专题六 三角形全等.doc(学生版)
人民版必修二专题六导学稿(学生版)
三元整合导学模式历史学科导学稿(学生版)班别学号姓名一、课题:必修二专题六罗斯福新政和当代资本主义的新变化二、课型分析:复习课三、课时安排:5课时四、学习目标:资料P144五、复习策略:1。
确立整体观念:复习过程中,要把整个主题看做是一个完整的统一体,如:资本主义国家的经济体制调整,不仅要抓住“罗斯福新政前的1929-1933年经济危机---罗斯福新政---罗斯福新政后的资本主义新变化”这一线索,还要联系世界史中的重商主义、自由主义、垄断资本主义、苏俄新经济政策以及当今中国的改革开放,认识到人类发展过程中不同经济制度的相互借鉴。
2。
运用分析方法:如从剖解美国这个典型的资本主义国家入手,发现资本主义国家的某些共性;从探究美国资本主义发展的过程中找出资本主义发展的某些规律:从美国政府经济政策的变化中看到资本主义经济机制的某些新特点。
六、专题框架罗斯福新政背景:(“自由放任”的美国)------本单元核心:罗斯福新政------罗斯福新政的延续(当代资本主义的新变化)七、知识梳理(一)1929至1933年资本主义世界经济危机(原因、表现、特点、影响)(资料P144):罗斯福新政背景【自主检测一】1、一个煤矿工人的儿子问妈妈:“现在天气这么冷,我们为什么不生炉子呢?”妈妈回答说:“因为我们没有煤.你爸爸失业了,我们没有钱买煤。
”“妈妈,爸爸为什么失业呢?”“因为煤太多了。
”这个例子生动而又形象地揭示出经济危机是由经济领域中哪两个环节之间的矛盾造成的呢?2、右图的“胡佛村”反映了在1929—1933年经济大危机中()A、股市崩溃,冲垮了美国的金融机构B、人民的生活水平急剧下降C、市场萧条,世界贸易额剧减D、生产过剩,大量产品被毁坏【探究一】材料一马克思曾说:“资产阶级在它的不到一百年的阶级统治中所创造的生产力,比过去一切时代创造的全部生产力还要多,还要大。
”材料二斯大林指出资本主义“生产过剩的经济危机的根源在于资本主义经济制度本身。
北师大版数学七升八暑假作业专题复习提升专题六 倍长中线构造全等三角形(含答案)
北师大版数学七升八暑假作业专题复习提升-专题六倍长中线构造全等三角形中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造.类型倍长中线构造全等三角形1. 在△ABC中,AB=7,AC=3,则BC边的中线AD的取值范围是.2. 在△ABC中,AB=10,AC=6,则BC边上的中线AD的取值范围是.3.如图,在△ABC中,∠ABC=45∘,AD,BE分别为BC,AC边上的高,AD,BE相交于点F.下列结论:①∠FCD=45∘;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC的周长等于AB的长.正确结论的序号是.4.如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB−AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5. 如图,已知AD是△ABC的中线,过点B作BE⊥AD,垂足为E.若BE=6,求点C到AD的距离.6.某校数学课外兴趣小组活动时,老师提出如下问题:【探究】如图1,在△ABC中,若AB=8,AC=6,点D是BC的中点,试探究BC 边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法:延长AD到点E,使DE=AD,连接BE.请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB.证明:∵延长AD到点E,使DE=AD,连接BE.在△ADC和△EDB中,AD=ED(已作),∠ADC=∠EDB(), CD=BD(中点定义),∴△ADC≌△EDB().(2)探究得出AD的取值范围是.【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AC=BF.求证:∠BFD=∠CAD.7. 【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法:延长AD到点E,使DE=AD,连接BE,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A. SSSB. SASC. AAS(2)求得AD的取值范围是.A. 6<AD<8B. 6≤AD≤8C. 1<AD<7D. 1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.试说明AC=BF.(1)【方法学习】数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法(如图2).①延长AD到点M,使得DM=AD;②连接BM,通过三角形全等把AB,AC,2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB−BM<AM<AB+BM,从而得到AD的取值范围是.【方法总结】上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以说明.(3)【深入思考】如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE =∠CAF=90∘,试判断线段AD与EF的数量关系,并加以说明.答案专题六倍长中线构造全等三角形类型倍长中线构造全等三角形1.2<AD<52.2<AD<83.①③④4.(1)证明:如图,延长AD至点E,使AD=DE,连接BE.在△ACD 和△EBD 中,{DC =BD ,∠ADC =∠BDE ,AD =DE ,∴△ACD≌△EBD (SAS),∴AC =BE (全等三角形的对应边相等).在△ABE 中,由三角形的三边关系可得AB−BE <AE <AB +BE ,即AB−AC <2AD <AB +AC .(2) 解:∵AB =8cm ,AC =5cm ,∴8−5<2AD <8+5,∴32<AD <132.5.解:如图,过点C 作CF ⊥AD ,交AD 的延长线于点F .∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD .∵AD 是△ABC 的中线,∴BD =CD .在△BED 和△CFD 中,{∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED≌△CFD (AAS),∴BE =CF .∵BE =6,∴CF =6,∴ 点C 到AD 的距离为6.(1) 对顶角相等; SAS(2) 1<AD <7(3) 证明:如图,延长AD 到点H ,使DH =AD ,连接BH .由(1)得△ADC≌△HDB,∴BH=AC,∠BHD=∠CAD.∵AC=BF,∴BH=BF,∴∠BFD=∠BHD,∴∠BFD=∠CAD.(1)B(2)C(3)解:如图,延长AD到点M,使AD=DM,连接BM.∵AD是△ABC的中线,∴CD=BD.∵在△ADC和△MDB中,{DC=DB,∠ADC=∠MDB,DA=DM,∴△ADC≌△MDB(SAS),∴BM=AC,∠CAD=∠M.∵AE=EF,∴∠CAD=∠AFE.∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM=AC,即AC=BF.(1)1<AD<7(2)解:AC//BM,且AC=BM.理由:由(1)知,△MDB≌△ADC,∴∠M=∠CAD,AC=BM,∴AC//BM.(3)EF=2AD.理由:如图,延长AD到点M,使得DM=AD,连接BM.由(1)知,△BDM≌△CDA(SAS),∴BM=AC.∵AC=AF,∴BM=AF.由(2)知:AC//BM,∴∠BAC+∠ABM=180∘.∵∠BAE=∠FAC=90∘,∴∠BAC+∠EAF=180∘,∴∠ABM=∠EAF.在△ABM和△EAF中,{AB=EA,∠ABM=∠EAF,BM=AF,∴△ABM≌△EAF(SAS),∴AM=EF.∵AD=DM,∴AM=2AD.∵AM=EF,∴EF=2AD.。
三角形全等、相似及综合应用模型(6大模型+解题技巧)—2024年中考数学(全国通用)(解析版)
三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。
特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。
直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。
模型01 与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)模型02 与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03 三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。
专题六 二次函数综合题 类型六 全等、相似三角形问题
