01-第一章 离散时间信号与系统

合集下载

数字信号处理教程课后习题及答案

数字信号处理教程课后习题及答案
试判断系统是否是线性的?是否是移不变的?
分析:已知边界条件,如果没有限定序列类型(例如因果序列、反因果序列等), 则递推求解必须向两个方向进行(n ≥ 0 及 n < 0)。
解 : (1) y1 (0) = 0 时, (a) 设 x1 (n) = δ (n) ,
按 y1 (n) = ay1 (n − 1) + x1 (n) i) 向 n > 0 处递推,
10
T [ax1(n)+ bx2 (n)] =
n

[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
当n ≤ −1时 当n > −1时
∑ y(n) = n a −m = a −n
m=−∞
1− a
∑ y(n) =
−1
a−m =

信号与系统-离散时间域分析

信号与系统-离散时间域分析

滤波器性能评估
分析滤波器的幅频响应、 相频响应、群延迟等性能 指标,以评估滤波器的性 能。
数字调制与解调技术
ASK调制与解调
通过改变载波的振幅来 传递数字信息,实现 ASK调制,并通过相干 或非相干解调方法恢复 原始信号。
FSK调制与解调
利用不同频率的载波表 示不同的数字信息,实 现FSK调制,通过鉴频 器或锁相环等实现FSK 信号的解调。
分类
根据信号的性质和特征,离散时间信 号可分为周期信号和非周期信号、确 定信号和随机信号等。
离散时间系统定义及性质
定义
离散时间系统是一种对离散时间输入 信号进行变换或处理的系统,其输出 也是离散时间信号。
性质
离散时间系统具有线性、时不变性、 因果性、稳定性等性质,这些性质对 于系统的分析和设计具有重要意义。
离散时间信号处理重要性
数字信号处理基础
理论分析基础
离散时间信号处理是数字信号处理的 基础,对于数字通信、音频视频处理、 雷达声呐等领域具有重要意义。
离散时间信号和系统分析的理论和方法 可以推广到连续时间信号和系统,为信 号处理和分析提供统一的理论框架。
计算机处理方便
离散时间信号适合计算机处理,可以 通过算法实现各种复杂的信号处理和 变换。
06 实验:离散时间信号处理 实践
实验目的和要求
理解和掌握离散时间 信号的基本概念和性 质
培养实验操作能力和 分析解决问题的能力
熟悉离散时间信号的 处理方法和实现过程
实验内容和步骤
01
实验内容
02
生成离散时间信号
对信号进行基本运算(如加减、乘除、平移、翻转等)
03
实验内容和步骤
01
对信号进行频谱分析,观察信号 的频谱特性

第一章 离散时间信号与系统

第一章 离散时间信号与系统

k =−∞
∑ δ (k )
n
u (n )
1
1
1
1 L n
-1
0
1
2
3
单位阶跃序列示意图
3. 矩形序列
• 矩形序列又称门函数序列,定义如下:
1 (0 ≤ n ≤ N −1) Rn (n) = 0 (n < 0 orn ≥ N) = u(n) −u(n − n0 )
R (n )
k
1
1
1
1
卷积和计算的步骤
•置换: z(n) →z(m) •翻转:x(m) ,z(m) →z(-m) 翻转: • 移位:z(-m) → z(n-m) 移位: •相乘:z(n-m) • x(m) (m值相同) 相乘: 相加: =∑ • 相加:y(n) =∑{z(n-m) • x(m)}
图解法举例
• 设两离散信号如图,求卷积和
四、用单位抽样序列表示 任意序列
• 任意序列都可以表示成单位抽样序列的加 ∞ 权和。 x(n) = ∑ x(m)δ (n − m)
m = −∞
x ( n) x(n)δ (n − m) = 0
m=n 其他
五、序列的能量
• 序列的能量为:序列各序列值的平方和:

E=
n = −∞
∑ x ( n)
L
-1 0 1 2 k −1 k n
矩形序列示意图
4. 斜变序列
单位斜变序列R(n)可以看成是单位斜变信号 R(t)的抽样信号,如下图所示,表示为:
n R (n) = nu ( n) = 0
n
0
n<0
R (n) 2 1
3
L n -1 0 1 2 3

