D .【知识点】垂径定理;圆心角、弧、弦的关系;圆周角定理13、半径为5的 O 是锐角三角形ABC 的外接圆,AB =AC,连接OB,OC,延长CO 交弦AB 于点D.若△OBD 是直角三角形,则弦BC 的长为______.【答案】【解析】∵△OBD 为直角三角形,∴分类讨论:如图,当∠BOD =90°时,∠BOC =90°,在Rt △BOC 中,BO =OC =5,∴BC =当∠ODB =90°时,∵OB =OC,设∠OBC =∠OCB =x,∴∠BOD =2x,∠BOC =180°-2x,∴∠ABO =90°-2x,∠ABC =∠ACB =90°-x,∴∠A =2x,∵∠BOC=2∠A,即180-2x =2×2x,∴x =30°,∴∠BOC =120°,∵OB =OC =5,∴BC =综上所述,BC 的长度为14、如图,AC 是⊙O 的弦,AC =5,点B 是⊙O 上的一个动点,且∠ABC =45°,若点M 、N 分别是 A C 、BC 的中点,则 M N 的最大值是____________.【答案】2【解析】∵MN 是△ABC 的中位线,∴MN=12AB .当AB 为⊙O 的直径时,AB 有最大值,则MN 有最大值.当AB 为直径时,∠ACB=90°,∵∠ABC =45°,AC =5,∴AB=MN=2. 【知识点】中位线定理;圆周角定理及其推论15、如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.【思路分析】(1)利用基本作图作AD 平分BAC ∠,然后连接OD 得到点E ;(2)由AD 平分BAC ∠得到12BAD BAC ∠=∠,由圆周角定理得到12BAD BOD ∠=∠,则BOD BAC ∠=∠,再证明OE 为ABC ∆的中位线,从而得到//OE AC ,12OE AC =. 【解题过程】解:(1)如图所示;(2)//OE AC ,12OE AC =. 理由如下:AD 平分BAC ∠,12BAD BAC ∴∠=∠, 12BAD BOD ∠=∠, BOD BAC ∴∠=∠,//OE AC ∴,OA OB =,OE ∴为ABC ∆的中位线,//OE AC ∴,12OE AC =. 【知识点】作图-基本作图;圆周角定理16、在平面内,给定不在同一条直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.CB A【思路分析】【解题过程】(1)∵BD 平分ABC ∠∴ABD CBD ∠=∠ AD =CD∴AD=CD(2)直线DE 与图形G 的公共点个数为1.。

2024-2025学年浙教版九年级上册数学 第三章 圆的基本性质 单元培优测试卷 (含详解)

2024-2025学年浙教版九年级上册数学 第三章 圆的基本性质 单元培优测试卷 (含详解)

