中考数学总复习教材过关(试卷版+解析版)二十五 概率初步(附答案)

合集下载

人教版数学九年级上册第二十五章《概率初步》中考汇编试题

人教版数学九年级上册第二十五章《概率初步》中考汇编试题

中考分类概率初步解析附参考答案一.选择题1.(福建龙岩)下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为 3、5、9 厘米的三条线段能围成一个三角形.其中确定事件的个数是().A.1B.2C.3D.4B解析:③④是确定事件2. (广东梅州)下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后, 6 点朝上是必然事件B.甲、乙两人在相同条件下各射击10 次,他们的成绩平均数相同,方差分别是S甲2 0.4 , S乙20.6 ,则甲的射击成绩较稳定C.“明天降雨的概率为1”,表示明天有半天都在降雨2D.了解一批电视机的使用寿命,适合用普查的方式考点:方差;全面调查与抽样调查;随机事件;概率的意义..分析:利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.解答:解: A、掷一枚均匀的骰子,骰子停止转动后, 6 点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击 10 次,他们的成绩平均数相同,方差分别是S 甲2=0.4 ,S 乙2=0.6 ,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选 B.点评:本题主要考查了方差、全面调查与抽样调查、随机事件以及概率的意义等知识,解答本题的关键是熟练掌握方差性质、概率的意义以及抽样调查与普查的特点,此题难度不大.3.(汕尾)下列说法正确的是A.掷一枚均匀的骰子,骰子停止转动后, 6 点朝上是必然事件B.甲、乙两人在相同条件下各射击 10 次,他们的成绩平均数相同,方差是s2 甲 = 0.4,s2 乙 = 0.6 ,则甲的射击成绩较稳定1C.“明天降雨的概率为2”, 表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式4.( 呼和浩特 ) 在一个不透明的袋中装着 3 个红球和 1 个黄球,它们只有颜色上的区别,随机从袋中摸出 2 个小球,两球恰好是一个黄球和一个红球的概率为11 1 1 A. 2B. 3C. 4D . 65. (杭州) 如图,已知点 A , B ,C ,D ,E ,F 是边长为 1 的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为 ()A.1B.2C.2D.545 3 9AFCEEDGD BCDAC F BA第9题第【答案】 B.【考点】 概率;正六边形的性质 .【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的 情况数目;二者的比值就是其发生的概率 . 因此,如答图,∵正六边形的顶点,连接任意两点可得15 条线段,其中 6 条的连长度为 3 :AC 、 AE 、 BD 、BF 、CE 、 DF ,∴所求概率为62 .15 5故选 B.xK b 1. Co m二、填空题1.(福建龙岩)小明“六·一”去公园玩投掷飞镖的游戏,投中图中阴影部分有奖品(飞镖盘被平均分成 8 份),小明能获得奖品的概率是.382.(广东梅州)一个学习兴趣小组有 4 名女生, 6 名男生,现要从这 10 名学生中选出一人担任组长,则女生当选组长的概率是.考点:概率公式. .分析:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数÷所有可能出现的结果数,据此用女生的人数除以这个学习兴趣小组的总人数,求出女生当选组长的概率是多少即可.解答:解:女生当选组长的概率是:4÷10=.故答案为:.点评:此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件 A 的概率 P(A)=事件 A 可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件) =1.( 3) P(不可能事件) =0.3. (汕尾)一个学习兴趣小组有 4 名女生, 6 名男生,现要从这10 名学生中选出一人担任组长,则女生当选组长的概率是.2 54.(河南)现有四张分别标有数字 1,2,3,4 的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是.585.(湖北滨州)用 2、3、4 三个数字排成一个三位数,则排出的数是偶数的概率为.236.(益阳)( 2015?益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.考点:列表法与树状图法.分析:列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.解答:解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部 6 种情况,有 4 种甲没在中间,所以甲没排在中间的概率是=.故答案为.点评:本题考查用列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比.7.(呼和浩特)如图,四边形 ABCD 是菱形, E、F 、G、H 分别是各边的中点,随机地向菱形 ABCD内掷一粒米,则米粒落到阴影区域内的概率是__________.1 2A E BHFD G C8. (上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7 位同学参加,现有包括小杰在内的50 位同学报名,因此学生会将从这 50 位同学中随机抽取7 位,小杰被抽到参加首次活动的概率是__________【答案】 0.14.【解析】9. (深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被 3 整除的概率是。

九年级数学上册第二十五章概率初步重难点归纳(带答案)

九年级数学上册第二十五章概率初步重难点归纳(带答案)

九年级数学上册第二十五章概率初步重难点归纳单选题1、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .14B .12C .34D .56答案:C分析:画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=1216=34, 故选:C .小提示:本题考查了列表法与树状图法求概率,解题的关键是熟练掌握等可能事件的概率公式.2、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以组成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( )A .14B .13C .38D .49答案:D分析:根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A 矩形个数,进而利用概率公式求出即可.解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线可以组成9个矩形,其中含点A 矩形4个,∴所选矩形含点A 的概率是49故选:D小提示:本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.3、,甲,乙两辆汽车即将经过该丁字路口,它们各自可能向左转或向右转,且两种情况的可能性相等,则它们经过丁字路口时,都向右转的概率为( )A .14B .13C .12D .23答案:A分析:通过画树状图法或列表法找出所有等可能的结果数,再找出符合题意(都向右转)的结果数,利用概率公式计算即可.:由题意,画树状图如下:可知共有4种等可能的结果,符合条件的只有1种,故两辆汽车都向右转的概率为14, 故选:A .小提示:本题考查简单概率的计算,熟练掌握概率公式,能够通过列表或画树状图法找出所有等可能的结果数是解题的关键.4、妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是( )A .14B .13C .12D .34 答案:A分析:根据题意画出树形图,即可求出在这两个路口都直接通过的概率.解:由题意画树形图得,由树形图得共有4种等可能性,其中在这两个路口都直接通过的概率是P =14.故选:A小提示:本题考查了列表或画树形图求概率,理解题意,正确列表或画树形图得到所有等可能的结果是解题关键.5、下列说法正确的是( )A .口袋中有3个白球,2个黑球,1个红球,它们除颜色外都相同,因为袋中共有3种颜色的球,所以摸到红球的概率是13B .掷一枚硬币两次,可能的结果为两次都是正面,一次正面一次反面,两次都是反面,所以掷出两次都是反面的概率为13C .天气预报“明天降水概率为10%”,是指“明天有10%的时间会下雨”D .随意掷一枚均匀的骰子,偶数点朝上的概率是12答案:D分析:根据概率公式可对A、D进行判断;利用画树状图法求概率可对B进行判断,根据概率的意义可对C 进行判断.解:A、摸到红球的概率=13+2+1=16,所以A选项错误;B、画树状图为:共有4种等可能的结果数,其中掷出两次都是反面的结果数为1,所以掷出两次都是反面的概率=14,故B选项错误;C、天气预报“明天降水概率为10%”,是指有10%的可能性下雨,所以C选项错误;D、随意掷一枚均匀的骰子,偶数点朝上的结果数为2、4、6,所以偶数点朝上的概率=12,故D选项正确.故选:D.小提示:本题考查了概率的意义,概率公式,列表法与树状图法求概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.6、下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件答案:C分析:直接利用概率的意义以及随机事件的定义分别分析得出答案.A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误,不符合题意;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误,不符合题意;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,符合题意;D、“a是实数,|a|≥0”是必然事件,故此选项错误,不符合题意.故选C.小提示:此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.7、某随机事件A发生的概率P(A)的值不可能是()A.0.0001B.0.5C.0.99D.1答案:D分析:概率取值范围:0⩽p⩽1,随机事件的取值范围是0<p<1.解:概率取值范围:0⩽p⩽1.而必然发生的事件的概率P(A)=1,不可能发生事件的概率P(A)=0,随机事件的取值范围是0<p<1.观察选项,只有选项D符合题意.故选:D.小提示:本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.8、小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.掷一枚质地均匀的硬币,正面朝上的概率B.从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率答案:C分析:根据统计图可知,实验结果频率在33%左右,因此事件的概率也为33%,符合此概率的即为正确答案.A、掷一枚硬币,正面朝上的概率为12=50%,故A选项错误,不符合题意;B、从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率为14=25%,故B选项错误,不符合题意;C、从一个装有2个白球和1个红球的不透明袋子中任意摸出一球,摸到红球的概率为13≈33%,故C选项正确,符合题意;D、任意买一张电影票,座位号是2的倍数的概率在是50%,故D选项错误,不符合题意;故选C.小提示:本题考查了利用频率估计概率的知识,分别求得每个选项的概率是解题的关键.9、甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.下列事件中,概率最大的是()A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球答案:D分析:先画出树状图表示所有等可能的结果,再根据概率公式分别计算每种情况的概率,据此解答.解:画树状图如下,所有等可能的结果共6种,摸出2个球颜色相同的概率为:36=1 2;摸出2个球颜色不相同的概率为:36=1 2;摸出2个球中至少有1个红球的概率为:46=2 3;摸出2个球中至少有1个白球的概率为:56;所以概率最大的是摸出2个球中至少有1个白球,故选:D.小提示:本题考查列表法或树状图表示概率,是重要考点,掌握相关知识是解题关键.10、小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球答案:C分析:直接利用概率的意义分析得出答案.解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球.故选C.小提示:此题主要考查了概率的意义,正确理解概率的意义是解题关键.填空题11、学校食堂晚餐有四荤三素,荤菜有红烧肉、酸菜鱼、姜爆鸭和辣子鸡,素菜有干煸四季豆、青椒土豆丝和香干炒蒜苔,小南让食堂阿姨任打一道荤菜一道素菜,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为 __.答案:112分析:根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.红烧肉、酸菜鱼、姜爆鸭、辣子鸡分别用A、B、C、D表示,干煸四季豆、青椒土豆丝、香干炒蒜苔用a、b、c表示,根据题意画树状图如下:共有12种等可能的情况数,其中她选到红烧肉和青椒土豆丝的有1种,.则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为12.所以答案是:112小提示:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12、如图是康康的健康绿码示意图,用黑白打印机打印于边长为10cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.65左右,据此可以估计黑色部分的总面积约为___cm2.答案:65分析:经过大量重复试验,发现点落入黑色部分的频率稳定在0.65左右,可得点落入黑色部分的概率为0.65,再计算出正方形的面积,进而可以估计黑色部分的总面积.∵经过大量重复实验,发现点落入黑色部分的频率稳定在0.65左右,∴点落入黑色部分的概率为0.65,∵边长为10cm的正方形面积为100cm2,设黑色部分面积为S,则S=0.65,100解得S=65cm2,所以答案是:65.小提示:本题考查了利用频率估计概率,解决本题的关键是掌握概率公式,知道点落入黑色部分的概率为0.65.13、乐乐把8个红球,9个白球,a个黑球装在一个不透明布袋中,这些球每个球除颜色外都相同,从中任取一球,取得红球的概率是0.4,则a的值是______.答案:3分析:由于每个球都有被摸到的可能性,故可利用概率公式列出方程,求出a的值即可.解:依题意有:8=0.4,8+9+a解得a=3,经检验,a=3是原方程的解.所以答案是:3.小提示:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m.种结果,那么事件A的概率P(A)=mn14、北京2022年冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”广受大家的喜爱.即将在2022年9月举行的杭州亚运会的吉祥物“宸宸”“踪踪”“莲莲”也引起了大家的关注.现将五张正面分别印有以上5个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上并洗匀,随机翻开一张正好是“冰墩墩”的概率是_________.答案:15分析:根据概率公式即可求得.解:从5张卡片中,随机翻开一张正好是“冰墩墩”的概率是15所以答案是:15小提示:本题考查了概率公式的应用,熟练掌握和运用概率公式是解决本题的关键.15、如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________.答案:14分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次颜色相同的情况数,再利用概率公式求解即可求得答案.画树状图得:∵共有16种等可能的结果,两次颜色相同的有4种情况,∴两个数字都是正数的概率是416=14,所以答案是:14.小提示:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.解答题16、某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果;(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.答案:(1)见解析(2)见解析分析:(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果;(2)根据树状图找出颜色不同的两球和摸出颜色相同的两球的情况,即可得解.(1)解:画树状图如下:由树状图知共有6种情况;(2)解:由(1)知抽到颜色相同的两球共有2种情况,抽到颜色不同的两球共有4种情况,所以抽到颜色相同的两球对应一等奖,抽到颜色不同的两球对应二等奖.小提示:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17、第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.答案:16分析:用列表法表示所有可能出现的结果情况,进而得出两次都是白球的概率即可.解:用列表法表示所有可能出现的结果情况如下:1种,.所以取出的2个球都是白球的概率为16.答:取出的2个球都是白球的概率为16小提示:本题考查简单事件的概率,正确列表或者画树状图是解题关键.18、某次数学测验中,一道题满分3分,老师评分只给整数,即得分只能为0分,1分,2分,3分.李老师为了了解学生得分情况和试题的难易情况,对初三(1)班所有学生的试题进行了分析整理,并绘制了两幅尚不完整的统计图,如图所示.解答下列问题:(1)m= ,n= ,并补全条形统计图;(2)在初三(1)班随机抽取一名学生的成绩,求抽中的成绩为得分众数的概率;(3)根据右侧“小知识”,通过计算判断这道题对于该班级来说,属于哪一类难度的试题?或者(0.45);(3)中档题.答案:(1)25,20;(2)920分析:(1)根据图表得出得1分的人数,然后进行计算,即可得到m和n的值,再补全条形统计图即可;(2)根据众数的定义得到众数,在根据得分为众数的人数,计算概率即可;(3)根据题意可以算出L的值,从而可以判断试题的难度系数.解:(1)∵被调查的总人数为6÷10%=60(人),∴得1分的人有:60-6-27-12=15(人)∴m %=15÷60=25%n %=12÷60=20%∴m =25,n =20,;(2)众数为2分,有27人,∴概率为2760=920或者(0.45);(3)平均数为6×0+15×1+27×2+12×360=1.75,L =X W =1.753≈0.58,∵0.58在0.4-0.7中间,∴这道题为中档题.小提示:本题考查了条形统计图,扇形统计图,众数的定义和概率的计算,掌握知识点是解题关键.。

