17.1 第2课时 勾股
17.1 勾股定理(2)勾股定理的应用 参考解析
17.1 勾股定理第2课时勾股定理的应用课前预习1.应用勾股定理的前提条件是在直角三角形中.如果三角形不是直角三角形,要先构建直角三角形,再利用勾股定理求未知边的长.2.利用勾股定理可以解决与直角三角形有关的计算和证明,其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边,确定另外两边的关系;(3)证明包含平方关系的几何问题;(4)构造方程(或方程组)计算有关线段的长.3.一般地,n为正整数),通常是利用勾股定理作图.课堂练习知识点1 勾股定理的实际应用1.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=___2___.2.【核心素养·数学抽象】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要___7___米.3.(教材改编)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑___0.5___米.【解析】在Rt△ACB中,根据勾股定理,得AC=22-=2.在2.5 1.5AB CB-=22Rt△ECD中,根据勾股定理,得CE=22-=1.5.∴AE=AC -ED CD2.52-=22CE=2-1.5=0.5.即滑竿顶端A下滑0.5米.故答案为0.5.4.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度﹒于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线未端刚好接触地面.请你帮小旭求出风筝距离地面的高度AB.解:根据题意,得AC=AB+1,BC=5米.在Rt△ABC中,BC2+AB2=(1+AB)2.解得AB=12(米).答:风筝距离地面的高度AB 为12米.5.放学以后,小东和晓晓从学校分手,分别沿东南方向和西南方向回家,若小东和晓晓行走的速度都是40米/分钟,小东用15分钟到家,晓晓用20分钟到家,求小东和晓晓家的直线距离.解:根据题意作图,由图可知△ABO是直角三角形,OA=40×20=800(米),OB=40×15=600(米).在Rt△OAB中,根据勾股定理,得(米).答:小东和晓晓家的直线距离为1 000米.知识点2 在数轴上表示无理数6.(2020玉溪红塔区期末)如图,数轴上的点A表示的数是-2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为(C).7.用直尺和圆规在如图所示的数轴上作出表示解:∵32+22=13,3和2的直角三角形的斜边长.∴课时作业练基础1.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这___8___条.30°,则以它的腰长为边2.有一个面积为的正方形的面积为___20___.3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行(B)A.8米B.10米C.12米D.14米4.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1,图2,推开双门,双门间隙C,D的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10 寸),则AB的长是(C)A.50.5寸B.52寸C.101寸D.104寸5.(2020盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为 1.5米,则小巷的宽为(C)A.2.5米B.2.6米C.2.7米D.2.8米【解析】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B2,∴BD2+1.52=6.25.∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.故选C.6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在(B)A.-3和-2之间B.-4和-3之间C.-5和-4之间D.-6和-5之间7.如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是(B)A.c<b<aB.c<a<bC.a<c<bD.a<b<c8.(教材改编)小明拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿的长和门的高. 解:根据题意作图,由图可知AD=4尺.设门高AB为x尺,则竹竿的长BD为(x+1)尺.在Rt△ABD中,由勾股定理得AB2+AD2=BD2,即x2+42=(x+1)2,解得x=7.5.则x+1=8.5.答:竹竿的长为8.5尺,门高为7.5尺.9.【核心素养·数学抽象】一根直立的旗杆AB长 8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图.工人在修复的过程中,发现在折断点C的下面1.25 m 的D处,有一明显伤痕,如果下次大风将旗杆从D 处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt △ABC 中,设AC 的长为x m ,则BC 的长为(8-x )m.根据勾股定理,得AC 2+AB 2=BC 2,即x 2+42=(8-x )2.解得x=3,即AC=3.当从点D 处折断时,AD=AC-CD=3-1.25=1.75,∴BD=8-1.75=6.25.∴AB=3675.125.62222=-=-AD BD =6 (m ).答:杆脚周围6 m 范围内有被砸伤的危险.10.如图,铁路上A ,B 两站(视为直线上的两点)相距25 km ,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=15 km ,CB=10 km ,现要在铁路上建设一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在距离A 站多少km 处?解:∵C ,D 两村到E 点的距离相等,∴CE=DE.在Rt △DAE 和Rt △CBE 中,根据勾股定理,得DE 2=AD 2+AE 2,CE 2=BE 2+BC 2,∴AD 2+AE 2=BE 2+BC 2.设AE=x km ,则BE=(25-x )km.x 2+152=(25-x)2+102.解得x=10.答:收购站E 应建在距离A 站10 km 处.提能力11.如图,小正方形的边长为1,连接小正方形的三个顶点,可得△ABC ,则BC 边上的高是( A )A.223 B.1055 C.553 D.554【解析】由图形,根据勾股定理可得ABC 的面积为2×2-12×1×1-12×1×2-12×1×2=4-12-2=32,再根据△ABC 面积的不同计算方法得32=12BC 边上的高.故选A. 12.有一辆装满货物的卡车,高5 m ,宽3.2 m (货物的顶部是水平的),要通过如图所示的截面的上半部分是半圆,下半部分是长方形的隧道,已知半圆的直径为4 m ,长方形竖直的一条边长是4.6 m.这辆卡车能否通过此隧道?请说明理由.解:能通过. 理由如下:如图,设O 为半圆的圆心,AB 为半圆的直径,在OB 上截取OE=3.2÷2=1.6(m ),过点E 作EF ⊥AB 交半圆于点F ,连接OF.在Rt △OEF 中,OF 2=OE 2+EF 2,即22=1.62+EF 2,解得EF=1.2 m.因为1.2+4.6=5.8(m )>5 m ,所以这辆卡车能通过此隧道.。
2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版
【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.