圆的基本性质单元培优测试卷一、选择题(每题3分,共30分)1.如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41',∠F=43°19',则∠A的度数为( )第1题图第2题图第4题图A.42°B.41°20'C.41°D.40°20'2.如图,⊙O中,弦AB的长为43,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定3.在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO=AB,∠OAB=120°,将△AOB绕点O逆时针旋转,每次旋转60°,则第2024次旋转后,点B的坐标为( )A.(−3,3)B.(−3,0)C.(3,3)D.(−23,0)4.如图,在半圆O中,直径AB=2,C是半圆上一点,将弧AC沿弦AC折叠交AB于D,点E是弧AD 的中点.连接OE,则OE的最小值为( )A.2−1B.2+1C.4−2D.22−25.△ABC内接于⊙O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的变化,两人分别探究直线EF 与⊙O的位置关系:甲:如图1,当弦AB过点O时,EF与⊙O相切;乙:如图2,当弦AB不过点O时,EF也与⊙O相切;第5题图第6题图第7题图下列判断正确的是( )A .甲对,乙不对B .甲不对,乙对C .甲乙都对D .甲乙都不对6.如图,等圆⊙O 1和⊙O 2相交于A ,B 两点,⊙O 1经过⊙O 2的圆心O 2,若O 1O 2=2,则图中阴影部分的面积为( )A .2πB .43πC .πD .23π7.如图,正六边形ABCDEF 内接于⊙O ,点P 在边BC 上.结论Ⅰ:若⊙O 的半径为2,P 是边BC 的中点,则PE 的长为13;结论Ⅱ:连接PF .若S △PEF =32,则EF 的长为π3,关于结论Ⅰ、Ⅱ,判断正确的是( )A .只有结论Ⅰ对B .只有结论Ⅱ对C .结论Ⅰ、Ⅱ都对D .结论Ⅰ、Ⅱ都不对8.已知等腰直角三角形OAC ,∠OAC =90°,以O 为圆心,OA 为半径的圆交OC 于点F ,过点F 作AC的垂线交⊙O 于点E ,交AC 于点B.连结AE ,交OC 于点D ,若OD =1+22,则AB 的长为( )第8题图 第9题图 第10题图A .2B .22C .2+1D .2+29.如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BC 于点D ,点E 为半径OB 上一动点.若OB =3,则阴影部分周长的最小值为( )A .62+π2B .22+π3C .62+π3D .2+2π310.如图,AB 是⊙O 的直径,点C ,点D 是半圆上两点,连结AC ,BD 相交于点P ,连结AD ,OD .已知OD ⊥AC 于点E ,AB =2.下列结论其中正确的是( )①∠DBC +∠ADO =90°;②AD 2+AC 2=4;③若AC =BD ,则DE =OE ;④若点P 为BD 的中点,则DE =2OE .A .①②③B .①③④C .②③④D .①②④二、填空题(每题4分,共24分)11.如图,OA 是⊙O 的半径,BC 是⊙O 的弦,OA ⊥BC 于点D ,AE 是⊙O 的切线,AE 交OC 的延长线于点E .若∠AOC =45°,BC =2,则线段AE 的长为 .第11题图 第12题图 第13题图12.如图,在矩形ABCD 中,AB =4,AD =2.以点A 为圆心,AD 长为半径作弧交AB 于点E ,再以AB为直径作半圆,与DE 交于点F ,则图中阴影部分的面积为 .13.如图,直线l 与⊙O 相切于点A ,点C 为⊙O 上一动点,过点C 作CB ⊥l ,垂足为B ,已知⊙O 的半径为6,则BC +43AB 的最大值为  .14.如图,正方形ABCD 内接于⊙O ,线段MN 在对角线BD 上运动,若⊙O 的面积为2π,MN =1,则(1)⊙O 的直径长为 ;(2)△AMN 周长的最小值是 .第14题图 第15题图 第16题图15.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的点,连接CD ,AC ,OD ,且AB =4,OD ∥AC ,设CD =x,AC =y ,则y 与x 之间的函数表达式为 .16.如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E ,交AC 于点F ,DB 交AC于点G ,连结AD .给出下面四个结论:①∠ABD =∠DAC ;②AF =FG ;③当DG =2,GB =3时,FG =142;④当BD =2AD ,AB =6时,△DFG 的面积是3,上述结论中,正确结论的序号有  .三、综合题(17-19每题6分,20-21每题8分,22题12分,共46分)17.如图,已知OA是⊙O的半径,过OA上一点D作弦BE垂直于OA,连接AB,AE.线段BC为⊙O的直径,连接AC交BE于点F.(1)求证:∠ABE=∠C;(2)若AC平分∠OAE,求AFFC的值18.如图,AC为⊙O的直径,BD是弦,且AC⊥BD于点E.连接AB、OB、BC.(1)求证:∠CBO=∠ABD;(2)若AE=4cm,CE=16cm,求弦BD的长.19.如图,AB是⊙O的直径,点C,D是⊙O上的点,且OD∥BC,AC分别与BD,OD相交于点E,F.(1)求证:点D为AC的中点;(2)若DF=4,AC=16,求⊙O的直径.20.如图,已知四边形ABCD内接于⊙O,对角线AC,BD交于点E,AC=BD,AC⊥BD.(1)猜想∠ACB的度数,并说明理由.(2)若⊙O的半径为10,∠BCD=60°,求四边形ABCD的面积.(3)若过圆心O作OF⊥BC于点F.求证:AD=2OF.21.已知:⊙O的两条弦AB,CD相交于点M,且AB=CD.(1)如图1,连接AD.求证:AM=DM.(2)如图2,若AB⊥CD,点E为弧BD上一点,BE=BC=α°,AE交CD于点F,连接AD、DE.①求∠E的度数(用含α的代数式表示).②若DE=7,AM+MF=17,求△ADF的面积.22.如图,在△ABC中,AB=BC,∠ABC=90°,D是AB上一动点,连接CD,以CD为直径的⊙M交AC 于点E,连接BM并延长交AC于点F,交⊙M于点G,连接BE.(1)求证:点B在⊙M上.(2)当点D移动到使CD⊥BE时,求BC:BD的值.(3)当点D到移动到使∠CMG=30°时,求证:A E2+C F2=E F2.答案解析部分1.【答案】C【解析】【解答】解:∵四边形ABCD 内接于圆O ,∴∠A+∠BCD=180°,∵∠BCD 、∠EBC 分别是△EBC 和△ABF 的一个外角,∠EBC=∠A+∠F ,∠BCD=∠E+∠EBC ,∴∠BCD=∠E+∠A+∠F ,∴∠A+∠E+∠A+∠F=180°,∴2∠A+54°41'+43°19'=180°,解之:∠A=41°.故答案为:C. 2.【答案】C【解析】【解答】解:如图,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵OC ⊥AB ,且AB =43,∴∠ADO=90°,且AD =12AB =23,∵sin ∠AOC=sin60°=AD AO,∴AO =ADsin60°=2332=4,∵OP=5>AO=4,∴点P 在圆O 外部.故答案为:C. 3.【答案】D【解析】【解答】解:过B 作BH ⊥y 轴于H ,在Rt△ABH中,∠AHB=90°,∠BAH=180°−120°=60°,AB=OA=2,∴∠ABH=30°,∴AH=12AB=1,OH=OA+AH=3,由勾股定理得BH=AB2−AH2=3,∴B(3,3),由题意,可得:B1(−3,3),B2(−23,0),B3(−3,−3),B4(3,−3),B5(23,0),B6(3,3),⋯,6次一个循环,∵2024÷6=337……2,∴第2024次旋转后,点B的坐标为(−23,0),故答案为:D.4.【答案】A【解析】【解答】解:连接CO,如图,由三角形两边之差小于第三边,当C、O、E共线时,OE最小,设⏜AC的弧度为x,则⏜BC的弧度为180°-x,∵∠CAB=∠CAD,∴⏜CD的弧度为180°-x,由折叠知:⏜AEC=⏜AC=x,⏜AD=x-(180°-x)=2x-180°,∵点E为弧AD的中点,∴⏜AE=12⏜AD=x-90°,∴⏜CE=⏜AC-⏜AE=90°,∴⏜CE所对圆心角为90°,∵直径AB=2,∴ CE=2,∴OE= CE-OC=2−1.故答案为:A.5.【答案】C【解析】【解答】解:甲:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°,∵∠EAC=∠B,∴∠EAC+∠BAC=90°,∴EF⊥AB,∵OA是半径,∴EF是⊙O的切线;乙:作直径AM,连接CM,如图所示:即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠EAC=∠B,∴∠EAC=∠AMC,∵AM是⊙O的直径,∴∠MCA=90°,∴∠MAC+∠AMC=90°,∴∠EAC+∠MAC=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.故答案为:C 6.【答案】D7.【答案】C【解析】【解答】解:如图,连接CE 、OB 、OC ,过点D 作DH ⊥CE 于点H ,∵六边形ABCDEF 为正六边形,∴∠BCD =∠CDE =(6−2)⋅180°6=120°,CD =DE ,∠BOC =360°6=60°,OB =OC ,∴∠DCE =∠DEC =12(180°−∠CDE)=30°,△OBC 是等边三角形,∴CH =EH =12CE =CD ⋅cos ∠DCE =3,∠PCE =∠BCD−∠DCE =90°,EF =BC =OB =OC =CD =2,∴CE =23,∵P 是边BC 的中点,∴CP =BP =12BC =1,∴PE =PC 2+CE 2=12+(23)2=13,故结论Ⅰ正确;设点N 是边BC 的中点,连接NO 并延长交EF 于点M ,连接OE 、OF ,过点D 作DH ⊥CE 于点H ,设正六边形ABCDEF 的边长为a ,∵六边形ABCDEF 为正六边形,∴NM ⊥EF ,NM ⊥BC ,FM =EM =12EF =12a ,∠EOF =360°6=60°,EF ∥BC ,∴S △NEF =S △PEF =32,由Ⅰ的解答过程可知,CH=EH=12CE=CD⋅cos∠DCE=32a,∠NCE=∠BCD−∠DCE=90°,EF=BC=OB=OC=a,∴CE=3a,四边形NCEM是矩形,∴MN=CE=3a,∴12EF⋅MN=12×a×3a=32,∴a=1,∴EF的长为60π×1180=π3,故Ⅱ正确,故答案为:C.8.【答案】C【解析】【解答】解:过点O作AE的垂线交BE于点H,连接AH,如图所示:设⊙O的半径为R∵∠OAC = 90°,OA=AC=R∴∠O=∠C=45°∴∠E=12∠O==22.5°在Rt△0AC中,由勾股定理得:OC = OA2+AC2=2R∵OD=2∴CD=OC-OD=2R−2∵EB⊥AC,∠C =45°∴△BFC为等腰直角三角形,∴∠BFC= ∠DFE=∠C = 45°∴∠ADC= ∠E + ∠DFE =22.5°+45°=67.5°在Rt△ABE中,∠E =22.5°,∠ABE = 90°∴∠CAE =90°-∠E=67.5°∴∠CAE = ∠ADC∴AC=CD,即R= 2R−2,解得:r=2+2,即OA=2+2∵OH⊥AEOH是AE的垂直平分线∴AH = EH∴∠EAH= ∠E= 22.5°∴∠HAB = ∠CAE- ∠EAH= 67.5°-22.5°=45°∴△ABH为等腰直角三角形∴AB =BH∴∠OAE= ∠OAC-∠OAE = 90° - 67.5°= 22.5°.'.∠OAH = ∠OAE + ∠EAH = 45°∴OH⊥AE,∠EAH=22.5°∴∠AHO =90°-∠EAH = 90° - 22.5°= 67.5°∴∠AOH = 180°- ∠OAH- ∠AHO=180°-45°-67.5°= 67.5°∴∠AHO = ∠AOH = 67.5°∴AH =OA=2+2,在Rt△ABH中,AB = BH,AH=2+2由勾股定理得:A B2+B H2=A H2即2A B2=(2+2)2∴AB=2+1故答案为:2+1.9.【答案】A【解析】【解答】解:由于CD是定值,要求阴影部分周长的最小值,即求CE+DE最小值即可作点D关于OB对称的对称点D′,连接CD′与直线OB交于点E,则OC=OD′,CE+DE=CD′,此时CE+DE为最小值连接OD′,∵OD平分∠BOC,∠BOC=60°,∴∠BOD =∠COD =12∠BOC =30°,∴∠BOD =∠BOD ′=30°,∠COD ′=90°,在Rt △COD ′中,CD ′=OC 2+OD ′2=2OC =2OB =32,CD =30π×3180=12π,阴影部分周长的最小值为12π+32=62+π2.故答案为:A .10.【答案】B【解析】【解答】解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵OD ⊥AC ,∴OD ∥BC ,∴∠DBC =∠BDO ,∵∠BDO +∠ADO =90°,∴∠DBC +∠ADO =90°,①正确;∵∠ACB =90°,∴B C 2+A C 2=A B 2=4,AB =2,根据条件无法得到BC =AD ,②错误;∵AC =BD ,∴⏜AD =⏜BD ,∴⏜AD =⏜BC ,∵OD ⊥AC ,∴⏜AD =⏜CD ,∴⏜AD=⏜BC=⏜CD,∴∠AOD=13×180°=60°,∵OA=OD,∴△AOD为等边三角形∵AE⊥OD,∴DE=OE,③正确;若点P为BD的中点,则PD=PB,∵∠PED=∠BCP=90°,∠EPD=∠CPB,∴△EPD≅△CPB(AAS),∴DE=BC,∵OD⊥AC,O为AB的中点,∴BC=2OE,∴DE=2OE,④正确;故答案为:B.11.【答案】212.【答案】3+23π【解析】【解答】解:连接AF,EF,过点F作FH⊥AB于点H,∵以点A为圆心,AD长为半径作弧交AB于点E,∴AD=AE=AF=2,∵再以AB为直径作半圆,与DE交于点F,∴AE=BE=2,AE=EF,∴AF=AE=EF=2,∴△AEF是等边三角形,∴∠FAE=∠AEF=60°,AH=1,∴FH=AH·tan∠FAE=AH·tan60°=3∴S扇形FAE=60π×22360=23π,S弓形AF=60π×22360−12×23=23π−3,∴S阴影部分=S半圆AB-S扇形FAE-S弓形AF=12×4π−23π−(23π−3)=3+23π故答案为:3+2 3π.13.【答案】83614.【答案】22;415.【答案】y=−12x2+416.【答案】①②③【解析】【解答】解:如图:连接DC,∵D是AC的中点,∴AD=DC,由圆周角定理的推论得:∠ABD=∠DAC,故①正确;∵AB是直径,∴∠ADB=90°,∴∠DAC+∠AGD=90°,∵DE⊥AB∴∠BDE+∠ABD=90°,∵∠ABD=∠DAC,∴∠BDE=∠AGD,∴DF=FG,∵∠BDE+∠ABD=90°,∠BDE+∠ADE=90°,∴∠ADE=∠ABD,∵∠ABD=∠DAC,∴∠ADE=∠DAC,∴AF=FD,∴AF=FG,即②正确;在△ADG和△BDA,{∠ADG =∠BDA∠DAG =∠DBA ,∴△ADG ∽△BDA ,∴AD BD =GDAD ,即:AD 2+3=2AD,解得:AD =10,由勾股定理得:AG =AD 2+DG 2=10+4=14,∵AF =FG ,∴FG =12AG =142,故③正确;如图:假设半圆的圆心为O ,连接OD ,CO ,CD ,∵BD =2AD ,AB =6,D 是AC 的中点,∴AD =DC =13AB ,∴∠AOD =∠DOC =60°,∵OA =OD =OC ,∴△AOD ,△ODC 是等边三角形,∴OA =AD =CD =OC =OD =6,∴四边形ADCO 是菱形,∴∠DAC =∠OAC =12∠DAO =30°,∵∠ADB =90°,∴tan ∠DAC =tan30°=DGAD ,即33=DG 6,解得:DG =23,∴S △ADG =12AD ⋅DG =12×6×23=63,∵AF =FG∴S △DFG =12S △ADG =33,故④错误.故答案为:①②③.17.【答案】(1)证明:∵OA ⊥BE ,∴AB=AE,∴∠ABE=∠C;(2)解:∵AC平分∠OAE,∴∠OAC=∠EAC,∵∠EAC=∠EBC,∴∠OAC=∠EBC,∵OA=OC,∴∠OAC=∠C,∴∠EBC=∠C,∴BF=CF,由(1)∠ABE=∠C,∴∠ABE=∠C=∠EBC,∵BC为直径,∴∠BAC=90°,∴∠ABE+∠C+∠EBC=90°,∴∠ABE=30°,∴AF=12 BF,∴AF=12 CF,即AFCF=12.18.【答案】(1)证明:∵AC是直径,AC⊥BD ∴AB=AD∴∠ABD=∠C又∵OB=OC∴∠OBC=∠C∴∠CBO=∠ABD(2)解:∵AE=4cm,CE=16cm∴直径AC=AE+CE=20cm∴OA=OB=10cm∴OE=OA-AE=10-4=6cm∵AC是直径,AC⊥BD∴BE=ED= BO2−OE2=8cm∴BD=2BE=16cm19.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴AC=CD,即点D为AC的中点;(2)解:OF⊥AC,∴AF=12AC=8,∵DF=4,∴OF=OD−DF=OA−4,∵OA2=AF2+OF2,∴OA2=82+(OA−4)2,∴OA=10,∴⊙O的直径为20.20.【答案】(1)解:∠ACB=45°,理由如下:∵AC⊥BD,∴∠AEB=90°.∴∠ABE+∠BAE=90°.∴AD+BC=180°.∴AB+CD=180°.∵AC=BD,∴AC=BD.∴AC−AD=BD−AD.∴AB=CD.∴AB=90°.∴∠ACB=45°.(2)解:如图,连结BO,DO,过点O作OH⊥BD交BD于点H.∵∠BCD=60°, ∴∠BOD=120°.∵OH⊥BD,∴∠BOH=60°, BH=DH.在Rt△BHO中,∠BOH=60°,OB=10,∴OH=5,BH=53.∴BD=103=AC.∴S四边形ABCD=12×103×103=150.(3)证明:如图,延长BO交⊙O于点M,连结CM,DM.∵OF⊥BC,∴BF=CF,即点F是BC的中点.又∵点O是BM的中点,∴OF是△BCM的中位线.∴CM=2OF.∵DM⊥BD,AC⊥BD,∴DM∥AC.∴AD=CM.∴AD=2OF.21.【答案】(1)证明:如图1,∵AB=CD,∴AB=CD,即AC+BC=BD+BC,∴AC =BD ,∴∠A =∠D ,∴AM =DM ;(2)解:①∠M =90°−12α°.理由如下:连接AC ,如图,∵BE =BC =α°,∴∠CAB =12α°,∵AB ⊥CD ,∴∠AMC =90°,∴∠M =∠C =90°−12α°;②∵BE =BC =α°,∴∠CAB =∠EAB ,∵AB ⊥CD ,∴AC =AF ,∴∠ACF =∠AFC ,∵∠ACF =∠E ,∠AFC =∠DFE ,∴∠DFE =∠E ,∴DF =DE =7,∵AM =DM ,∴AM =MF +7,∵AM +MF =17,∴MF +7+MF =17,解得MF =5,∴AM =12,∴S △ADF =12×7×12=42.22.【答案】(1)证明:根据题意得CM=DM=12CD,∵∠ABC=90°,∴BM=12 CD,∴CM=DM=BM,∴点B在⊙M上.(2)解:连接DE,如图,∵CD⊥BE,CD为⊙M直径,∴BD=DE,∠ABC=∠DEC=90°,∵AB=BC,∠ABC=90°,∴∠DAE=∠ADE=45°,∴DE=AE,∴AD=2DE=2BD,∴AD+BD=AB=(2+1)BD,∴BC=(2+1)BD,∴BCBD=2+1.(3)证明:过点B作BN⊥BG,过点A作AN⊥AE,交BN于点N,连接DE,NE,∵AB=BC,∠ABC=90°,∴∠DAC=∠BCA=45°,∴∠BAN=∠BCF=45°,∵M为CD的中点,∴MD =MB =MC ,∵∠CMG =∠MBC +∠MCB =30°,∴∠MDB =∠MBD =75°,∠MBC =∠MCB =15°,∠DCE =∠BCE−∠MCB =30°,∴∠EDC =∠EBC =60°,∴∠EBF =∠EBC−∠MBC =45°,∴∠EBF =∠EBN =45°,∴∠ABN =90°−∠ABF =∠CBF ,∵{∠ABN=∠CBFAB =BC ∠BAN =∠BCF ,∴△BAN≌△BCF(ASA),∴AN =CF ,BN =BF ,∵{BN =BF∠NBE =∠FBE BE =BE ,∴△NBE≌△FBE(SAS),∴NE =EF ,在Rt △AEN 中,N E 2=A N 2+A E 2,∴E F 2=C F 2+A E 2.。