类型六 全等、相似三角形问题例1 (2017·淄博)如图①,经过原点O 的抛物线y =ax 2+bx(a ≠0)与x 轴交于另一点A(32,0),在第一象限内与直线y =x 交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C ,满足以B ,O ,C 为顶点的三角形的面积为2,求点C 的坐标;(3)如图②,若点M 在这条抛物线上,且∠MBO =∠ABO ,在(2)的条件下,是否存在点P ,使得△POC ∽MOB ?若存在,求出点P 的坐标;若不存在,请说明理由.图①图②例1题图【思路点拨】 (1)把(2,t)代入y =x 可求点B 坐标为(2,2),然后把(2,2)、(32,0)代入y =ax 2+bx 可得抛物线的表达式;(2)由点C 在抛物线y =2x 2-3x 可设点C 坐标为(x ,2x 2-3x),然后过点C 作CQ ⊥y 轴,过点B 作BF ⊥y 轴,则由S △BOC =S 四边形CQFB -S △COQ -S △BOF 可得方程,解方程可得点C 的横坐标,从而求得点C 坐标;(3)由∠MBO =∠ABO ,可得△OBE ≌△OBA ,所以点E 坐标为(0,32),从而可求直线MB 的解析式为y =14x +32,再由y=14x +32和y =2x 2-3x 组成方程组,解方程组可得点M 坐标,再由△POC ∽△MOB 可得∠BOM =∠COP ,且OC OB =OP OM =12,从而可求点P 坐标.解:(1)把B(2,t)代入y =x 得t =2, ∴B(2,2),把A(32,0),B(2,2)代入y =ax 2+bx 得⎩⎪⎨⎪⎧94a +32b =0,4a +2b =2,解得⎩⎨⎧a =2,b =-3. ∴抛物线的解析式为y =2x 2-3x ;例1题解图①(2)设点C 坐标为(x ,2x 2-3x),如解图①,过点C 作CQ ⊥y 轴,过点B 作BF ⊥y 轴, 则S △BOC =S 四边形CQFB -S △BOF -S △COQ , 即(2+x )[2-(2x 2-3x )]2-2×2×12-12x(-2x 2+3x)=2,解得x =1.把x =1代入y =2x 2-3x 得y =2-3=-1, ∴C(1,-1);(3)存在.如解图②,连接AB ,OM ,设MB 交y 轴于点E , 由(1)得点B 坐标为(2,2), ∴∠BOE =∠BOA =45°,在△BOE 和△BOA 中,⎩⎨⎧∠BOE =∠BOA ,OB =OB ,∠EBO =∠ABO ,∴△BOE ≌△BOA(ASA ),∴OA =OE ,∵A(32,0),∴E(0,32),设直线BE 的解析式为y =kx +b ,把(0,32),(2,2)分别代入得⎩⎪⎨⎪⎧2x +b =2,b =32,解得⎩⎨⎧k =14,b =32.∴直线BM 的解析式为y =14x +32.由y =14x +32和y =2x 2-3x 组成方程组,得⎩⎪⎨⎪⎧y =14x +32,y =2x 2-3x ,解得⎩⎪⎨⎪⎧x 1=2,y 1=2(与B 点重合,舍去),⎩⎨⎧x 2=-38,y 2=4532.∴点M 坐标为(-38,4532).由点C 坐标为(1,-1)可得∠AOC =∠BOE =45°, ∴OB =22,OC =2, ∵△OPC ∽△OMB , ∴OP OM =OC OB =12,且∠POC =∠BOM. 当点P 在第一象限时,如解图②所示,过点P 作PG ⊥x 轴,过点M 作MH ⊥y 轴, ∵∠BOM =∠COP ,∠COA =BOE ,例1题解图②∴∠POG =∠MOE ,又∵∠MHO =∠PGO =90°, ∴△POG ∽△MOH , ∴OP OM =OG OH =PG MH =12, ∴OG =4564,PG =316,∴点P 坐标为(4564,316);当点P 位于第三象限时,可求点P 坐标为(-316,-4564).综上可得点P 坐标为(4564,316)或(-316,-4564).【备考指导】相似三角形的存在性探究:1.探究三角形相似时,往往没有明确指出两个三角形的对应角(尤其是以文字形式出现让证明两个三角形相似),或者涉及动点位置的不确定,此时应考虑不同的对应关系,分情况讨论;2.确定分类标准:找出一对对应相等的角,再根据对应边成比例进行分类讨论确定相似三角形成立的条件.【针对练习】 1.(2017·镇江)如图,在平面直角坐标系中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 坐标为(4,t)(t>0),二次函数y =x 2+bx(b<0)的图象经过点B ,顶点为点D.(1)当t =12时,顶点D 到x 轴的距离等于14;(2)点E 是二次函数y =x 2+bx(b<0)的图象与x 轴的一个公共点(点E 与点O 不重合),求OE·EA 的最大值及取得最大值时的二次函数表达式;第1题图(3)矩形OABC 的对角线OB 、AC 交于点F ,直线l 平行于x 轴,交二次函数y =x 2+bx(b<0)的图象于点M 、N ,连接DM 、DN ,当△DMN ≌△FOC 时,求t 的值.解:(1)14;(2)将y =0代入抛物线的解析式得x 2+bx =0, 解得x =0或x =-b ,∵OA =4,∴AE =4-(-b)=4+b ,∴OE ·AE =-b(4+b)=-b 2-4b =-(b +2)2+4, ∴OE ·AE 的最大值为4,此时b 的值为-2, ∴抛物线的表达式为y =x 2-2x ;第1题解图(3)过点D 作DG ⊥MN ,垂足为G ,过点F 作FH ⊥CO ,垂足为H , ∵△DMN ≌△FOC ,∴MN =CO =t ,DG =FH =2.∵D(-b 2,-b 24),∴N(-b 2+t 2,-b 24+2),即N(t -b 2,8-b 24).将点N 坐标代入抛物线的解析式得8-b 24=(t -b 2)2+b·(t -b2),解得t =±2 2.∵t>0,∴t=2 2.2.(2017·海南)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y =35x +3相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N.①连接PC 、PD ,如图①,在点P 运动过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB ,过点C 作CQ ⊥PM ,垂足为点Q ,如图②,是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标,若不存在,说明理由.图①图②第2题图 解:(1)抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t<5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N ,∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720.联立直线CD 与抛物线解析式可得⎩⎨⎧y =35x +3,y =35x 2-185x +3,解得⎩⎨⎧x 1=0,y 1=3,⎩⎪⎨⎪⎧x 2=7,y 2=365.∴C(0,3),D(7,365),第2题解图①分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①, 则CE =t ,DF =7-t ,∴S △PCD =S △PCN +S △PDN =12PN·CE +12PN·DF =72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积有最大值,最大值为102940;第2题解图②②存在.如解图②,∵∠CQN =∠PMB =90°,∴△CNQ 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况,∵CQ ⊥PM ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴CQ NQ =53,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3. 当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3), 解得t =349或t =5(舍去),此时P(349,-5527).综上可知,存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).3.(2017·常州)如图,在平面直角坐标系xOy ,已知二次函数y =-12x 2+bx 的图象过点A(4,0),顶点为B ,连接AB 、BO.第3题图(1)求二次函数的表达式; (2)若C 是BO 的中点,点Q 在线段AB 上,设点B 关于直线CQ 的对称点为B′;当△OCB′为等边三角形时,求BQ 的长度;(3)若点D 在线段BO 上,OD =2DB ,点E 、F 在△OAB 的边上,且满足△DOF 与△DEF 全等,求点E 的坐标.解:(1)∵二次函数的表达式为y =-12x 2+2x ;第3题解图①(2)由抛的线y =-12x 2+2x 得y =-12(x -2)2+2,∴如解图①,点B 的坐标为(2,2),OB =BA =22, 易得△ABO 是等腰直角三角形,且∠OBA =90°. ∵△B ′OC 是等边三角形,∴∠OCB ′=60°, ∴∠BCB ′=120°,∵点B 与点B′关于CQ 对称, ∴∠BCQ =∠B′CQ =60°.∴在Rt △CBQ 中,BC =2,∠BCQ =60°,∴BQ =3BC =6; (3)∵OB =22,OD =2BD ,∴OD =423.如解图②,当点F ,点E 均在OA 上,且△DFO ≌△DFE ,则DF ⊥OA ,∴DF =43=OF =EF ,此时点E 的坐标为(83,0);其他情况不存在;如解图③,当点F 在OA 上,点E 在AB 上,当DE ∥OF ,即DE ∥x 轴,且OF =DE 时满足题意, 此时点D 与点E 关于x =2对称,∵点D(43,43),∴点E 的坐标为(83,43);其他情况下不存在点E ;当点E 在BO 上,则不存在这样的点E ;当点F 在AB 上,无论点E 在何处,都不满足题意;当点E 与点O 重合时,△DOF 与△DEF 是同一个三角形,此时满足题意.综上,这样的点E 有3个,坐标分别为(0,0),(83,0),(83,43).图②图③第3题解图4.(2017·鄂州)已知,抛物线y =ax 2+bx +3(a<0)与x 轴交于A(3,0)、B 两点,与y 轴交于点C ,抛物线的对称轴是直线x =1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE =12.(1)求抛物线的解析式及顶点D 的坐标; (2)求证:直线DE 是△ACD 外接圆的切线;第4题图(3)在直线AC 上方的抛物线上找一点P ,使S △ACP =12S △ACD ,求点P 的坐标;(4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.(1)解:抛物线的解析式为y =-x 2+2x +3.顶点D 的坐标为(1,4);(2)证明:∵点C 是抛物线y =-x 2+2x +3与y 轴的交点,∴点C 的坐标为(0,3),∴AC =32,CD =2,AD =25,∴AC 2+CD 2=AD 2, ∴△ACD 是直角三角形,且∠ACD =90°; ∴AD 是△ACD 外接圆的直径.如解图①,过点E 作EF ⊥CD 于点F ,易得EF =CF =22CE =24,∵CD =2,第4题解图①∴DF =2-24=324,∴tan ∠EDF =EF DF =24324=13,∵tan ∠CAD =CD AC =232=13=tan ∠CDE ,∴∠CAD =∠CDE ,∴∠CDE +∠CDA =∠CDA +∠CAD =90°, ∴DE 是△ADC 外接圆的切线;(3)解:∵S △ADC =12AC·DC =12·32·2=3,∴S △APC =32.第4题解图②如解图②,过点P 作PL ∥y 轴,交AC 于点Q ,易得直线AC 的解析式为y =-x +3, ∴设点P 的坐标为(t ,-t 2+2t +3),则点Q 的坐标为(t ,-t +3), ∴PQ =(-t 2+2t +3)-(-t +3)=-t 2+3t ,∴S △APC =12PQ·|x A -x C |=32(-t 2+3t), ∴32(-t 2+3t)=32,解得t 1=3+52,t 2=3-52, 当t =3+52时,y =5-52;当t =3-52时,y =5+52,∴所求点P 的坐标为(3+52,5-52)或(3-52,5+52);(4)点M 的坐标为(0,0)或(9,0)或(0,-错误!).错误!。
