湖南工业大学“专升本”高等数学考试大纲及习题资料

合集下载

2024年湖南专升本招生院校考试大纲

2024年湖南专升本招生院校考试大纲

2024年湖南专升本招生院校考试大纲全文共四篇示例,供读者参考第一篇示例:2024年湖南专升本招生院校考试大纲一、考试范围1. 数学(1)基础知识:集合理论、函数与方程、数列、极限与连续、导数与微分、不定积分、定积分与多重积分、常微分方程、概率论与数理统计等。

(2)应用题:几何、代数、三角、几何、数列、概率、不等式等。

2. 英语(1)听力:听写、听力理解、听力填空等。

(2)阅读:阅读理解、词汇理解、填空、短文改错、信息匹配等。

(3)写作:作文、命题个性写作等。

3. 文化课(1)政治:马克思主义基本原理、毛泽东思想和邓小平理论、中国特色社会主义理论体系、党的基本路线、我国道路、理论体系、方针政策,党的基本知识等。

(2)法律:法律制度、法律政策、法律规则、法律原则、法治观念、公民权利及义务、公民知识、法治知识等。

二、考试形式1. 笔试(1)数学试卷:选择题、填空题、解答题等。

(2)英语试卷:听力、阅读、写作等。

(3)文化课试卷:政治、法律等。

2. 面试考生需进行面试环节,考官将综合考生的口语表达能力、综合素质、文化素养等方面进行综合评价。

三、考试时间1. 笔试时间:大约3小时。

2. 面试时间:根据考生人数而定,每位考生的面试时间约为15分钟。

四、考试分数分布1. 数学:满分100分,占比30%。

2. 英语:满分100分,占比30%。

3. 文化课:满分100分,占比40%。

五、考试内容说明1. 考生在备考过程中,需重点复习数学、英语以及政治、法律等文化课相关知识,并且要注重英语听力、口语表达能力的提升。

2. 考试内容全面覆盖,注重基础知识的考察,同时也会涉及到一定的综合应用题和案例分析题。

3. 考生在考试过程中需保持良好的心态,严格遵守考场纪律,做到文明考试、诚信考试。

六、备考建议1. 提前准备:合理安排时间,制定学习计划,提前复习,并且定期进行模拟考试,掌握考试节奏。

2. 多练习:多做题、多练习,巩固基础知识,同时注重综合运用能力的提升。

《高等数学(二)》专升本考试大纲

《高等数学(二)》专升本考试大纲

高等数学(二)专升本考试大纲一、考试内容本次高等数学(二)专升本考试内容主要包括以下几个方面:1.函数的连续性与一致连续性2.曲线的切线与法线3.微分学的应用4.不定积分5.定积分与应用6.微分方程二、考试要求1.掌握函数的连续性与一致连续性的判定方法,并能灵活应用于解题过程中。

2.理解曲线的切线与法线的概念,并能运用导数的定义和性质求解切线和法线的方程。

3.了解微分学的基本概念,并能应用微分学知识解决实际问题。

4.掌握不定积分的定义和基本性质,并能进行常见函数的积分运算。

5.熟悉定积分的定义和基本性质,并能运用定积分求解简单的几何问题。

6.理解微分方程的概念,并能根据给定的微分方程解决实际问题。

三、考试形式本次高等数学(二)专升本考试采取闭卷形式,包括选择题和解答题。

1.选择题:共计50道选择题,每题2分,满分100分。

选择题主要测试考生对基本概念和理论的理解程度。

2.解答题:共计3道解答题,每题30分,满分90分。

解答题主要测试考生的问题分析和解决能力。

四、复习重点1.函数的连续性与一致连续性–连续函数的定义–连续函数的性质–一致连续函数的定义和判定方法2.曲线的切线与法线–切线的概念和性质–法线的概念和性质–切线和法线的方程求解方法3.微分学的应用–极值与最值–函数的增减与凹凸性–求解最值和极值问题4.不定积分–不定积分的定义和基本性质–常见函数的积分运算方法–积分表的使用技巧5.定积分与应用–定积分的定义和基本性质–定积分的计算方法–几何应用和物理应用6.微分方程–微分方程的基本概念和分类–解微分方程的一般步骤–常微分方程的应用五、备考建议1.提前制定复习计划,合理安排学习时间。