∴CE= AC=
DE=
km.∴AE=
km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=
17.1.2 勾股定理第2课时
(3)若有一块长3米,宽2.2米的薄木板,
能否从门框内通过?
善言
【例2】如图,一个3米长的梯子AB,斜靠 在一竖直的墙AO上,这时AO的距离为2.5 米.如果梯子的顶端A沿墙下滑0.5米,那么 梯子底端B也外移0.5米吗?(计算结果保留 两位小数)
【例3】一个大树高8米,高度是多少?
善行
1.已知:△ABC为等边三角形,AD⊥BC于D,AD=6.求AC的长.
2.如图,要修建一个蔬菜大棚,大棚的截面是直角三角形,棚宽m=4米,高 n=2米,长d=15米,求覆盖在顶上的塑料薄膜需多少平方米?(结果保留小 数点后1位)
知行合一
今天学习了什么? 你学到了什么?
还有什么疑惑? 有什么感悟?
第十七章 17.1.2
勾股定理
勾股定理的应用(1)
善思
• 如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰
好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,请想一 想,蚂蚁怎么走最近?
善学
1.自学课本,尝试完成课本练习. 2.小组合作,探究以下例题.
【例1】一个门框的尺寸如图所示:(1)若有一块长3米,宽0.8米 的薄木板,能否从门框内通过?(2)若有一块长3米,宽1.5米的 薄木板,能否从门框内通过?
17.1.2 勾股定理的应用 利用勾股定理计算旗杆高度课件-2024-2025学年人教版初中数学八下
谢谢!!!
重点与难点
重点: 利用勾股定理列方程计算旗杆高度 难点:结合实际问题,构造相应的直角三
角形模型
1、完全平方公式:a b2 a2 2ab b2 a b2 a2 2ab b2
2、勾股定理
如图1,在Rt△ABC中,如果a,b分别 为直角边长,c为斜边长,那么
A
a2 b2 c2
c b
17.1.2 勾股定理的应用
---利用勾股定理计算旗杆高度
学习目标
通过动手操作,模拟情境,学会将实际问题抽象成数 学问题来解决,提高分析问题,解决问题的能力;
通过小组合作活动探究出旗杆高度的一般表达式,体验 从特殊到一般的探究方法;
学会利用勾股定理列方程解决实际问题,体会方程思想, 培养应用意识。
有一个高为1.5 m,半径是1 m的圆柱形油桶,在靠近边的地方有一小 孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.8 m,问这根铁 棒有多长?
解:设伸入油桶中的长度为x m,则.5 所以最长是2.5+0.8=3.3(m). 最短时, x=1.5
所以最短是1.5+0.8=2.3(m).
有一个水池,水面是一个边长为10尺的正方形; 在水池正中央有一根芦苇,它高出水面1尺,如果把这 根芦苇拉向水池一边的中点,它的顶端恰好到达池边 的水面。水的深度与这根芦苇的长度分别是多少?
┐
解:设水深为x尺,则芦苇长为(x 1)尺 根据勾股定理可得
x2 52 (x 1)2 解得:x 12 则x 1 13 答:水深为12尺,芦苇长为13尺。
a
x+a
x
b
A
x+a x
BbC
旗杆高度的一般表达式
解:设旗杆长为x 米,则绳长为(x+a) 米,
八年级数学下册 第十七章 勾股定理17.1 勾股定理第2课时 勾股定理的应用教案 (新版)新人教版
学习资料第2课时勾股定理的应用【知识与技能】能运用勾股定理进行简单的计算及解释生活中的实际问题.【过程与方法】通过从实际问题中抽象出直角三角形的过程,初步感受转化和数形结合的思想方法。
【情感态度】通过对探究性问题的思考,培养学生与他人交流合作的意识和品质。
【教学重点】勾股定理的应用.【教学难点】应用勾股定理解决实际生活中的问题.一、情境导入,初步认识问题1求出下列直角三角形中未知边的长:①在解决上述问题时,每个直角三角形需要知道几个条件?②直角三角形中哪条边最长?问题2 在长方形ABCD中,宽AB=1cm,长BC=2cm,求AC的长。
【教学说明】在问题1中,选派四名同学上黑板演示,其它同学在座位上独立思考,然后解决问题2,教师巡视指导,加深学生对勾股定理的理解和运用。
二、思考探究,获取新知探究1 一个门框的尺寸如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?【分析】显然,这块薄木板横着进,竖着进都不能从门框内通过,能否斜着通过门框呢?由图可知,对角线AC是斜着通过时的最大长度,只要求出AC的长,再与木板的宽进行比较,就能知道木板能否通过门框.解:连接AC,在Rt△ABC中,∠ABC=90°,AB=1,BC=2,由AC2=AB2+BC2,得AC2=12+22=5,∴AC=5≈2.236.∵AC大于木板的宽2。
2m,所以木板能斜着通过门框。
【教学说明】教师提出问题后,可设置以下几个问题帮助学生分析:①木板能横着通过门框吗?竖着呢?为什么?②如果将木板斜着拿,是否有可能通过门框?此时,要使木板能通过,则需比较哪些数据的大小?你是怎样想的?让学生在相互交流过程中获得解题思路,初步感受利用勾股定理解决生活实际问题的思想方法。
探究2如图,一个3m长的梯子AB,斜靠在一竖直的墙OA上,这时AO的距离为2。
5m.如果梯子的顶端A沿墙壁下滑0。
5m,那么梯子底端B也向外滑行了0。
5m吗?说说你的理由。
八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用7
第十七章勾股定理
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角
两点间的距离.