(完整word版)三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结(可
(3)OA 平分∠BOC变形:一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC(2)∠α+∠BOC=180°例1.如图在直线ABC 的同一侧作两个等边三角形∆ABD 与∆BCE ,连结AE 与CD ,证明(1)∆ABE ≅∆DBC(2)AE =DC(3)AE 与DC 之间的夹角为60︒(4)∆AGB ≅∆DFB(5)∆EGB ≅∆CFB(6)BH 平分∠AHC(7)GF // AC变式精练1:如图两个等边三角形∆ABD 与∆BCE ,连结AE 与CD ,证明(1)∆ABE ≅∆DBC(2)AE =DC(3)AE 与DC 之间的夹角为60︒(4)AE 与DC 的交点设为H , BH 平分∠AHC变式精练2:如图两个等边三角形∆ABD 与∆BCE ,连结AE 与CD ,证明(1)∆ABE ≅∆DBC(2)AE =DC(3)AE 与DC 之间的夹角为60︒(4)AE 与DC 的交点设为H , BH 平分∠AHC例2:如图,两个正方形ABCD 与DEFG ,连结AG, CE ,二者相交于点H问:(1)∆ADG ≅∆CDE 是否成立?(2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分∠AHE ?例3:如图两个等腰直角三角形ADC 与EDG ,连结AG, CE ,二者相交于点H问:(1)∆ADG ≅∆CDE 是否成立?(2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分∠AHE ?例4:两个等腰三角形∆ABD 与∆BCE ,其中AB =BD , CB =EB, ∠ABD =∠CBE =,连结AE 与CD ,问:(1)∆ABE ≅∆DBC 是否成立?(2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度?(4)HB 是否平分∠AHC ?倍长中线类二、倍长与中点有关的线段☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。
八年级上册数学-专题六直角三角形
专题六 直角三角形一、直角三角形性质:1、 直角三角形的两个锐角互余2、 直角三角形斜边上的中线等于斜边的一半3、 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
4、 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°5、 勾股定理:直角三角形两直角边a,b 的平方和,等于斜边c 的平方。
a 2+b 2=c 2二、直角三角形判定:1、有两个角互余的三角形是直角三角形2、如果三角形的三条边长a,b,c 满足关系:a 2+b 2=c 2,那么这个三角形是直角三角形。
3、直角三角形全等的判定:SAS,ASA,AAS,SSS,HL三、角平分线的性质:1、角的平分线上的点到角的两边的距离相等2、角的内部到角的两边距离相等的点在角的平分线上四、练习1如图,AB ∥CD ,∠CAB 和∠ACD 的平分线相较于H 点,E 为AC 的中点,EH=2.那么△AHC 是直角三角形吗?为什么?若是,求出AC 的长。
2、如图,在R t △ABC 中,∠ACB=90°,CD 垂直于AB,垂足为点D ,DB=21BC,求∠A 的度数。
3、已知,在△ABC 中,∠B =21∠A =31∠C ,AB=8cm. (1)求AB 边上的中线长,(2)求AC, BC 的长,(3)AB 边上的高AB C DEH4、如图,在RtABC 中,∠C=90°,ED 是线段AB 的垂直平分线,已知∠1=31∠ABC ,求∠A 的度数。
6、 如图,在边长为4的正方形ABCD 中,F 为CD 的中点,E 是BC 上一点,且EC=41BC. 求证:△AEF 是直角三角形。
7、 如图,D 为BC 的中点,DE ⊥AB 于点E,DF ⊥AC 于点F,且DE=DF.试问:AB 与AC 有什么关系?8、 如图,已知BD 平分∠ABC,BA=BC,点P 在BD 上,作P M ⊥AD,P N ⊥CD,垂足分别为点M,N.求证:P M=PN .9、 如图,求作一点P,使PM=PN,并且使点P 到∠AOB 的两边OA,OB 的距离相等。
全等三角形的六种模型全梳理(学生版)--初中数学专题训练
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
模型构建专题:解直角三角形应用中的基本模型之六大类型(学生版)
模型构建专题:解直角三角形应用中的基本模型之六大类型【考点导航】目录【典型例题】【类型一含特殊角(“30°,45°,60°”)的非直角三角形】【类型二不含特殊角的非直角三角形】【类型三“独立”型】【类型四“背靠背”型】【类型五“叠合”型】【类型六“斜截”型】【典型例题】【类型一含特殊角(“30°,45°,60°”)的非直角三角形】1(2023·辽宁葫芦岛·统考二模)如图,小明在游玩时想利用手中的无人机测量一山崖CD(垂直于地面)的高度,小明从A点看向无人机B的仰角为45°.从无人机B处测得看山崖顶端C的仰角为30°,测得看山崖底部D处的俯角为60°,无人机B与山崖的水平距离BE为50米.(图中各点均在同一平面内).(1)求山崖的高度(结果保留根号);(2)若点A距离地面2米,求小明到山崖的水平距离(结果取整数).(参考数据:2≈1.414,3=1.732)【变式训练】1(2023秋·黑龙江哈尔滨·九年级哈尔滨德强学校校考阶段练习)为了维护海洋权益,新组建的国家海洋局加强了海洋巡逻力度,如图,一艘海监船位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,沿正北方向航行一段时间后,到达位于灯塔Р的北偏东30°方向上的B处.(1)在这段时间内,海监船与灯塔Р的最近距离是多少海里?(2)在这段时间内,海监船航行了多少海里?(结果保留根号)2(2023·海南·统考中考真题)如图,一艘轮船在A处测得灯塔M位于A的北偏东30°方向上,轮船沿着正北方向航行20海里到达B处,测得灯塔M位于B的北偏东60°方向上,测得港口C位于B的北偏东45°方向上.已知港口C在灯塔M的正北方向上.(1)填空:∠AMB=度,∠BCM=度;(2)求灯塔M到轮船航线AB的距离(结果保留根号);(3)求港口C与灯塔M的距离(结果保留根号).3(2023春·内蒙古巴彦淖尔·九年级校考期中)无人机在实际生活中应用广泛.如图所示,某人利用无人机测量大楼的高度,无人机在空中C处测得楼DH楼顶D处的俯角为45°,测得楼EF楼顶E处的俯角为60°.已知楼EF和楼DH之间的距离HF为90米,楼EF的高度为12米,从楼EF的E处测得楼DH的D处的仰角为30°,AB∥HF.(点A、B、C、D、E、F、H在同一平面内).(参考数据:3≈1.73)(1)求楼DH的高度;(2)求此时无人机距离地面HF的高度.4(2023秋·海南海口·九年级校考期末)脱贫攻坚工作让老百姓过上了幸福的生活,如图是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得尾顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走6m 到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,3≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).5(2023·辽宁葫芦岛·统考二模)无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A处的俯角为60°.已知楼AB和楼CD之间的距离BC为1003米,楼AB的高度为10米,从楼AB的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内,参考数据:3≈1.732,2≈1.414).(1)填空:∠ADP=度;(2)求楼CD的高度;(3)求此时无人机距离地面BC的高度(结果精确到1米).【类型二不含特殊角的非直角三角形】1(2023秋·全国·九年级专题练习)如图,在2×4的方格中,两条线段的夹角(锐角)为∠1,则tan∠1=.【变式训练】1(2023·江苏宿迁·统考中考真题)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B、C三点都在格点上,则sin∠ABC=.2(2023·全国·九年级专题练习)如图,△ABC的三个顶点都在边长是1的小正方形的顶点上,则tan∠BAC=.3(2023春·浙江杭州·九年级专题练习)在△ABC中,AC=42,BC=6,∠C为锐角且tan C=1.