2.多做习题,加强对知识点的理解和应用。

3.注意整理复习笔记,方便日后的复习和回顾。

4.多参考往年的真题和模拟试卷,了解考试形式和难度。

5.针对考试要求的不同部分,进行有针对性的复习和训练。

六、考前注意事项1.睡眠充足,保持良好的精神状态。

2024年湖南专升本数学大纲

2024年湖南专升本数学大纲

文档2024年湖南专升本数学大纲
一、考试目标
湖南专升本数学考试旨在测试考生的基础数学知识和基本技能,包括但不限于代数、几何、微积分等基础知识,以及分析问题、解决问题的能力。

二、考试内容
1. 代数:包括集合论、函数与极限、微分学、积分学等内容。

2. 几何:包括平面几何、立体几何、解析几何等内容。

3. 概率统计:包括概率论基础、统计推断等内容。

三、考试要求
1. 理解并掌握基本概念、基本理论和基本方法;
2. 能够运用所学知识解决实际问题;
3. 具备一定的抽象思维能力和逻辑推理能力。

四、复习建议
1. 系统学习:按照大纲的要求,全面系统地复习各部分内容,做到融会贯通。

2. 强化练习:通过大量的习题练习,提高解题技巧和速度。

3. 反馈调整:通过模拟考试或做真题,了解自己的弱点,及时进行针对性的复习和强化。

希望各位考生能够根据大纲的要求,制定出合理的复习计划,科学高效地进行复习,取得优异的成绩。

预祝大家在2024年的湖南专升本数学考试中取得成功!。

专升本入学考试数学考试大纲

专升本入学考试数学考试大纲

专升本入学考试数学考试大纲考试形式与试卷构造一、答题方式答题方式为:闭卷、笔试.二、试卷题型构造试卷题型构造为:单项选择题、填空题、解答题:三、参考书籍高等数学〔上、下册〕〔第二版〕常迎香主编科学出版社专升本入学考试数学考试大纲一函数、极限、连续考试内容函数的概念及表示法:函数的有界性单调性周期性与奇偶性复合函数反函数分段函数与隐函数根本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质:函数的左极限与右极限无穷小量与无穷大量的概念及其关系无穷小量的性质及无穷小量的比拟极限的四那么运算极限存在的两个准那么:单调有界准那么与夹逼准那么两个重要极限函数连续的概念函数连续点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.2、了解函数的有界性、单调性、周期性与奇偶性.3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4、掌握根本初等函数的性质及其图形,了解初等函数的概念.5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6、掌握极限的性质及四那么运算法那么.7、掌握极限存在的两个准那么,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8、理解无穷小量、无穷大量的概念,掌握无穷小量的比拟方法,会用等价无穷小量求极限.9、理解函数连续性的概念〔含左连续与右连续〕,会判别函数连续点的类型.10、了解连续函数的性质与初等函数的连续性,理解闭区间上连续函数的性质〔有界性、最大值与最小值定理、介值定理〕,并会应用这些性质.二一元函数微分学考试内容导数与微分的概念导数的几何意义与物理意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数与微分的四那么运算根本初等函数的导数复合函数反函数隐函数以及参数方程所确定的函数的导数高阶导数一阶微分形式的不变性微分中值定理洛必达〔L’Hospital〕法那么函数单调性的判别函数的极值函数的最大值与最小值函数图形的凹凸性拐点及渐近线函数图形的描绘考试要求1、理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程与法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2、掌握导数的四那么运算法那么与复合函数的求导法那么,掌握根本初等函数的导数公式.了解微分的四那么运算法那么与一阶微分形式的不变性,会求函数的微分.3、了解高阶导数的概念,会求简单函数的高阶导数.4、会求分段函数的导数,会求隐函数与由参数方程所确定的函数以及反函数的导数.5、理解并会使用罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理与泰勒(Taylor)定理.6、掌握用洛必达法那么求未定式极限的方法.7、理解函数的极值概念,掌握用导数判断函数的单调性与求函数极值的方法,掌握函数最大值与最小值的求法及其应用.8、会用导数判断函数图形的凹凸性、会求函数图形的拐点以及水平、铅直渐近线,会描绘函数的图形.