数字信号处理第一章

数字信号处理第一章

-1 0
1
2
n
1/4 -1 0 1 n
2012/11/3
大连海事大学信息学院电子信息基础教 研室
11
7、序列的时间尺度变换运算(2)
(2)插值: x(n/m)
例 m=2,x(n/2)相当于两个点之间插一个点,依此类 推。通常,插值用 I 倍表示,即插入(I-1)个值。
x(n) 2 1/2 -1
2012/11/3
大连海事大学信息学院电子信息基础教 研室
10
7、序列的时间尺度变换运算(1)
若序列为 x(n) ,其时间尺度变换序列为x(mn) 或x(n/m),m是正整数。 (1) 抽取: x(mn) 例m=2,x(2n)相当于两个点取一点,依此类推。
x(n) 2 1/4 -2 1/2 1 1 3 x(2n) 3
2012/11/3
大连海事大学信息学院电子信息基础教 研室
23
•三、单位样值响应与零状态响应 定义:在零初始条件下,输入为单位样值 序列时系统的响应。
即 h(n) T [ (n)] 显然h(n)是系统对 (n)的零状态响应。
• 若已知h(n),则当任意输入x(n),响应为:
y ( n)
x(n) xa (nT ),
2012/11/3
n
n为整数
2
大连海事大学信息学院电子信息基础教 研室
2.
1) 2) 3)
序列的表示方法:
公式表示法; 图形表示法; 集合符号表示法:如果x(n)是通过观测得到的一组离散 数据,则其可以用集合符号表示。
例如:
x(n) x(0) x(-1) x(1) x(-2) x(2) n
当n=0时
x(n)*h(n)=1

数字信号处理教学课件-第一章 离散时间信号与系统

数字信号处理教学课件-第一章 离散时间信号与系统

三、序列的基本运算 1、序列的和 :
❖ 两序列的和是指同序号n的序列值逐项对应相加而构成
z(n) = x(n) + y(n)
的新序列x。(n)
22 1 11
0 123456 n
…… z(0) = x(0) + y(0) = 3 z(1) = x(1) + y(1) = 2 z(2) = x(2) + y(2) = 3 z(3) = x(3) + y(3) = 2 z(4) = x(4) + y(4) = 2
3 x(-n+1)
2 1
x(-n+1) 是x(-n) 右移一位后的序列
-4 -3 -2 -1 0 1 2 3 4 5 6 n
3
x(-n-1)
2
1
x(-n-1) 是x(-n) 左移一位后的序列
-4 -3 -2 -1 0 1 2 3 4 5 6 n
2020/7/27
❖ 仿真实验(Matlab)
x = wavread(‘w2.wav’); %读入声音文件 y = fliplr(x); %反褶 figure(1); plot(x); grid on; %画图显示结果 figure(2); plot(y); grid on;
……
y(n)
11 1 1 1
0 123456 n z(n)
33 2 22
2020/7/27
0 123456 n
❖ 仿真实验(Matlab)
x1=wavread(‘w1.wav’); %读入声音文件 x2=wavread(‘w2.wav’); y=x1+x2; %序列求和 figure(1); plot(x1); grid on; %画图显示结果 figure(2); plot(x2); grid on; figure(3); plot(y); grid on; wavwrite(y,‘w3.wav’); %结果保存为声音文件

第1章 离散时间信号和系统

第1章 离散时间信号和系统

第1章 思考题参考解答1.变化规律已知的信号称之为确定信号,反之,变化规律不确定的信号称之为随机信号。

以固定常数周期变化的信号称之为周期信号,否则称之为非周期信号。

函数随时间连续变化的信号称之为连续时间信号,也称之为模拟信号。

自变量取离散值变化的信号称之为离散时间信号。

离散信号幅值按照一定精度要求量化后所得信号称之为数字信号。

2.对于最高频率为f c 的非周期信号,选取f s =2f c 可以从采样点恢复原来的连续信号。

而对于最高频率为f c 的非周期信号,选取f s =2f c 一般不能从采样点恢复原来的连续信号的周期信号,通常采用远高于2f c 的采样频率才能从采样点恢复原来的周期连续信号。