(1)求△ABC的面积;(2)求AB的值;(3)求cos∠ABC的值.4(2023秋·重庆·九年级重庆实验外国语学校校考开学考试)如图,在Rt△ABC中,∠ABC=90°,点D 为BC的中点,DE⊥AC于点E,连接BE.已知DE=2.(1)若tan C=12,求AB的长度;(2)若∠C=30°,求sin∠BEA.5(2023·宁夏吴忠·校考二模)问题呈现:如图1,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,求cos∠CPN的值.方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解获此类问题,比如连接格点M、N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中,问题解决:(1)求出图1中cos∠CPN的值;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求tan∠CPN的值.6(2023秋·全国·九年级专题练习)在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在Rt△ABC中,∠ACB=90°,AB=1,∠A=α,求sin2α(用含sinα,cosα的式子表示).聪明的小雯同学是这样考虑的:如图2,取AB的中点O,连接OC,过点C作CD⊥AB于点D,则∠COB=2α,然后利用锐角三角函数在Rt△ABC中表示出AC,BC,在Rt△ACD中表示出CD,则可以求出sin2α=CDOC =sinα⋅AC12=sinα⋅cosα12=2sinα⋅cosα.阅读以上内容,回答下列问题:在Rt△ABC中,∠C=90°,AB=1.(1)如图3,∠ACB=90°,AB=1,若BC=12,则sinα=,sin2α=;(2)请你参考阅读材料中的推导思路,求出tan2α的表达式(用含sinα,cosα的式子表示).【类型三“独立”型】1(2023春·吉林长春·九年级校考阶段练习)如图,某校无人机兴趣小组借助无人机测量教学楼的高度AB,无人机在离教学楼底部B处16米的C处垂直上升31米至D处,测得教学楼顶A处的俯角为39°,则教学楼的高度AB约为米.(结果精确到0.1米)【参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81】【变式训练】1(2023春·山东日照·九年级日照市新营中学校考阶段练习)如图,AB是垂直于水平面的建筑物,沿建筑物底端B沿水平方向向左走8米到达点C,沿坡度i=1:2(坡度i=坡面铅直高度与水平宽度的比)斜坡走到点D,再继续沿水平方向向左走40米到达点E(A、B、C、D、E在同一平面内),在E处测得建筑物顶端A的仰角为34°,已知建筑物底端B与水平面DE的距离为2米,则建筑物AB的高度约是(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)()A.27.1米B.30.8米C.32.8米D.49.2米2(2023春·安徽淮南·九年级校联考阶段练习)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为米;3如图,小明在公园放风筝,拿风筝线的手B 离地面高度AB 为1.5m ,风筝飞到C 处时的线长BC 为30m ,这时测得∠CBD =53°,求此时风筝离地面的高度.(精确到0.1m ,sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【类型四“背靠背”型】1(2023春·山东青岛·九年级统考开学考试)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西67°方向行驶4千米至B 地,再沿北偏东23°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B ,C 两地的距离(结果保留整数)(参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,sin23°≈513,tan23°≈512).【变式训练】1(2023春·江苏南通·九年级校考阶段练习)如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为km .2(2023春·海南省直辖县级单位·九年级统考期中)某校举办以“测量”为主题的数学实践活动,该校数学兴趣小组准备借助无人机来测量小区内的一座大楼高度.如图所示,无人机从地面点A处沿着与地面垂直的方向上升,至点B处时,测得大楼底部C的俯角为30°,E测得大楼顶部D的仰角为45°.无人机保持航向不变继续上升50米到达点E处,此时测得大楼顶部D的俯角为60°.已知A、C两点在同一水平线上.(1)填空:∠DBE=度,∠BED=度;(2)求A、C两点间的距离:(结果保留根号)(3)求这座大楼CD的高度.(结果保留根号)3(2023·黑龙江大庆·统考一模)如图,某无人机兴趣小组在操场上展开活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得教学楼BC顶端点C处的俯角为45°,又经过人工测量测得操控者A和教学楼BC之间的距离为57米.(点A,B,C,D都在同一平面上,结果保留根号)(1)填空:∠ADC=度,∠BCD=度;(2)求此时无人机与教学楼BC之间的水平距离BE的距离;(3)求教学楼BC的高度.【类型五“叠合”型】1(2023春·河南驻马店·九年级统考阶段练习)文峰塔位于河南省安阳市古城内西北隅,因塔建于天宁寺内,又名天宁寺塔;文峰塔建于五代后周广顺二年,已有一千余年历史,风格独特,具有上大下小的特点.由下往上一层大于一层,逐渐宽敞,是伞状形式,这种平台、莲座、辽式塔身、藏式塔刹的形制世所罕见.活动课上,数学社团的学生计划测量文峰塔的高度.如图所示,先在点C处用高1.6m的测角仪测得塔尖A的仰角为37°,向塔的方向前进12m到达F处,在F处测得塔尖A的仰角为45°,请你相关数据求出文峰塔的高度.(结果精确到1m,参考数据:,,,.)【变式训练】1(2023秋·山东聊城·九年级聊城市实验中学校考阶段练习)如图,小明为了测量小河对岸大树BC 的高度,他在点A 测得大树顶端B 的仰角为45°,沿斜坡走352米到达斜坡上点D ,在此处测得树顶端点B的仰角为31°,且斜坡AF 的坡比为1:2,E ,A ,C 在同一水平线上.(1)求小明从点A 到点D 的过程中,他上升的高度.(2)大树BC 的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)2(2023·江苏苏州·校考二模)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树的高度,他们在这棵古树的正前方一平房顶点处测得古树顶端的仰角为,在这棵古树的正前方处,测得古树顶端的仰角为,在点处测得点的俯角为,已知为米,且、、三点在同一条直线上.(1)求平房的高度;(2)请求出古树的高度.(根据以上条件求解时测角器的高度忽略不计)【类型六“斜截”型】1(2023春·辽宁阜新·九年级校考阶段练习)如图,在南北方向的海岸线上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号,已知A ,B 两船相距海里,船C 在船A 的北偏东方向上,船C 在船B 的东南方向上,上有一观测点D ,测得船C 正好在观测点D 的南偏东方向上.(1)求出A与C之间的距离.(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线去营救船C,在去营救的途中有无触暗礁危险?(参考数据:,)【变式训练】1(2023·内蒙古·统考中考真题)某数学兴趣小组借助无人机测量一条河流的宽度.如图所示,一架水平飞行的无人机在处测得河流左岸处的俯角为,无人机沿水平线方向继续飞行12米至处,测得河流右岸处的俯角为,线段米为无人机距地面的铅直高度,点,,在同一条直线上,其中.求河流的宽度(结果精确到1米,参考数据:).2(2023春·江苏苏州·九年级统考期中)如图,某渔船在完成捕捞作业后准备返回港口C,途经某海域A处时,港口C的工作人员监测到点A在南偏东30°方向上,另一港口B的工作人员监测到点A在正西方向上.已知港口C在港口B的北偏西60°方向,且B、C两地相距120海里.(1)求出此时点A到港口C的距离(计算结果保留根号);(2)若该渔船从A处沿AC方向向港口C驶去,当到达点A 时,测得港口B在A 的南偏东75°的方向上,求此时渔船的航行距离(计算结果保留根号).。
微专题 全等三角形的六种基本模型-2024年中考数学复习
21
全等三角形的六种基本模型
模型应用
8.如图17, △ 是边长为1的等边三角形, = ,
∠ = 120∘ ,点 , 分别在 , 上,且
∠ = 60∘ .求 △ 的周长.
提示:如图16,延长 至点 ,使 = ,连接 .
图6
= ,
在 △ 和 △ 中, ቐ∠ = ∠, ∴ △≌△ SAS .
= ,
∠ = ∠ = 50∘ .
7
全等三角形的六种基本模型
模型三 旋转型
模型剖析
如图7,将三角形绕着公共顶
点旋转一定角度后,两个三角形能
够完全重合,这两个三角形称为旋
图3
在 △ 和△ 中, ∵ ∠ = ∠ , ∠ = ∠ , = ,
∴ △ ≌ △ AAS .
∴ = .
4
全等三角形的六种基本模型
模型二 对称型
模型剖析
如图4、图5,将所给图形沿某一条直线折叠后,直线两旁的部分能
够完全重合,这两个三角形称为对称型全等三角形,其中重合的顶点就
= , ∴ △ ≌ △ SAS . ∴ = ,
图17
图16
22
全等三角形的六种基本模型
∠ = ∠. ∵ ∠ = 120∘ , ∠ = 60∘ , ∴ ∠ +
∠ = 60∘ . ∴ ∠ + ∠ = 60∘ . ∴ ∠ = ∠ =
∴ ∠ = ∠ + ∠ = 110∘ .
∴ ∠ = ∠ .
= ,
图9
在 △ 和 △ 中, ቐ∠ = ∠ , ∴ △ ≌ △ .
= ,
∴ = .