圆形练习题(培优训练)

圆形练习题(培优训练)

圆形练习题(培优训练)
概述
本文档将介绍圆形练题,它是培优训练中的一种重要工具。

圆形练题旨在提升学生在几何学知识领域的能力,并帮助他们更好地理解和运用圆的相关概念和性质。

目标
- 增强学生对圆的认知和理解。

- 培养学生解决与圆相关问题的能力。

- 提高学生的几何学思维和分析能力。

内容
圆形练题的内容包括以下几个方面:
1. 圆的基本概念
通过练题,学生将研究并巩固圆的基本概念,如圆心、半径、直径、弦、弧等。

练题将要求学生辨认圆的各个要素,并运用它们解决问题。

2. 圆的性质和定理
通过各种练题,学生将熟悉常见的圆的性质和定理,如圆的切线与弦的关系、相交圆的性质、幂定理等。

练题将要求学生运用这些性质和定理解决实际问题。

3. 圆的相关计算
练题中将涉及圆的相关计算,如圆的周长和面积计算、扇形面积计算等。

学生需要掌握相应的计算方法,并能够应用于实际问题中。

4. 圆的几何推理
练题将提供一些几何推理的问题,要求学生基于给定的条件进行推理和证明。

这将培养学生的逻辑思维和证明能力,并帮助他们更深入地理解圆的性质和定理。

总结
圆形练题作为培优训练的一部分,可以提高学生的几何学能力和解决问题的能力。

通过练题的研究,学生将更加熟悉圆的相关概念和性质,并能够灵活运用于实际问题中。

这将为学生的数学研究打下坚实的基础。

以上为圆形练习题(培优训练)的简要介绍。

(完整版)圆的基本性质练习题一

(完整版)圆的基本性质练习题一

圆的基本性质练习一、看准了再选1..如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) A.110° B.70° C.55° D.125°2.如图,⊙O 的直径CD 过弦EF 的中点G 且EF ⊥CD ,若∠EOD=40°,则∠DCF 等于( ) A.80° B. 50° C.40° D. 20°3.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( ) A、相离 B、相切 C、相切或相交 D、相交4.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于( ) A.30° B.120° C.150° D.60°5.如图,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B ,C•则BC=( ). A .32 B .33 C .323 D .3326..如图所示,∠1,∠2,∠3的大小关系是( ).A .∠1>∠2>∠3B .∠3>∠1>∠2C .∠2>∠1>∠3D .∠3>∠2>∠1 7..如图,已知∠BAC=45°,一动点O 在射线AB 上运动(点O•与点A 不重合),设OA=x ,如果半径为1的圆O 与射线AC 有公共点,那么x 的取值范围是( ) A .0<x ≤2 B .1<x ≤2 C .1≤x ≤2 D .x>28.如图,AB 、AC 与⊙O 相切于点B 、C ,∠A=50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( )OCFGD EAPBC OA .65°B .115°C .65°或115°D .130°或50°9如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP ,则与∠PAB 相等的角有( )个。

人教版 圆的基本性质提高训练题(含答案)

人教版 圆的基本性质提高训练题(含答案)