人教版初中九年级数学上册第二十五章《概率初步》(含答案解析)(1)

人教版初中九年级数学上册第二十五章《概率初步》(含答案解析)(1)

一、选择题1.小明将分别标有爱我中华汉字的四个小球装在一个不透明的口袋中,这些球除汉字外都相同,每次摸球前先搅拌均匀,随机摸出一球记下汉字后放回,再随机摸出一球,两次摸出的球上的汉字能组成“中华”的概率是( ) A .12B .18C .14D .162.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( ) A .16B .29C .13D .233.下列事件中,必然事件是( ) A .抛掷1个均匀的骰子,出现6点向上 B .两直线被第三条直线所截,同位角相等 C .366人中至少有2人的生日相同D .实数的绝对值是非负数4.现有三张正面分别标有数字1-,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为( ) A .12B .13C .23D .295.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )A .14B .34C .12D .386.一位批发商从某服装制造公司购进60包型号为L 的衬衫,由于包装工人疏忽,在包裹中混进了型号为M 的衬衫,每包混入的M 号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M 号衬衫数不超过3的概率是( ) A .120B .115C .920D .4277.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定8.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内9.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.1510.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.1411.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.19B.13C.12D.7912.如图所示,小明、小刚利用两个转盘进行游戏,规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则()A.公平B.对小明有利C.对小刚有利D.公平性不可预测13.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四边形AEPF=12S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是()A.1个B.3个C.14D.3414.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃15.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是()A.12B.14C.34D.1二、填空题16.已知一元二次方程23m0x x-+=,从m=-1,1,0,2,3的值中选一个作为m的值,则使该方程无解的m值的概率为_________17.在一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一个球,不再放回袋中,充分搅匀后再随机摸出一球,则两次都摸到红球的概率是_____.18.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.19.如图,正方形ABCD内接于⊙O,⊙O的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是_________.20.四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为___________________.21.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800100020004000发芽的频数8530065279316043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_____(精确到0.1).22.大成蔬菜公司以2.1元/千克的成本价购进10000kg番茄,公司想知道番茄的损坏率,从所有随机抽取若干进行统计,部分结果如表:m kg1002003004005001000番茄总质量()损坏番茄质量10.6019.4230.6339.2449.54101.10()m kg番茄损坏的频率0.1060.0970.1020.0980.0990.101估计这批番茄损坏的概率为______(精确到0.1),据此,若公司希望这批番茄能获得利润15000元,则销售时(去掉损坏的番茄)售价应至少定为______元/千克.23.如图,小明和小亮两人在玩转盘游戏,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为奇数时,小明胜;数字之和为偶数时,小亮胜.那么小明获胜的概率是__________.24.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,定义点(),m n在反比例函数kyx=上为事件kQ(44,k k-≤≤为整数),当kQ的概率最大时,则k的所有可能的值为__________.25.在不透明的袋子中装有三张标着数字1、2、3的卡片,随机抽出一张卡片后放回,再随机抽出一张卡片,则两次抽到的数字之和为4的概率是_____.26.甲、乙、丙三人每人写好一张卡片放入一个盒子里,每人摸出一张,甲恰好摸到自己的卡片的概率为___.三、解答题27.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色后,再把它放回盒子中,不断重复上述过程,下表是试验中的组统计数据:(1)若从盒子里随机摸出一球,则摸到白球的概率约为____________;(精确到0.1)(2)估算盒子里约有白球__________个;(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个.然后每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请你推测x可能是多少?28.已知一个不透明布袋中装有形状、大小、材质完全相同的红球和白球共5个,小明进行多次摸球实验,并将数据记录如下表:)从这个布袋中随机摸出一个球,这个球恰好是红球的概率为;(2)从这个布袋中随机摸出两个球,请用树形图或列表法求摸出的两个球恰好“一红一白”的概率.29.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率mna0.640.580.590.600.601(1)上表中的a=________,b=________;(2)“摸到白球的”的概率的估计值是_________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?30.某校团委在“五·四”青年节举办了一次“我的中国梦”作文大赛,广三批对全校20个班的作品进行评比在第一批评比中,随机抽取A、B、C、D四个班的征集作品,对其数量进行统计后,绘制如下两幅不完整的统计图,(1)第一批所抽取的4个班共征集到作品件;在扇形统计图中表示C班的扇形的圆心角的度数为;(2)补全条形统计图;(3)第一批评比中,A班D班各有一件、B班C班各有两件作品获得一等奖.现要在获得一等奖的作品中随机抽取两件在全校展出,用树状图或列表法求抽取的作品在两个不同班级的概率.。

(必考题)初中九年级数学上册第二十五章《概率初步》知识点(答案解析)

(必考题)初中九年级数学上册第二十五章《概率初步》知识点(答案解析)

一、选择题1.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .游戏者配成紫色的概率为16D .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同 2.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为1P ,摸出的球上的数字小于4的记为2P ,摸出的球上的数字为5的概率记为3P ,则1P ,2P ,3P 的大小关系是( ) A .123P P P << B .321P P P << C .213P P P << D .312P P P << 3.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次( )A .只有①正确B .只有②正确C .①②都正确D .①②都错误 4.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 5.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是( )A .指针落在标有5的区域内B .指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内6.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.415B.15C.13D.2157.下列语句所描述的事件是随机事件的是()A.经过任意两点画一条直线B.任意画一个五边形,其外角和为360°C.过平面内任意三个点画一个圆D.任意画一个平行四边形,是中心对称图形8.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A.613B.513C.413D.3139.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.1410.下列事件是必然事件的是()A.阴天一定会下雨B.购买一张体育彩票,中奖C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.任意画一个三角形,其内角和是180°11.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.11012.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。

人教版 九年级数学 第25章 概率初步 综合复习(含答案)

人教版 九年级数学 第25章 概率初步 综合复习(含答案)

人教版九年级数学第25章概率初步综合复习一、选择题(本大题共10道小题)1. 下列事件中,是必然事件的为()A.三点确定一个圆B.抛掷一枚骰子,朝上的一面点数恰好是5C.四边形有一个外接圆D.圆的切线垂直于过切点的半径2. 下列事件中随机事件的个数是()①投掷一枚硬币正面朝上;①明天太阳从东方升起;①五边形的内角和是560°;①购买一张彩票中奖.A.0 B.1 C.2 D.33. 用频率估计概率可以发现,抛掷一枚均匀的硬币,“正面朝上”的概率为0.5,是指()A.连续抛掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越接近0.54. 下列说法正确的是()A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生5. 某路口交通信号灯的时间设置为红灯35秒,绿灯m秒,黄灯3秒,当车经过该路口时,遇到红灯的可能性最大,则m的值不可能是()A.3 B.15 C.30 D.406. 三名九年级同学坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是 ( ) A.19B.16C.14D.127. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.128. 如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;①随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;①若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是( ) A .① B .① C .①① D .①①9. 如图,①ABC是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是①ABC 的内切圆.一只自由飞翔的小鸟随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.115πB.215πC.415πD.π510. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是()A.613 B.5 13C.413 D.3 13二、填空题(本大题共7道小题)11. 写一个你喜欢的实数m的值:________,使得事件“对于二次函数y=12x2-(m-1)x+3,当x<-3时,y随x的增大而减小”成为随机事件.要使此事件成为随机事件,则抛物线的对称轴应位于直线x=-3的左侧.12. 有五张卡片(形状、大小、质地等均相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.13. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.14.①①①①①①①①①①①①①①①3①①(①①①①①①)①①①2①①①①①1①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①15.①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①16. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是________.17. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.三、解答题(本大题共4道小题)18. 某路口红绿灯的时间设置为红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据是什么?19. 方案设计盒中装有红球、黄球共10个,每个球除颜色不同外其余都相同,每次从盒中摸出1个球,摸三次,不放回,请你按要求设计盒中红球的个数.(1)“摸出的3个球都是红球”是不可能事件;(2)“摸出红球”是必然事件;(3)“至少摸出2个黄球”是确定性事件;(4)“至少摸出2个黄球”是随机事件.20. 如图所示,有一个可以自由转动的转盘,其盘面被分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时视为无效转次)21. 在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色不同外其余都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)人教版九年级数学第25章概率初步综合复习-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】C[解析] 掷一枚硬币正面朝上是随机事件;明天太阳从东方升起是必然事件;五边形的内角和是560°是不可能事件;购买一张彩票中奖是随机事件.所以随机事件有2个.3. 【答案】D4. 【答案】C5. 【答案】D[解析] 因为车遇到红灯的可能性最大,可知亮红灯的时间最长,故m <35.6. 【答案】D[解析] 利用列举法可知,三人全部的坐法有6种,其中恰好有两名同学没有坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=12. 故选D.7. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.8. 【答案】B9. 【答案】B[解析] 因为132=122+52,即AB2=BC2+AC2,所以①ABC 为直角三角形,所以①ABC 的内切圆半径=12×(12+5-13)=2. 所以S①ABC =12AC·BC =12×12×5=30,S 圆=4π. 所以小鸟落在花圃上的概率=S 圆S①ABC =4π30=215π. 故选B.10. 【答案】B[解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.二、填空题(本大题共7道小题)11. 【答案】答案不唯一,如-4[解析] y =12x 2-(m -1)x +3,图象的对称轴为直线x =-b2a =m -1.∵事件“对于二次函数y =12x 2-(m -1)x +3,当x <-3时,y 随x 的增大而减小”是随机事件,∴m -1<-3,解得m <-2, ∴m 为小于-2的任意实数.12. 【答案】25 [解析] 五种图形中,既是中心对称图形,又是轴对称图形的有线段、圆2种,所以所求概率为25.13. 【答案】20[解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13.设口袋中有x 个白球,则10x +10=13, 解得x =20.经检验,x =20是原方程的解, 故答案为20.14. 【答案】49①①①①①①①①①①①①①①①①①①①9①①①①①①①①①①①①①①①①①①①4①①①①①①①①①①①①①①①P①m n ①49.15.【答案】13①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①26①13.16. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.17. 【答案】35 [解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.三、解答题(本大题共4道小题)18. 【答案】解:当人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.根据:绿灯持续的时间最长,黄灯持续的时间最短.19. 【答案】解:(1)2个或1个.(2)8个或9个.(3)9个或1个.(4)多于1个且小于9个.20. 【答案】解:(1)3+5+2+3+3+4+3+58=3.5.答:前8次的指针所指数字的平均数为3.5.(2)可能.若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次所指数字之和为28,所以最后2次所指数字之和应不小于5,且不大于7.第9次和第10次指针可能所指的数字如下表所示:一共有16种等可能的结果,其中指针所指数字之和不小于5,且不大于7的结果有9种,其概率为9 16.21. 【答案】解:(1)布袋中共有3个球,这些球除颜色外都相同,故能摸到红球的概率为2 3.(2)两个红球分别记为红1,红2,用表格列出所有可能出现的结果如下:由表格可知,一共有6种可能出现的结果,它们是等可能的,其中“两次都摸到红球”的结果有2种,所以P(两次都摸到红球)=26=13.。

(必考题)初中九年级数学上册第二十五章《概率初步》知识点总结(答案解析)

(必考题)初中九年级数学上册第二十五章《概率初步》知识点总结(答案解析)