上任意两点
处放上了点儿火腿肠粒,你
的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.
第1题图第2题图
如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是
的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
10cm和6cm,A和B是。
17.1.2勾股定理在实际生活中的应用4
B1
B
B
牛奶盒
A 10cm
8cm 6cm
A
10
B2
8
6
变式训练
1.小明拿出了牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了
点儿食物,你能算出小蚂蚁吃到食物的最短路程么?
B
前面 8cm
A 长10
例2 在一个圆柱石凳上,若已知圆柱体高为12 cm,底面半径为3 cm.若小 明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信 息,于是它想从A处爬向B处,蚂蚁怎么走最近?(π取3)
蚂蚁A→B的路线
B
A' d B A'
B
OB
B
A
A
A
想一想:蚂蚁走哪一条路线最近?
A
A
立体图形中的最短路径 2
C B
A
AC+CB >AB(两点之间线段最短)
直线同侧两点之间路径最短
如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B 的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完 成这件事情所走的最短路程是多少?
解:如图,作出点A关于河岸的对称点A′, 连接A′B则A′B就是最短路线长. 由题意得 A′C=4+4+7=15(km),
②求法: 以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运
用勾股定理求最短路径.
立体图形中的最短路径 1
例1 如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和
6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去
勾股定理(第2课时)人教数学八年级下册PPT课件
连接中考
1.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁
想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离
是( C )
A.3 1π
B.3
2
C.3
4 π2 2
D.3
1 π2
解析:把圆柱侧面展开,展开图如图所示,点A、C的最短距离
为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD
课堂检测
基础巩固题
1.求出下列直角三角形中未知的边.
B
B
AC=8 6
C
10
8
15
A
C
A
AB=17
C B
2
C
30° A
B
45° A 2
BC 1,AC 3
BC 2,AC 2
课堂检测
2.直角三角形中,以直角边为边长的两个正方形面积为7和8, 则以斜边为边长的正方形的面积为 15 .
3.如图,在平面直角坐标系中有两点A(5,0) 和B(0,4),求这两点间的距离.
课堂检测蚁从顶点A出发沿着
正方体的外表面爬到顶点B的最短距离是( B )
A.3
B. 5
C.2
D.1
2
B
C
B
1
1
A
A
2
提示: 由于蚂蚁是沿正方体的外表面爬行的,
故需把正方体展开成平面图形(如图).
课堂小结
勾股定理 的应用
化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
以木板能从门框内通过.
巩固练习
如图,池塘边有两点A,B,点C是与BA方向成直角的AC方 向上一点,测得BC=60 m,AC=20m.求A,B两点间的距离
17.1.2勾股定理(教案)
-在证明勾股定理时,学生可能会对如示、动画等多种方式,逐步引导学生理解证明过程中的每一步。
-在解决实际问题时,学生可能会因为题目中没有直接给出直角三角形的直角边和斜边而感到困惑。教师需要教授学生如何识别隐藏的直角三角形,并运用勾股定理。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和应用这两个重点。对于难点部分,如定理的证明,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用纸片制作直角三角形,验证勾股定理。
此外,在学生小组讨论环节,我发现有些学生发言不够积极,可能是他们对自己的观点不够自信。针对这个问题,我会鼓励学生们大胆表达自己的想法,培养他们的自信心。同时,也要关注那些默默无闻的学生,给他们更多的关注和鼓励。
最后,总结回顾环节,我觉得自己的表达可能还不够精炼,有些地方可以进一步简化。在今后的教学中,我要尽量用简练的语言进行总结,帮助学生更好地巩固所学知识。
-设计实际情景题目,如测量距离、计算建筑物高度等,让学生练习使用勾股定理进行计算。
-引导学生通过拼图、折叠等实际操作,体验勾股定理的证明过程,加深对定理的理解。
2.教学难点
-理解勾股定理的逻辑推理过程,特别是对于证明方法的理解。
-在实际问题中识别并运用勾股定理,特别是在非标准直角三角形的情况下。
-理解勾股定理在不同情境下的变式和拓展。
五、教学反思
今天我们在课堂上学习了勾股定理,回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于导入新课的部分,我通过提出与日常生活相关的问题来激发学生的兴趣,这是一个好的开始。但在实际操作中,我发现有些学生对这个问题并没有太大的反应。我意识到,可能是因为问题设置得不够具体或者不够贴近他们的生活实际。在今后的教学中,我需要更加关注问题的设计,让它更具针对性和吸引力。
17.1勾股定理
感悟新知
6-1. 古诗赞美荷花“竹色溪下绿, 荷 花镜里香”. 平静的湖面上,一朵 荷花亭亭玉立,露出水面10 cm, 忽见它随风斜倚,花朵恰好浸入 水面,仔细观察,发现荷花偏离 原地40 cm(如图).请问:水深多少?