人教版第二十四章 24.1圆的有关性质提高训练题(含答案)1、如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.解析:由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;2、如图所示,M N为⊙O的直径,A是半圆上靠近N点的三等分点,B是的中点,P是直径M N上的一动点,圆O的半径为1,观察图形并思考,P A+P B有最小值吗?若有,求出最小值是多少.解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.故答案为:.3、已知圆O的直径CD=10cm,AB是圆O的弦,AB⊥CD,垂足为M,且AB=8cm,求AC的长4、如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.5、如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2 B.﹣2 C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.7、如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.证明:∵∠A+∠BCD=180°,∠BCE+∠BCD=180°.∴∠A=∠BCE.∵BC=BE,∴∠E=∠BCE,∴∠A=∠E,∴AD=DE,∴△ADE是等腰三角形.8、如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是30≤x≤60.9、如图,BC为半圆O的直径,点F是BC上一动点(点F不与B、C重合),A是BF上的中点,设∠FBC=α,∠ACB=β.(1)当α=50°时,求β的度数;(2)猜想α与β之间的关系,并给予证明.解:(1)连接OA,交BF于点M.∵A是BF上的中点,∴OA垂直平分BF.∴∠BOM=90°-∠B=90°-α=40°.∴∠C=12∠AOB=12×40°=20°, 即β=20°.(2)β=45°-12α. 证明:由(1)知∠BOM =90°-α.又∠C =β=12∠AOB, ∴β=12(90°-α)=45°-12α.10、如图,O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6AB =,1AE =,则CD 的长是( )A .B .C .D . 【答案】C【解析】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB 、OD ,如图所示:则DF CF =,132AG BG AB ===, 2EG AG AE ∴=-=,在Rt BOG ∆中,2OG ==,EG OG ∴=,EOG ∴∆是等腰直角三角形,45OEG ∴∠=︒,OE ==,75DEB ∠=︒,30OEF ∴∠=︒,12OF OE ∴==在Rt ODF ∆中,DF ==2CD DF ∴==故选:C .11、如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒【答案】A【解析】解:连接AC ,四边形ABCD 是半圆的内接四边形,18070DAB C ∴∠=︒-∠=︒, DC CB =,1352CAB DAB ∴∠=∠=︒, AB 是直径,90ACB ∴∠=︒,9055ABC CAB ∴∠=︒-∠=︒,故选:A .【知识点】圆周角定理;圆心角、弧、弦的关系;圆内接四边形的性质12、如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC的度数为( )A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵∠ADC =30°,∴∠AOC =2∠ADC =60°.∵AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C , ∴. ∴∠AOC =∠BOC =60°.故选:D .【知识点】垂径定理;圆心角、弧、弦的关系;圆周角定理13、半径为5的 O 是锐角三角形ABC 的外接圆,AB =AC,连接OB,OC,延长CO 交弦AB 于点D.若△OBD 是直角三角形,则弦BC 的长为______.【答案】【解析】∵△OBD 为直角三角形,∴分类讨论:如图,当∠BOD =90°时,∠BOC =90°,在Rt △BOC 中,BO =OC =5,∴BC =当∠ODB =90°时,∵OB =OC,设∠OBC =∠OCB =x,∴∠BOD =2x,∠BOC =180°-2x,∴∠ABO =90°-2x,∠ABC =∠ACB =90°-x,∴∠A =2x,∵∠BOC=2∠A,即180-2x =2×2x,∴x =30°,∴∠BOC =120°,∵OB =OC =5,∴BC =综上所述,BC 的长度为14、如图,AC 是⊙O 的弦,AC =5,点B 是⊙O 上的一个动点,且∠ABC =45°,若点M 、N 分别是 A C 、BC 的中点,则 M N 的最大值是____________.【答案】2【解析】∵MN 是△ABC 的中位线,∴MN=12AB .当AB 为⊙O 的直径时,AB 有最大值,则MN 有最大值.当AB 为直径时,∠ACB=90°,∵∠ABC =45°,AC =5,∴AB=MN=2. 【知识点】中位线定理;圆周角定理及其推论15、如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.【思路分析】(1)利用基本作图作AD 平分BAC ∠,然后连接OD 得到点E ;(2)由AD 平分BAC ∠得到12BAD BAC ∠=∠,由圆周角定理得到12BAD BOD ∠=∠,则BOD BAC ∠=∠,再证明OE 为ABC ∆的中位线,从而得到//OE AC ,12OE AC =. 【解题过程】解:(1)如图所示;(2)//OE AC ,12OE AC =. 理由如下:AD 平分BAC ∠,12BAD BAC ∴∠=∠, 12BAD BOD ∠=∠, BOD BAC ∴∠=∠,//OE AC ∴,OA OB =,OE ∴为ABC ∆的中位线,//OE AC ∴,12OE AC =. 【知识点】作图-基本作图;圆周角定理16、在平面内,给定不在同一条直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.CB A【思路分析】【解题过程】(1)∵BD 平分ABC ∠∴ABD CBD ∠=∠ AD =CD∴AD=CD(2)直线DE 与图形G 的公共点个数为1.。

2020年秋浙教版九年级数学上册第3章圆的基本性质单元培优 测试卷(Word版 含解析

2020年秋浙教版九年级数学上册第3章圆的基本性质单元培优 测试卷(Word版 含解析

2020 年秋浙教版九年级数学上册第 3 章圆的基本性质单元培优 测试卷解析版一、选择题(共 10 题;共 30 分)1.已知⊙O 的半径为 3,A 为线段 P O 的中点,则当 O P =5 时,点 A 与⊙O 的位置关系为( )A. 点在圆内B. 点在圆上C. 点在圆外D. 不能确定2.在绿色食品、回收、节能、节水四个标志中,是由某个基本图形经过旋转得到的是( )A. B.C.D. 3.往直径为 大深度为(的圆柱形容器内装入一些水以后,截面如图所示,若水面宽 )=,则水的最 A. B. C. D. = 20° ,则 ∠的大小为(4.如图,是⊙O 的直径,点 C 、D 在⊙O 上, ∠)A. 40°B. 140°C. 160°D. 170°5.如图,点A ,B ,C ,D 在⊙O 上, ∠= 120° ,点B 是的中点,则 ∠ 的度数是()A. 30° 6.如图,四边形 A BCD 是菱形,⊙O 经过点 A ,C ,D ,与 B C 相交于点 E ,连接 A C ,AE 。