一、选择题1.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A ,B ,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是( )A .13B .23C .19D .292.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次( )A .只有①正确B .只有②正确C .①②都正确D .①②都错误 3.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上4.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有( )A .6个B .16个C .18个D .24个5.下列语句所描述的事件是随机事件的是( )A .经过任意两点画一条直线B .任意画一个五边形,其外角和为360°C .过平面内任意三个点画一个圆D .任意画一个平行四边形,是中心对称图形 6.某校食堂每天中午为学生提供A 、B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( )A .12B .13C .14D .237.从2,3,4,5中任意选两个数,记作a 和b ,那么点()a b ,在函数2611y x x =-+图象上的概率是( )A .12B .13C .14D .16 8.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( ) A .19 B .13 C .12 D .79 9.在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在75%附近,则箱中卡的总张数可能是( ) A .1张 B .4张 C .9张 D .12张10.如图,随机闭合开关1S ,2S ,3S 中的两个,则能让两盏灯泡同时发光的概率为( )A .23B .12C .13D .1611.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A ,从乙袋中摸出红球记为事件B ,则A .P (A )>P (B ) B .P (A )<P (B )C .P (A )=P (B )D .无法确定 12.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为( ) A .12 B .13 C .23 D .1613.从等腰三角形、平行四边形、菱形、角、线段中随机抽取两个,得到的都是中心对称图形的概率是( )A .15B .25C .310D .4514.在四边形ABCD 中,从以下四个条件中:①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD 为平行四边形的概率为( )A .13B .12C .23D .5615.下列说法正确的是( )A .为了了解某中学1200名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B .若一个游戏的中奖率是2%,则做50次这样的游戏一定会中奖C .了解无锡市每天的流动人口数,采用抽样调查方式D .“掷一枚硬币,正面朝上”是必然事件二、填空题16.从1-,0,1,2,3这五个数中,随机取出一个数,记为a ,那么使关于x 的方程21x a x+=有解,且使关于的一元二次方程230x x a -+=有两个不相等的实数根的概率为___________.17.从﹣8,﹣2,1,4这四个数中任取两个数分别作为二次函数y =ax 2+bx +1中a 、b 的值,恰好使得该二次函数当x >2时,y 随x 的增大而增大的概率是_____.18.已知一元二次方程23m 0x x -+=,从m =-1,1,0,2,3的值中选一个作为m 的值,则使该方程无解的m 值的概率为_________19.如图,正方形ABCD 内接于⊙O ,⊙O 2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是_________.20.一个盒子中装有标号为1、2、3、4、5的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6的概率为______.21.在一个不透明的盒子里装有6个形状大小完全相同的乒乓球,上面分别标有-1,-2,0,0.5,1,2,六个数字,现将它们摇匀后从中任取一个乒乓球,将该乒乓球上的数字记为m ,则使关于x 的一元二次方程mx 2+4x+4=0有实数根,且使关于x 的分式方程112m x -=-有正数解的概率为______. 22.从122,,23-,三个数中,任取一个数记为k ,再从余下的两个数中,任取一个数记为b .则 一次函数y kx b =+的图象不经过第四象限的概率是___________23.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取,经过大量重复实验摸到白色小球的频率稳定在0.2,据此估计该口袋中原有红色小球个数为_________ .24.已知a 为正整数,且二次函数()273y x a x =+-+的对称轴在y 轴右侧,则a 使关于y 的分式方程4211ay y y y--=--有正整数解的概率为_______. 25.为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x (元)统计如下:组别(元)40x < 4060x ≤< 6080x ≤< 80100x ≤< 人数 6 37 40 17根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是_________.26.如图,小明和小亮两人在玩转盘游戏,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为奇数时,小明胜;数字之和为偶数时,小亮胜.那么小明获胜的概率是__________.三、解答题27.2020年庚子鼠年来临之际,一场来势汹汹的疫情,给我国带来了新的考验,疫情防控的人民战争在全国打响,举国上下团结奋斗、共克时艰,中国精神成为抗击病魔的利剑,是疫情防控战役中致胜的法宝,某医院为了鼓励工作人员抗击疫情,做如下活动:在一个不透明的盒子中装有4张分别标有A、B、C、D的卡片,A、B、C、D四张卡片的背面分别写有“防护、抗击、团结、奋斗”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果;(2)求摸出的两张卡片中的词语能组成“团结奋斗”的概率.28.某生活小区鲜奶店每天以每瓶3元的价格从奶场购进优质鲜奶,然后以每瓶6元的价格出售,如果当天卖不完,剩余的只有倒掉.店主记录了30天的日需求量(单位:瓶),整理得下表:(1)求这30天内日需求量的众数;(2)假设鲜奶店在这30天内每天购进28瓶,求这30天的日利润(单位:元)的平均数;(3)以30记录的各需求量的频率作为各需求是发生的概率.若鲜奶店每天购进28瓶,求在这记录的30天内日利润不低于81元的概率.29.A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是_______;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.30.在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出x,y一个小球,记下数字为y,这样确定了点M的坐标()()1画树状图列表,写出点M所有可能的坐标;()2求点()M x,y在函数y x1=+的图象上的概率.。

九年级数学上册第二十五章概率初步知识点总结归纳完整版(带答案)

九年级数学上册第二十五章概率初步知识点总结归纳完整版(带答案)

九年级数学上册第二十五章概率初步知识点总结归纳完整版单选题1、小明在一次用“频率估计概率”的实验中,把对联“海水朝朝朝朝朝朝朝落,浮云长长长长长长长消”中的每个汉字分别写在同一种卡片上,然后把卡片无字的面朝上,随机抽取一张,并统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.抽出的是“朝”字B.抽出的是“长”字C.抽出的是独体字D.抽出的是带“氵”的字答案:D分析:根据利用频率估计概率得到实验的概率在0.2左右,再分别计算出四个选项中的概率,然后进行判断.根据拆线图知:概率在0.2左右,,不符合题意;A:抽出的是“朝”字的概率是720,不符合题意;B:抽出的是“长”字的概率是720,不符合题意;C:抽出的是独体字的概率是920=20%,符合题意,D:抽出的是带“氵”的字的概率为420故选:D.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2、分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A .B .C .D .答案:A分析:结合图形求出各个阴影部分所占的比例即为小球落在阴影部分的概率,进行比较即可. 解:A 、小球落在阴影部分的概率为14; B 、小球落在阴影部分的概率为12; C 、小球落在阴影部分的概率为59;D 、小球落在阴影部分的概率为39=13; 小球落在阴影部分的概率最小的是A , 故选:A .小提示:题目主要考查概率的基本计算方法,理解题意,掌握概率的基本计算方法是解题关键.3、孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD 、Dd 、dd 三种遗传因子控制.由此可知,子二代豌豆中含遗传因子D 的概率是( )A .14B .38C .12D .34 答案:D分析:画出遗传图解,即可得到答案. 解:画图如下:共有4种情况,而出现高茎的有3种结果, ∴子二代豌豆中含遗传因子D 的概率是34,故选:D小提示:本题主要考查了求概率,正确画出树状图是解答本题的关键.4、《田忌赛马》原文:忌数与齐诸公子驰逐重射.孙子见其马足不甚相远,马有上、中、下辈.于是孙子谓田忌曰:“君弟重射,臣能令君胜.”田忌信然之,与王及诸公子逐射千金.及临质,孙子曰:“今以君之下驷与彼上驷,取君上驷与彼中驷,取君中驷与彼下驷.”既驰三辈毕,而田忌一不胜而再胜,卒得王千金. 小建同学用数学模型来分析:齐王与田忌的上中下三个等级的三匹马的战斗力分别用数字标记如下表.每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.若齐王的三匹马和田忌的三匹马都随机出场,则田忌能赢得比赛的概率为( )A .2B .3C .4D .6答案:D分析:通过列表法或树状图把所有可能的情况列出来,然后利用概率公式求出事件发生的概率进行判断即可. 解:画树状图如图所示,从图中可以看出,齐王与田忌赛马,共有18种等可能的情况,其中田忌能赢有3种情况, P 田忌赢=318=19. 故选:D .小提示:本题考查了用列表法与树状图求概率,列表法适应于两步完成的事件概率的求法,树状图法适应于两步或两步以上完成的事件概率的求法.5、某人在做抛掷硬币试验中,抛掷n 次,正面朝上有m 次,若正面朝上的频率是P =mn ,则下列说法正确的是( )A .P 一定等于0.5B .多投一次,P 更接近0.5C .P 一定不等于0.5D .投掷次数逐渐增加,P 稳定在0.5附近 答案:D分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做此事件概率的估计值,从而可得答案.解:根据频率和概率的关系可知,投掷次数逐渐增加,P 稳定在0.5附近, 故选:D .小提示:考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.6、在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49 B .13 C .29D .19答案:A分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49,故选A .小提示:此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.7、如图,已知正六边形ABCDEF 内接于半径为r 的⊙O ,随机地往⊙O 内投一粒米,落在正六边形内的概率为( )A .3√32πB .√32πC .√34πD .以上答案都不对 答案:A分析:连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得△OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出△OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.解:如图:连接OB ,过点O 作OH ⊥AB 于点H ,∵六边形ABCDEF 是正六边形, ∴∠AOB =60°, ∵OA =OB =r ,∴△OAB 是等边三角形, ∴AB =OA =OB =r ,∠OAB =60°,在Rt △OAH 中,OH =OA ⋅sin∠OAB =r ×√32=√32r , ∴S △OAB =12AB ⋅OH =12r ×√32r =√34r 2, ∴正六边形的面积=6×√34r 2=3√32r 2, ∵⊙O 的面积=πr 2,∴米粒落在正六边形内的概率为:3√32r 2πr 2=3√32π, 故选:A .小提示:本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出△OAB 的面积是解决问题的关键.8、如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C ,都可使小灯泡发光.任意闭合其中一个开关,则小灯泡发光的概率等于( ).A .12B .13C .14D .34答案:C分析:让小灯泡发光的情况数除以总情况数即为发光的概率. 解:共有4个开关,闭合其中一个开关,有4种情况, 只有闭合D 才能使灯泡发光, ∴小灯泡发光的概率=14. 故选:C .小提示:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.9、用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色,即可配成紫色(若指针指在分界线上,则重转),则配成紫色的概率为( )A .16B .13C .12D .23答案:C分析:列表得出所有等可能的情况数,找出能配成紫色的情况数,即可求出所求的概率. 解:列表如下:3种, 则P (配成紫色)=36=12, 故选:C .小提示:本题考查的是用列表法或画树状图法求概率,熟练掌握概率=所求情况数与总情况数之比是解题的关键.10、从−√2,0,√4,π,3.5这五个数中,随机抽取1个,则抽到无理数的概率是( )A .15B .25C .35D .45答案:B解:这里的无理数有−√2,π,共2个, ∴P (抽到无理数)=25. 故选:B .小提示:本题主要考查了列举法求概率,解决问题的关键是熟练掌握用列举法求概率的方法. 填空题11、现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程x 2−2x +a2=0有实数根,且关于x 的分式方程1−ax x−2+2=12−x有解的概率为______.答案:16分析:根据一元二次方程有实数根,求出a 的取值范围,再根据分式方程有解,求出a 的取值范围,综合两个结果即可得出答案.一元二次方程x 2−2x +a2=0有实数根,∴4−4×a2≥0. ∴a ≤2, ∴a =0,1,2, 关于x 的分式方程1−ax x−2+2=12−x的解为:x =22−a,且2−a ≠0且x ≠2, 解得:a ≠2且a ≠1, ∴a =0,∴使得关于x 的一元二次方程,x 2−2x +a2=0有实数根,且关于x 的分式方程1−axx−2+2=12−x 有解的概率为:16. 所以答案是:16小提示:本题考查一元二次方程有实数根、分式方程有解和概率的计算公式,掌握一元二次方程有实数根和分式方程有解是解题的关键.12、盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x和y满足的关系式为 __.答案:y=53x分析:根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.解:∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是38,∴可得关系式xx+y =38,∴x和y满足的关系式为y=53x.所以答案是:y=53x.小提示:此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点A(x,y)恰好在直线y=−2x+8上的概率是______.答案:112分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线y=−2x+8上的情况,再利用概率公式求得答案.解:列表如下:),(2,4),(3,2),∴点B(x,y)恰好在直线y=−2x+8上的概率是:336=112.所以答案是:112.小提示:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、口袋里装有红球和白球共10个,这些球除颜色外其余均相同.每次将球搅拌均匀,任意摸出一个球,记下颜色后再放回口袋里,摸了100次,其中发现有69次摸到白球,则白球的个数约为___________个.答案:7分析:利用频率估计概率可估计摸到白球的概率,再用口袋里球的总个数乘以摸到白球的频率即可得出答案.解:∵共摸了100次球,发现有69次摸到白球,∴摸到白球的概率为0.69,∴口袋中白球的个数大约10×0.69≈7(个).所以答案是:7.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.答案:316分析:画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=316.所以答案是:316.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.解答题16、2019年第六届世界互联网大会在桐乡乌镇召开,现从全校学生中选出15名同学参加会议相关服务工作,其中9名男生,6名女生.(1)若从这15名同学中随机选取1人作为联络员,求选到男生的概率.(2)若会议的某项服务工作只在A,B两位同学中选一人,准备用游戏的方式决定谁参加.游戏规则是:四个乒乓球上的数字分别为1,2,3,6(乒乓球只有数字不同,其余完全相同),将乒乓球放在不透明的纸箱中,从中任意摸取两个,若取到的两个乒乓球上的数字之和大于6则选A,否则选B,从是否公平的角度看,该游戏规则是否合理,用树状图或表格说明理由.答案:(1)35;(2)该游戏规则合理;理由见解析.分析:(1)直接根据概率公式计算;(2)先画出树状图,展示所有12种等可能的结果数,再找出两个数字之和大于6所占的结果数,计算出选A的概率和选B的概率,然后比较两概率大小判断该游戏规则是否合理.(1)选到男生的概率=915=35;(2)画树状图:共有12种等可能的结果数,其中两个数字之和大于6占6种,所以选A的概率=612=12,则选B的概率=1−12=12,由于选甲的概率等于选乙的概率,所以该游戏规则合理.小提示:本题考查列表法与树状图法,解题的关键是利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;(4)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到2名男性的概率.答案:(1)10;(2)180°;(3)18;(4)P(恰好抽到2名男性)=16.分析:(1)用50-4-25-8-3可求出m的值;(2)用360°乘以年龄在“30≤x<40”部分人数所占百分比即可得到结论;(3)分别求出每个年龄段女性人数,然后再相加即可;(4)年龄在“x<20”的4人中,男性有2人,女性有2人,分别用A1,A2表示男性,用B1,B2表示女性,然后画出树状图表示出所有等可能结果数,以及关注的事件数,然后利用概率公式进行求解即可.解:(1)m=50-4-25-8-3=10;所以答案是:10;(2)360°×2550=180°;所以答案是:180°;(3)在这50人中女性人数为:4×(1-50%)+10×(1-60%)+25×(1-60%)+8×(1-75%)+3×(1-100%)=2+4+10+2+0=18;所以答案是:18;(4)设两名男性用A1,A2表示,两名女性用B1,B2表示,根据题意:可画出树状图:或列表:2种,故P(恰好抽到2名男性)=212=16.小提示:此题考查了列表法或树状图法求概率以及频数分布表.用到的知识点为:概率=所求情况数与总情况数之比.18、从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).答案:(1)13(2)12分析:(1)利用例举法例举所有的等可能的情况数,再利用概率公式进行计算即可;(2)先列表得到所有的等可能的情况数以及符合条件的情况数,再利用概率公式进行计算即可.(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是13.(2)列表如下:所以一定有乙的概率为:612=1 2 .小提示:本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.。