知3-练
感悟新知
知3-练
解:设水深CB=x cm,则AC=(x+10) cm, 即CD=(x+10) cm. 在Rt△BCD中,由勾股定理得x2+402=(x+10)2, 解得x=75. 答:水深75 cm.
会改变; 2. 根据同一种图形的面积的不同表示方法列出等式; 3. 利用等式性质变换验证结论成立,即拼出图形→写出图形面
积的表达式→找出等量关系→恒等变形→推导命题结论. 通过拼图,利用求面积来验证,这种方法以数形转换为指导思 想,以图形拼补为手段,以各部分面积之间的关系为依据而达 到目的.
感悟新知
感悟新知
2. 在数轴上作出表示 n 的点
知4-讲
如图17.1-6,构造两条直角边长都是1 的直角三角
形,利用勾股定理得到斜边的长为 2 ,再用圆规截取
的方法画出 2在数轴上的对应点;
感悟新知
知4-讲
构造两直角边长分别为 2 ,1 的直角三角形,利用 勾股定理得到斜边的长为 3 ,再用圆规截取的方法画出
知3-讲
(1)已知直角三角形的任意两边求第三边;
(2)已知直角三角形的任意一边确定另两边的关系;
(3)证明包含有平方(算术平方根)关系的几何问题;
(4)求解几何体表面上的最短路程问题;
(5) 构造方程(或方程组)计算有关线段长度,解决生产、生
活中的实际问题.
感悟新知
特别提醒
知3-讲
运用勾股定理解决实际问题的一般步骤:
勾股定理(第2课时)(课件)-2022-2023学年八年级数学下册同步精品课堂(人教版)
勾股定理应用的常见类型
1.已知直角三角形的任意两边求第三边;
2.已知直角三角形的任意一边确定另两边的关系;
3.证明包含有平方(算术平方根)关系的几何问题;
4.求解几何体表面上的最短路径问题;
5.构造方程(或方程组)计算有关线段长度,解决生产、
生活中的实际问题.
课堂练习
1.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯
三角形的面积公式可求BD,再利用
勾股定理便可求CD.
北东
A
C
D
Q
课堂练习
P
解:∵AC10,BC8,AB6,
B
∴AC2AB2BC2
北东
A
即△ABC是直角三角形,
C
D
Q
1
1
而S△ABC BC AB AC BD
2
2
24
解得:BD .
5
2
24
在Rt△BCD中,CD = BC 2 BD 2 82 6.4
路线最短?
B
A
B
A
方案①
B
A
方案②
方案③
针对练习
(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?
你画对了吗?
B
A
B
A
B
∵两点之间线段最短,
∴方案③的路线最短.
A
针对练习
(3)蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是
多少?
解:在Rt△ABC中,
C
B
AC=12 cm,BC=18÷2=9(cm).
在Rt△A′DB中,由勾股定理得
新人教版八年级数学下《117.1.2勾股定理应用 利用勾股定理解决平面几何问题》优质课教学设计_52
教学设计教学目标:能说出勾股定理,能使用勾股定理的数学模型解决现实世界的实际问题.1.通过从实际问题中抽象出直角三角形这个模型,强化转化思想,培养学生解决现实问题的意识和水平.2.经历探究勾股定理在实际问题中的应用过程,进一步体会勾股定理的应用方法.在例题分析和解决过程中,让学生感受勾股定理在实际生活中的应用.同时在学习过程中体会获得成功的喜悦,提升学生学习数学的兴趣和信心.教学重点:【重点】使用勾股定理解决实际问题.【难点】勾股定理的灵活使用.教学准备:【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、三角形模型.教学过程:一、新课导入:导入一:电视的尺寸是屏幕对角线的长度.小华的爸爸买了一台29英寸(74 cm)的电视机,小华量电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽.他觉得一定是售货员搞错了,你同意他的想法吗?你能解释是为什么吗?引导学生回忆勾股定理的内容,学生再尝试解决上面的问题.[设计意图]让学生回忆勾股定理的内容,并注意文字语言、图形语言、符号语言的规范统一,尝试解决生活中的实际问题,以激发学生学习的兴趣和探究的欲望.导入二:?上节课,我们学习了勾股定理,它的具体内容是什么呢?它有什么作用呢教师出示问题:求出下列直角三角形中未知的边.提出问题后让一位学生板演,剩下的学生在课堂作业本上完成.教师巡视指导答疑,在活动中重点注重:(1)学生能否准确应用勾股定理实行计算;(2)在解决直角三角形的问题时,需知道直角三角形的两个条件且至少有一个条件是边;(3)让学生了解在直角三角形中斜边最长.[设计意图]通过简单的提问协助学生回顾勾股定理,加深定理的记忆理解,为学习新课做好准备.