若∠D=80°,则∠EAC 的度数是(B. 40°C. 50°D. 60°)A. 20°B. 25°C. 30°D. 35°7.如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近()4 5342312A. B. C. D.8.如图,放置在直线l上的扇形O AB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径O A =2,∠AOB=45°,则点O所经过的最短路径的长是()A. 2π+2B. 3πC.D. +2229.如图,在扇形中,已知∠=90°,=2,过的中点C 作⊥,⊥√,垂足分别为D、E,则图中阴影部分的面积为()−1 C. −1−1A. −1B. D.2222110.如图,在平面直角坐标系中,Q 是直线y=﹣x+2 上的一个动点,将Q绕点P(1,0)顺时针旋转290°,得到点,连接′,则的最小值为(′) ′A. 4√5B. √5C. 5√2D. 6√5535二、填空题(共6题;共24 分)11.在⊙O中,若弦垂直平分半径,则弦所对的圆周角等于________°.12.如图,AB 为⊙的直径,弦⊥于点H ,若=10,=8,则OH的长度为________.13.小明在手工制作课上,用面积为个圆锥的底面半径为________ .2,半径为的扇形卡纸,围成一个圆锥侧面,则这14.如图,已知锐角三角形内接于半径为2的⊙,⊥于点,∠=60°,则=________.15.如图,正方形的边长为1,将其绕顶点C按逆时针方向旋转一定角度到位置,使得点B落在对角线上,则阴影部分的面积是________.316.如图,点C、D 分别是半圆A OB 上的三等分点,若阴影部分的面积为,则半圆的半径O A 的长为2________.三、解答题(共8题;共66分)17.如图,在△中,∠=100°,将△绕点A逆时针旋转150°,得到△,使得点B、C、D恰好在同一条直线上,求∠的度数.18.如图,△ABC的三个顶点都在⊙O上,直径AD=6cm,∠DAC=2∠B,求AC的长.19.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.20.如图,将△绕点B顺时针旋转60 度得到,点C的对应点E恰好落在A B 的延长线上,连接A D.(1)求证:;(2)若A B=4,BC=1,求A,C 两点旋转所经过的路径长之和.21.如图,在△中,=,D 是A B 上一点,⊙O经过点A、C、D,交B C 于点E,过点D作,交⊙O于点F,求证:(1)四边形D BCF 是平行四边形(2)=22.如图,点M,分别在正方形的边,上,且∠=45°,把△绕点A 顺时针旋转90°得到△.(1)求证:△(2)若=3,≌△.=2,求正方形的边长.23.如图所示,已知 A , B 两点的坐标分别为(2 √3 ,0),(0,10), 是△AOB P C外接圆⊙ 上的一点,OP 交 AB 于点 D .(1)当 OP ⊥AB 时,求 O P ; (2)当∠AOP =30°时,求 AP .24.如图,四边形 ABCD 内接于⊙O ,AC 为直径,AC 和 BD 交于点 E ,AB =BC .(1)求∠ADB 的度数;(2)过 B 作 AD 的平行线,交 AC 于 F ,试判断线段 EA ,CF ,EF 之间满足的等量关系,并说明理由; (3)在(2)条件下过 E ,F 分别作 AB ,BC 的垂线,垂足分别为 G ,H ,连接 GH ,交 BO 于 M ,若 AG =3, S :S =8:9,求⊙O 的半径. 四边形 AGMO 四边形 CHMO答案一、选择题11.解:∵OA=OP=2.5,⊙O的半径为3,2∴OA<⊙O半径,∴点A与⊙O的位置关系为:点在圆内.故答案为:A.2.解:ACD、不是由某个基本图形经过旋转得到的,故A CD 不符合题意;B、是由一个基本图形经过旋转得到的,故B符合题意.故答案为:B.3.解:过点O作O D⊥AB于D,交⊙O于E,连接O A,1 2=1×48=由垂径定理得:∵⊙O的直径为=,2,∴在∴==,中,由勾股定理得:−√26−242,=22=2==−=26−10=,∴油的最大深度为故答案为:.,4.解:∵∠BDC=20°∴∠BOC=2×20°=40°∴∠AOC=180°-40°=140°故答案为:B.5.连接O B,∵点B是弧A C 的中点,1∴∠AOB=∠AOC=60°,21由圆周角定理得,∠D=∠AOB=30°,2故答案为:A.6.∵四边形A BCD 是菱形,∠D=80°,11∴∠ACB=∠DCB=(180°-∠D)=50°,22∵四边形A ECD 是圆内接四边形,∠D=80°,∴∠AEB=∠D=80°,∴∠EAC=∠AEB-∠ACB=30°.故答案为:C.7.连接A C,设正方形的边长为a,∵四边形A BCD 是正方形,∴∠B=90°,∴AC为圆的直径,∴AC=√2AB= √2a,2=2≈2则正方形桌面与翻折成的圆形桌面的面积之比为:,√2232故答案为:C.8.解:如图,点O的运动路径的长=的长+O O+1 2的长=+ + =,2180180180故答案为:C.9.连接O C∵点C为弧AB 的中点∴∠在△和△中{∠=∠∠∠==∴△≅△∴==∠=90°=又∵∠=∠=∠=90°∴=1×1=1∴四边形C DOE 为正方形∵==2∴==1√正方形2√2)∴−−1由扇形面积公式得故答案为:B.===阴影扇形=正方形扇形2360210.解:作Q M⊥x轴于点M,Q′N⊥x轴于N,12+2),则P M= ﹣1,QM= −1+2,设Q( ,−2∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N,在△PQM和△Q′PN中,∠∠′°=90={∠∠′,′==∴△PQM≌△Q′PN(AAS),12+2,Q′N=PM=﹣1,∴PN=QM=−1∴ON=1+PN=3−,21﹣),∴Q′(3−,12155∴OQ′=( 3−)+( 1﹣)=m ﹣5m+10= (m﹣2) +5,2 2 2 2 2244当m=2 时,OQ′有最小值为5,2∴OQ′的最小值为√5,故答案为:B.二、填空题11.设弦垂直平分半径于点E,连接O B、OC、AB、AC,且在优弧B C 上取点F,连接B F、CF,∴OB=AB,OC=AC,∵OB=OC,∴四边形O BAC 是菱形,∴∠BOC=2∠BOE,1∵OB=OA,OE= ,21∴cos∠BOE=,2∴∠BOE=60°,∴∠BOC=∠BAC=120°,1∴∠BFC=∠BOC=60°,2∴弦所对的圆周角为120°或60°,故答案为:120 或60.12.连接O C,11Rt△OCH中,OC= AB=5,CH= CD=4;2由勾股定理,得:OH=即线段O H 的长为3.故答案为:3.2−=√5−4=3;222213.由1得:扇形的弧长= 2×2÷15=(厘米),=扇形圆锥的底面半径= ÷÷2=10(厘米).故答案是:10.14.解:连接O B 和O C,∵△ABC内接于半径为2的圆O,∠BAC=60°,∴∠BOC=120°,OB=OC=2,∵OD⊥BC,OB=OC,∴∠BOD=∠COD=60°,∴∠OBD=30°,1∴OD=OB=1,2故答案为:1.15.解:过E点作M N∥BC交A B、CD 于M、N 点,设A B 与E F 交于点P点,连接C P,如下图所示,∵B在对角线C F 上,∴∠DCE=∠ECF=45°,EC=1,∴△ENC为等腰直角三角形,∴MB=CN=√2EC= √2,22又B C=AD=CD=CE,且C P=CP,△PEC和△PBC均为直角三角形,∴△PEC≌△PBC(HL),∴PB=PE,又∠PFB=45°,∴∠FPB=45°=∠MPE,∴△MPE为等腰直角三角形,设M P=x ,则E P=BP= √,∵MP+BP=MB,∴+√=√2,解得=2√2,22∴BP=√=√21,=2×1××=1×(√21)=√21.∴阴影部分的面积=2故答案为:√21.16.解:如图,连接∵点C、D 分别是半圆A OB 上的三等分点,∠∠∠°=60,∴∵===∴△为等边三角形,∠∠°=60,∴∴∴∠∴==,∴∴==,扇形阴影2=,3602解得:=3,(负根舍去),故答案为:3三、解答题17. 解:∵将△绕点A逆时针旋转150°,得到△,∠°=150,∠∠.=∴=∵点B、C、D 恰好在同一条直线上∴△是顶角为150°的等腰三角形,∠∠,∴∴=∠1°∠°=15,=(180−2∠∠∠∠−°°°°.=180−100−15=65∴==180−°18. 解:如图,连接OC ,∵∠AOC=2∠B ,∠DAC=2∠B ,∴∠AOC=∠DAC ,∴AO=AC ,又∵OA=OC ,∴△AOC是等边三角形,∴AC=AO=1AD=3cm .219. (1)连接O A,如下图1所示:∵AB=AC,∴= ,∴OA⊥BC,∴∠BAO=∠CAO.∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)如图2中,延长A O 交B C 于H.①若B D=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD.∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若C D=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若D B=DC,则D与A重合,这种情形不存在.综上所述:∠C的值为67.5°或72°.(3)如图3中,过A点作A E BC 交B D 的延长线于E.//2则= = ,且B C=2BH,34 ∴ = = , 3设 O B=OA=4a ,OH=3a .则在 R t△ABH 和 R t△OBH 中,∵BH =AB ﹣AH =OB ﹣OH ,2 2 2 2 2 ∴25 - 49a =16a ﹣9a , 22 2 25∴a= ,2 56 ∴BH= 5√2 ,4∴BC=2BH= 5√2 .2故答案为: 5√2 .220. (1)证明:由旋转性质得:是等边三角形 ∴ ∠ = ∠ (2)解:依题意得:AB=BD=4,BC=BE=1,所以 A ,C 两点经过的路径长之和为≅ ∠ = ∠ = 60° ∴ = ∴所以 ∠ ∴ ;= 60° + = . 5 180 180 3 21. (1)证明: ∵= , ∠∠ , , ∴ ∵∴ = ∠∠ , = 又 ∠= ∠ , ∠∠= ∴ ∴ 四边形是平行四边形. (2)证明:如图,连接∠∠ ∠ , ∠ ∠∠ = ∵ ∴ = = 四边形 是 ⊙ 的内接四边形∠∠∠∠∴∵++=180°∴=180°∠∠∠∠∴∴∴== =22.(1)证明:由旋转的性质得:=∠=∠∵四边形ABCD是正方形∠∠∠∠=90°,即∠∠+=90°=90°∴∴∵∴∠=90°,即∠+=45°∠∠°°°=−=90−45=45=在△和△中,{∠=∠=45°=∴△≅△;(2)解:设正方形的边长为x,则==∵∴=3,==2−=−3,==−=−2由旋转的性质得:=2∴=+=2+3=5≅△由(1)已证:△=5又∵四边形ABCD是正方形∴=∠=90°∴则在△中,2+2=2,即−3)2+−2)2=52解得=6或=−1(不符题意,舍去)故正方形的边长为6.23.(1)解:∵A,B两点的坐标分别为(2√3,0),(0,10),∴AO=2√3,OB=10,∵AO⊥BO,∴AB=√100+12=4√7,∵OP⊥AB,∴10×2√3=4√,CD=DP,22∴CD=5√21,7∴OP=2CD=10√21;7(2)解:连接C P,如图所示:∵∠AOP=30°,∴∠ACP=60°,∵CP=CA,∴△ACP为等边三角形,1∴AP=AC=AB=2 √7.224. (1)解:如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)解:线段E A,CF,EF 之间满足的等量关系为:EA +CF =EF .理由如下:2 22如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作B N⊥BE,使B N=BE,连接N C,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在R t△NFC中,CF +CN =NF ,22 2∴EA+CF =EF ;22 2(3)解:如图3,延长G E,HF 交于K,由(2)知E A +CF =EF ,22 2111∴EA+ CF=EF ,2 2 2222∴S+S =S ,△EFK△AGE△CFH∴S+S +S △AGE△CFH=S +S△EFK,五边形B GEFH 五边形B GEFH即S=S△ABC ,矩形B GKH11∴S =S ,2△ABC2矩形B GKH∴S=S =S ,△CBO△GBH△ABO∴S=S△BGM, S =S△BMH,四边形C OMH 四边形A GMO∵S:S四边形A GMO =8:9,四边形C HMO ∴S:S =8:9,△BMH△BGM∵BM平分∠GBH,∴BG:BH=9:8,设B G=9k,BH=8k,∴CH=3+k,∵AG=3,∴AE=3 √2,∴CF=√2(k+3),EF=√2(8k﹣3),∵EA+CF =EF ,2 22∴(32)+[√+3)]=[√−3)],√222整理得:7k ﹣6k﹣1=0,21解得:k =﹣(舍去),k =1.1 7 2∴AB=12,∴AO=√2AB=6 √2,2∴⊙O的半径为6√2.∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作B N⊥BE,使B N=BE,连接N C,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在R t△NFC中,CF +CN =NF ,22 2∴EA+CF =EF ;22 2(3)解:如图3,延长G E,HF 交于K,由(2)知E A +CF =EF ,22 2111∴EA+ CF=EF ,2 2 2222∴S+S =S ,△EFK△AGE△CFH∴S+S +S △AGE△CFH=S +S△EFK,五边形B GEFH 五边形B GEFH即S=S△ABC ,矩形B GKH11∴S =S ,2△ABC2矩形B GKH∴S=S =S ,△CBO△GBH△ABO∴S=S△BGM, S =S△BMH,四边形C OMH 四边形A GMO∵S:S四边形A GMO =8:9,四边形C HMO ∴S:S =8:9,△BMH△BGM∵BM平分∠GBH,∴BG:BH=9:8,设B G=9k,BH=8k,∴CH=3+k,∵AG=3,∴AE=3 √2,∴CF=√2(k+3),EF=√2(8k﹣3),∵EA+CF =EF ,2 22∴(32)+[√+3)]=[√−3)],√222整理得:7k ﹣6k﹣1=0,21解得:k =﹣(舍去),k =1.1 7 2∴AB=12,∴AO=√2AB=6 √2,2∴⊙O的半径为6√2.∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作B N⊥BE,使B N=BE,连接N C,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在R t△NFC中,CF +CN =NF ,22 2∴EA+CF =EF ;22 2(3)解:如图3,延长G E,HF 交于K,由(2)知E A +CF =EF ,22 2111∴EA+ CF=EF ,2 2 2222∴S+S =S ,△EFK△AGE△CFH∴S+S +S △AGE△CFH=S +S△EFK,五边形B GEFH 五边形B GEFH即S=S△ABC ,矩形B GKH11∴S =S ,2△ABC2矩形B GKH∴S=S =S ,△CBO△GBH△ABO∴S=S△BGM, S =S△BMH,四边形C OMH 四边形A GMO∵S:S四边形A GMO =8:9,四边形C HMO ∴S:S =8:9,△BMH△BGM∵BM平分∠GBH,∴BG:BH=9:8,设B G=9k,BH=8k,∴CH=3+k,∵AG=3,∴AE=3 √2,∴CF=√2(k+3),EF=√2(8k﹣3),∵EA+CF =EF ,2 22∴(32)+[√+3)]=[√−3)],√222整理得:7k ﹣6k﹣1=0,21解得:k =﹣(舍去),k =1.1 7 2∴AB=12,∴AO=√2AB=6 √2,2∴⊙O的半径为6√2.。