九年级数学上册第二十五章概率初步必考知识点归纳(带答案)

九年级数学上册第二十五章概率初步必考知识点归纳(带答案)

九年级数学上册第二十五章概率初步必考知识点归纳单选题1、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球()A.10B.15C.20D.都不对答案:B分析:由摸到红球的频率稳定在0.25附近,可以得出摸到红球的概率,即可求出白球个数.∵摸到红球的频率稳定在0.25附近,∴摸到红球的概率为0.25,∴总球数:5÷0.25=20(个)∴白球个数:20-5=15(个)所以答案是:B.小提示:本题考查了用频率估计概率、已知概率求数量,得出摸到红球的概率是本题的关键.2、在有25名男生和24名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是(). A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定答案:B分析:根据题意,只要求出男生和女生当选的可能性,再进行比较即可解答.∵某班有25名男生和24名女生,∴用抽签方式确定一名学生代表,男生当选的可能性为2525+24=25 49,女生当选的可能性为2425+24=24 49,∴男生当选的可能性大于女生当选的可能性.故选B.小提示:此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19B .16C .13D .23答案:C分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C , 列表如下:3种, 所以两个组恰好抽到同一个小区的概率为39=13. 故选C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4、某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为( ) A .2081B .1081C .5243D .10243答案:B分析:因为对于这六个人来说,会被随机分派到3个镇中的任何一个,所以一共有36种情况,而有4个人的镇可能是3个镇中的任何一个,剩下两个镇各派一个人的派法是3×C 64,根据概率公式求解.解:6名教师志愿随机派到3个镇中的任何一个共有36种情况,有4个人的镇可能是3个镇中的任何一个,另两镇各去1名的结果数为3×6×5,所以恰好其中一镇去4名,另两镇各去1名的概率=3×6×536=1081,故选:B .【小提示】选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率. 5、同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( ) A .14B .13C .12D .23答案:C分析:根据题意可画出树状图,然后进行求解概率即可排除选项. 解:由题意得:∴一枚硬币正面向上、一枚硬币反面向上的概率是P =24=12; 故选C .小提示:本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.6、①三点确定一个圆; ②平分弦的直径平分弦所对的弧;③同圆或等圆中,相等的弦所对的圆心角相等;④在半径为4的圆中,30°的圆心角所对的弧长为π3;⑤方程x 2-x +3=0的两根之积是3,从上述5个命题中任取一个,是真命题的概率是( ) A .1B .35C .25D .15 答案:C分析:先根据确定圆的条件对①进行判断;根据垂径定理的推论对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据弧长公式对④进行判断;利用根与系数关系对⑤进行判断.然后利用概率公式进行计算即可.解:①不在同一直线上的三点可以确定一个圆,故①说法错误,是假命题; ②平分弦(非直径)的直径平分弦所对的弧,所以②错误,是假命题; ③在同圆或等圆中,弦相等,所对的圆心角相等,所以③正确,是真命题; ④在半径为4的圆中,30°的圆心角所对的弧长为2π3,所以④错误,是假命题;⑤方程x 2-x+3=0的两根之积是3,正确,是真命题, 其中真命题有2个,所以是真命题的概率是:25, 故选:C .小提示:本题考查了真假命题的判断及概率公式,解题的关键是:先判断命题的真假.7、不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( ) A .14B .13C .12D .34答案:A分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与第一次摸到红球,第二次摸到绿球的情况,然后利用概率公式求解即可求得答案. 解:画树状图得:∵共有4种等可能的结果,第一次摸到红球,第二次摸到绿球有1种情况, ∴第一次摸到红球,第二次摸到绿球的概率为14,故选:A .小提示:本题考查了画树状法或列表法求概率,列出所有等可能的结果是解决本题的关键.8、如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是( )A .14B .18C .316D .23答案:C分析:先求出黑色区域的面积是正方形桌面的分率,再根据概率公式即可得出答案. 解:观察图形可知,黑色区域的面积是正方形桌面的316,∴最终停在黑色区域的概率是316,故选:C .小提示:本题考查几何概率,熟练掌握几何概率的计算方法是解题的关键.9、将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .13C .25D .35答案:A分析:随机事件A 的概率P (A )=事件A 发生时涉及的图形面积÷一次试验涉及的图形面积,因为这是几何概率.解:设正六边形边长为a ,过A 作AD ⊥BC 于D ,过B 作BE ⊥CE 于E ,如图所示:∵正六边形的内角为180°−360°6=120°,∴在RtΔACD 中,∠ADC =90°,∠CAD =60°,AC =a ,则AD =12a,CD =√32a , ∴BC =2CD =√3a ,∴在RtΔBCE 中,∠BEC =90°,∠BCE =60°,BC =√3a ,则CE =√32a,BE =32a ,则灰色部分面积为3S ΔABC =3×12BC ⋅AD =3×12×√3a ×12a =34√3a 2,白色区域面积为2S ΔBCE =2×12CE ⋅BE =√32a ×32a =3√34a 2, 所以正六边形面积为两部分面积之和为32√3a 2,飞镖落在白色区域的概率P =34√3a 232√3a 2=12,故选:A .小提示:本题考查了几何概率,熟练掌握几何概率模型及简单概率公式是解决问题的关键.10、如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( )A .13B .14C .16D .18答案:B分析:连接菱形对角线,设大矩形的长=2a ,大矩形的宽=2b ,可得大矩形的面积,根据题意可得菱形的对角线长,从而求出菱形的面积,根据“顺次连接菱形各边中点得到一个小矩形”,可得小矩形的长,宽分别是菱形对角线的一半,可求出小矩形的面积,根据阴影部分的面积=菱形的面积-小矩形的面积可求出阴影部分的面积,再求出阴影部分与大矩形面积之比即可得到飞镖落在阴影区域的概率. 解:如图,连接EG ,FH ,设AD=BC=2a ,AB=DC=2b , 则FH=AD=2a ,EG=AB=2b , ∵四边形EFGH 是菱形,∴S 菱形EFGH =12FH ⋅EG =12⋅2a ⋅2b =2ab , ∵M ,O ,P ,N 点分别是各边的中点,∴OP=MN=12FH=a ,MO=NP=12EG=b ,∵四边形MOPN 是矩形, ∴S 矩形MOPN =OP ⋅MO=ab ,∴S 阴影= S 菱形EFGH -S 矩形MOPN =2ab-ab=ab , ∵S 矩形ABCD =AB ⋅BC=2a ⋅2b=4ab , ∴飞镖落在阴影区域的概率是ab 4ab=14,故选B .小提示:本题考查了几何概率问题.用到的知识点是概率=相应的面积与总面积之比. 填空题11、小兰和小华两人做游戏,她们准备了一个质地均匀的正六面体骰子,骰子的六个面分别标有1,2,3,4,5,6,若掷出的骰子的点数为偶数,则小兰赢;若掷出的骰子的点数是3的倍数,则小华赢,游戏规则对______(填“小兰”或“小华”)有利. 答案:小兰分析:根据所出现的情况,分别计算两人能赢的概率,即可解答. 解:骰子的点数是偶数的有2,4,6,其概率为36=12,骰子的点数是3的倍数的有3,6,其概率为26=13,而12>13,∴游戏规则对小兰有利, 所以答案是:小兰.小提示:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.12、甲、乙两人做游戏,他们准备了一个质量分布均匀的正六面体骰子,骰子的正六面分别标有1,2,3,4,5,6.若掷出的骰子的点数是偶数,则甲赢;若掷出的骰子的点数是3的倍数,则乙赢,这个游戏对甲、乙来说是_________的.(填“公平”或“不公平”) 答案:不公平分析:根据所出现的情况,分别计算两人能赢的概率,即可解答.解:∵骰子的点数是偶数的有2,4,6,其概率为36=12,骰子的点数是3的倍数的有3,6,其概率为26=13,故游戏规则对甲有利.所以答案是:不公平.小提示:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.13、巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.答案:38分析:设大正方形的边长为2,先求出阴影区域的面积,然后根据概率公式即可得出答案.图,设小正方形的边长为1,根据等腰三角形和正方形的性质可求得AB=BE=2√2,FG=DC=√2,则空白的面积为:12×√2×√2+1×1+12×1×1×2+12×2×2=5;大正方形的面积是:2√2×2√2=8,阴影区域的面积为:8-5=3,所以针尖落在在阴影区域上的概率是:38.所以答案是:3.8小提示:本题考查几何概率,熟练掌握几何概率的计算方法是解题的关键.14、如图,在边长为1的小正方形组成的3×3网格中,A,B两点均在格点上,若在格点上任意放置点C,恰的概率为_________.好使得△ABC的面积为12##0.375答案:38分析:按照题意分别找出点C所在的位置,根据概率公式求出概率即可.的三角形,解:可以找到6个恰好能使△ABC的面积为12,则概率为:6÷16=38所以答案是:3.8小提示:此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.15、口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是___.答案:37分析:用袋子中编号为偶数的小球的数量除以球的总个数即可得.解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为3,7所以答案是:37.小提示:本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 解答题16、在同升湖实验学校九年级的班级三人制篮球赛过程中,经过几轮激烈的角逐,最后由2班、5班、6班、9班进入了年级四强进行最后的名次争夺赛.现在葛老师规定先用抽签的方式决定将这4个班级分成2个小组,再由两个小组的胜出者争夺一二名,小组落败者争夺三四名. (1)直接写出9班和5班抽签到一个小组的概率;(2)若4个班级的实力完全相当,任何两个班级对决的胜率都是50%,求在年级四强的名次争夺赛中9班不与5班对决的概率. 答案:(1)13;(2)13分析:(1)利用列举法求解即可; (2)分类讨论,利用列举法即可求解.(1)分组:(2,5)和(6,9);(2,6)和(5,9);(2,9)和(5,6)共3种, 9班和5班抽签到一个小组只有一种情况, 故概率为:13;(2)①分组为(2,5)和(6,9),故概率为:3×4=6; ②分组为(2,9)和(5,6),故概率为:3×4=6;综上,在年级四强的名次争夺赛中9班不与5班对决的概率为16+16=13.小提示:本题考查了利用列举法求概率,通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17、为落实“垃圾分类”,环保部门要求垃圾要按A,B,C,D四类分别装袋、投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收物,D类指其他垃圾.小明、小亮各投放了一袋垃圾.(1)小明投放的垃圾恰好是A类的概率为;(2)求小亮投放的垃圾与小明投放的垃圾是同一类的概率.答案:(1)14(2)14分析:(1)直接利用概率公式求出小明投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.(1)解:∵垃圾要按A,B,C,D四类分别装袋,小明投放了一袋垃圾,∴小明投放的垃圾恰好是A类的概率为:14;所以答案是:14;(2)解:如图所示:由图可知,共有16种可能结果,其中小亮投放的垃圾与小明投放的垃圾是同一类的结果有4种,所以小亮投放的垃圾与小明投放的垃圾是同一类的概率为416=14.小提示:此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.18、一个不透明的口袋中装有6个红球,9个黄球,3个白球,这些球除颜色外其他均相同.从中任意摸出一个球,(1)求摸到的球是白球的概率,(2)如果要使摸到白球的概率为14,需要在这个口袋中再放入多少个白球?答案:(1)16(2)2分析:(1)直接利用概率公式求解即可;(2)根据绿球的概率公式得到相应的方程,求解即可.(1)解:根据题意分析可得:口袋中装有红球6个,黄球9个,白球3个,共18个球,故P(摸到白球)=318=16(2)设需要在这个口袋中再放入x个白球,得:3+x18+x =14,解得:x=2.经检验x=2符合题意,所以需要在这个口袋中再放入2个白球.小提示:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.。

九年级数学上册第二十五章概率初步知识点归纳总结(精华版)(带答案)

九年级数学上册第二十五章概率初步知识点归纳总结(精华版)(带答案)