二、新知建构:[过渡语] 勾股定理应用比较广泛,我们一起来看看下面几个问题.1.木板进门问题思路一(1)分析导入一提出的问题.教师在学生讨论基础上明确解决问题的方法:计算电视机对角线的长度,看是否为74 cm.解:根据勾股定理,得≈74(cm).所以,这台电视机符合规格.(2)自学教材第25页例1.教师提问:门框能通过薄木板的最大宽度是多少?学生带着问题阅读题目,试写解答过程.(3)变式练习:长方体盒内长、宽、高分别为3 cm,2.4 cm和1.8 cm,盒内可放的棍子最长为 cm.本题需先求出长和宽组成的长方形的对角线长,为=(cm).这根最长的棍子和长方体的高,以及长和宽组成的长方形的对角线组成了直角三角形,则棍子最长为=3(cm).教师引导学生小结:遇到求木板进门或将物体放入立体图形内的问题,常常需要找到能通过(放入)物体的最大长度,与物体的长度比较大小,从而判断是否能够通过(放入).[设计意图]通过讲练结合,引导学生独立分析,自主学习,提升学生使用勾股定理解决简单问题的水平.思路二(教材例1)一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形薄木板能否从门框内通过?为什么?逐步引导提问:(1)木板的短边比门的高还要长,是否一定不能通过?还能够分析比较哪两个长度?(2)这两个长度一个是木板的短边长,另一个是长方形的对角线的长,能求吗?如何求?学生先尝试后发现:木板横着进,竖着进,都不能从门框内通过.再试一试斜着能否通过.门框对角线AC的长度是斜着能通过的最大长度.求出AC,再与木板的宽比较,就能知道木板能否通过.解:如图所示,在Rt△ABC中,根据勾股定理,得AC2=AB2+BC2=12+22=5.AC=≈2.24.因为AC大于木板的宽2.2 m,所以木板能从门框内通过.[解题策略]在遇到木板进门或将物体放入立体图形内的问题,常常需要找到能通过(放入)物体的最大长度,与物体的长度比较大小,从而判断是否能够通过(放入).[设计意图]使用转化思想,将求门框的对角线的长转化为已知两直角边长求斜边长,从而用勾股定理解决.2.梯子靠墙问题如图所示,一架2.6 m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4 m.如果梯子的顶端A沿墙下滑0.5 m,那么梯子底端B也外移0.5 m吗?引导学生分析:利用勾股定理算出梯子底端B外移多少即可,转化为BD=OD-OB,需要根据勾股定理先计算OD,OB的长度.解:能够看出,BD=OD-OB.在Rt△AOB中,根据勾股定理,得OB2=AB2-OA2=2.62-2.42=1,OB==1.在Rt△COD中,根据勾股定理,得OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15,OD=≈1.77.BD=OD-OB≈1.77-1=0.77.所以梯子的顶端沿墙下滑0.5 m时,梯子底端并不是也外移0.5 m,而是外移约0.77 m. [解题策略]已知直角三角形的两边长,能够根据勾股定理求出第三边长.已知直角三角形的一边长及两边之间的关系,也能够求出各边长.在求锐角三角形或钝角三角形的边长时,能够将其转化为直角三角形,应用勾股定理求解.[设计意图]巩固性练习,本题涉及已知斜边长和一直角边长求另一直角边长,也用勾股定理解决.3.表面距离最短问题(补充)如图所示,一只蚂蚁沿棱长为a的正方体表面从顶点A爬到顶点B,则它走过的最短路程为 ()A.aB.(1+)aC.3aD.a解析:将正方体侧面展开,部分展开图如图所示.由图知AC=2a,BC=a.根据勾股定理,得AB===a.故选D.[解题策略]平面图中,能够直接用勾股定理求两点之间的距离,而在求表面距离最短的问题时,需要将立体图形展开后,将实际问题转化成能够用勾股定理实行计算的问题.[设计意图]通过例题分析解决,建立数学模型,提升学生分析问题和解决问题的水平.[知识拓展]勾股定理应用的条件必须是直角三角形,所以要应用勾股定理必须构造直角三角形.常见的应用类型为:①化非直角三角形为直角三角形;②将实际问题转化为直角三角形模型.三、课堂小结:用勾股定理计算时,要先画好图形,并标好图形,理清各边之间的关系,再灵活使用勾股定理计算.在利用勾股定理实行相关计算和证明时,要注意使用方程的思想;求直角三角形相关线段的长,有时还要使用转化的数学思想,或利用添加辅助线的方法构造直角三角形,再使用勾股定理求解.四、检测反馈:1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒 ()A.20根B.14根C.24根D.30根解析:∵摆两直角边分别用了6根、8根长度相同的火柴棒,∴由勾股定理,得摆斜边需用火柴棒=10(根),∴他摆完这个直角三角形共用火柴棒6+8+10=24(根).故选C.2.为迎接新年的到来,同学们做了很多花布置教室,准备召开新年晚会.