3.被采样信号如果含有折叠频率以上的高频成分,或者含有干扰噪声,这些频率成分将不满足采样恢复定理的条件,必然产生频率混叠,导致无法恢复被采样信号。

4.线性时不变系统的单位脉冲响应h (n )满足n <0,h (n )=0,则系统是因果的。

若∞<=∑∞-∞=P n h n |)(|,则系统是稳定的。

5.ω表示数字角频率,Ω表示模拟角频率。

ω=ΩT (T 表示采样周期)。

6.不一定。

只有当周期信号的采样序列满足x (n )= x (n +N )时,才构成一个周期序列。

7.常系数差分方程描述的系统若满足叠加原理,则一定是线性时不变系统。

否则,常系数差分方程描述的系统不是线性时不变系统。

8.该说法错误。

需要增加采样和量化两道工序。

9.受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统不一定找得到。

因此,数字信号处理系统的分析方法是先对采样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长效应所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

10、只有当系统是线性时不变时,有y (n )= h (n )*x (n )。

11、时域采样在频域产生周期延拓效应。

12.输入信号x a (t )先通过一个前置低通模拟滤波器限制其最高频率在一定数值之内,使其满足采样频率定理的条件。

数字信号处理程佩青第三版课件(全套课件)

数字信号处理程佩青第三版课件(全套课件)

j0n
M 0, 1, 2
表明复指数序列具有以2为周期的周期性,在 以后的研究中,频率域只考虑一个周期就够了。
7. 周期序列
如果对所有n存在一个最小的正整数N,使下面等
式成立: x(n) x(n N)
则称x(n)为周期序列,最小周期为N。
例:
x(n) sin( n)
4
x(n) sin[ (n 8)],
4
N 8
一般正弦序列的周期性
设 x(n) Asin( 0n )
式中,A为幅度,ω0为数字域频率,为初相。
那么 x(n N ) Asin[ 0 (n N ) ] Asin( 0n 0N )
如果 x(n) x(n N)
则 Asin( 0n ) Asin[ 0 (n N) ]
N (2 /0 )k N,k均取整数
xa(t) 0
xa(nT)
t
2T
0
t
T
这里 n 取整数。对于不同的 n 值,xa(nT) 是 一个有序的数字序列,该数字序列就是离散时间信 号。注意,这里的n取整数,非整数时无定义,另 外,在数值上它等于信号的采样值,即
x(n) xa (nT ), n
离散时间信号的表示方法:公式表示法、图形 表示法、集合符号表示法,如
线性卷积的计算
y(n) x(m)h(n m) x(n) h(n) m
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和
h(k),将h(k)以纵坐标为对称轴折叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为
正数时,右移n;当n为负数时,左移n。 (3)相乘:将h(n-k)和x(k)的对应取样值相乘。 (4)相加:把所有的乘积累加起来,即得y(n)。

第一章 离散时间信号与系统1

第一章 离散时间信号与系统1

根据定义
n y ( n ) 1 ( 1 ) k , n 1 2 2 k 1 y ( n) 0, n 1
14
我们计算几个值,画出图形。显然,
n 2 n 1 n0 n 1 n2
y(2) 0
1 3 2 2 3 1 7 y(1) y(0) x(1) 2 4 4 7 1 15 y(2) y(1) x(2) 4 8 8
j 0 n
0 :复正弦的数字域频率 用欧拉公式将复指数序列展开: n n n x(n) e (cos0 n j sin 0 n) e cos0 n j e sin 0 n
用极坐标表示 其中 x(n)
x(n) x (n)
n
e
j arg[ x ( n )]
f2 (t )
0 1 1 0
, t 1 , 1 t 1 , 1 t 3 , t 3
定义域是连续的(-∞,∞),但是函数值只取-1,0,1三个离 散的值。(在间断点-1,1,3处一般不定义其函数值) f 以上两例中,1 (t ) 我们也称为模拟信号。
8
2 n , n 1 1 1 1 1 z (n) x(n) y(n) 2 ( 2 ) 2 3 , n 1 2 1 1 n 2 ( 2 ) n 1, n 0
图 1· 9 在求序列的和的时候要注意:相同序列 (n) 的序列值相加。
9
4.积(相乘) 两序列的积指相同序号 (n) 的序列值逐项对应相乘: z (n) x(n) y(n) 0.5, n 1 1.5, n 0 例1.1.4已知序列 x(n) = 1, n 1 求 y(n) x(n) 2 x(n) x(n 2) 0.5, n 2 0, n为其它值

数字信号处理-第一章(new)

数字信号处理-第一章(new)