11
全等三角形的六种基本模型
全等三角形(4种模型2种添加辅助线方法)(学生版)
全等三角形(4种模型2种添加辅助线方法)1.题型一:一线三等角模型2.题型二:手拉手模型3.题型三:半角模型4.题型四:旋转模型5.题型五:倍长中线法6.题型六:截长补短法题型一一线三等角模型过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:题型二手拉手模型【基本模型】一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;12题型三半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
解题技巧:在图1中,△AEB 由△AND 旋转所得,可得△AEM ≌△AMN ,∴BM +DN =MN∠AMB =∠AMNAB =AH△CMN 的周长等于正方形周长的一半在图2中将△ABC 旋转至△BEF ,易得△BED ≌△BCD 同理得到边角之间的关系;总之:半角模型(题中出现角度之间的半角关系)利用旋转--证全等--得到相关结论.题型四旋转模型31一、奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。
我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题2二、费马点模型费马点就是到三角形的三个顶点距离之和最小的点.最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以掌握费马点等此类最值经典题是必不可少的.题型五倍长中线法三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等4在△ABC 中AD 是BC边中线延长AD 到E ,使DE =AD ,连接BE作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE延长MD 到N ,使DN =MD ,连接CD截长补短法截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a +b =c 时,用截长补短.1.补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2.截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
(word完整版)初中数学专题复习全等三角形
初中数学专题复习——全等三角形一.知识点结构梳理及解读1.全等形:能够完全重合的两个图形叫做全等形。
2.全等三角形性质:全等三角形的对应边相等,全等三角形的对应角相等3.三角形全等的判定:(1)边边边 (SAS) :三边对应相等的两个三角形全等。
(2)角边角(SAS):两边和它们的夹角对应相等的两个三角形全等。
(3)角边角(ASA):两边和他们的夹角对应相等的两个三角形全等。
角角边(AAS):两个角和其中的一个角的对边对应相等的两个三角形全等。
(4)斜边,直角边 (HL):斜边和直角边对应相等的两个三角形全等。
4.角平分线的性质:角的平分线上的点到角的两边的距离相等。
2.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。
二、找全等三角形的方法(1)从结论出发,看要证明相等的线段(或角)分别在哪两个可能全等的三角形中;(2)从已知出发,看可以确定哪两个三角形全等;(3)从条件和结论综合考虑,看能一同确定哪两个三角形全等;(4)考虑辅助线,构造全等三角形。
三.全等三角形中几个重要结论(1)全等三角形对应角的平分线、中线、高分别相等(对应元素都分别相等)(2)在一个三角形中,等边对等角,反过来,等角对等边;等腰三角形三线合一;等腰三角形顶角的外角等于底角的2倍;等腰三角形两腰上的中线、高分别相等;等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高;等腰三角形底边延长线上任意一点到两腰的距离之差等于一腰上的高。
(3)直角三角形斜边上的中线等于斜边的一半;三角形一边上的中线等于这边的一半,那么,这条边的对角等于90°;Rt⊿30°角的对边等于斜边的一半,反之,Rt⊿中如果有一条直角边等于斜边的一半,那么这条直角边的对角是30°。
(4)三角形三内角平分线交于一点(这点叫三角形的内心,这点到三角形三边的距离相等),三角形两外角平分线与第三内角平分线交于一点(这点叫三角形的旁心,这点到三角形三边所在直线的距离相等),到三角形三边所在直线等距离的点有四个经典例题例1.如图:BE 、CF 相交于点D ,DE⊥AC,DF⊥AB,垂足分别为E 、F ,且DE=DF 。
第六专题《三角形》(共7课时)
AB CDEB第五专题《三角形》 第一课时 三角形【知识再现】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线) 【例题解析】例1:如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.例2:如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.2.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数.5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.﹡6. △ABC 中,AD 是高,AE 、BF 是角角平分线相交于点O ,∠BAC=50°,∠C=70°,求∠DAC ,∠BOA 的度数.A DC B E EDCBA第二课时 三角形的性质与判定【考点提要】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________. 二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形. 三.直角三角形的性质与判定: 1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1:如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD •将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2:《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从北偏西60°的A 点行驶到北偏西30°的B 点,所用时间为1.5秒.(1)试求该车从A 点到B 的平均速度; (2)试说明该车是否超过限速.【中考演练】1.已知等腰三角形的一个底角为70,则它的顶角为____________.度.2.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____.3.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是____________.A O B东北PD C BA 4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)第三课时 全等三角形的判断【知识回顾】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1:已知:在梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F. 求证:AB=CF.例2: 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题)例3. 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __________度.4.如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .例4:如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)例5. 如图,点O 是线段AD 的中点,分别以AO的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小.A B P O CB AO E AB D CD C B ODA E CA第四课时相似三角形【要点罗列】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形.二、相似三角形的判定方法1. 若DE∥BC(A型和X型)则______________.2. 射影定理:若CD为Rt△ABC斜边上的高(双直角图形)则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=________,CD2=_______,BC2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________.三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【例题精析】例1:如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,•要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,•这个正方形零件的边长是多少?例2:如图,已知E是矩形ABCD的边CD上一点,BF AE于F,试证明ABF EAD△∽△.第五课时 锐角三角函数【知识回顾】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .例2: 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan ∠AFE .【课外练习】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号) 2. 某坡面的坡度为1_______度.3.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100mα abc第六课时 解直角三角形【知识回顾】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形.2.解直角三角形的类型:已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B=_____,(3)边角关系:sinA=___,sinB=____,cosA=_______. cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________.5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他元素.例2 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.3.已知:如图,在△ABC 中,∠B = 45°,∠C = 60°,AB = 6.求BC 的长. (结果保留根号)﹡4.如图,在测量塔高AB 时,选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB .(保留根号)O A B C。
2024_2025学年八年级数学上学期期中核心考点专题06全等三角形的判定含解析新人教版
专题06 全等三角形的判定重点突破学问点一全等三角形的判定(重点)一般三角形直角三角形判定边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)具备一般三角形的判定方法斜边和一条直角边对应相等(HL)性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等备注:1.判定两个三角形全等必需有一组边对应相等。
2.全等三角形周长、面积相等。
学问点二证题的思路(难点)考查题型一利用SAS推断两个三角形全等典例1(2024惠州市期末)如图,点E、F分别是矩形ABCD的边 AB、CD上的一点,且DF=BE. 求证:AF=CE.【答案】证明见解析【分析】由SAS证明△ADF≌△CBE,即可得出AF=CE.【详解】证明:∵四边形ABCD是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BCD B DF BE⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .变式1-1(2024·丹江口市期末)如图,点E,F 在AB 上,,,AD BC A B AE BF =∠=∠=.求证:ADF BCE ∆≅∆.【答案】详见解析【分析】 先将转化为AF =BE ,再利用证明两个三角形全等.【详解】证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE ,在△ADF 和△BCE 中,AD BCA B AF BE=⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆变式1-2(2024·武汉市期中)已知:如图,点C 为AB 中点,CD=BE ,CD∥BE.求证:△ACD≌△CBE.【答案】证明见解析.【解析】证明:∵CD∥BE,∴∠ACD=∠B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE,∴△ACD≌△CBE(SAS )变式1-3(2024·兰州市期末)如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【分析】(1)依据等边对等角可得∠B=∠ACF ,然后利用SAS 证明△ABE ≌△ACF 即可;(2)依据△ABE ≌△ACF ,可得∠CAF=∠BAE=30°,再依据AD=AC ,利用等腰三角形的性质即可求得∠ADC 的度数.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒-︒=75°, 故答案为75.考查题型二 利用ASA 推断两个三角形全等典例2(2024·玉林市期中)如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;【答案】见解析【分析】依据全等三角形的判定即可推断△AEC≌△BED;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE.在△AOD 和△BOE 中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC≌△BED(ASA ).