九年级上册数学《圆的基本性质》培优班练习题

九年级上册数学《圆的基本性质》培优班练习题

《圆的基本性质》1.2.3节一、 选择题1、“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”.依题意,CD 长为 ( )(A )225寸 (B )13寸 (C )25寸 (D )26寸2.如图,AB 是⊙O 直径,CD 是弦.若AB =10厘米,CD =8厘米,那么A 、B 两点到直线CD 的距离之和为 ( )(A )12厘米 (B )10厘米 (C )8厘米 (D )6厘米3、点P 是半径为5的⊙O 内一点,且OP =3,在过点P 的所有弦中,长度为整数的弦一共有 ( )(A )2条 (B )3条 (C )4条 (D )5条4、过⊙O 内一点M 的最长的弦长为6厘米,最短的弦长为4厘米,则OM 的长为 ( ) (A )3厘米(B )5厘米(C )2厘米 (D )5厘米5、如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是 ( )(A )π (B )1.5π (C )2π (D )2.5π6、如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10厘米,AP ∶PB =1∶5,那么⊙O 的半径是 ( ) (A )6厘米 (B )53厘米 (C )8厘米 (D )35厘米7、如图,若四边形ABCD 是半径为1的⊙O 的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为 ( ) (A )(2π-2)厘米 (B )(2π-1)厘米 (C )(π-2)厘米 (D )(π-1)厘米8.如图,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围( ) A.3≤OM ≤5 B.4≤OM ≤5 C.3<OM <5 D.4<OM <59.如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB , ∠AOC=84°,则∠E 等于( )A.42 °B.28°C.21°D.20° 10.如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA=3,OC=1,分别连结AC 、BD ,则图中阴影部分的面积为( )A. B. C. D.11.设⊙O 的半径为2,平面内一点P 到直线O 的距离OP=m ,且m 使得关于x 的方程有实数根,则点P 与⊙O 的位置关系为( )A.在圆内B.在圆外C.在圆上D.无法确定12.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( )A. B. C. D.13.如图所示,ABCD为正方形,边长为a,以点B为圆心,以BA为半径画弧,则阴影部分的面积是()A. (1-л)a2B. l-лC.244aπ-D.44π-14.下列命题中正确的是 ( )A.平分弦的直径垂直于这条弦 B.切线垂直于圆的半径C.三角形的外心到三角形三边的距离相等 D.圆内接平行四边形是矩形15.若⊙O所在平面内一点P到⊙O上的点的最大距离为a, 最小距离为b (a>b),则此圆的半径为( )A.2a b+B.2a b-C.2a b+或2a b-D.a+b或a-b16.如图所示,以O为圆心的两个同心圆中,小圆的弦AB的延长线交大圆于C,若AB=3,BC=1,则与圆环的面积最接近的整数是( )A.9B.10C.15D.13二、填空题17如图,已知OA、OB是⊙O的半径,且OA=5,∠AOB=30,AC⊥OB于C,则图中阴影部分的面积(结果保留π)S=_________.18.一圆拱的跨度为20cm,拱高5cm,则圆拱的直径为.19.圆的半径等于2cm,圆内一条弦长为23cm,则弦的中点与弦所对弧的中点的距离为.20.如图,AB是⊙O的直径,AB=2, OC是⊙O的半径,OC⊥AB,点D在1/3劣弧AC上,点P是半径OC上一个动点,那么AP+DP的最小值等于21.如图,⊙A和⊙B与x轴和y轴相切,圆心A和圆心B都在反比例函数1yx=图象上,则阴影部分面积等于______________ .22.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为m4的半圆,其边缘AB = CD =m20,点E在CD上,CE =m2,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为m.(边缘部分的厚度忽略不极,结果保留整数)D CBAO23.如图,AB,CD 两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S1、S2,若圆心到两弦的距离分别为2和3,则|S1-S2|=__________.三、解答题24. 如图,AB是⊙O的弦,OAOC⊥交AB于点C,过B的直线交OC的延长线于点E,当BECE=时,直线BE与OB有怎样的位置关系?请说明理由.25、已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.。

人教版九年级数学上册 24.1 圆的有关性质 培优训练(含答案)