三一元函数积分学考试内容原函数与不定积分的概念不定积分的根本性质根本积分公式定积分的概念与根本性质定积分中值定理积分上限函数及其导数牛顿一莱布尼茨〔Newton-Leibniz〕公式不定积分与定积分的换元积分法与分部积分法有理函数、三角函数的有理式与简单无理函数的积分反常积分定积分的应用考试要求1、理解原函数的概念,理解不定积分与定积分的概念.2、掌握不定积分的根本公式,掌握不定积分与定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3、会求有理函数,三角函数有理式与简单无理函数的积分.4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5、了解反常积分的概念,会计算反常积分.6、掌握利用定积分表达与计算一些几何量与物理量〔平面图形的面积、平面曲线的弧长、旋转体的体积、平行截面面积为的立体体积等〕及函数的平均值.四向量代数与空间解析几何考试内容向量的概念向量的线性运算向量的数量积与向量积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向余弦曲面方程与空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件球面柱面旋转曲面等常用的二次曲面方程及其图形空间曲线的参数方程与一般方程空间曲线在坐标面上的投影曲线方程1、理解空间直角坐标系,理解向量的概念及其表示.2、掌握向量的运算〔线性运算、数量积、向量积〕,了解两个向量垂直、平行的条件.3、理解单位向量、方向余弦、向量的坐标表达式,掌握用坐标表达式进展向量运算的方法.4、掌握平面方程与直线方程及其求法.5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系〔平行、垂直、相交等〕解决有关问题.6、会求点到直线以及点到平面的距离.7、了解曲面方程与空间曲线方程的概念.8、掌握常用二次曲面的方程及其图形,会求简单的柱面与旋转曲面的方程.9、掌握空间曲线的参数方程与一般方程,了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五多元函数微分学考试内容多元函数的概念二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数与全微分全微分存在的必要条件与充分条件多元复合函数、隐函数〔仅限一个方程的情形〕的一阶偏导数二阶偏导数方向导数与梯度空间曲线的切线与法平面曲面的切平面与法线多元函数的极值与条件极值多元函数的最大值、最小值及其简单应用1、理解多元函数的概念,理解二元函数的几何意义.2、了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3、理解多元函数偏导数与全微分的概念,会求全微分,了解全微分存在的必要条件与充分条件,了解全微分形式的不变性.4、理解方向导数与梯度的概念,并掌握其计算方法.5、掌握多元复合函数一阶、二阶偏导数的求法.6、会求隐函数〔仅限一个方程的情形〕的一阶偏导数、二阶偏导数.7、掌握空间曲线的切线与法平面及曲面的切平面与法线的概念,会求它们的方程.8、理解多元函数极值与条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值与最小值,并会解决一些简单的应用问题.六多元函数积分学考试内容二重积分的概念、性质、计算与应用考试要求1、理解二重积分的概念,了解二重积分的性质,了解二重积分的中值定理.2、掌握二重积分的计算方法〔直角坐标、极坐标〕,3、会用二重积分求一些几何量〔平面图形的面积、立体的体积、曲面的面积〕.七常微分方程考试内容常微分方程的根本概念可别离变量的微分方程齐次微分方程一阶线性微分方程贝努利方程二阶线性微分方程解的性质及解的构造定理二阶常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程考试要求1、了解微分方程及其阶、解、通解、初始条件与特解等概念.2、掌握可别离变量的微分方程及一阶线性微分方程的解法.3、会解齐次微分方程、贝努利方程,会用简单的变量代换解某些微分方程.4、理解线性微分方程解的性质及解的构造.5、掌握二阶常系数齐次线性微分方程的解法.6、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的与与积的二阶常系数非齐次线性微分方程.。