变式2-1(2024·楚雄州期末)如图,完成下列推理过程:如图所示,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠3,∠E=∠C,AE =AC ,求证:△ABC≌△ADE.证明:∵∠E=∠C(已知),∠AFE=∠DFC( ),∴∠2=∠3( ),又∵∠1=∠3( ),∴∠1=∠2(等量代换),∴__________+∠DAC=__________+∠DAC(), 即∠BAC=∠DAE,在△ABC和△ADE中∵()()()E CAE ACBAC DAE∠=∠⎧⎪=⎨⎪∠=∠⎩已知已知已证∴△ABC≌△ADE().【答案】对顶角相等;三角形内角和定理;已知;∠1;∠2;等式的性质;ASA 【详解】解:∵∠E=∠C(已知),∠AFE=∠DFC(对顶角相等),∴∠2=∠3(三角形内角和定理).又∵∠1=∠3(已知),∴∠1=∠2(等量代换),∴∠1+∠DAC=∠2+∠DAC(等式的性质),即∠BAC=∠DAE.在△ABC和△ADE中,∵E CAE ACBAC DAE∠=∠⎧⎪=⎨⎪∠=∠⎩(已知)(已知)(已证),∴△ABC≌△ADE(ASA).变式2-2(2024·德州市期末)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE. 求证:BD=CE .【答案】见解析.【分析】先求出∠CAE=∠BAD再利用ASA证明△ABD≌△ACE,即可解答【详解】∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.考查题型三利用AAS推断两个三角形全等典例3(2024·黄石市期中)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.【答案】(1)见解析;(2)见解析.【分析】(1)依据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再依据垂线的性质可得∠CFB=∠AED=90°,再依据全等三角形的判定(角角边)来证明即可;(2)依据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,依据一组对边平行且相等的四边形为平行四边形即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠CBF=∠ADE,∵AE⊥BD,CF⊥BD,∴∠CFB=∠AED=90°,∴△AED≌△CFB(AAS).(2)证明:∵△AED≌△CFB,∴AE=CF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∴四边形AFCE是平行四边形.变式3-1(2024·兴义市期末)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】(1)证明见解析;(2)112.5°.【分析】()1依据同角的余角相等可得到24∠=∠,结合条件BAC D ∠=∠,再加上BC CE =, 可证得结论; ()2依据90ACD AC CD ∠=︒=,,得到145D ∠=∠=︒, 依据等腰三角形的性质得到3567.5∠=∠=︒, 由平角的定义得到1805112.5DEC ∠=︒-∠=︒.【详解】() 1证明:90BCE ACD ∠=∠=︒,2334,∴∠+∠=∠+∠ 24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,AC CD ∴=;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.变式3-2(2024·温州市期中)如图,已知A ,F ,E ,C 在同始终线上,//AB CD ,ABE CDF ∠=∠,AF CE =.试说明:ABE CDF ∆≅∆.【答案】见解析;【分析】由AB ∥CD 可得∠BAC =∠DCA ,由AF =CE 可得AE =CF ,由AAS 可得△ABE ≌△CDF .【详解】证明∵AB CD ∕∕,∴BAC ACD ∠=∠∵AF CE =,∴AF EF CE EF +=+,即AE FC =.在ABE ∆和CDF ∆中,BAC ACD ABE CDF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABE CDF ∆∆≌(AAS )考查题型四 利用SSS 推断两个三角形全等典例4(2024·德州市期中)已知:如图,AB =AC ,BD =CD ,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F .求证:DE =DF .【答案】见解析【分析】连接AD ,利用“边边边”证明△ABD 和△ACD 全等,再依据全等三角形对应边上的高相等证明.【详解】证明:如图,连接AD ,在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∵DE ⊥AB ,DF ⊥AC ,∴DE =DF (全等三角形对应边上的高相等).变式4-1(2024·阳泉市期末)如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,求证:∠1=∠2.【答案】证明见详解【分析】由AB=AC,AD=AD,BD=CD,可证得△ABD ≌△ACD,得到∠BAE=∠CAE,再证明△ABE≌△ACE,即可得到结论.【详解】证明:AB=AC,AD=AD,BD=CD,在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD, ∠BAE=∠CAE,在△ABE 和△ACE 中, ,AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ACE∴∠1=∠2.变式4-2(2024·鄂州市期中)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F 的度数.【答案】(1)证明见解析;(2)37°【解析】(1)∵AC=AD+DC , DF=DC+CF ,且AD=CF∴AC=DF在△ABC 和△DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS )(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°-(∠A+∠B )=180°-(55°+88°)=37°∴∠F=∠ACB=37°变式4-3(2024·石家庄市期末)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能干脆测量),点A ,D 在l 异侧,测得AB=DE ,AC=DF ,BF=EC .(1)求证:△ABC≌△DEF;(2)指出图中全部平行的线段,并说明理由.【答案】(1)详见解析;(2)∠ABC=∠DEF,∠ACB=∠DFE,理由见解析.【解析】(1)证明:∵BF=EC,∴BF+CF=CF +CE ,∴BC="EF"∵AB=DE,AC="DF"∴△ABC≌△DEF(SSS )(2)AB∥DE,AC∥DF,理由如下,∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.考查题型五 利用HL 推断两个直角三角形全等典例5(2024·云龙县期中)已知:如图,AC=BD ,AD ⊥AC ,BC ⊥BD .求证:AD=BC【答案】见解析【分析】连接CD ,利用HL 定理得出Rt △ADC ≌Rt △BCD 进而得出答案.【详解】证明:如图,连接CD ,∵AD ⊥AC ,BC ⊥BD ,∴∠A=∠B=90°,在Rt △ADC 和Rt △BCD 中CD CDAC BD =⎧⎨=⎩,∴Rt △ADC ≌Rt △BCD (HL ),∴AD=BC .变式5-1(2024·开封市期中)已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)依据垂直的定义得到∠DEC=∠BFA=90°,推出Rt △DCE ≌Rt △BFA (HL ),由全等三角形的性质即可得到结论.(2)依据全等三角形的性质得到∠C=∠A ,依据平行线的判定即可得到AB ∥CD.【详解】证明: ∵ DE ⊥ AC , BF ⊥ AC∴ ∠DEC=∠BFA=90°在Rt △ DEC 和Rt △ BFA 中AB=CDDE=BF∴ Rt △ DCE ≌Rt △ BFA (HL )∴ AF=CE∴ ∠C=∠A∴ AB ∥ CD变式5-2(2024·开封市期末)如图,D 、C 、F 、B 四点在一条直线上,AB DE =,AC BD ⊥,EF BD ⊥,垂足分别为点C 、点F ,CD BF =.求证:(1)ABC EDF ∆≅∆;(2)//AB DE .【答案】(1)见解析;(2)见解析.【分析】(1)由垂直的定义,结合题目已知条件可利用HL 证得结论;(2)由(1)中结论可得到∠D =∠B ,则可证得结论.【详解】证明:(1)∵AC BD ⊥,EF BD ⊥,∴ABC ∆和EDF ∆为直角三角形,∵CD BF =,∴CF BF CF CD +=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中,AB DE BC DF =⎧⎨=⎩, ∴()Rt ABC Rt EDF HL ∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,∴B D ∠∠=,∴//AB DE .考查题型六 三角形全等判定的综合典例6(2024·保定市期末)下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙【答案】B【解析】 乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满意三角形全等的判定方法:SAS ,所以乙和△ABC 全等;在△ABC 和图丙的三角形中,满意三角形全等的判定方法:AAS ,所以丙和△ABC 全等;不能判定甲与△ABC 全等;故选B .变式6-1(2024·武汉市期中)如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【答案】C【解析】试题分析:依据全等三角形的判定方法分别进行判定:A、已知AB=DE,加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意.故选C.变式6-2(2024·杭州市期末)如图所示,在下列条件中,不能推断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC【答案】C【解析】解:A、符合AAS,能推断△ABD≌△BAC;B、符合ASA,能推断△ABD≌△BAC;C、符合SSA,不能推断△ABD≌△BAC;D、符合SSS,能推断△ABD≌△BAC.所以依据全等三角形的判定方C、满意SSA不能推断两个三角形全等.故选C.变式6-3(2024·虹桥区期中)如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法推断全等三角形.解答:【详解】分析:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.故选D.。
第24章 专题06 相似三角形的性质重难点专练(学生版)
专题06 相似三角形的性质重难点专练第I 卷(选择题)一、单选题1.(2021·上海九年级专题练习)如图,在Rt ABC ∆中,90,BAC BA CA ∠=︒==D 为BC 边的中点,点E 是CA 延长线上一点,把CDE ∆沿DE 翻折,点C 落在C '处,EC '与AB 交于点F ,连接BC '.当43FA EA =时,BC '的长为( )AB .CD .第II 卷(非选择题)二、解答题2.(2021·上海中考真题)如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;①若BE CD ⊥,求AD BC的值; (2)若2,3DE OE ==,求CD 的长.3.(2021·上海金山区·九年级二模)已知在①ABC 中,AB =AC=①BAC =120°,①ADE 的顶点D 在边BC 上,AE 交BC 于点F (点F 在点D 的右侧),①DAE =30°.(1)求证:①ABF ①①DCA ;(2)若AD =ED .①联结EC ,当点F 是BC 的黄金分割点(FC >BF )时,求ABF FEC S S.①联结BE ,当DF =1时,求BE 的长.4.(2021·上海崇明区·九年级二模)已知:如图,梯形ABCD 中,AD ①BC ,AB =DC ,点E 在下底BC 上,①AED =①B .(1)求证:CE •AD =DE 2; (2)求证:22CE ABADAE =.5.(2021·上海静安区·九年级二模)如图,已知半圆O 的直径AB =4,点P 在线段OA 上,半圆P 与半圆O 相切于点A ,点C 在半圆P 上,CO ①AB ,AC 的延长线与半圆O 相交于点D ,OD 与BC 相交于点E .(1)求证:AD •AP =OD •AC ;(2)设半圆P 的半径为x ,线段CD 的长为y ,求y 与x 之间的函数解析式,并写出定义域; (3)当点E 在半圆P 上时,求半圆P 的半径.6.(2021·上海松江区·九年级二模)如图,已知在①ABC 中,BC >AB ,BD 平分①ABC ,交边AC 于点D ,E 是BC 边上一点,且BE =BA ,过点A 作AG ①DE ,分别交BD 、BC 于点F 、G ,联结FE .(1)求证:四边形AFED 是菱形;(2)求证:AB 2=BG •BC ;(3)若AB =AC ,BG =CE ,联结AE ,求ADE ABCS S ∆∆的值.7.(2021·上海九年级专题练习)(1)问题发现如图1,①ABC与①ADE都是等腰直角三角形,且①BAC=①DAE=90°,直线BD,CE交于点F,直线BD,AC交于点G.则线段BD和CE的数量关系是,位置关系是;(2)类比探究如图2,在①ABC和①ADE中,①ABC=①ADE=α,①ACB=①AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD 和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP长度的最小值及此时点N的坐标.8.(2021·上海九年级专题练习)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.求证:FG AE =;(2)类比探究:如图(2),在矩形ABCD 中,23BC AB =将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形EFGP ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,若34BE BF =,GF =,求CP 的长. 9.(2021·上海九年级专题练习)如图,P 是正方形ABCD 边BC 上一个动点,线段AE 与AD 关于直线AP 对称,连接EB 并延长交直线AP 于点F ,连接CF .