九年级数学上册第二十五章概率初步知识点归纳总结(精华版)单选题1、七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为( )A .932B .516C .38D .716答案:C分析:首先设正方形的面积,再表示出阴影部分面积,然后可得概率.解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为12,则点取自黑色部分的概率为:1+124=38,故选C .小提示:此题主要考查了概率,关键是表示图形的面积和阴影部分面积.2、在一个不透明的口袋中,放置3个黄球,1个红球和n 个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则n 的值最可能是( )A .4B .5C .6D .7 答案:C分析:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近,再根据频率公式逐项判断即可.解:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近, 则n1+3+n =0.6,当n =4时,41+3+4=0.5≠0.6,故A 不符合题意; 当n =5时,51+3+5=59≠0.6,故B 不符合题意; 当n =6时,61+3+6=0.6,故C 符合题意; 当n =7时,71+3+7=711≠0.6,故D 不符合题意;∴n 的值最可能是6, 故选:C .小提示:本题考查频数与频率,能从图中获取到蓝球出现的频率稳定在0.6附近是解答的关键.3、如图,电路连接完好,且各元件工作正常.随机闭合开关S 1,S 2,S 3中的两个,能让两个小灯泡同时发光的概率为( )A .16B .12C .23D .13答案:D分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两个小灯泡同时发光的情况,再利用概率公式求解即可求得答案. 解:画树状图得:∵共有6种等可能的结果,能让两个小灯泡同时发光的有2种情况,∴能让两个小灯泡同时发光的概率为26=13;故选:D.小提示:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4、一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为()A.6B.14C.5D.20答案:B分析:根据白球的概率可估计红球的概率,即可求解.解:红球的个数为:20×(1−0.3)=14(个),故选:B.小提示:本题考查用频率估计概率,当进行大量重复试验时,频率稳定在概率附近.5、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个答案:C分析:小明共摸了100次,其中80次摸到白球,20次摸到黑球,摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.解:由题可得:3÷100−8080=12(个).所以答案是:12.小提示:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.6、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( ) A .12B .23C .16D .56答案:C分析:利用列表法或树状图即可解决.分别用r 、b 代表红色帽子、黑色帽子,用R 、B 、W 分别代表红色围巾、黑色围巾、白色围巾,列表如下:1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16. 故选:C .小提示:本题考查了简单事件的概率,常用列表法或画树状图来求解.7、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( ) A .ba+b B .ba C .aa+b D .ab 答案:A分析:根据概率公式直接求解即可. ∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是ba+b . 故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.8、如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .1 答案:A分析:根据阴影部分的面积所占比例得出概率即可. 解:由图知,阴影部分的面积占图案面积的38,即这个点取在阴影部分的概率是38,故选:A .小提示:本题主要考查几何概率的知识,熟练根据几何图形的面积得出概率是解题的关键. 9、如图,若随机向8×8正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .2564 答案:D分析:利用割补法求得阴影面积,再根据几何概率计算求值即可; 解:将上边和左边的弓形面积补到下边和右边可得阴影面积为5×5=25, 该图形总面积为8×8=64, ∴针尖落在阴影部分的概率=2564, 故选: D .小提示:本题考查了几何概率:事件的概率可以用部分线段的长度(部分区域的面积)和整条线段的长度(整个区域的面积)的比来表示.10、如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是( )A.1号B.2号C.3号D.4号答案:C分析:根据圆周角可得1区域的圆心角度数,然后计算各个区域的可能性,比较大小即可得.解:1区域的圆心角为:360°−50°−125°−65°=120°,∴落在1区域的可能性为:120°360°=13,落在2区域的可能性为:50°360°=536,落在3区域的可能性为:125°360°=2572,落在4区域的可能性为:65°360°=1372,∵536<1372<13<2572,∴落在3区域的可能性最大,故选:C.小提示:题目主要考查可能性的计算及大小比较,理解题意,掌握可能性的计算方法是解题关键.填空题11、一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.答案:0.32分析:由题意依据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进行分析即可.解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.所以答案是:0.32.小提示:本题考查利用频率估计概率,解答本题的关键是掌握频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12、如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.答案:13分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解:由题意可得,投掷在阴影区域的概率是:39=13.所以答案是:13.小提示:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.13、疫情期间,进入学校都要进入测温通道,体温正常才可进入学校.某校有3个测温通道,分别记为A,B,C通道.学生可随机选取其中的一个通道测温进校园,某日早晨,小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是_____________.答案:23分析:画树状图展示所有9种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.画树状图为:共有9种等可能的情况,其中小王和小李从不同通道测温进校园的有6种情况,侧小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是69=23,所以答案是:23.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.14、小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上和一个反面向上,则小亮赢;若出现一个正面向上和两个反面向上,则小文赢.有下列说法:①小强赢的概率最小;②小文和小亮赢的概率相等;③小文赢的概率是38;④这是一个公平的游戏.其中,正确的是__________(填序号). 答案:①②③分析:利用树状图得出三人分别赢得概率,然后依次判断即可. 解:画树状图得:所以共有8种可能的情况.三个正面向上或三个反面向上的情况有2种,所以P (小强赢)=28=14;出现2个正面向上一个反面向上的情况有3种,所以P (小亮赢)=38;出现一个正面向上2个反面向上的情况有3种,,所以P (小文赢)=38, ∵14<38,∴小强赢的概率最小,①正确; 小亮和小文赢的概率均为38,②正确; 小文赢的概率为38,③正确;三个人赢的概率不一样,这个游戏不公平,④错误; 所以答案是:①②③.小提示:题目主要考查利用树状图求概率,熟练掌握运用树状图求概率的方法是解题关键.15、有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_________. 答案:13分析:根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.解:根据题意列表如下:3种情况, 所以P (抽取的两张卡片上的字母相同)=39=13.小提示:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 解答题16、寒冬战疫,西安常安,感谢每一位为这座城拼命的人!一个不透明的口袋里装有分别标有汉字“西”、“安”、“常”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一球,球上的汉字刚好是“安”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图或列表法,求出甲取出的两个球上的汉字恰能组成“西安”的概率。

九年级数学上册第二十五章概率初步基础过关单元测试卷含解析新版新人教版

九年级数学上册第二十五章概率初步基础过关单元测试卷含解析新版新人教版

第二十五章概率初步(基础过关)考试时间:120分钟一、选择题(每小题3分,共36分)1、下列说法正确的是().A.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次B.天气预报“明天降水概率10%,是指明天有10%的时间会下雨”C.一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【答案】D【分析】根据概率的意义对各选项进行逐一分析即可.【解析】A、投掷一枚质地均匀的硬币1000次,正面朝上的次数不一定是500次,故A错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故B错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故C错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故D正确.故选:D.【点睛】本题考查的是概率的意义,熟知一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.2、小明和同学做“抛掷质地均匀的硬币试验”获得的数据如下表抛掷次数100 200 300 400 500正面朝上的频数53 98 156 202 249若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.200 B.300 C.400 D.500【答案】D【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解析】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:D.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中频率可以估计概率,难度不大.3、某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数100 200 300 500 800 1000 2000频率0.365 0.328 0.330 0.334 0.336 0.332 0.333 A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率【答案】B【分析】根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.【解析】A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D、抛一枚硬币,出现反面的概率为12,不符合题意,故选B.【考点】利用频率估计概率【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.4、将100个数据分成①~⑧组,如下表所示:那么第④组的频率为()A.24 B.26 C.0.24 D.0.26【答案】C.【解析】根据表格中的数据,得:第4组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.故选C.【考点】1.频数与频率;2.图表型.5、在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.116B.316C.14D.516【答案】C【解析】画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号相同的有4种情况,∴两次摸出的小球的标号相同的概率是:41=164.【考点】两步事件放回;用树状图或列举法求概率.6、如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F 在边CD上,向平行四边形ABCD内部投掷飞镖(每次均落在平行四边形ABCD内,且落在平行四边形ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.12B.13C.14D.18【答案】C.【解析】∵四边形ABCD为平行四边形,∴△OEH和△OFG关于点O中心对称,∴S△OEH=S△OFG,∴S阴影部分=S△AOB=14S平行四边形ABCD,∴飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率=ABCDSS阴影部分平行四边形=14.故选C.【考点】1.几何概率;2.平行四边形的性质.7、下列说法正确的是( )A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个六边形,它的内角和等于540︒”是必然事件D.从1,2,3,4中任取2个不同的数,分别记为a和b,那么2219a b+>的概率是1 3【答案】D【分析】根据必然事件、不可能事件、随机事件以及画出树状图求概率即可解答.【解析】A. “购买1张彩票就中奖”是随机事件,故选项A不满足题意;B. “概率为0.0001的事件”是随机事件,故选项B不满足题意;C. 任意画一个六边形,它的内角和等于720°,则任意画一个六边形的内角和等于540︒是不可能事件,故选项C不满足题意;D.根据题意画出树状图如下:∴共有12种等可能的结果,任取两个不同的数,a2+b2>19的有4种结果∴a2+b2 > 19的概率是41123=,故选项D满足题意.【点睛】本题考查了必然事件、不可能事件、随机事件以及画出树状图求概率,画出树状图求概率既是解答本题的关键,也是解答本题的难点.8、在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16 B.18 C.20 D.22【答案】A【解析】根据题意,通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,可知摸到盒子中黑色球的概率为1-45%-15%=40%,由此可求得盒子中黑色球的个数为40×40%=16.故选A .【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.由于通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,由此可以确定摸到盒子中黑色球的概率,然后就可以求出盒子中黑色球的个数.9、将一枚质地均匀的骰子连续投掷两次,记投掷两次的正面数字之和为S ,则下面关于事件S 发生的概率()P S 说法错误的是( ) A .(5)(9)P S P S === B .1(6)6P S ==C .5(8)36P S == D .15(7)36P S <=【答案】B【分析】用列表法或树状图法求出相应事件发生的概率,再进行判断即可. 【解析】投掷质地均匀的骰子两次,正面数字之和所有可能出现的结果如下:共有36种结果,其中和为5的有4种,和为9的有4种,和为6的有5种,和为8的有5种,和小于7的有15种,∴41(5)(9)369P S P S =====,因此选项A 不符合题意; 51(6)366P S ==≠,因此选项B 符合题意;5(8)36P S ==,因此选项C 不符合题意;15(7)36P S <=,因此选项D 不符合题意;故选:B . 【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,使用此方法一定要注意每一种结果出现的可能性是均等的,即为等可能事件.10、“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是A.13B.23C.19D.29【答案】A【解析】图书馆,博物馆,科技馆分别记为A、B、C,画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率=39=13.故选A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11、我国魏晋时期的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图,若2a=,3b=,现随机向该图形内掷一枚小针,则针尖落在阴影区域内的概率().A.25B.12C.13D.14【答案】B【分析】设小正方形的边长为x,根据已知条件得到AB=2+3=5,根据勾股定理列方程求得x=1,x=﹣6(不合题意舍去),根据三角形的面积公式即可得到结论.【解析】设小正方形的边长为x,∵a=2,b=3,∴AB=2+3=5,在Rt△ABC中,AC2+BC2=AB2,即(2+x)2+(x+3)2=52,解得:x=1,x=﹣6(不合题意舍去),∴S△ABC=×3×4=6,S阴影=×3×1×2=3,∴针尖落在阴影域内的概率=3162,故答案为:B【考点】1.几何概率;2.勾股定理.12.阅读对话,解答问题:分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(a,b)的所有取值中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率为().A.25B.14C.13D.12【答案】B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与在(a,b)的所有取值中使关于x的一元二次方程ax2﹣ax+2b=0有实数根的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:则共有12种等可能的结果,∵当a2﹣8b≥0时,关于x的一元二次方程x2﹣ax+2b=0有实数根,∴关于x的一元二次方程x2﹣ax+2b=0有实数根的有:(4,1),(4,2),(3,1),∴使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率为:.故答案为:B.二、填空题(每小题4分,共24分)13.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,圆O是Rt△ABC的外接圆,如果在圆O内随意抛一粒小麦,则小麦落在△ABC内的概率为.【答案】2425π.【分析】分别计算出△ABC和⊙O的面积,由小麦落在△ABC内的概率即两者的面积比可得答案.【解答】解:∵∠C=90°,AB=10,AC=8,∴BC===6,∴S△ABC=12AC•BC=12×6×8=24,∵S⊙O=π•(102)2=25π,∴小麦落在△ABC内的概率为ABCOSS∆圆=2425π,故答案为:2425π.【点评】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.14、某校在甲、乙两名同学中选拔一人参加襄阳广播电台举办“国学风,少年颂”襄阳首届少年儿童经典诵读大赛.在相同的测试条件下,两人3次测试成绩(单位:分)如下:甲:79,86,82;乙:88,79,90.从甲、乙两人3次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率是_______.【答案】4 9【解析】根据题意可知可抽到的结果为:79,88;79,79;79,90;86,88;86,79;86,90;82,88;82,79;82,90;共9种可能,符合都大于80的可能为4中,所以抽到两个人的成绩都大于80的概率为49.【点睛】此题主要考查了概率的求法,解题关键是根据列举或列树状图的方法得到所有出现的可能,从中确定符合条件的可能,然后根据概率的求法求解即可.15、在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是.【答案】6【分析】直接利用摸到黄色乒乓球的概率为38,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,∴该盒子中装有黄色乒乓球的个数是:16×38=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.16、同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17、如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【答案】5 13.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解析】如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:5 13.故答案为:5 13.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.18、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,则三辆汽车经过这个十字路口时,至少有两辆车向左转的概率为_______.【答案】7 27【分析】运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可.. 【解析】如图:三辆车经过十字路口的情况有27种,至少有两辆车向左转的情况数为7种,所以概率为:727.故答案为727.【点睛】本题考查的是运用树状图求概率的公式,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.三、解答题(共40分)19、(6分)在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n很大时,摸到白球的概率将会接近(精确到0.01),假如你摸一次,你摸到白球的概率为;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为, 需要往盒子里再放入多少个白球?【解析】(1)根据题意得:当n很大时,摸到白球的概率将会接近0.50;假如你摸一次,你摸到白球的概率为0.5;(2)40×0.5=20,40﹣20=20;答:盒子里白、黑两种颜色的球分别有20个、20个;(3)设需要往盒子里再放入x个白球;根据题意得:=,解得:x=10;答:需要往盒子里再放入10个白球.【考点】考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.20、(8分)光明中学为了解九年级女同学的体育考试准备情况,随机抽取部分女同学进行了800米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有400名女生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会800米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.请用列表或树状图求甲、乙两人恰好分在同一组的概率是多少?【答案】(1)见解析;(2)120;(3)见解析,1 3【分析】(1)利用良好的人数除以良好的人数所占的百分比可得抽查的人数,然后计算出合格的人数和合格人数所占百分比,再计算出优秀人数,然后画图即可;(2)计算出成绩未达到良好女生所占比例,再利用样本代表总体的方法得出答案;(3)直接利用树状图法求出所有可能,进而求出概率.【解析】(1)从图可以得到抽取到良好的有16人,所占百分比为:40%,∴抽取的学生数:16÷40%=40(人);∴抽取的学生中合格的人数:40﹣12﹣16﹣2=10,合格所占百分比:10÷40=25%, 优秀人数:12÷40=30%,如图所示:;(2)成绩未达到良好的女生所占比例为:25%+5%=30%,所以400名九年级女生中有400×30%=120(名);(3)如图:可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,所以甲、乙恰好分在同一组的概率为39=13.【点睛】本题主要考查了树状图法求概率以及扇形统计图和条形统计图的应用,由图形获取正确信息是解题关键.21、(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)【答案】(1)公平;(2)不公平.【分析】:(1)用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可;(2)用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.【解析】(1)甲同学的方案公平.理由如下:列表法,小刚小明2 3 4 52 (2,2)(2,3)(2,4)(2,5)3 (3,2)(3,3)(3,4)(3,5)4 (4,2)(4,3)(4,4)(4,5)5 (5,2)(5,3)(5,4)(5,5)所有可能出现的结果共有16种,其中抽出的牌面上的数字之和为偶数的有:8种,故小明获胜的概率为:12,则小刚获胜的概率为:12,故此游戏两人获胜的概率相同,即他们的游戏规则公平;(2)不公平.理由如下:所有可能出现的结果共有9种,其中抽出的牌面上的数字之和为偶数的有:5种,故小明获胜的概率为:59,则小刚获胜的概率为:49,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.【考点】1.游戏公平性;2.列表法与树状图法.22、(8分)钟南山院士在谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:80 85 90 95 90 95 90 65 75 10090 70 95 90 80 80 90 95 60 100乙小区:60 80 95 80 90 65 80 85 85 10080 95 90 80 90 70 80 90 75 100整理数据成绩x(分)小区6070x7080x<8090x<90100x<甲小区3476乙小区3764分析数据数据名称计量小区平均数中位数众数甲小区85.7590b乙小区83.5a80应用数据(1)填空:a= , b= ;(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;(3)社区管理人员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传新型冠状病毒肺炎防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.解:(1)填空:a= 82.5 , b= 90 ;(2)41200=24020⨯(人)(人),乙小区成绩大于90分的人数为240人(3)因为从试卷得分的平均数,中位数,众数来看都是甲小区的试卷分数大于乙小区的试卷分数所以甲小区的居民对新型冠状病毒肺炎防护知识掌握更好些。