《高等数学》(专科升本科)复习资料

《高等数学》(专科升本科)复习资料

《高等数学》(专科升本科)复习资料一、复习参考书:全国各类专科起点升本科教材高等数学(一)第3版 本书编写组 高等教育出版社 二、复习内容及方法:第一部分 函数、极限、连续复习内容函数的概念及其基本性质,即单调性、奇偶性、周期性、有界性。

数列的极限与函数的极限概念。

收敛数列的基本性质及函数极限的四则运算法则。

数列极限的存在准则与两个重要的函数极限。

无穷小量与无穷大量的概念及其基本性质。

常见的求极限的方法。

连续函数的概念及基本初等函数的连续性。

函数的间断点及其分类与连续函数的基本运算性质,初等函数的连续性。

闭区间上连续函数的基本性质,即最值定理、介值定理与零点存在定理。

复习要求会求函数的定义域与判断函数的单调性、奇偶性、周期性、有界性。

掌握数列极限的计算方法与理解函数在某一点极限的概念,同时会利用恒等变形、四则运算法则、两个重要极限等常见方法计算函数的极限。

掌握理解无穷小量与无穷大量的概念及相互关系,在求函数极限的时候能使用等价代换。

理解函数连续性的定义,会求给定函数的连续区间及间断点;;能运用闭区间上连续函数的性质证明一些基本的命题。

重要结论1. 两个奇(偶)函数之和仍为奇(偶)函数;两个奇(偶)函数之积必为偶函数;奇函数与偶函数之积必为奇函数;奇(偶)函数的复合必为偶函数; 2. 单调有界数列必有极限;3. 若一个数列收敛,则其任一个子列均收敛,但一个数列的子列收敛,该数列不一定收敛;4. 若一个函数在某点的极限大于零,则一定存在该点的一个邻域,函数在其上也大于零;5. 无穷小(大)量与无穷小(大)量的乘积还是无穷小(大)量,但无穷小量与无穷大量的乘积则有多种可能6. 初等函数在其定义域内都是连续函数;7. 闭区间上的连续函数必能取到最大值与最小值。

重要公式1. 若,)(lim ,)(lim 0B x g A x f x x x x ==→→则AB x g x f x g x f x x x x x x =⋅=⋅→→→)(lim )(lim )]()([lim 0;BA x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000。

(完整版)专升本高等数学习题集与答案

(完整版)专升本高等数学习题集与答案

·第一章 函数一、选择题1.以下函数中,【 C 】不是奇函数A.y tan x xB. y xC. y ( x 1) ( x 1)D. y2 sin 2 x2.f (x) 与 g( x) 同样的是【x以下各组中,函数 】A.f ( x) x, g( x)3x 3B.f ( x) 1, g( x) sec 2 xtan 2 xC. f ( x) x 1, g(x) x21D. f ( x) 2 ln x, g( x)ln x 23.x1以下函数中,在定义域内是单一增添、有界的函数是【】A. y x+arctan xB. y cosxC. yarcsin xD. y x sin x4. 以下函数中,定义域是 [,+ ] , 且是单一递加的是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x5. 函数 yarctan x 的定义域是 【】A. (0, )B. (2 , )2C.[, 2 ]D. (,+ )26. 以下函数中,定义域为 [ 1,1] ,且是单一减少的函数是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x7. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]8. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]9.以下各组函数中, 【 A 】 是同样的函数A. f ( x) ln x 2和 gx 2ln x B. f (x)x 和 g xx 2C. f ( x) x 和 g x ( x )2D. f ( x) sin x 和 g(x) arcsin x10. 设以下函数在其定义域内是增函数的是【】A. f ( x) cos xB. f ( x) arccos xC. f (x)tan xD. f (x)arctan x11. 反正切函数 y arctan x 的定义域是【】A. (, ) B. (0, )2 2C. ( , )D. [1,1]12. 以下函数是奇函数的是【】··A. y x arcsin xB.y x arccosxC.y xarccot xD. yx 2 arctan x13. 函数 y5ln sin 3x 的复合过程为 【 A 】A. y 5u ,u ln v, v w 3 , w sin xB. y 5u 3, u ln sin xC. y5ln u 3 ,u sin x D. y5u , u ln v 3,v sin x二、填空题1.函数 yarcsin xarctan x的定义域是 ___________.5 5 2.f ( x)x 2arcsin x的定义域为 ___________.33.函数 f ( x) x 2 arcsinx 1的定义域为 ___________。