2 n , n 3 x(n) 3 0, n 3 2 n 1 , n 2 x(n 1) 3 0, n 2 2 n 1 , n 4 x(n 1) 3 0, n 4
1数字信号处理第一章离散时间信号与系统11离散时间信号序列本节涉及内容序列的运算序列的周期性序列的能量几种常用序列用单位抽样序列表示任意序列2数字信号处理第一章离散时间信号与系统1离散时间信号定义??nntxnxnntxtxaanttan取整数3数字信号处理第一章离散时间信号与系统离散时间信号序列的表示形式nx表示离散时间信号序列如图1所示示0时刻的序列值表表示1时刻的序列值0x1x图14数字信号处理第一章离散时间信号与系统一序列的运算1移位m0时该移位
3、矩阵序列
RN (n) u(n) u(n N )
例如N=4
1,0 n N 1 RN ( n ) 0, 其它 n
19
数字信号处理-第一章 离散时间信号与系统
4、实指数序列
a 1 a 1
x(n) a u(n) x(n) 收敛
n
x ( n)
发散
例如a=1/2及a=2时
1 n , n 1 例: x ( n) 2 0, n 1
在-6<n<6范围内求: x(n) ,x(n)
9
数字信号处理-第一章 离散时间信号与系统 n01=-1; n02=0; ns=-5; nf=5; nf1=6; ns1=-6; n1=n01:nf1; n2=ns:nf; n3=ns:nf1; x=(1/2).^n1; x=[zeros(1,(n01-ns)),x]; for n=1:11 y1(1,n)=x(1,n+1)-x(1,n); end

第1章 离散时间信号与系统

第1章 离散时间信号与系统
m
h ( m) x ( n m)
m

m
a
n
u ( m) u ( n m)
am ,
m 0
对于 n 0,,
1 a n 1 u ( n) 1 a
28
第1章 离散时间信号与系统
离散卷积运算服从交换律、结合律和分配律。即
x(n) * h(n) h(n) * x(n)
2n, n 1 3 则 x ( n) y ( n) n 1 2, 2 ( n 1) n 1, n 0
如图1.1.8所示。
15
第1章 离散时间信号与系统
图1.1.8 两序列相加
16
第1章 离散时间信号与系统
4. 积
两序列之积是指它们同序号(n)的序列值逐项对应相 乘得到的一个新序列。
图1.1.9 例1.1.5的两个序列
18
第1章 离散时间信号与系统
1.1.3 序列的周期性
如果对所有n存在一个最小的正整数N,使x(n)满足
x(n) x(n N )
(1.1.8)
则称序列x(n)是周期序列,其周期为N。 下面讨论正弦序列的周期性 由于 则
x n Asin 0n
这时正弦序列就是周期序列,其周期满足 N (N,K必 须为整数)。具体可分以下三种情况:
0
2 k
(1)当 N 2 为整数时,只要k =1,N 就为最小正整 0 2 。 数,故正弦序列的周期即为 N
0
2
(2)当 2 不是整数,而是一个有理数时, k值逐步增 0 2 加,其取值使 N k 为最小整数,这就是正弦序列的 2 N 周期。此时 k ,其中k,N是互为素数的整数,

第1章离散时间信号与系统-

第1章离散时间信号与系统-

可加性: T [ x 1 ( n ) x 2 ( n ) ] y 1 ( n ) y 2 ( n ) 比例性/齐次性: T [a x 1(n )]a y1(n )
其中: a,a1,a2为 常 数
则此系统为线性系统。
2019/10/14
40
例 : 判 断 系 统 y ( n ) x ( n ) s i n ( 2 n ) 是 否 线 性 97
:N 解 1 g2 2 c 3 ,4 3 d 4 )6 6 ( 72 N 2 g3 3 c 3 ,2 3 d 2 )4 4 ( 54
2019/10/14
35
讨论:若一个正弦信号是由连续信号抽样 得到,则抽样时间间隔T和连续正弦信号 的周期T0之间应是什么关系才能使所得 到的抽样序列仍然是周期序列?
当 1 4 T 3 T 0 时 , x ( n ) 为 周 期 为 1 4 的 周 期 序 列
37
4、序列的能量
序列的能量为序列各抽样值的平方和
E


x(n) 2
n
2019/10/14
返回到本章
38
1.2 线性移不变系统
一个离散时间系统是将输入序列变换成 输出序列的一种运算, 记为:T[]
要 使 x ( n N ) x ( n ) , 即 x ( n ) 为 周 期 为 N 的 周 期 序 列
则 要 求 0N2k, 即 N 20k, N , k为 整 数 ,
且 k的 取 值 保 证 N 是 最 小 的 正 整 数
2019/10/14
29
分情况讨论
2 N 0 k
2019/10/14
8
(3)和
x(n)x1(n)x2(n)