人教版九年级数学上册 24.1 圆的有关性质 培优训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 培优训练一、选择题(本大题共8道小题)1. 如图,在⊙O 中,∠ABC =50°,则∠AOC 等于( )A. 50°B. 80°C. 90°D. 100°2. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .43. 2019·葫芦岛如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )A .70°B .55°C .45°D .35°4. 如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立...的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵5. 如图,A、D是⊙O上的两个点,BC是直径,若∠D=32°,则∠OAC等于()A. 64°B. 58°C. 72°D. 55°6. 如图所示,M是⊙O上的任意一点,则下列结论中正确的有()①以M为端点的弦只有一条;②以M为端点的半径只有一条;③以M为端点的直径只有一条;④以M为端点的弧只有一条.A.1个B.2个C.3个D.4个7. 如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为2 3,则a的值是()A.2 B.2+ 2C.2 3 D.2+ 38. 如图,△ABC的内心为I,连接AI并延长交△ABC的外接圆于点D,则线段DI与DB 的关系是()A.DI=DB B.DI>DBC.DI<DB D.不确定二、填空题(本大题共8道小题)9. 如图所示,OB,OC是⊙O的半径,A是⊙O上一点.若∠B=20°,∠C=30°,则∠A =________°.10. 如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°.11. 如图所示,动点C在⊙O的弦AB上运动,AB=23,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为________.12. 2018·曲靖如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.13. 如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为弧BD的中点.若∠DAB=40°,则∠ABC=________°.14. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.15. 如图,半径为5的⊙P 与y 轴交于点M(0,-4),N(0,-10),则圆心P 的坐标为________.16. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.三、解答题(本大题共4道小题)17. 如图,在⊙O 中,AB 是⊙O 的弦,CD 是⊙O 的直径,且AB ⊥CD ,垂足为G ,点E 在AB ︵上,连接AE ,CE ,BE. (1)求证:EC 平分∠AEB ;(2)连接BC ,若BC ∥AE ,且CG =4,AB =6,求BE 的长.18. 如图,AB ,CD为⊙O 的两条直径,M ,N 分别为OA ,OB 的中点.(1)求证:四边形CMDN 为平行四边形;(2)四边形CMDN 能是菱形吗?若能,请你直接写出需要添加的条件.19. 如图,AB 是⊙O 的直径,C 为BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF. (1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.20. 如图,已知△ABC 内接于⊙O ,点C 在劣弧AB 上(不与点A ,B 重合),点D为弦BC 的中点,DE ⊥BC ,DE 与AC 的延长线交于点E .射线AO 与射线EB 交于点F ,与⊙O 交于点G .设∠GAB =α,∠ACB =β,∠EAG +∠EBA =γ. (1)点点同学通过画图和测量得到以下近似数据猜想:β关于α (2)若γ=135°,CD =3,△ABE 的面积为△ABC 的面积的4倍,求⊙O 半径的长.人教版九年级数学24.1 圆的有关性质培优训练-答案一、选择题(本大题共8道小题)1. 【答案】D【解析】同一条弧所对的圆周角是圆心角的一半,即∠ABC=1 2∠AOC,∴∠AOC=2∠ABC=100°.2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B【解析】∵∠D与∠AOC同对弧AC,∴∠AOC=2∠D=2×32°=64°,∵OA=OC,∴∠OAC=∠OCA,在△OAC中,根据三角形内角和为180°,可得∠OAC=12(180°-∠AOC)=12×(180°-64°)=58°.6. 【答案】B[解析] 从圆上任意选一点,与点M连接,可以得到圆的一条弦,因此以M为端点的弦有无数条,以M为端点的半径为OM,以M为端点的直径只有一条,以M为端点的弧有无数条.故②③正确.7. 【答案】B[解析] 如图,连接PB,过点P作PC⊥AB于点C,过点P作横轴的垂线,垂足为E,交AB于点D,则PB=2,BC= 3.在Rt△PBC中,由勾股定理得PC=1.∵直线y=x平分第一象限的夹角,∴△PCD和△DEO都是等腰直角三角形,∴PD=2,DE=OE=2,∴a=PE=2+ 2.故选B.8. 【答案】A [解析] 连接BI ,如图.∵△ABC 的内心为I , ∴∠1=∠2,∠5=∠6. ∵∠3=∠1, ∴∠3=∠2.∵∠4=∠2+∠6,∠DBI =∠3+∠5, ∴∠4=∠DBI ,∴DI =DB. 故选A.二、填空题(本大题共8道小题)9. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.10. 【答案】215 [解析] 连接CE ,则∠B +∠AEC =180°,∠DEC =∠CAD =35°,∴∠B+∠AED =(∠B +∠AEC)+∠DEC =180°+35°=215°.11. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.12. 【答案】n13. 【答案】70 [解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C 为弧BD的中点,∴∠CAB =12∠DAB =20°,∴∠ABC =70°.14. 【答案】65 [解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.15. 【答案】(-4,-7) [解析] 过点P 作PH ⊥MN 于点H ,连接PM ,则MH =12MN =3,OH =OM +MH =7.由勾股定理,得PH =4,∴圆心P 的坐标为(-4,-7).16. 【答案】3或73 [解析] 如图,连接CP ,PB 的延长线交⊙C 于点P′.∵PC =5,BC =3,PB =4, ∴BC2+PB2=PC2,∴△CPB 为直角三角形,且∠CBP =90°, 即CB ⊥PB ,∴PB =P′B =4. ∵∠ACB =90°,∴PB ∥AC. 又∵PB =AC =4,∴四边形ACBP 为平行四边形. 又∵∠ACB =90°,∴▱ACBP 为矩形,∴PA =BC =3.在Rt △APP′中,∵PA =3,PP′=8, ∴P′A =82+32=73. 综上所述,PA 的长为3或73.三、解答题(本大题共4道小题)17. 【答案】解:(1)证明:∵CD ⊥AB ,CD 是⊙O 的直径, ∴AC ︵=BC ︵, ∴∠AEC =∠BEC , ∴EC 平分∠AEB. (2)∵CD ⊥AB ,∴BG =AG =12AB =3,∠BGC =90°.在Rt △BGC 中, ∵CG =4,BG =3, ∴BC =5. ∵BC ∥AE , ∴∠AEC =∠BCE. 又∵∠AEC =∠BEC , ∴∠BCE =∠BEC , ∴BE =BC =5.18. 【答案】解:(1)证明:∵M ,N 分别为OA ,OB 的中点, ∴OM =12OA ,ON =12OB . 又∵OA =OB ,∴OM =ON . 又∵OC =OD ,∴四边形CMDN 为平行四边形. (2)四边形CMDN 能是菱形. 需要添加条件:CD ⊥AB .19. 【答案】解:(1)证明:∵C 为BD ︵的中点,∴CD ︵=BC ︵.∵AB 是⊙O 的直径,且CF ⊥AB ,∴BC ︵=BF ︵,∴CD ︵=BF ︵,∴CD =BF.在△BFG 和△CDG 中,⎩⎪⎨⎪⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴△BFG ≌△CDG(AAS).(2)解法一:如图①,连接OF.设⊙O 的半径为r.∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,BD2=AB2-AD2,即BD2=(2r)2-22.在Rt △OEF 中,OF2=OE2+EF2,即EF2=r2-(r -2)2.由(1)知CD ︵=BC ︵=BF ︵,∴BD ︵=CF ︵,∴BD =CF ,∴BD2=CF2=(2EF)2=4EF2,即(2r)2-22=4[r2-(r -2)2],解得r =1(不合题意,舍去)或r =3,∴BF2=EF2+BE2=32-(3-2)2+22=12,∴BF =2 3.解法二:如图②,连接OC ,交BD 于点H.∵C 是BD ︵的中点,∴OC ⊥BD ,∴DH =BH.∵OA =OB ,∴OH =12AD =1. ∵∠COE =∠BOH ,∠OEC =∠OHB =90°,OC =OB ,∴△COE ≌△BOH(AAS),∴OE =OH =1,∴OC =OB =OE +BE =3.∵CF ⊥AB ,∴CE =EF =OC2-OE2=32-12=2 2,∴BF =BE2+EF2=22+(2 2)2=2 3.20. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG ,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD ≌△EGD ,∠EBC =∠ECB ,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG =45°,β=∠ACB =135°,∴∠ECB =45°,∠CEB =90°,△ECD 、△BEC 、△ABG 都是等腰直角三角形,由CD 的长,可得出BE 和CE 的长,再由题干条件△ABE 的面积是△ABC 的面积的4倍可得出AC 的长,利用勾股定理在△ABE 中求出AB 的长,再利用勾股定理在△ABG 求出AG 的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)。

圆的基本性质巩固提升培优

圆的基本性质巩固提升培优

圆的基本性质巩固提升培优一、圆心角与圆周角定理的综合运用二、利用圆周角定理解动点问题已知AB是⊙O的直径,C是圆周上的动点,P是弧ABC的中点.(1)如图1,求证:OP∥BC;(2)如图2,PC交AB于D,当△ODC是等腰三角形时,求∠A的度数.已知:如图,⊙O的两条半径OA⊥OB,C,D是AB 的三等分点,OC,OD分别与AB相交于点E,F.求证:CD=AE=BF.三、圆中最值问题求解几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB 的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)(3)如图3,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,求PA+PC的最小值.阅读材料:如图1,若点P是⊙O外的一点,线段PO交⊙O于点A,则PA长是点P与⊙O上各点之间的最短距离.证明:延长PO交⊙O于点B,显然PB>PA.如图2,在⊙O上任取一点C(与点A,B不重合),连结PC,OC.∵PO<PC+OC,且PO=PA+OA,OA=OC,∴PA<PC∴PA长是点P与⊙O上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是CD 上的一个动点,连接AP,则AP长的最小值是.(2)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,①求线段A’M的长度;②求线段A′C长的最小值.如图,△ABC中,∠BAC=60°,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,2,求出EF最小值.连接EF.(1)若AD=4,求EF的长;(2)若,∠ABC=45°,AB=2如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB 的度数为______.如图,已知ABCD是圆O的内接四边形,AB=BD,BM⊥AC于M,求证:AM=DC+CM.将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余);第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形再分割成一个正六边形和两个全等的正三角形;按上述分割方法进行下去……(1)请你在图中画出第一次分割的示意图;若原正六边形的面积为a,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填入下表:(3)观察所填表格,并结合操作,请你猜想:分割后所得的正六边形的面积S与分割次数n 有何关系?(S用含a和n的代数式表示,不需要写出推理过程)平面图形中滚动问题:1.如图,在扇形纸片AOB中,OA=10,∠AOB=36°,OB在桌面内的直线l上.现将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为_______2.如图1,是用边长为2cm的正方形和边长为2cm正三角形硬纸片拼成的五边形ABCDE.在桌面上由图1起始位置将图片沿直线l不滑行地翻滚,翻滚一周后到图2的位置.则由点A到点A4所走路径的长度为_________3.已知一个圆心角为270°扇形工件,未搬动前如图所示,A、B两点触地放置,搬动时,先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A、B两点再次触地时停止,半圆的直径为6m,则圆心O所经过的路线长是___________m.(结果保留π)4.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是平行的,且水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,请你作出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.5.按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为______,经过61次旋转后,顶点O经过的总路程为________.例1、如图ABC 是⊙O 的一条折弦,BC>AB ,D 是ABC 弧的中点,DE ⊥BC ,垂足为E.求证:CE =BE +AB.例2、如图,△ABC 是⊙O 的内接三角形,AC=BC ,D 为⊙O 中上一点,延长DA 至点E ,使CE=CD ,(1)求证:AE=BD (2)若AC ⊥BC ,求证,AD+BD=CD 2例3、如图,在半径为2的扇形中,∠,点是弧上的一个动点(不与点、重合)⊥,⊥,垂足分别为、.(1)当时,求线段的长;(2)在△中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设,△面积为,求关于的函数关系式,并写出自变量取值范围.AOB =90AOB o C AB A B OD BC OE AC D E =1BC OD DOE =BD x DOE y y x例4、如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线233y x bx c =-++过A 、B 两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO =∠POB ?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.。

(完整)圆的基本性质练习含答案详解,推荐文档

(完整)圆的基本性质练习含答案详解,推荐文档

圆的基本性质考点1 对称性圆既是________①_____对称图形,又是______②________对称图形。

任何一条直径所在的直线都是它的____③_________。

它的对称中心是_____④_______。

同时圆又具有旋转不变性。

温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。

考点2 垂径定理定理:垂直于弦的直径平分______⑤______并且平分弦所对的两条___⑥________。

常用推论:平分弦(不是直径)的直径垂直于______⑦_______,并且平分弦所对的两条_____⑧___________。

温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。

在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧______⑨______,所对的弦也_____⑩________。

常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角___○11____________,所对的弦_____○12___________。

(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____○13___________,所对的弧______○14 __________。