人教版九年级上册数学第二十五章 概率的初步(含答案 )

人教版九年级上册数学第二十五章 概率的初步(含答案 )

第二十五章概率的初步一、单选题1.下列事件为必然事件的是()A.抛一枚硬币,正面朝上B.打开电视,正在播放动画片C.3个人分成两组,每组至少1人,一定有2个人分在同一组D.随意掷两个均匀的骰子,上面的点数之和为62.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球3.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖4.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.12B.13C.310D.155.下列事件是随机事件的为 ( )A.一个图形旋转后所得的图形与原来的图形不全等B.元旦是晴天C.y=(a²+1)x²+bx+c(a,b,c是常数)是二次函数D.在圆中任意画一个圆内接四边形,对角互补6.“我的梦,中国梦”这句话六个字中,“梦”字出现的频率是()A.12B.13C.14D.167.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.15B.14C.13D.128.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.19.掷一枚质地均匀的骰子,骰子停止后,出现可能性大的是()A.大于的点数B.小于的点数C.大于的点数D.小于的点数10.下面四个实验中,实验结果概率最小的是( )A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3,4,6,8,9,将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率11.把一个球任意投人A、B、C、D四个盒子内,则A号盒子无球的概率是()A.1B.C.D.12.小鸡孵化场孵化出只小鸡,在只上做记号,再放入鸡群中让其充分跑散,再任意抓出只,其中左右记号的大约是()A.只B.只C.只D.只二、填空题13.一个不透明的布袋中只装有红球和白球两种球,它们除颜色外其余均相同.若白球有9个,摸到白球的概率为0.75,则红球的个数是_____.14.从﹣3,﹣l,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是____________. 15.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n)个图中随机取出一个球,是黑球的概率是____________.16.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.三、解答题17.如图,现有一个可以自由转动的转盘,盘面被平均分成6等份,分别标有2,3,4,5,6,7这六个数字.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).(1)转出数字10是________(填“随机事件”“必然事件”“不可能事件”中的一个);(2)转出的数字大于3的概率是_________;(3)现有两张分别写有3和4的卡片,随机转动转盘,转盘停止后记下转出的数字,该数字与两张卡片上的数字分别作为三条线段的长度.①这三条线段以有构成三角形的概率是___________;②这三条线段能构成等腰三角形的概率是_____________.18.丹尼斯超市举行有奖促销活动:顾客凡一次性购买满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被等分成16个扇形,如果转盘停止后,指针正好对准红黄或蓝色区域,顾客就可以分别获得一、二、三等奖奖金依次为60元、50元、40元一次性购物满300元者,如果不摇奖可返还奖金15元.(1)摇奖一次,获一等奖、二等奖、三等奖的概率分别是多少?(2)小李一次性购物满300元他是参与摇奖划算,还是领15元现金划算?请你帮他算算19.某校随机选取了1000名学生,对他们喜欢的运动项目进行调查,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计该校学生同时喜欢短跑和跳绳的概率;(2)估计该校学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;20.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.21.阳春三月,龙泉驿区的桃花又开了,小明乘坐地铁到龙泉看桃花,计划在龙平路地铁口下车,如图是龙平路地铁口的平面图,其有A、B、C、D四个出入口,小明任选一个出口下车出站,赏花结束后,任选一个入口入站乘车.(1)小明从出站到入站共有多少种可能的结果?请用树形图或列表说明;(2)求出小明从龙平路同一侧出入站的概率答案1.C 2.B3.A 4.A 5.B 6.B 7.C 8.A 9.D 10.C 11.C 12.A 13.314.2 515.16.2017.解:(1)转到数字10是不可能事件,故答案为:不可能事件;(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,∴转出的数字大于3的概率是42 = 63故答案为:23;(3)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,∴这三条线段能构成三角形的概率是56;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,∴这三条线段能构成等腰三角形的概率是21=63.18.(1)整个圆周被分成了16份,红色为1份,黄色为2份,蓝色为4份,所以获得-等奖的概率为116,二等奖概率为2=1618,三等奖概率为416=14.(2)转转盘:118160504020146⨯+⨯+⨯=(元),20元15>元,∴转转盘划算.19.(1)同时喜欢短跑和跳绳的概率为:1503 100020=;(2)同时喜欢三个项目的概率为:2001507 100020+=.20.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率21 42 ==;故答案为12;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率82 123 ==.21.解:(1)画树状图如下:小明从出站到入站共有16种可能的结果.(2)∵小明从龙平路同一侧出入站的有8种等可能结果, ∴小明从龙平路同一侧出入站的概率为.。

精品解析:人教版2019届九年级数学上 第二十五章概率初步(解析版)

精品解析:人教版2019届九年级数学上  第二十五章概率初步(解析版)