数字信号处理-第一章离散时间信号与系统ppt课件

数字信号处理-第一章离散时间信号与系统ppt课件

1
n0
δ(n)和u(n)间的关系为u(n)0
n0
(n )u (n ) u (n 1 )
u (n ) (n m ) (n ) (n 1 ) (n 2 )
令n-m=k代m 0 入上式,得(1-6)式
n
u(n) (k)
问:上两实的区别是什么?
k
实际系统一般无n<0的情况,但理论分析需要,故 实际信号可用理想信号乘阶跃序列来分析
如果y(n)=T[x(n)]满足比例性和可加性,则 该系统是增量线性系统。
.
24
1.2.2移不变系统
系统的输出随输入的位移而位移,则该系统为移 不变系统。
即若输入x(n)产生输出y(n),则输入x(n-m)产生 输出 y(n-m)
表达:移不变系统 y(n)T[x(n)]

y(nm )T [x(nm )]
1、交换律 卷积和与卷积序列的次序无关,有
y(n)=x(n)*h(n)=h(n)*x(n)
即:把单位冲击响应h(n)作为输入,将输入x(n) 作为系统单位冲击响应,其输出相同。
x(n) h(n) y(n) = h(n)
x(n)
y(n)
.
30
2、结合律(串联)
x(n)*h1(n)*h2(n)=[x(n)*h1(n)]*h2(n) =x(n)*[h1(n)*h2(n)]=[x(n)*h2(n)]*h1(n)
证明:
x(n)*[h1(n)h2(n)] x(m)[h1(nm)h2(nm)] m
x(m)h1(nm) x(m)h2(nm)
m
m
x(n)*h1(n)x(n)*h2(n)
x(n)
h1(n)
h2(n)
y(n)

数字信号处理教程-程佩青-课后题答案

数字信号处理教程-程佩青-课后题答案

第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。

4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。

解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。

第一章-离散时间信号与系统(1)复习课程

第一章-离散时间信号与系统(1)复习课程

y ( k ) x ( k )* h ( k ) { 2 ,7 ,1 ,1 3 ,1 9 ,4 } 5
1.1 离散时间信号
三、序列的周期性
如果对所有n存在一个最小的正整数N,使下面等式成立:
x(n)=x(n+N), -∞<n<∞
周期为N
则称序列x(n)为周期性序列。
例:
x(n) sin( n)
4
1.2 线性时不变系统
二、线性系统
满足叠加原理的系统称为线性系统。
设: y1(n)=T[x1(n)],y2(n)=T[x2(n)] 那么线性系统一定满足下面两个公式:
由于n取整数,下面等式成立:
e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
复指数序列具有以2π为周期的周期性,后面的研究中,频率域 只考虑一个周期
1.1 离散时间信号
7、用单位采样序列来表示任意序列
任意序列x(n)都可以表示成单位采样序列的移位加权和。 即:
x(n), m=n
x(n)x(m)(nm) x(m) (n-m) =
1.1 离散时间信号
例 : 已 知 x(k)={1,2,3,4},h(k)={2,3,1}, 求y(k)=x(k)*h(k)。
解: x(n)
4 3 2 1 0 1 23 n
h(n)
h(n)
23 1
32 1
0 1 2 n 21 0 n
1.1 离散时间信号
x(n)h(n) x(n)h(1n) x(n)h(2n)
其波形如图示
1.1 离散时间信号
5、正弦序列
x(n) = sin(ωn)
ω称为正弦序列的数字域频率,单位是弧 度,表示序列变化的速率,或表示相邻