(1)如图(1),①BAP =20°,直接写出①AFE 的大小;(2)如图(2),求证:BE CF ;(3)如图(3),连接CE ,G 是CE 的中点,AB =1,若点P 从点B 运动到点C ,直接写出点G 的运动路径长.10.(2021·上海宝山区·九年级期中)如图,在ABCD 中,BAD ∠的平分线交边BC 于点E ,交DC 的延长线于点F ,点G 在AE 上,联结,GD GDF F ∠=∠(1)求证:2AD DG AF =⋅;(2)连结BG ,如果BG AE ⊥,且6,9AB AD ==,求AF 的长.11.(2021·上海九年级专题练习)已知:如图,四边形ABCD 是菱形,点M 、N 分别在边BC 、CD 上,联结AM 、AN 交对角线BD 于E 、F 两点,且MAN ABD ∠=∠. (1)求证:2AB BF DE =⋅;(2)若BE DN DE DC=,求证://EF MN .12.(2021·上海九年级专题练习)如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,过点A 作射线//AM BC ,点D 、E 是射线AM 上的两点(点D 不与点A 重合,点E 在点D 右侧),连接BD 、BE 分别交边AC 于点F 、G ,DBE C ∠=∠. (1)当1AD =时,求FB 的长(2)设AD x =,FG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结DG 并延长交边BC 于点H ,如果DBH △是等腰三角形,请直接写出AD 的长.13.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E 在边AB 上(点E 与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD ∠的正切值;(2)求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接BG ,当BGE △与DEH △相似时,求x 的值.14.(2021·上海九年级专题练习)如图,已知正方形ABCD 中,BC =4,AC 、BD 相交于点O ,过点A 作射线AM ①AC ,点E 是射线AM 上一点,联结OE 交AB 边于点F .以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,联结DH .(1)求证:①HDO ①①EAO ;(2)设BF =x ,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域; (3)联结AG ,当①AEG 是等腰三角形时,求BF 的长.15.(2021·上海九年级专题练习)如图,已知ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,且CD CE =,联结DE 并延长至点F ,使EF AE =,联结AF ,CF ,联结BE 并延长交CF 于点G .(1)求证:BC DF =;(2)若2BD DC =,求证:2GF EG =;16.(2021·上海九年级专题练习)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域; (3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.17.(2020·上海市位育初级中学九年级期中)如图,在边长为10的正方形ABCD 中,内接有六个大小相同的正方形,点P ,Q ,M ,N 是落在大正方形边上的小正方形的顶点,则每个小正方形的面积为_____.18.(2021·上海)如图1,在Rt ABC 中,90,,C AC BC D ︒∠==是AB 边上一点,E 是在AC 边上的一个动点(与点A C 、不重合),,DF DE DF ⊥与射线BC 相交于点F . (1)如图2,如果点D 是边AB 的中点,求证:DE DF =;(2)如果:AD DB k =,求:DE DF 的值;(3)如果6,:1:2AC BC AD DB ===,设,AE x BF y ==,求y 关于x 的函数关系式,并写出定义域;19.(2021·上海)如图,在Rt①ABC 中,①C=90°,AC=BC=6,点D 为AC 中点,点E 为边AB 上一动点,点F 为射线BC 上一动点,且①FDE=90°.(1)当DF//AB 时(图1),联结EF ,求DE :DF 值;(2)当点F 在线段BC 上时(图2),设AE=x ,BF=y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CE ,若①CDE 为等腰三角形,求BF 的长.20.(2021·上海)如图.已知在ABC ∆中.90,5,3ACB AB BC ︒∠===,点D 是边AB 上任意一点.连接DC ,过点C 作CE CD ⊥,垂足为点C ,连接DE ,使得EDC A ∠=∠,连接BE(1)求证:.AC BE BC AD ⋅=⋅(2)设AD x =,四边形BDCE 的面积为S ,求S 关于x 的函数解析式及x 的取值范围 (3)当14BDE ABC S S ∆∆=,求CD 的值. 21.(2020·上海上外附中九年级月考)已知直角三角形斜边上的高为12,且斜边上的高把斜边分成3:4两段,则斜边上的中线长是__________22.(2021·上海九年级专题练习)如图,直角梯形OABC 的直角顶点O 是坐标原点,边OA 、OC 分别在x 轴、y 轴的正半轴上,OA//BC ,D 是BC 上一点,BD=0.25OA=根号2,AB=3,①OAB=45°,E 、F 分别是线段OA 、AB 上的两动点,且始终保持①DEF=45°(1)直接写出D 点的坐标;(2)设OE x =,AF y =,试确定y 与x 之间的函数关系;(3)当AEF ∆是等腰三角形时,将AEF ∆沿EF 折叠,得到A EF '∆,求A EF '∆与五边形OEFBC 重叠部分的面积23.(2020·上海市西南模范中学九年级月考)在平面直角坐标系中,四边形AOBC 的顶点O 是坐标原点,点B 在x 轴的负半轴上,且CB x ⊥轴,点A 的坐标为()0,6,在OB 边上有一点P ,满足AP =(l )求P 点的坐标;(2)如果AOP 与APC △相似,且90PAC ∠=︒,求点C 的坐标.24.(2020·上海浦东新区·九年级月考)如图,梯形ABCD 中,AD//BC ,DC BC ⊥,且45B ∠=,1AD DC ==.点M 为边BC 上一动点,连接AM 并延长交射线DC 于点F ,作45FAE ∠=交射线BC 于点E 、交边DC 于点N ,联结EF .(1)当:1:4CM CB =时,求CF 的长;(2)连接AC ,求证:2AC CE CF =⋅(3)设CM x =,CE y =,求y 关于x 的函数关系式,并写出定义域.25.(2021·上海九年级专题练习)如图,在Rt①ABC 中,①B =90°,AB =2,BC =1,点D ,E 分别是边BC ,AC 的中点,连接DE .将①EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)①当α=0°时,AE BD = ; ①当α=180°时,AE BD= ; (2)试判断:当0°≤α<360°时,AE BD 的大小有无变化?请仅就图2的情况给出证明. (3)当①EDC 旋转至A 、B 、E 三点共线时,直接写出线段BD 的长.26.(2020·上海市青浦区第一中学)在四边形ABCD 中,AB BC ⊥,AD 平行于BC ,3AB =,2AD =,点P 在线段AB 上,联结PD ,过点D 作PD DC ⊥,与BC 交于点C ,设AP 的长为x .(1)当AP AD =时,求线段PC 的长;(2)设PDC ∆的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当APD ∆与DPC ∆相似时,求线段BC 的长.27.(2021·上海九年级专题练习)如图,在直角梯形ABCD 中,//AB DC ,①DAB =90°,AB =8,CD =5,BC(1)求梯形ABCD 的面积;(2)联结BD ,求①DBC 的正切值.28.(2021·上海九年级专题练习)已知:如图,点E 为□ABCD 对角线AC 上的一点,点F 在线段BE 的延长线上,且EF=BE ,线段EF 与边CD 相交于点G .(1)求证:DF //AC ;(2)如果AB=BE ,DG=CG ,联结DE 、CF ,求证:四边形DECF 是矩形.三、填空题29.(2021·上海九年级专题练习)如图,Rt ①ABC 中,AC =BC =3,D 为AB 中点,点E 在线段BC 上,且BE =2CE ,连接AE ,过点C 作CF ①AE ,垂足为F ,连接DF ,则DF 的长为_____.30.(2021·上海九年级专题练习)如图,等边①ABC 的边长为3,点D 在边AC 上,12AD =,线段PQ 在边BA 上运动,12PQ =, (1)若①ADQ ①①BPC ,则AQ =_____;(2)四边形PCDQ 面积的最大值为_____.31.(2021·上海九年级专题练习)如图,在ABC ∆中,AB BC =,AD BC ⊥于点D ,CE AB ⊥于点E ,点F 在DA 有延长线上,连接BF 交CE 延长线于点M ,tan 2DCA ∠=,:25:38BM MF =,若5EM =,则AF 的长为_____________.32.(2021·上海金山区·九年级一模)如图,在□ABCD 中,点E 在边BC 上,DE 交对角线AC 于F ,若2CE BE =,ABC ∆的面积等于15,那么FEC ∆的面积等于______.33.(2021·上海九年级一模)如图,在ABC 中,点D 是边BC 的中点,直线DF 交边AC 于点F ,交AB 的延长线于点E ,如果CF①CA=a①b ,那么BE①AE 的值为______.(用含a 、b 的式子表示)34.(2021·上海)如图,已知矩形纸片ABCD ,点E 在边AB 上,且1BE =,将CBE △沿直线CE 翻折,使点B 落在对角线AC 上的点F 处,联结DF ,如果点D,F,E 在同一直线上,则线段AE 的长为____.35.(2021·上海九年级专题练习)在Rt ABC ∆中,①C =90°,AC =2,BC =4, ,点,D E 分别是边BC 、AB 的中点,将BDE ∆绕着点B 旋转,点,D E 旋转后的对应点分别为点,D E '',当直线,D E ''经过点A 时,线段CD '的长为 ____________36.(2021·上海九年级专题练习)如图,AB 、CD 都是BD 的垂线,AB =4,CD =6,BD =14,P 是BD 上一点,联结AP 、CP ,所得两个三角形相似,则BP 的长是_____.37.(2021·上海九年级专题练习)如图,正方形纸片ABCD 的边长为4,E 是边CD 的中点,连接AE ,折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,则GE 的长为_____.38.(2021·上海)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB =E 为OC 上一点,2OE =,连接BE ,过点A 作AF BE ⊥于点F ,与BD 交于点G ,则EF 的长是______.39.(2021·上海九年级专题练习)如图,正方形ABCD 的对角线AC 上有一点E ,且4CE AE =,点F 在DC 的延长线上,连接EF ,过点E 作EG EF ⊥,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若10AB =,4CF =,则线段EP 的长是__________.40.(2020·上海上外附中九年级月考)如图,G 是ABC ∆的重心,延长BG 交AC 于点D ,延长CG 交AB 于点,,E P Q 分别是BCE ∆和BCD ∆的重心,则PQ BC=____________41.(2020·上海上外附中九年级月考)如图,P 是ABC ∆内一点,过点P 分别作直线平行于ABC ∆各边,形成三个小三角形面积分别为1233,12,27S S S ===,则ABC S ∆=__________42.(2020·上海上外附中九年级月考)如图,已知在ABC ∆中,60,CAB P ︒∠=为ABC ∆内一点且120,3,2APB APC AP BP ︒∠=∠===,则CP = ____________43.(2020·上海市西南模范中学九年级月考)已知,平行四边形ABCD 中,点E 是AB 的中点,在直线AD 上截取2AF FD =,连接EF ,EF 交AC 于G ,则AG AC=___________. 44.(2021·上海九年级专题练习)如图,在ABC 中,90ACB ∠=︒,AC BC =,点E 是边AC 上一点,以BE 为斜边往BC 侧作等腰Rt BEF △,连接,CF AF ,若6AB =,四边形ABFC 的面积为12,则AE =_________,AF =_________.45.(2021·上海)如图,在矩形ABCD 中, AB =3,BC =4,将矩形ABCD 绕点C 旋转,点A 、B 、D 的对应点分别为A’ 、B’、 D’,当A’ 落在边CD 的延长线上时,边A’ D’ 与边 AD 的延长线交于点F ,联结CF ,那么线段CF 的长度为____.46.(2021·上海九年级专题练习)如图,Rt①ABC 中,①BAC=90°,CE 平分①ACB ,点 D 在 CE 的延长线上,连接 BD ,过B 作BF①BC 交 CD 于点 F ,连接 AF ,若CF=2BD ,DE :CE=5:8 , BF =AF 的长为_________.47.(2021·上海九年级专题练习)如图,在矩形ABCD中,点E是边DC上一点,连结BE,将①BCE沿BE对折,点C落在边AD上点F处,BE与对角线AC交于点M,连结FM.若FM①CD,BC=4.则AF=_____48.(2021·上海)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是_____.49.(2021·上海九年级专题练习)定义:如果三角形的两个内角①α与①β满足①α=2①β,那么,我们将这样的三角形称为“倍角三角形”.如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为____.50.(2021·上海九年级专题练习)如图,在Rt①ABC中,①C=90°,AC=6,BC=8,点D、E分别是边BC、AB上一点,DE①AC,BD=,把①BDE绕着点B旋转得到①BD'E'(点D、E分别与点D',E'对应),如果点A,D'、E'在同一直线上,那么AE'的长为_____.。
平舆县第一中学八年级数学上册第2章三角形2.5全等三角形专题六全等三角形的基本模型经典题型展示课件
这个y关于x的函 你数能表用达x式表是示什y吗么?