第二十五章检测试题一、选择题1. 指出下列事件中是随机事件的个数()①投掷一枚硬币正面朝上;②明天太阳从东方升起;③五边形的内角和是560°;④购买一张彩票中奖.A. 0B. 1C. 2D. 3【答案】C【解析】解:掷一枚硬币正面朝上是随机事件;明天太阳从东方升起是必然事件;五边形的内角和是560°是不可能事件;购买一张彩票中奖是随机事件;所以随机事件是2个.故选C.2. 如图中任意画一个点,落在黑色区域的概率是()A. 1B.12C. πD. 50【答案】B【解析】【分析】抓住黑白面积相等,根据概率公式可求出概率. 【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是1 2 .故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.3. 某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号,7号题,第3位选手抽中8号题的概率是()A. 17B.18C.19D.110【答案】B 【解析】【分析】先求出题的总号数及8号的个数,再根据概率公式解答即可.【详解】前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为18.故选B【点睛】考查概率的求法,关键是真正理解概率的意义,正确认识到本题是八选一的问题,不受前面叙述的影响.4. 一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A. 袋子一定有三个白球B. 袋子中白球占小球总数的十分之三C. 再摸三次球,一定有一次是白球D. 再摸1000次,摸出白球的次数会接近330次【答案】D【解析】【分析】观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一常数附近,可以用此常数表示白球出现的概率,从而确定正确的选项.【详解】∵观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一33%附近,∴白球出现的概率为33%,∴再摸1000次,摸出白球的次数会接近330次,正确,其他错误,故选D.【点睛】本题考查了利用频率估计概率的知识,观察随着实验次数的增多而逐渐稳定在某个常数附近即可.5. 有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是().A 12B.13C.23D.14【答案】D【解析】试题分析:根据三角形的三边关系求出共有几种情况,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵长度为2cm、3cm、4cm、7cm的四条线段,从中任取三条线段共有2.3.4,2.3.7,3.4.7,2.4.7四种情况,而能组成三角形的有2、3、4;共有1种情况,所以能组成三角形的概率是14.故选D.考点:列表法与树状图法;三角形三边关系.6. 经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,那么经过这个十字路口的两辆汽车一辆左转、一辆右转的概率是( )A. 47B.49C.29D.19【答案】C【解析】画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果;两辆汽车一辆左转,一辆右转的结果有2种,且所有结果的可能性相等,∴P(两辆汽车一辆左转,一辆右转)= 2 9 .故选C.7. 红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A. 红红不是胜就是输,所以红红胜的概率为B. 红红胜或娜娜胜的概率相等C. 两人出相同手势的概率为D. 娜娜胜的概率和两人出相同手势的概率一样【答案】A【解析】试题解析:红红和娜娜玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:红红石头剪刀布娜娜石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,故选项B,C,D不合题意;故选A.考点:1.列表法与树状图法;2.命题与定理.8. 某商店为吸引顾客设计了促销活动:在一不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客一次性消费满400元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),某顾客刚好消费400元,则该顾客获得的金额不低于30元的概率是()A. 13B.12C.23D.34【答案】C【解析】【分析】列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.【详解】解:列表:第二次第一次0 10 20 300 -- 10 20 3010 10 -- 30 4020 20 30 -- 5030 30 40 50 --从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=23.故选C【点睛】本题主要考查用列表法或树状图求概率.解决本题的关键是弄清题意,满400元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题9. 下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必然事件是,不可能事件是.(将事件的序号填上即可)【答案】④;③;【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别,即可解答.试题解析:这4个事件中,必然事件是④;不可能事件是③;考点:随机事件.10. 在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000摸出黑球次数46 487 2506 5008 24996 50007根据列表,可以估计出n的值是.【答案】10【解析】试题分析:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,∴5n=0.5,解得:n=10.考点:模拟实验.11. 同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是___.【答案】.【解析】试题分析:画树状图得得:由树状图可知所有可能情况有8种,其中两枚正面向上,一枚正面向下的情况数为3种,所以两枚正面向上,一枚正面向下的概率=.考点:列表法与树状图法.12. 如图,在2×3的正方形网格格点上有两点A,B,在其他格点上随机取一点记为C,能使以A,B,C三点为顶点的三角形是等腰三角形的概率为__.【答案】25. 【解析】 【分析】首先找出可以组成的所有三角形的个数,然后再看其中的等腰三角形的个数,由此可得到所求的概率. 【详解】解:∵在格点上随机取一点记为C ,以A 、B 、C 三点为顶点的三角形有4×3-2=10个,其中等腰三角形有4个(图中所示),∴以A 、B 、C 三点为顶点的三角形是等腰三角形的概率为:42105=.故答案为25【点睛】本题考查了概率公式:概率=所求情况数与总情况数之比.同时考查了等腰三角形的判定. 13. 小王与小陈两个玩掷骰子游戏,如果小王掷出的点数是偶数,则小王获胜,如果掷出的点数是3的倍数,则小陈获胜,那么这个游戏__(填“公平”或“不公平”) 【答案】不公平. 【解析】 【分析】首先根据题意,可求得小王与小陈获胜的概率,比较概率的大小,即可得这个游戏是否公平. 【详解】解:∵骰子的点数分别为:1,2,3,4,5,6, ∴点数是偶数有:2,4,6;掷出的点数是3的倍数的有3,6; ∴P(小王获胜)=3162=,P (小陈获胜)=2163=, ∴P(小王获胜)≠P(小陈获胜), ∴这个游戏不公平. 故答案为不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.14. 从﹣2,﹣1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b 的系数k ,b ,则一次函数y=kx+b的图象不经过第四象限的概率是.【答案】1 6【解析】【分析】【详解】画树状图得:∵共有12种等可能的结果,一次函数y=kx+b的图象不经过第四象限的有:(1,2),(2,1),∴一次函数y=kx+b的图象不经过第四象限的概率为:212=16.三、解答题15. 某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率估计值为;(2)该地区已经移植这种树苗4万棵.①求这种树苗成活的大约棵数;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?【答案】(1)0.9;(2)3.6,16.【解析】【分析】(1)由图可知,成活概率在0.9上下波动,故可估计这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9;(2)4×成活率即为所求的成活的树苗棵树;(3)利用成活率求得需要树苗棵树,减去已移植树苗数即为所求的树苗的棵树.【详解】解:(1)这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9.(2)①估计这种树苗成活4×0.9=3.6(万棵);②18÷0.9-4=16(万棵).所以该地区需移植这种树苗约16万棵.故答案为(1)0.9;(2)3.6,16. 【点睛】本题考核知识点:用频率估计概率.解题关键点:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.16. 如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件“两次操作过程中,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.【答案】5 9 .【解析】【分析】根据题意列出所有情况,求出满足条件的情况,用概率公式可求出概率. 【详解】解:画树状图如图,所有可能出现的结果共有9种,其中满足条件的结果有5种.所以P(所指的两数的绝对值相等)=5 9 .【点睛】本题考核知识点:用列举法求概率.解题关键点:列出所有情况,熟记概率公式.17. 从﹣2,1,3这三个数中任取两个不同的数,作为点的坐标.(1)写出该点所有可能的坐标____________;(2)求该点在第一象限的概率_____________.【答案】(1)所有可能的坐标为(1,3)、(1,﹣2)、(3,1)、(3,﹣2)、(﹣2,1)、(﹣2,3);(2)49.【解析】【分析】(1)列表表示出该点所有可能的坐标;(2)根据概率公式求解即可.【详解】(1)列表如图:(2)由表可知该点在第一象限的概率为4 9 .【点睛】考点:树状图或列表求概率18. 在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共4只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.如表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01);(2)试估算口袋中白种颜色的球有多少只?(3)请根据估算的结果思考从口袋中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?画出树状图(或列表)表示所有可能的结果,并计算概率.【答案】(1)0.25;(2)1;(3)1 2 .【解析】【分析】(1)由频率可估计概率,继而求得答案;(2)首先可求得摸出白球的概率,然后直接利用概率公式求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两只球颜色不同的情况,再利用概率公式即可求得答案.【详解】解:(1)当n很大时,摸到白球的频率将会接近0.25.(2)因为不透明的口袋里的球共4只,且白球的概率约为0.25,所以估算口袋中白种颜色的球有:4×0.25=1(只).(3)画树状图如下:由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相同,两只球颜色不同的结果有6种,所以两只球颜色不同的概率为P=612=12.【点睛】此题考查了列表法或树状图法求概率以及利用频率估计概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.19. 如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).【答案】(1)34.(2)公平.【解析】【分析】【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.20. 某班在元旦游戏活动中,有一个摸奖游戏,规则如下:不透明的盒子内有4个除颜色外完全相同的球,其中有2个红球,2个白球,摇匀后让同学们去盒子内摸球,摸到红球的就获奖,摸到白球的不获奖.(1)现小颖有一次摸球机会,她从盒子中随机摸出1个球,求小颖获奖的概率;(2)如果小颖、小明都有两次摸球的机会,小颖先摸出1个球,放回后再摸出1个球;小明同时摸出2个球;他们摸出的2个球中只要有红球就获奖,他们获奖的机会相等吗?请用树状图(或列表)的方法说明理由.【答案】(1)12;(2)机会不相等.【解析】【分析】(1)直接利用概率公式求解;(2)对于小颖先摸出1个球,放回后再摸出1个球可画树状图展示所有16种等可能的结果数,找出两个球中有红球的结果数,利用概率公式可计算出小颖获奖的概率=34;对于小明同时摸出2个球,画树状图展示所有12种等可能的结果数,再找出两个球中有红球的结果数为,利用概率公式计算出小颖获奖的概率,然后比较两概率的大小即可判断他们获奖的机会是否相等.【详解】解:(1)小颖获奖的概率为P1=222+=12.(2)小颖先摸出1个球,放回后再摸出1个球,画树状图如图,共有16种等可能的结果数,其中两个球中有红球的结果数为12,所以小颖获奖的概率为P2=1216=34.小明同时摸出2个球,画树状图如图,共有12种等可能的结果数,其中两个球中有红球的结果数为10,所以小颖获奖的概率为P3=1012=56,而34≠56,所以他们获奖的机会不相等.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21. 我市长途客运站每天6:307:30-开往某县的三辆班车,票价相同,但车的舒适程度不同.小张和小王因事需在这一时段乘车去该县,但不知道三辆车开来的顺序.两人采用不同的乘车方案:小张无论如何决定乘坐开来的第一辆车,而小王则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,请你思考并回答下列问题:(1)三辆车按出现的先后顺序共有哪几种可能?(2)请列表分析哪种方案乘坐优等车的可能性大?为什么?【答案】(1)共6种可能;(2)乘坐优等车的可能性大.【解析】试题分析:(1)采用列举法比较简单,但是解题时要注意做到不重不漏;(2)考查了学生对表格的分析能力,解题的关键是理解题意,列得适宜的表格.试题解析:(1)三辆车按开来的先后顺序有:优、中、差;优、差、中;中、优、差;中、差、优;差、优、中;差、中、优,共6种可能.(2)根据三辆车开来的先后顺序,小张和小王乘车所有可能的情况如下表:顺序优,中,差优,差,中中,优,差中,差,优差,优,中差,中,优小张优优中中差差小王差中优优优中由表格可知:小张乘坐优等车的概率是13,而小王乘坐优等车的概率是12.所以小王的乘车方案乘坐优等车的可能性大.22. 小南、小铭和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层楼出电梯.(1)用列表或画树状图求出甲、乙两人在同一层楼出电梯的概率;(2)小南和小铭比赛,规则是:若甲、乙在同一层或相邻楼层出电梯,则小南胜,否则小铭胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.【答案】(1)14;(2)修改规则:若甲、乙在同一层或相邻楼层出电梯,则小南得3分,否则小铭得5分.【解析】【分析】(1)根据题意列表,求出所以情况,则P(甲、乙在同一层楼出电梯)=416=14.(2)分别求出P(小南胜)=P(同层或相邻楼层出电梯)=1016=58,P(小铭胜)=1-58=38,修改规则,使概率相等就算公平.【详解】解:(1)列表如下:甲乙1 2 3 41 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3)一共出现16种等可能结果,其中出现在同一层楼出电梯的有4种结果,则P(甲、乙在同一层楼出电梯)=416=14.(2)由(1)可知,甲、乙在同一层或相邻楼层的有10种结果,故P(小南胜)=P(同层或相邻楼层出电梯)=1016=58,P(小铭胜)=1-58=38,因为58>38,所以游戏不公平,修改规则:若甲、乙在同一层或相邻楼层出电梯,则小南得3分,否则小铭得5分.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.。

人教版九年级上册数学第二十五章 概率初步 含答案

人教版九年级上册数学第二十五章 概率初步 含答案

人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.2、小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.3、下列事件为必然事件的是()A.如果a,b是实数,那么a•b=b•aB.抛掷一枚均匀的硬币,落地后正面朝上C.汽车行驶到交通岗遇到绿色的信号灯D. 口袋中装有3个红球,从中随机摸出一球,这个球的白球4、定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“967”就是一个“V数”.若十位上的数字为4,则从3,5,7,9中任选两数,能与4组成“V数”的概率是()A. B. C. D.5、如果小明将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为A. B. C. D.6、下列说法正确的是()A.25人中至少有3人的出生月份相同B.任意抛掷一枚均匀的1元硬币,若上一次正面朝上,则下一次一定反面朝上C.天气预报说明天降雨的概率为10%,则明天一定是晴天D.任意抛掷一枚均匀的骰子,掷出的点数小于3的概率是7、如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.8、下列事件中,属于随机事件的有( ) .①下周六下雨②在只装有5个红球的袋中摸出1个球,是红球③买一张电影票,座位号是偶数④掷一次骰子,向上的一面是8A.1个B.2个C.3个D.4个9、小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是()A. B. C. D.10、如图,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A. B. C. D.11、从一副扑g牌中任意抽出一张,以下四种牌中抽到可能性较大的是()A.大王B.红色图案C.梅花D.老K12、在如图的地板行走,随意停下来时,站在黑色地板上的概率是()A. B. C. D.13、下列说法正确的是()A.“明天降雨的概率是75%”表示明天有75%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有1次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在左右D.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖14、“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是()A. B. C. D.15、如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有奇数所在区域的概率为P(奇数),则P(奇数)等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.17、向上抛掷两枚硬币,落地后一枚正面朝上,别一枚反面朝上的概率是________.18、在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为它是黄球的概率的0.5,则n=________.19、同时投掷两个骰子,它们点数之和不大于4的概率是________.20、不透明的盒中装着大小、外形、质地一样的红色、黑色、白色的乒乓球共20个,通过多次摸球实验后发现其中摸到红色、黑色球的概率稳定在5%和15%,则盒子中白色球的个数很可能是________个.21、用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是________.22、如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是________.23、一只蚂蚁在如图所示的树枝上寻觅食物,蚂蚁从点A出发,在每个岔路口都会随机地选择一条路径,则它获得食物的概率是________ .24、如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为________.25、用1,2,3三个数字排成一个三位数,则排出的数是偶数的概率是________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、请你设计一个转盘,使得自由转动这个转盘,转盘停止后,指针落在1号区域的概率为,落在2号区域的概率为,落在3号区域的概率.28、n是一个两位正数,若n的个位数字小于十位数字,则称n为“两位递减数”(如21,73,42).从数字1,2,4,5中随机抽取2个数字组成一个两位数,用画树状图(或列表)的方法,求这个两位数是“两位递减数”的概率.29、小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?30、小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:求出封闭图形ABC的面积.掷石子次数石子落在的区域50次150次300次石子落在⊙O内(含⊙O上)的次数m 14 43 93 石子落在阴影内的次数n 19 85 186参考答案一、单选题(共15题,共计45分)2、C3、A4、D5、B6、A7、B8、B9、C10、B11、B12、A13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