1 离散时间信号与系统

1 离散时间信号与系统

其中把卷积和用 * 来表示。
• 卷积和的运算在图形表示上可分为四步:翻褶、移位、 相乘、相加。 • (1)翻褶 : 先在哑变量坐标 m 上作出 x(m)和 h(m), 将 h(m) 以 m=0 的纵轴为对称轴翻褶成 h(-m) 。 • (2) 移位 : 将 h(-m) 移位 n, 即得h(n-m) 。当 n 为正整数 时, 右移 n 位。当 n 为负整数时, 左移 n 位。 • (3) 相乘 : 再将 h(n-m) 和x(m) 的相同 m 值的对应点值 相乘。 • (4) 相加 : 把以上所有对应点的乘积叠加起来 , 即得y( n) 值。 • 依上法, 取 n= … , -2,-l ,0,1,2, …各值, 即可得全部 y(n) 值。
• 2. 结合律 • 可以证明卷积和运算服从结合律,即
• 这就是说,两个线性移不变系统级联后仍构成一个线性移不变系 统,其单位抽样响应为两系统单位抽样响应的卷积和,且线性移 不变系统的单位抽样响应与它们的级联次序无关,如图 1-21以下关系 : • 也就是说,两个线性移不变系统的并联(等式右 端)等效于一个系统,此系统的单位抽样响应等于 两系统各自单位抽样响应之和(等式左端)。如图 1-22 所示。
• 2. 翻褶 如果序列为 x(n), 则 x(-n) 是以 n=0 的纵轴为对称 轴将序列 x(n) 加以翻褶。
• 3. 和 两序列的和是指同序号 (n) 的序列值逐项对应相加而 构成一个新的序列, 表示为:z(n)=x(n)+y(n) • 4. 积 两序列相乘是指同序号 (n) 的序列值逐项对应相乘。 表示为: z(n)=x(n)﹒y(n) • 5. 累加 设某序列为 x(n), 则 x(n) 的累加序列 y(n)定义为

m m

数字信号处理教程 程佩青 课后题答案

数字信号处理教程 程佩青 课后题答案

第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。

4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。

解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。

第一章 离散时间信号和系统

第一章 离散时间信号和系统
N 1 运动平均系统 : y ( n) x(n k ) M N 1 k M

30
一、线性时不变系统
1.线性系统
y1 ( n) T [ x1 ( n)]
y2 ( n) T [ x2 ( n)]
(1)可加性 (2)奇次性
y1 (n) y2 (n) T [ x1 (n) x2 (n)]
u( n) ( n m )
m 0
(n)
1
0 u(n)
1
0 1
n

n
22
(3). 矩形序列
1, 0 n N 1 R N ( n) 0 , 其他n
RN (n) 和 (n) 、 (n) 的关系为: u
RN (n)
RN (n) u(n) u(n N )
取和
11
例1 - 1 - 2 已知x(n) h(n) 1 , 3,求x(n) h(n)。 2, n 0
x(m)
解:
(1)翻褶 (2) 移位、相乘、累加
n<0, y(n)=0 n=0, y(n)=1 n=1, y(n)=1•2+2•1=4 n=2, y(n)=1•3+2•2+ 1•3 =10
(n 1) 2 (n) (n 2) 0.5 (n 3) 1.5 (n 4) 28

1.2 离散时间系统
29
离散时间系统定义: 离散时间系统是将输入序列变换成输出序列的一种运算。
x(n)
T[.]
y(n)
y(n)=T[x(n)]
例如 理想时延系统 : y ( n) x( n n0 )
2

1.1.离散时间信号与离散LSI系统

1.1.离散时间信号与离散LSI系统



y(n) = {1, 3, 6, 6, 5, 3} ↑ n=0
数字信号处理(DSP)


不进位竖乘法 (竖式法)
h(n) x(n) × 1 h(0) 1 x(0) 3 3 2 2 1 1 6 6 n=2 n=3 1 1 2 3 2
(有限长序列)
x(0)· h(0) 1 3 x(0)· h(1)+x(1)· h(0) 3 x(0)· h(2)+x(1)· h(1)+x(2)· h(0) x(0)· h(3)+x(1)· h(2)+x(2)· h(1)
三、几种常用序列
3
x(n)
1. 单位抽样序列 1, n 0 ( n) 0, n 0
2
( n)
1 1
-3 -2 -1 -2 -10 0 1 12 -1 2
n3
4
n
容易看出: x(n) (n - m) = x(m) (n - m)
任意序列可以表示成各延迟单位序列的叠加
幅度连续 幅度量化 (数字信号)
数字信号处理(DSP)