函数关系呢?
学习目标
(1)知道什么样的函数是一次函数,能根据 一次函数的定义求函数表达式中未知字母系数 的值.
(2)知道正比例函数是特殊的一次函数. (3)根据等量关系列一次函数关系式.
(4) 把一个长10cm、宽5cm的长方形的长减 少xcm,宽不变,长方形的面积y(单位:cm2)随 x的变化而变化.
是函数关系 函数解析式为y=-5x+50 (0≤x<10)
思考
c=7t-35 (20≤t≤25) G=h-105
y=0.1x+22
y=-5x+50 (0≤x<10)
这些函数解析式有哪些共同特征?
学习重、难点
重点:一次函数的概念. 难点:根据实际问题列一次函数表达式.
推进新课
知识点 1 一次函数的概念
下面问题中,变量之间的对应关系是函数 关系吗?如果是,请写出函数关系式.
(1)有人发现,在20~25℃时蟋蟀每分鸣叫次 数c与温度t(单位:℃)有关,即c的值约是t的7倍 与35的差.
是函数关系 函数解析式为c=7t-35 (20≤t≤25)
(2)一种计算成年人标准体重G(单位:千克) 的方法是:以厘米为单位量出身高值h,再减 常数105,所得的差是G的值.
是函数关系 函数解析式为G=h-105 (3)某城市的市内电话的月收费额y(单位: 元)包括月租费22元和拨打电话x分钟的计时费 (按0.1元/分钟收取). 是函数关系 函数解析式为y=0.1x+22
章 一次函数19.2 一次函 数19.2.2 一次函数第1课 时 一次函数的概念课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题六 三角形全等(学生版)教学目标1、掌握全等三角形及其相关概念。
2、掌握全等三角形判定与性质。
一、 知识回顾 课前热身知识点1、全等三角形及其相关概念能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边.热身 1.若△ABC ≌△DEF ,此时, =DE ,BC = ∠ACB=知识点2、全等三角形的性质(1)全等三角形的对应边相等,对应角相等; (2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等. 热身 1、(2011年黑龙江)如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )ABCDE 第3题(1题)12ABCD第5题(3题)A. 15°B. 20°C. 25°D. 30°2、已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( ) A. 5 B. 6 C. 7 D. 83、 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( ) A. ∠1=∠2 B. AC =CA C. ∠B =∠D D. AC =BC知识点3、全等三角形的判定方法①“边、角、边”(或SAS )定理;②“角、边、角”(或ASA )定理;③“角、角、边”(或AAS )定理;④“边、边、边”(或SSS )定理;⑤ “斜边、直角边”(或HL )定理.热身 1、下列可使两个直角三角形全等的条件是( )A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等 2、对于下列各组条件,不能判定△≌△的一组是 ( )A.∠A=∠A ′,∠B=∠B ′,AB=A ′B ′B.∠A=∠A ′,AB=A ′B ′,AC=A ′C ′C.∠A=∠A ′,AB=A ′B ′,BC=B ′C ′D.AB=A ′B ′,AC=A ′C ′,BC=B ′C ′二、 例题辨析 推陈出新例1、如图4,在ABC △中,AB AC =,点E ,D ,F 在边BC 上,且BAD CAD ∠=∠,BE CF =,则图中全等三角形共有( )A .2对 B .3对 C .4对 D .5对变式练习 如图5,ABC △是不等边三角形,DE BC ,以D ,E 为两个顶点作位置不同的三角形,使所作三角形与ABC △全等,这样的三角形最多可以画出( )A .2个B .4个C .6个D .8个例2、如图6,已知AB =AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个) .变式练习 已知:如图7,点C 、D 在线段AB 上,PC=PD .请你添加一个条件是图中存在全等三角形,并给予证明.所添条件为 ,你得到的一对全等三角形为 .例3、 (2013湖北荆门,19,9分)如图1,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE =CE ;(2)若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,如图2,∠BAC =45°,原题设其它条件不变.求证:△AEF ≌△BCF .AB C D EF(第19题图2) AB C D E(第19题图1) AEF C 图4B D A BC DE图5AB CDE12图6ABCDP图变式练习 (2013山东菏泽,16,12分)(1)如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 上,且BE=BD ,连结AE 、DE 、DC. ①求证:△ABE ≌△CBD ;②若∠CAE=30°,求∠BDC 的度数.三、 归纳总结 方法在握归纳1.证三角形全等,关键是证角相等或边相等.全等三角形的判定方法有:SAS 、ASA 、AAS 、SSS 和HL (HL 为直角三角形专用).等腰三角形的三线合一性在三角形全等的证明中有较广泛的应用.归纳2.掌握与等边三角形、正方形的全等应用实践操作、探究题.图形与几何的实践、探究题,是新中考比较热点的命题方向.归纳3.考查几何时简单证明,特别是在求图形的面积时,如果是规则图形就是找到底边和高线即可,如果不是规则图形,可以通过转化思想转化成几个规则图形的面积和或是差的问题即可。
四、拓展延伸 能力升华例1、(2013山东德州,23,10分)(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外做等边△ABD 和等边△ACE ,连接BE ,CD 。
请你完成图形,并证明:BE=CD ;(尺规作图,不写做法,保留作图痕迹)(2)如图2,已知△ABC ,以AB 、AC 为边向外做正方形ABFD 和正方形ACGE 。
连接BE ,CD 。
BE 与CD 有什么数量关系?简单说明理由; (3)运用(1)(2)解答中所积累的经验和知识,完成下题:AB CD E(第16题)如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=450,∠CAE=900,AB=BC=100米,AC=AE。
求BE的长。
例2、(2013山东日照,18,10分)(本题满分10分)如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.⑴求证:△BAD≌△AEC;⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.例3、(2013江西,23,10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=错误!未找到引用源。
AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧..作等腰直角三角形,如图2所示,M 是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答: .五.课后作业 巩固提高1.(2013贵州安顺,5,3分)如图,已知AE=CF ,∠AFD=∠CEB ,那么添加一个条件后,仍无法判定△ADF ≌△CBE 的是( )(1题)(2题)A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC 2.(2013山东临沂,10,3分)如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( )A .AB =AD B .AC 平分∠BCD C .AB =BD D .△BEC ≌△DEC 3.(2013浙江台州,10,4分)已知△A 1B 1C 1与△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B1C1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确, ② 错误B . ①错误, ②正确C .①,② 都错误D . ①,② 都正确 4 . [2013湖南邵阳,10,3分]如图(三)所示,点E 是矩形ABCD 的边AD 延长线上的一点,且AD=DE ,连结BE 交CD 于点O ,连结AO.下列结论不正确的是( )A.△AOB ≌△BOC B .△BOC ≌△EOD C .△AOD ≌△EOD D .△AOD ≌△BOC 5.(2013陕西,7,3分)如图,在四边形错误!未找到引用源。
中,AB=AD ,CB=CD , 若连接AC 、BD 相交于点O ,则图中全等三角形共有( ) A .1对 B .2对 C .3对 D .4对 二、填空题 1.(2013白银,15,4分)如图,已知BC=EC ,∠BCE=∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 .(答案不唯一,只需填一个)(1题) (2题)(3题)ABCDE OAB EDC图2.(2013湖南郴州,14,3分)如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是 (只写一个条件即可). 3.(2013湖南娄底,12,4分)如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 (添加一个条件即可). 三.解答题: 1.(2013·鞍山,25,10分)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点, 且DF =BE .(1)求证:CE =CF ;(2)若点G 在AD 上,且∠GCE =45°,则GE =BE+GD 成立吗?为什么?2.(2013•东营,23,10分) (1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m , CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2) 如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =错误!未找到引用源。
,其中错误!未找到引用源。
为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3) 拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.(第23题图)AB CE Dm(图1)(图2) (图3)m ABCDE ADEBFCm。