方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。

圆的基本性质练习-培优提高习题

圆的基本性质练习-培优提高习题

圆的基本性质一.选择题A1-有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离 都相等;④半径相等的两个半圆是等弧.其中正确的有( )A ・4个B ・3个 C. 2个 D. 1个A2如图,△ ABC 内接于OO. D 为线段AB 的中点,延长OD 交OO 于点E,连接AE, BE,则下列五个AE--4EB结论①AB 丄DE,②AE=BE,③OD=DE,④ZAEO=ZC ,⑤ 2A3.如图,点B 、C 在<3 0上,且B0=BC,则圆周角ZBAC 等于() A4.如图,OO 的直径CD 丄AB 9 ZAOC=50° ,则ZB 大小为(A5•已知圆锥的底面半径长为5.侧面展开后得到一个半圆.则该圆锥的母线长为A. 2.5B ・ 5C. 10D ・ 15A6、如图,AB 是OO 的弦,半径OA=2, ZAOB=120°,则弦AB 的长是 ()B7.如图2, ZkABC 内接于OO,若ZOAB = 2 8° ,则ZC 的大小是() A. 6 2。

B. 5 6° C. 2 8 ° D ・ 3 2° B8.如图,点A 、B 、P 在OO 上,且ZAPB=50°若点M 是OO 上的动 点,要使△ABM 为等腰三角形,则所有符合条件的点M 有A. 1个B. 2个C. 3个D. 4个B) 2A /3 C) 3V2CIO.如图,两正方形彼此相邻且内接于半圆、若小正方形的面积为16cm2,则该半圆的半径为()A. (4 + >/5) cmB ・ 9 cm C. 4>/5 cm ,正确结论的个数是( A 、2个 B 、3个C 、4个D 、5个A. 60°B. 50°C. 40°D. 30°B. 35°C. 45°(第3題图)(第4题图)(A) 2近 (B) 2、你 (D) 3运 =90% OA = 1, BC=6, D. 6^2 cm 则QO 的半径为((第8題图〉AC11.如图,MN是半径为1的OO的直径,点A在OO±, ZAMV=30° , B为4N弧的中点,点P是直径MN上一个动点,则H1+PB的最小值为A. 2近B・ 41 C. 1D. 2C12>如图所示,在圆©0内有折线OABC,其中OA=8f 45 = 12, ZA = ZB=60°,则BC 的长为()A. 19B. 16C. 18 D・ 20(第12題图)Al・如图是正三角形ABC的外接圆,点P在劣弧A3上厶3宀22。

32【提高】圆的基本概念和性质(培优课程讲义例题练习含答案)

32【提高】圆的基本概念和性质(培优课程讲义例题练习含答案)

圆的基本概念和性质—知识讲解(提高)【学习目标】1.知识目标:理解圆的有关概念和圆的对称性;2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,•圆的对称性进行计算或证明;3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.【高清ID号:356996 关联的位置名称(播放点名称):概念、性质的要点回顾】4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.已知:如图,矩形ABCD的对角线AC与BD相交于点O,求证:点A、B、C、D在以点O为圆心的同一个圆上.【答案与解析】∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OC=OB=OD,∴点A、B、C、D在以点O为圆心、OA为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等. 举一反三:【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形【答案】C.2.爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本性质
一、选择题
A1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )
A. 4 个B.3个C.2个D.1个
A2 如图,△ABC 内接于⊙ O,D 为线段 AB 的中点,延长OD 交⊙ O 于点 E,连接 AE ,BE ,则下列五个
结论① AB⊥ DE,② AE=BE,③ OD=DE,④∠ AEO=∠ C ,⑤, 正确
结论的个数是()
A 、2 个
B 、3 个
C 、4 个
D 、5 个
A3.如图,点B、 C 在⊙O上,且 BO=BC,则圆周角BAC 等于()
A.60 B . 50 C . 40 D . 30
A4.如图,⊙ O 的直径 CD ⊥ AB ,∠ AOC=50 °,则∠ B 大小为 ( )
A . 25°
B . 35°C. 45°D. 65°
(第 2 题图)(第 3 题图)(第 4 题图)
A5. 已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为
A . 2.5 B. 5 C. 10 D. 15
A6 、如图, AB 是⊙ O 的弦,半径 OA=2 ,AOB 120 ,则弦 AB 的长是()( A )2 2 ( B)2 3 (C ) 5 ( D )3 2
B7.如图2,△ ABC内接于⊙ O ,若∠ OA B=28°,则∠ C 的大小是()
A .62°B.56° C .28° D .32°
B8. 如图,点 A、 B、 P 在⊙ O 上,且∠ APB=50 °若点 M 是⊙ O 上的动
点,要使△ ABM 为等腰三角形,则所有符合条件的点M 有
A. 1 个B. 2 个C. 3 个D. 4 个
(第 6 题图)(第 7 题图)(第 8 题图)
B9、如图,⊙ O 过点 B 、C 。

圆心 O 在等腰直角△ ABC 的内部,∠ BAC = 900, OA = 1, BC = 6,则⊙ O 的半径为()
A )10 B)2 3 C )3 2 D )13
C10.如图 ,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()
A. (45) cm
B. 9 cm
C. 4 5 cm
D. 6 2 cm
A
B
(第 9 题图)O D
(第 10 题C
C11.如图, MN 是半径为 1 的⊙ O 的直径,点 A 在⊙ O 上,∠ AMN =30°, B 为 AN 弧的中点,点P 是直径 MN 上一个动点,则PA+PB 的最小值为
A. 2 2 B. 2 C .1 D. 2
C12、如图所示,在圆⊙O 内有折线 OABC ,其中 OA= 8, AB = 12,
∠A =∠ B= 60°,则 BC 的长为()
A . 19 B. 16 C . 18 D. 20
(第 12 题图)
(第 11 题图)
二、填空题
A1.如图 , ⊙ O 是正三角形ABC 的外接圆,点 P 在劣弧 AB 上,ABP =22°,则BCP 的度数为_____.
A2.如图在等边△ABC 中,以 AB 为直径的⊙ O 与 BC 相交于点D,连结 AD ,则∠ DAC 的度数为.A3.如图,在直径 AB = 12 的⊙ O 中,弦 CD⊥ AB 于 M ,且 M 是半径 OB 的中点,则弦 CD 的长是 _______.
(第 1 题图)(第 2 题图)(第 3 题图)
A4.如图,以点P为圆心的圆弧与x 轴交于A,B;两点,点P的坐标为( 4,2) , 点 A 的坐标
为( 2 3 ,0)则点B的坐标为.
A5.如图, AB 为⊙ O 的弦,⊙ O 的半径为5, OC⊥ AB 于点 D,交⊙ O 于点 C,且 CD= l ,则弦 AB 的长是.
A6.如图,△ ABC 是⊙ O 的内接三角形,点 D 是BC的中点,已知∠ AOB =98°,∠ COB =120°.则∠ ABD 的度数是.
C
A O
D
B
(第 4 题图)(第 5 题图)(第 6 题图)
A7. 现有一个圆心角为90
,半径为
8cm
的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).
该圆锥的高为 __________
B8.如图, AB 为⊙ O 的直径,点 C, D 在⊙ O 上.若∠ AOD = 30°,则∠ BCD 的度数是.
B9.如图⊙ O的半径为 1cm,弦 AB 、CD 的长度分别为2cm,1cm ,则弦AC、BD所夹的锐角=.B10.如图,菱形 OABC 中,∠ A=120 °, OA=1 ,将菱形 OABC 绕点 O 按顺时针方向旋转90°至 OA ′B′C′的位置,则图中由BB ′, B′A ′, A ′C, CB 围成的阴影部分的面积是_______
C
D
A O
B
(第 8 题图)
(第 9 题图)
(第 10 题图)
C11.已知⊙ O 的半径为 10,弦 AB 的长为10 3 ,点C在⊙O上,且C点到弦AB所在直线的距离为5,则以 O、A 、 B、 C 为顶点的四边形的面积是.
C12 、如图,将半径为 1、圆心角为60°的扇形纸片 AOB ,在直线 l 上向右作无滑动的滚动至扇形A’ O’ B’
处,则顶点 O 经过的路线总长为.
C13 、将半径为 4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是 ___________cm.
(第 12 题图)
三、解答题(第 13 题图)
A1.如图,△ABC内接于⊙ O,AD是△ ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ ADC相似吗?请证明你的结论.
C
A· B
O
D
A2.如图,⊙ O 的直径 AB 长为 6,弦 AC 长为 2,∠ ACB 的平分线交⊙O 于点 D,求四边形ADBC 的面积.
A3.如图,AD为ABC 外接圆的直径,AD BC ,垂足为点 F ,ABC 的平分线交AD 于点 E ,连接 BD ,CD .
(1)求证: BD CD ;
(2)请判断 B , E , C 三点是否在以 D 为圆心,以DB 为半径的圆上?并说明理由.
A
E
B F C
D
B4.如图 9,在平行四边形 ABCD 中 ,E 为 BC 边上的一点 ,且 AE 与 DE 分别平分∠ BAD 和∠ ADC. ( 1)求证 :AE
⊥DE;
(2) 设以 AD 为直径的半圆交AB 于 F,连接 DF 交 AE 于 G,已知 CD=5,AE=8, 求FG
的值 .
AF
C5.如图,圆 O 的直径为 5,在圆 O 上位于直径 AB 的异侧有定点 C 和动点在半圆弧 AB 上运动(不与 A 、B 两点重合),过点 C 作 CP 的垂线 CD P,已知 BC : CA=4: 3,点 P 交 PB 的延长线于 D 点.
(1)求证: A C·CD=PC·BC;
(2)当点 P 运动到 AB 弧中点时,求 CD 的长;
( 3)当点 P 运动到什么位置时,△PCD 的面积最大?并求出这个最大面积S。

相关文档
最新文档