系统也可以分为连续系统与离散系统
连续系统:输入、输出都是连续信号的系统; 离散系统:输入、输出均为离散信号的系统。 既有连续系统,又有离散系统的系统称混合系统
数字信号处理(DSP)


数字信号处理的基本组成与实现
xa (t)
前置预 滤波器 A/ D 变换器
x ( n)
x(n) = 2 (n+2) + (n+1) + 3 (n) + (n-2) + 2 (n-3)
m -

数字信号处理辅导第一章

数字信号处理辅导第一章

1.2 离散时间信号
离散时间信号的产生 设连续时间信号为x , 设连续时间信号为 a(t),对它进行等间隔采 采样周期为T, 样,采样周期为 ,则 样本值: xa (nT ) = xa (t ) t =nT n 为整数 样本值: 记为: 记为: x ( n) = xa ( nT ) 序列的三种表示方法: 序列的三种表示方法: 1、数学表示式表示法 、 2、图形表示法 、 3、样本集合符号表示法 、
y (n) = T [x(n)]
y (n − N ) = T [x(n − N )]
1.3 离散时间系统
3、因果性 、 响应信号总是在激励信号作用于系统之后才产 生。或者说,激励信号是响应信号产生的原 或者说, 这种系统称为因果系统。 因,这种系统称为因果系统。物理上能够实 现的系统都是因果系统。 现的系统都是因果系统。 我们在分析系统的特性时, 我们在分析系统的特性时,有时要分析一些 具有理想特性的系统, 具有理想特性的系统,比如理想低通滤波器 这类系统就不具有因果性。 等。这类系统就不具有因果性。因而是不可 以实现的系统。 以实现的系统。