人教版九年级数学上册《第二十五章概率初步》测试卷-附带答案

人教版九年级数学上册《第二十五章概率初步》测试卷-附带答案

人教版九年级数学上册《第二十五章概率初步》测试卷-附带答案一、单选题1.下列事件是必然事件的是()A.明年杨家坪房价一定下降B.两个负数相乘结果是正数C.九龙坡区明天一定会下雪D.小明努力学习这次数学考试一定得满分2.在1000张奖券中有1个一等奖 4个二等奖 15个三等奖. 从中任意抽取1张获奖的概率为()A.B.C.D.3.掷两枚普通正六面体骰子所得点数之和为11的概率为( )A.B.C.D.4.甲从标有1 2 3 4的4张卡片中任抽1张然后放回.乙再在4张卡片中任抽1张两人抽到的标号的和是2的倍数的(包括2)概率是()A.B.C.D.5.如图电路图上有四个开关A、B、C、D和一个小灯泡闭合开关D或同时闭合开关A、B、C都可使小灯泡发光则任意闭合其中两个开关小灯泡发光的概率是()A.B.C.D.6.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只某学习小组作摸球实验将球搅匀后从中随机摸出一个球记下颜色再把它放回袋中不断重复下表示活动进行中的一组统计数据:请估算口袋中白球约是()只.A.8 B.9 C.12 D.137.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同)其中白球有2个黄球有1个篮球有3个第一次任意摸出一个球(不放回)第二次再摸出一个球请用树状图或列表法则两次摸到的都是白球的概率为()A.B.C.D.8.一个盒子中有个红球、8个白球、个黑球每个球除颜色外其他都相同.从中任取一个球如果取得的球是白球的概率与不是白球的概率相同那么与的关系是().A.B.C.D.二、填空题9.从这个数中任取两个数作为点的坐标则点在第四象限的概率是.10.十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7 则从4 5 6 9中任选两数与7组成“中高数”的概率是.11.现有三张正面分别标有数字的卡片它们除数字不同外其余完全相同将卡片背面朝上洗匀后从中随机抽取一张将卡片上的数字记为放回洗匀后再随机抽取一张将卡片上的数字记为则满足为偶数的概率为.12.有5张正面分别标有数字-2 0 2 4 6的不透明卡片它们除数不同外其余全部相同先将它们背面朝上洗匀后从中任取一张将该卡片上的数字记为则使关于不等式组有实数解的概率为13.如图所示小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分阴影部分是黑色石子小华随意向其内部抛一个小球则小球落在黑色石子区域内的概率是.三、解答题14.某医院计划选派护士支援某地的防疫工作甲、乙、丙、丁4名护士积极报名参加其中甲是共青团员其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)随机抽取1人甲恰好被抽中的概率是(2)若需从这4名护士中随机抽取2人请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.15.一个袋子中装有5个白球和若干个红球(袋中每个球除颜色外其余都相同).某活动小组想估计袋子中红球的个数分20个组进行摸球试验.每一组做400次试验汇总后摸到红球的次数为60000次.(1)估计从袋中任意摸出一个球恰好是红球的概率.(2)请你估计袋中红球接近多少个.16.小源的父母决定中考之后带她去旅游初步商量有意向的四个景点分别为:A.明月山 B.庐山 C.婺源 D.三清山.由于受到时间限制只能选两个景点于是小源的父母决定通过抽签选择用四张小纸条分别写上四个景点做成四个签(外表无任何不同)让小源随机抽两次每次抽一个签每个签抽到的机会相等.(1)小源最希望去婺源则小源第一次恰好抽到婺源的概率是多少(2)除婺源外小源还希望去明月山求小源抽到婺源、明月山两个景点中至少一个的概率是多少.(通过“画树状图”或“列表”进行分析)17.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张记好花色和数字后将牌放回重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率(2)当甲选择x为奇数乙选择x为偶数时他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)18.小强和小兵两位同学设计了一个游戏:将三张正面分别写有数-2 -1 1的卡片背面朝上洗匀.从中任意抽取一张以其正E面的数作为x的值.放回卡片.洗匀再从中任意抽取一张以其正面的数为y值两次结果记为(x y).(1)(x y)所有可能出现的结果有种.(2)游戏规定:若点(x y)使分式有意义则小强获胜若(x y)使分式无意义则小兵获胜.你认为这个游戏规则是否公平?为什么?参考答案:1.B2.B3.A4.A5.A6.C7.A8.D9.10.11.12.13.14.(1)(2)解:如图共有:团党、团党、团党、党团、党党、党党、党团、党党、党党、党团、党党、党党十二种可能所以两名护士都是党员的概率为:.答:随机抽取2人被抽到的两名护士恰好都是党员的概率为15.(1)解:∵20×400=8000∴摸到红球的概率为:因为试验次数很大大量试验时频率接近于理论概率所以估计从袋中任意摸出一个球恰好是红球的概率是0.75(2)解:设袋中红球有x个根据题意得:解得x=15经检验x=15是原方程的解.∴估计袋中红球接近15个.16.(1)解:∵有意向的四个景点分别为:A.明月山 B.庐山 C.婺源 D.三清山∴小源第一次恰好抽到婺源的概率是:(2)解:画树状图得:∵共有12种等可能的结果小源抽到婺源、明月山两个景点中至少一个的情况数有10种∴小源抽到婺源、明月山两个景点中至少一个的概率= =17.(1)解:如图所有可能的结果有9种两次抽得相同花色的可能性有5种∴P(相同花色)=∴两次抽得相同花色的概率为:(2)解:他们两次抽得的数字和是奇数的可能性大小一样∵x为奇数两次抽得的数字和是奇数的可能性有4种∴P(甲)=∵x为偶数两次抽得的数字和是奇数的可能性有4种∴P(乙)=∴P(甲)=P(乙)∴他们两次抽得的数字和是奇数的可能性大小一样.18.(1)9(2)解:不公平理由如下:∵∴当x+y=0或x-y=0时分式没有意义其他情况分式有意义∴使分式有意义的情况数有:(-2 -1) (-2 1) (-1 -2) (1 -2)四种∴P(小强获胜)=∵使分式无意义的情况数有:(-2 -2) (-1 -1) (1 1) (1 -1) (-1 1)五种∴P(小兵获胜)=∵∴这个游戏规则不公平。

人教版初中九年级数学上册第二十五章《概率初步》知识点复习(含答案解析)(1)

人教版初中九年级数学上册第二十五章《概率初步》知识点复习(含答案解析)(1)

一、选择题1.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.25个C.35个D.45个2.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球3.下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生4.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A.15B.310C.13D.125.下列事件中,属于必然事件的是()A.深圳明天会下大暴雨B.打开电视机,正好在播足球比赛C.在13个人中,一定有两个人在同月出生D.小明这次数学期末考试得分是80分6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件7.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.415B.15C.13D.2158.设口袋中有5个完全相同的小球,它们的标号分别为1,2,3,4,5.现从中随机摸出(同时摸出)两个小球并记下标号,则标号之和大于5的概率是()A.310B.35C.45D.7109.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (,x y ),那么他们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A .118B .112C .19D .1610.同时抛掷完全相同的,A B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),两个立方体朝上的数字分别为,x y ,并以此确定(,)P x y ,那么点P 落在函数29y x =-+上的概率为( ) A .118B .112C .19D .1611.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是( )A .12B .14C .34D .112.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为( )A .37B .314C .326D .11213.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A ,从乙袋中摸出红球记为事件B ,则 A .P (A )>P (B ) B .P (A )<P (B )C .P (A )=P (B )D .无法确定14.从等腰三角形、平行四边形、菱形、角、线段中随机抽取两个,得到的都是中心对称图形的概率是( ) A .15B .25C .310D .4515.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a ,b 为实数,那么a +b =b +a .其中是必然事件的有( ) A .1个B .2个C .3个D .4个二、填空题16.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球, 若摸到白球的概率为57,则盒子中原有的白球的个数为_________个. 17.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01) 每批粒数n 800 10001200 1400 1600 1800 2000发芽的频数m 76294811421331151817101902发芽的频率mn0.953 0.948 0.952 0.951 0.949 0.950 0.95118.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P 的横坐标x ,放回然后再随机取出一个小球,记下球上的数字,作为点P 的纵坐标y .则点P 在以原点为圆心,5为半径的圆上的概率为_____.19.从2,-18,5中任取两个不同的数分别作为点的横纵坐标,点在第二象限的概率为___. 20.从122,,23-,三个数中,任取一个数记为k ,再从余下的两个数中,任取一个数记为b .则 一次函数y kx b =+的图象不经过第四象限的概率是___________21.在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只试估算口袋中再加入黑球______只,才能使摸出黑球的概率是13? 22.从112-,两个数中随机选取一个数记为,a 再从301-,,三个数中随机选取一个数记为b ,则a b 、的取值使得直线y ax b =+不过第二象限的概率是______.23.已知抛物线的解析式为21y ax bx =++,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a 、b 的值,则抛物线21y ax bx =++与x 轴有两个交点的概率是_____.24.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=5,BE=3,若向正方形ABCD 内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为__________.25.一只小鸟自由自在在空中飞翔,然后随意落在下图中,则落在阴影部分的概率是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教材过关二十五 概率初步一、填空题1. 五张标有1、2、3、4、5的卡片,除数字外,其他没有任何区别.现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是________________.2.连掷一枚均匀的骰子五次都没有得到6点,第六次得到6点的概率是________________.3.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是________________.4.小华买了一套科普读物,有上、中、下三册,要整齐地摆放在一层书架上,其中恰好摆成“上、中、下”顺序的概率是________________.5.某学校的初一(1)班,有男生20人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:①抽到一名男生的概率是________________;②抽到一名住宿男生的概率是________________g ;③抽到一名走读女生的概率是________________.6.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为________________________;爸爸击中靶心8次,则他击不中靶心的概率为___________________. 二、选择题7.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 A.41 B.21 C.43D.1 8.下列事件中是必然事件的是 A.打开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.从一定高度落下的图钉,落地后钉尖朝上D.我走出校门,看到的第一辆汽车的牌照的末位数字是偶数 9.下列说法正确的是A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生10.冰柜里有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是 A.325 B.83 C.3215 D.3217三、解答题11.(2010四川遂宁中考)将分别标有数学2,3,5的三张质地,大小完全一样的卡片背面朝上放在桌面上,(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并求出抽取到的两位数恰好是35的概率.12.如图9-19,某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学用10万元购买甲、乙两种品牌电脑共36台(价格如图所示),其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?图9-1913.一对骰子,如果掷两骰子正面点数和为2、11、12,那么甲赢;如果两骰子正面的点数和为7,那么乙赢;如果两骰子正面的点数和为其他数,那么甲、乙都不赢.继续下去,直到有一个人赢为止.(1)你认为游戏是否公平?并解释原因;(2)如果你认为游戏公平,那么请你设计一个不公平的游戏;如果你认为游戏不公平,那么请你设计一个公平的游戏.14.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这个池塘中鱼的重量.教材过关二十五 概率初步一、填空题1. 五张标有1、2、3、4、5的卡片,除数字外,其他没有任何区别.现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是________________. 答案:52 提示:摸到5种卡片的可能结果是5种,摸到偶数的可能性是2种.2.连掷一枚均匀的骰子五次都没有得到6点,第六次得到6点的概率是________________. 答案:61 提示:第6次掷骰子依然是一个随机事件,点数朝上的概率没有发生变化.3.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是________________. 答案:31 提示:结果有12种,其中白色球有4种情况,则124=31. 4.小华买了一套科普读物,有上、中、下三册,要整齐地摆放在一层书架上,其中恰好摆成“上、中、下”顺序的概率是________________. 答案:61 解析:上、中、下的全排列有6种情况.5.某学校的初一(1)班,有男生20人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:①抽到一名男生的概率是________________;②抽到一名住宿男生的概率是________________g ;③抽到一名走读女生的概率是________________. 答案:4320 4318 433 提示:被抽到每一种情况的可能性是一样的. 6.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为________________________;爸爸击中靶心8次,则他击不中靶心的概率为___________________. 答案:4 20%提示:击不中靶心的次数用打靶的次数乘以击不中靶心的概率.第二个空是用击不中靶心的频率来估计击不中靶心的概率. 二、选择题7.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 A.41 B.21 C.43D.1 答案:A提示:共有(正,反),(正,正),(反,正),(反,反)4种情况. 8.下列事件中是必然事件的是 A.打开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.从一定高度落下的图钉,落地后钉尖朝上D.我走出校门,看到的第一辆汽车的牌照的末位数字是偶数 答案:B提示:一定能发生的事件显然是B 项. 9.下列说法正确的是A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生 答案:C提示:可能性很小的事件在一次试验中发生的可能性很小,但可能发生,而不可能事件,在试验中不会发生.10.冰柜里有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是 A.325 B.83 C.3215 D.3217答案:D提示:含有咖啡因的饮料共有17种,饮料共有32种. 三、解答题11.(2010四川遂宁中考)将分别标有数学2,3,5的三张质地,大小完全一样的卡片背面朝上放在桌面上,(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并求出抽取到的两位数恰好是35的概率. 解:(1)p=32; (2)所以P 为35=61. 提示:概率=所有事件发生的可能性该事件发生的可能性.12.如图9-19,某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑. (1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少? (3)现知希望中学用10万元购买甲、乙两种品牌电脑共36台(价格如图所示),其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有多少台?图9-19解:(1)树状图如下:有6种可能结果:(A ,D),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ). (2)因为选中A 型号电脑有2种方案,即(A ,D),(A ,E ),所以A 型号电脑被选中的概率是31. (3)由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台, 根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x 解得⎩⎨⎧=-=.116,80y x经检验不符合题意,舍去;当选用方案(A ,E)时,设购买A 型号、E型号电脑分别为x ,y 台, 根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x解得⎩⎨⎧==.29,7y x所以希望中学购买了7台A 型号电脑.13.一对骰子,如果掷两骰子正面点数和为2、11、12,那么甲赢;如果两骰子正面的点数和为7,那么乙赢;如果两骰子正面的点数和为其他数,那么甲、乙都不赢.继续下去,直到有一个人赢为止.(1)你认为游戏是否公平?并解释原因;(2)如果你认为游戏公平,那么请你设计一个不公平的游戏;如果你认为游戏不公平,那么请你设计一个公平的游戏.答案:(1)游戏不公平,点数和为2、11、12的概率为36121++=364=91,点数和为7的概率为366=61.即甲、乙双方获胜的概率分别为91,61,不相等,所以游戏对双方不公平.(2)可改为:一对骰子,如果掷两骰子正面点数和为2,那么甲赢;如果两骰子正面的点数和为12,那么乙赢;如果两骰子正面的点数和为其他数,那么甲、乙都不赢继续下去,直到有一个人赢为止.提示:游戏对双方公平是指双方获胜的概率相等.14.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这个池塘中鱼的重量.答案:平均每条鱼的重量:(40×2.5+25×2.2+35×2.8)÷(40+25+35)=2.53(千克);池塘中鱼的重量:100 000×95%×2.53=240 350(千克).提示:求出3次捕捞的鱼每条鱼的平均重量,用这个平均重量估计整个池塘的鱼的重量.。

相关文档
最新文档