小刘搬来一架高2.5米的木梯,木梯放好后,顶端与地面的距离为2.4米,则梯脚与墙脚的距离应为 ()A.0.7米B.0.8米C.0.9米D.1.0米解析:仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解即可.梯脚与墙脚距离为=0.7(米).故选A.3.(2019·厦门中考节选)已知A,B,C三地的位置如图所示,∠C=90°,A,C两地相距4 km,B,C两地相距3 km,则A,B两地的距离是km.解析:∵∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,∴AB===5(km).故填5.4.(2019·潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.解析:将圆柱平均分成五段,将最下边一段圆柱的侧面展开,并连接其对角线,即为每段的最短长度,为=5,所以葛藤的最短长度为5×5=25(尺).故填25.5.如图(1)所示,两点A,B都与平面镜CD相距4米,且A,B两点相距6米,一束光由A点射向平面镜,反射之后恰好经过B点,求B点与入射点间的距离.解:如图(2)所示,作出B点关于CD的对称点B',连接AB',交CD于点O,则O点就是光的入射点,连接OB.因为AC=BD,∠ACO=∠BDO=90°,∠AOC=∠BOD,所以△AOC≌△BOD.所以OC=OD=AB=3米.在Rt△ODB中,OD2+BD2=OB2,所以OB2=32+42=25,所以OB=5米.五、板书设计:第2课时1.木板进门问题例12.梯子靠墙问题例23.表面距离最短问题例3六、作业布置:一、教材作业【必做题】教材第26页练习第1,2题;教材第28页习题17.1第2,3,4,5题.【选做题】教材第29页习题17.1第9,10,11题.二、课后作业【基础巩固】1.如图所示,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行 ()A.8 mB.10 mC.12 mD.14 m2.如图所示的是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤133.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.4.如图所示,在长方形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A 落在对角线BD上的点A'处,则AE的长为 .【水平提升】5.(2019·龙东中考)一圆锥体形状的水晶饰品,母线长是10 cm,底面圆的直径是5 cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用(接头处重合部分忽略不计) ()A.10π cmB.10 cmC.5π cmD.5 cm6.如图所示,某会展中心准备在高5 m,长13 m,宽2 m的楼梯上铺地毯,已知地毯每平方米18元,请你协助计算一下,铺完这个楼梯至少需要元钱.7.如图所示,要制作底边BC的长为44 cm,顶点A到BC的距离与BC长的比为1∶4的等腰三角形木衣架,则腰AB的长至少需要 cm.(结果保留根号的形式)8.甲、乙两位探险者到沙漠实行探险,没有了水,需要寻找水源.为了不至于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?还能保持联系吗?9.如图所示,有一块直角三角形的绿地,量得两直角边长分别为6 m,8 m.现在要将绿地扩充成等腰三角形,且扩充部分是以8 m为直角边长的直角三角形,求扩充后等腰三角形绿地的周长.六、教学反思:本节课使用勾股定理解决实际问题,整节课注重基础,通过度类探索,由浅入深,注重讲练结合,引导学生独立分析,自主学习,提升学生使用勾股定理解决简单问题的水平;虽然仅仅勾股定理的实际应用这个知识点,但是涉及生产生活的各个方面,受时间约束无法一一列举,本课中的三个例子缺乏开放性.。
人教版数学八年级下册:17.1 勾股定理 课件(共35张PPT)
探究 如图,以Rt△ 的三边为边向外作正方形,
其面积分别为 S1 、S2、S3,请同学们想一想
S1 、S2、S3 之间有何关系呢?
S2 + S3 =a2+b2
S1=c2
B
S1c a S2
b
A S3 C
∵a2+b2=c2
S2 + S3 = S1
探究S1、S2、S3之间的关系
S2
S3
1 2
a 2
2
1 2
b 2
2
1 a2 1 b2
8
8
S1
1 2
c 2
2
1
8
c2
由勾股定理得 a2+b2=c2
∴S2+S3=S1
S2
c
SS3 2
A
S1
S1
动手操作:例2如图,Rt△ABC中
,AC=8,BC=6,∠C=90°,分别 以AB、BC、AC为直径作三个半圆 ,那么阴影部分的面积为__24_ .