1.2.2 序列的基本运算 1、两序列之间的乘法运算: 、两序列之间的乘法运算: y (n) = x1 (n) ⋅ x2 (n) 指对应序号的两个样本值之间的乘法运算
1.2 离散时间信号
2、两序列的加法 、 指的是两个序列的对应序号的样本值相加运算: 指的是两个序列的对应序号的样本值相加运算:
y (n) = x1 (n) + x2 (n)
1.2 离散时间信号
5、正弦序列 、
xa (t ) = sin(Ωt ) xa (nT ) = sin( nΩT )
x(n) = sin(ωn)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m为负时,则相反。
18
例:序列的移位
例1.1 设序列
2n1, n ≥ 1
x(n) 0,
n< 1
计算序列的和x(n+1)。
解:
2n2, n 1≥ 1
x(n 1) 0,
n 1<1
19
例:序列移位图示
x(n)
2n2 , n 1≥ 1
x(n 1) 0,
n 1<1
20
基本运算—序列的标乘
设序列为x(n),a为常数(a≠ 0),则序列
解:
2n ,
x(n) y(n)
3 2
,
2n1 n 1,
n< 1 n 1 n≥0
13
例:序列求和图示
2n ,
x(n) y(n)
3 2
,
2n1 n 1,
n< 1 n 1 n≥0
14
基本运算—序列的积
设序列为x(n)和y(n),则序列
z(n)= x(n) • y(n)
(1.3)
交通灯信号传递的信息:红灯停而绿灯行。
信号是传递信息的函数
数学上表示成一个或多个独立变量的函数 一维变量:时间或其它参量
语音信号表示为一个时间变量的函数 静止图像信号表示为两个空间变量的亮度函数
4
信号的分类
连续时间信号:
连续时间域内的信号 幅度可以是连续数值,或是离散数值
离散时间信号:
y(n)= ax(n)
(1.5)
表示将序列x(n)的标乘,定义为各序列值 均乘以a,使新序列的幅度为原序列的a倍。
21
例:序列的标乘
例1.1 设序列
2n1, n ≥ 1
x(n) 0,
n< 1
计算序列的和4x(n)。
解:
2n1, n ≥ 1 4 x(n) 0, n<1
22
基本运算—序列的翻转
▽y(n)= y(n)- y(n-1)= y(n)- Dy(n)= (1- D)y(n) ▽= 1-D
二阶后向差分
k 阶后向差分
(按二项式定理展开)
27
基本运算—时间尺度(比例)变换
设序列为x(n),m为正整数,则序列
抽取序列
y(n)= x(mn)
(1.10)
插值序列
x(n / m), n m l, l 0, 1, 2, z(n) 0, 其它 n
(1)}, -∞<n<+∞ n 代表nT T 采样时间间隔 nT 指均匀间隔的离散时间点 n 为非整数时没有定义,不能认为此时
x(n)的值是零
9
图1.1 序列的图形表示
10
1.2.2 序列的基本运算
和 积 移位 标乘 翻转
累加 差分 时间尺度变换 序列的能量 卷积和
设序列为x(n),则序列
y(n)= x(-n)
(1.6)
表示以n= 0的纵轴为对称轴将序列x(n)加 以翻转。
23
例:序列的翻转
例1.2 设序列
2n1, n ≥ 1
x(n) 0,
n< 1
计算序列的和4x(n)。
解:
2n1, n ≤1
x(n) 0,
n>1
24
基本运算—序列的累加
设序列为x(n),则序列
概念和基本方法 Matlab实现
6
1.2 离散时间信号——序列
序列的定义及表示 序列的基本运算 几种常用序列 序列的周期性 用单位脉冲序列表示任意序列
7
1.2.1 序列的定义及表示
序列的定义
数字序列:离散时间信号
一般只在均匀间隔的离散时间nT上给出 数值
序列的表示
x = {x(n)}, -∞<n<+∞ 图1.1 图形表示 用单位脉冲序列表示
16
例:序列求积图示
x(n)
0,
x(n)
y(n)
1
2
,
(n 1)2n1,
n< 1 n 1 n≥0
17
基本运算—序列的移位
设序列为x(n),则序列
y(n)= x(n-m) 表示将序列x(n)进行移位。
(1.4)
m为正时
x(n -m):x(n)逐项依次延时(右移)m位 x(n+m):x(n)逐项依次超前(左移)m位
第一章 离散时间信号与系统
本章目录
离散时间信号——序列 离散时间系统 线性常系数差分方程 连续时间信号的取样 Matlab实现
2
1.1 引言
信号
信号与信息 信号的表示 信号的分类
系统
系统的作用 系统的分类 系统的描述与分析
3
信号与信息
信号是信息的表现形式
信息则是信号的具体内容
11
基本运算—序列的和
设序列为x(n)和y(n),则序列
z(n)= x(n)+ y(n)
(1.2)
表示两个序列的和,定义为同序号的序 列值逐项对应相加。
12
例:序列的和
例1.1 设序列
2n1, n ≥ 1
x(n) 0,
n< 1
2n , y(n)
n 1,
计算序列的和x(n)+ y(n)。
n<0 n≥0
26
多阶差分运算
二阶前向差分
[x(n)] 2 x(n) x(n 1) x(n) x(n 2) 2x(n 1) x(n)
二阶后向差分 [x(n)] 2 x(n) x(n) x(n 1)
x(n) 2x(n 1) x(n 2)
单位延迟算子D,有 Dy(n)= y(n-1)
n
y(n) x(k) k
(1.7)
定义为对x(n)的累加,表示将n 以前的所
有x(n)值求和。
25
基本运算—序列的差分
前向差分:将序列先进行左移,再相减
Δx(n) = x(n+1)- x(n)
(1.8)
后向差分:将序列先进行右移,再相减
▽x(n) = x(n)- x(n-1)
(1.9)
由此,容易得出 ▽x(n) = Δx(n-1)
表示两个序列的积,定义为同序号的序 列值逐项对应相乘。
15
例:序列的积
例1.1 设序列
2n1, n ≥ 1
x(n) 0,
n< 1
2n , n<0 y(n) n 1, n ≥ 0
计算序列的和x(n) • y(n)。
解:
0,
x(n)
y(n)
1
2
,
(n 1)2n1,
n< 1 n 1 n≥0
(1.11)
x(mn) 和x(n/m)定义为对x(n)的时间尺度变换。
28
抽取序列
x(mn):对x(n)进行抽取运算
不是简单在时间轴上按比例增加到m倍 以1/m倍的取样频率每隔m-1个点抽取1点。 保留 x(0)
离散时间点上的信号 幅度同样可以是连续数值,或是离散数值
特殊形式:模拟信号和数字信号
模拟信号:时间和幅度都是连续数值的信号,实际中 与连续时间信号常常通用。
数字信号:时间和幅度都离散化的信号。
5
本章主要内容
离散时间信号的基本概念 离散时间系统的定义及其性质 线性常系数差分方程及其求解方法 理想取样:连续时间信号数字处理的
相关文档
最新文档