A
E
D
B
F
C
A
A =625
225
400
81
B =144
225
2、如图所示的图形中,所 有的四边形都是正方形,所 有的三角形都是直角三角形 ,其中最大的正方形的边长 是8厘米,则正方形A,B, C,D的面积之和是 __6_4_____平方厘米
利用勾股定理解决平面几何问题3——折叠中的计算问题
能算好算直接算,不能算不好算,设未知数,列方程(勾股定理、全等、相似等)
利用勾股定理解决平面几何问题1— —最短路径问题
柯城区二中八年级数学下册 第十七章 勾股定理17.1 勾股定理第2课时 勾股定理教案 新人教版
第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】2 3 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.【知识与技能】掌握分式的基本性质,能依据分式的性质进行约分和通分运算.【过程与方法】通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.【情感态度】进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式. 【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.阶段能力测试(一)(16.1~16.2)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列代数式:①2x ;②x +y 5;③12-a ;④1n -1中,是分式的有CA .①②B .③④C .①③④D .①②③④2.(2018·白银)若分式x 2-4x 的值为0,则x 的值是AA .2或-2B .2C .-2D .03.把分式x +y4x 2中的x 和y 都扩大为原来的2倍,则这个分式的值CA .不变B .扩大为原来的2倍C .缩小为原来的12D .缩小为原来的144.(2018·云南)已知x +1x =6,则x 2+1x 2=CA .38B .36C .34D .32 5.已知两个分式:A =-4x 2-4,B =1x +2+12-x,其中x≠±2,则A 与B 的关系是A A .相等 B .互为倒数C .互为相反数D .A 大于B 6.若3x +y =2,则(2x x +y -4x y -x )÷8x x 2-y2的值为A A.12 B .1 C.32D .2 7.如图,一个瓶身为圆柱体的玻璃瓶内装有高 a cm 的墨水,将瓶盖盖好后倒置,墨水水面高为h cm ,则瓶内的墨水的体积约占玻璃瓶容积的AA.a a +b B.b a +b C.h a +b D.h a +h8.(2018·南充)已知1x -1y =3,则代数式2x +3xy -2yx -xy -y 的值为DA .-72B .-112 C.92 D.34二、填空题(每小题4分,共16分)9.(2018·宁波)要使分式1x -1有意义,x 的取值应满足x≠1.10.下面是从小斌作业本上摘录的一道计算题:ab 22cd ÷-3ax4cd=■,阴影部分表示被墨汁污染的计算结果,请你帮他补全:-2b23x.11.已知x 2+4x +4与|y -1|互为相反数,则式子(x y -y x )÷(x+y)的值为32.12.若x +y =1,则(x +2xy +y 2x )÷x +yx 的值为1.三、解答题(共52分)13.(12分)计算: (1)x x -2·(x-4x ); 解:原式=x +2.(2)(1+2x -x +1x -2)÷x +4x 2-2x ;解:原式=-1.(3)2a -1+a 2-4a +4a 2-1÷a -2a +1. 解:原式=a a -1.14.(14分)先化简,再求值:(1)(2017·黑龙江)(m m -2-2m m 2-4)÷mm +2,请在2,-2,0,3当中选一个合适的数代入求值;解:原式=[m m -2-2m (m -2)(m +2)]·m +2m =m m -2·m +2m-2m (m -2)(m +2)·m +2m =m +2m -2-2m -2=mm -2,∵m ≠±2,0,∴当m =3时,原式=3.(2)x +3x 2-2x +1·(x x +3-x -3x 2-9),其中x 为不等式组⎩⎪⎨⎪⎧3x -6≤x,4x +510<x +12的整数解. 解:原式=x +3(x -1)2·[x 2-3x (x +3)(x -3)-x -3(x +3)(x -3)]=x +3(x -1)2·(x -1)(x -3)(x +3)(x -3)=1x -1, 解不等式组⎩⎪⎨⎪⎧3x -6≤x,4x +510<x +12,得0<x≤3,∴不等式组的整数解为1,2,3.又∵要使分式有意义,∴x =2,∴原式=1.15.(10分)小李和小王在同一个车间工作,并生产同一种零件.小李每小时比小王多生产8个.现在要求小李生产出168个这种零件,要求小王生产出144个这种零件,他们两人谁会先完成任务呢?解:设小王每小时生产x 个零件,则小李每小时生产(x +8)个零件,则小王生产144个这种零件需144x 小时,小李生产168个这种零件需要168x +8小时.∵168x +8-144x =168x -144(x +8)x (x +8)=24x -1 152x (x +8),又∵x>0,∴x(x +8)>0, ∴当24x -1 152>0,即x >48时,小王先完成任务;当24x -1 152=0时,即x =48时,两人同时完成任务;当24x -1 152<0,即x <48时,小李先完成任务.16.(16分)阅读下面材料,并解答问题.材料:将分式-x 4-x 2+3-x 2+1拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a)+b ,则-x 4-x 2+3=-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b).∵对于任意x ,上述等式均成立,∴⎩⎪⎨⎪⎧a -1=1,a +b =3,∴⎩⎪⎨⎪⎧a =2,b =1, ∴-x 4-x 2+3-x 2+1=(-x 2+1)(x 2+2)+1-x 2+1=(-x 2+1)(x 2+2)-x 2+1+1-x 2+1=x 2+2+1-x 2+1. 这样,分式-x 4-x 2+3-x 2+1就被拆分成了一个整式x 2+2与一个分式1-x 2+1的和. 解答:(1)将分式-x 4-6x 2+8-x 2+1拆分成一个整式与一个分式(分子为整数)的和的形式; (2)如果2x -1x +1的值为整数,求整数x 的值.解:(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,则-x 4-6x 2+8=-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b).∵对于任意x ,上述等式均成立,∴⎩⎪⎨⎪⎧a -1=6,a +b =8,∴⎩⎪⎨⎪⎧a =7,b =1, ∴-x 4-6x 2+8-x 2+1=(-x 2+1)(x 2+7)+1-x 2+1=(-x 2+1)(x 2+7)-x 2+1+1-x 2+1=x 2+7+1-x 2+1. (2)2x -1x +1=2x +2-3x +1=2(x +1)-3x +1=2-3x +1,∵2x -1x +1的值为整数,且x 为整数, ∴x +1的值为1或-1或3或-3,故x的值为0或-2或2或-4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.3cm B.2cm C.5cm
D.4cm
2.如图,学校教学楼前有一块长方形长为4米,宽为3 米的草坪,有极少数人为了避开拐角走“捷径”,在 草坪内走出了一条“径路”,他们仅仅少走了_____步 (假设2步为1米),却踩伤了花草.?
A
别踩我,我怕疼!
C
B
• 解:(1)在Rt△ ABC中, • 根据勾股定理得
个三角形最长边上的高是 ( )
A.4
B.3
C.2.4 D.2.5
练一练
3.已知直角三角形的两边长分别是3和4,则
第三边长是( )
A.5
B.√7 C.5 或√7
D.2.4
状元成才路
勾股定理是“人类最伟大的十个科学发现 之一”,是初等几何中的一个基本定理 。世界 上据说其证明方法多达4000 多种。勾股定理 的别称有:毕达哥拉斯定理,商高定理,百 牛定理,驴桥定理和埃及三角形等。
A. 15cm≤L≤17 cm C. 16cm≤L≤18cm
B. 16cm≤L≤17cm D. 14cm≤L≤17cm
课堂小结
1.我收获了……… 2.我学到了………
谢谢!
D
C
D
C
2m 2.2m
A
B
1m
A
B
3m
典例精析
D
C
2m
A
B
1m
解:连结AC,在Rt△ABC中,根据勾股定理, AC2=AB2+BC2=12+22=5
AC 5 2.24 .
因为AC大于木板的宽2.2m,所以木板能从门框内通过.
归纳总结
利用勾股定理解决实际问题的一般步骤:
实际问题 解 决 勾股定理
转化 利用
数学问题
构 建
直角三角形
建模思想
爱情公寓装修记 ,曾小贤购买了一根装饰用的木条,
如果电梯的长、宽、高分别是 3m, 3m, , .则能 22
放入电梯内的木条的最大长度是( )m.
3
3
2
2
A.
B.
C. 3 D.
抢答题:
巩固练习
1.如图,一支长为22cm的铅笔放在圆柱体笔筒中, 笔筒的内部底面直径是9cm,内壁高12cm,则这只 铅笔露出外面的长度可能是( )
AB 32 42 5米,
• ∴这条“径路”的长为5米. (2)他们仅仅少走了 (3+4-5)×2=4(步).
4步
拓展提高
如图,这是某种牛奶的长方体包装盒,长、 宽、高分别为5cm、4cm、12cm,插吸管处 的出口到相邻两边的距离都是1cm,为了设 计配套的直吸管,要求插入碰到底面后,外 露的吸管长度要在3cm至5cm间(包括3cm与 5cm,不计吸管粗细及出口的大小),则设 计的吸管总长度L的范围_____
第十七章 勾股定理
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
导入新课
讲授新课
当堂练习
课堂小结
学习目标 1. 会运用勾股定理求线段长及解决简单的 实际问题. (重点)
2.能从实际问题中抽象出直角三角形这一 几何模型,体会数学建模思想。
1.勾股定理:
如果直角三角形两直角边长分别为a,b, 斜边长为c,那么 a2+b2=.c2
2.勾股的逆定理: 如果三角形的三边长a 、 b 、 c满足 a2+b2=c2 , 那么这个三角形是 直角三角形。
3.体现了数学的 数形结合 思想
知识点检测
1.下列各组线段中,能构成直角三角形的是
()
A.2,3,4
B.3,4,6
C.4,6,7
D.5,12,13
练一练
2.一个三角形的三边的长分别是3,4,5,则这
小贤听说以前有一个 鲁国人扛着一根长长 的竹竿进城。他把竹 竿竖起来进城门吧, 竹竿比城门高出一截; 把竹竿横起来拿着走 吧,竹竿比城门又宽 一截。他横着、竖着 比划了半天,搞的满 头大汗,就是进不了 城门。你知道当时有 人帮他出了什么主意 吗?
3m
爱情公寓装修记 ,曾小贤购买了一块长3m, 宽2.2m的长方形木板,欲搬进如图所示的房 门,同学们,木板能否从曾小贤家的门框内 通过?为什么?
毕达哥拉斯定理
导入新课
情景引入
?
数学来源于生活,勾股定理的应用在生活中无处不在,
观看下面视频,你们能理解曾小贤和胡一菲的做法吗?
探索新知 一 勾股定理的简单实际应用
问题 曾小贤拿着一根长为5米的木棒,能从 宽为3米,高为4米的长方形的门内通过吗?这个城门的宽为3米, 比城门高出一截的竹竿恰好是1m, 当竹竿斜进城时,竹竿的两端刚好 顶着这城门的对角,小贤要求出竹 竿长和门高,你能帮他吗?(注: 城门的门洞是长方形)