高等数学专升本教材湖南

高等数学专升本教材湖南

高等数学专升本教材湖南高等数学是大多数理工类专业的基础课程之一,对于从专科升本科的学生来说,掌握高等数学的内容是必不可少的。

本教材旨在满足湖南地区专升本考生的学习需求,全面介绍高等数学的重要概念、理论和方法,帮助学生系统地学习和掌握该科目。

第一章导数与微分1.1 导数的概念及计算1.2 高阶导数1.3 隐函数与参数方程的导数1.4 微分的概念及计算1.5 几何应用第二章微分中值定理与导数的应用2.1 罗尔中值定理2.2 拉格朗日中值定理2.3 函数的单调性与曲线的凸凹性2.4 泰勒公式及应用2.5 微分中值定理的应用第三章定积分3.1 定积分的概念与性质3.2 积分的基本公式与换元积分法3.3 定积分的计算方法3.4 反常积分3.5 定积分的应用第四章不定积分4.1 不定积分的概念与性质4.2 基本积分表4.3 分部积分法4.4 有理函数的积分4.5 不定积分的应用第五章微分方程5.1 微分方程的基本概念5.2 一阶微分方程5.3 高阶线性微分方程5.4 非齐次线性微分方程5.5 常系数高阶线性微分方程第六章多元函数微分学6.1 多元函数的极限与连续性6.2 偏导数与全微分6.3 隐函数与参数方程求导6.4 条件极值与最值6.5 多元函数微分学中的应用第七章重积分7.1 重积分的概念与性质7.2 重积分的计算方法7.3 曲线与曲面积分7.4 曲线积分和曲面积分的应用7.5 物理应用第八章曲线与曲面的方程8.1 参数方程与空间曲线8.2 曲线的切线与法平面8.3 曲率与曲线的几何性质8.4 极坐标与柱面坐标系8.5 二次曲面与球面第九章空间直线与平面9.1 空间直线的方程与位置关系9.2 空间平面的方程与位置关系9.3 直线与平面的交线9.4 空间几何体的体积与曲面积通过本教材的学习,湖南地区的专升本考生能够系统地了解和掌握高等数学的核心内容,打下坚实的数学基础。

希望同学们能够认真学习,多做习题,巩固自己的知识,为顺利通过专升本考试做好准备。

专升本高等数学复习资料(含答案)

专升本高等数学复习资料(含答案)

专升本高等数学复习资料一、函数、极限和连续 1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是 2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数 3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同4.函数y =的定义域为( )A .(2,4)B .[2,4]C .(2,4]D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A .x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln =9.以下各对函数是相同函数的有( ) A .x x g x x f -==)()(与 B .x x g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --=D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B .]0,1[- C .[0,1] D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2]13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .1 14.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x F16. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称18.下列函数中,图形关于y 轴对称的有( )A .x x y cos = B .13++=x x yC .2xx e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f -的图形对称于直线( )A .0=y B .0=x C .x y = D .x y -= 20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称21.对于极限)(limx f x →,下列说法正确的是( ) A .若极限)(lim 0x f x →存在,则此极限是唯一的 B .若极限)(limx f x →存在,则此极限并不唯一C .极限)(limx f x →一定存在D .以上三种情况都不正确 22.若极限A )(lim 0=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ).A . 0B . 1C .∞D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b aB .1,1==b aC .1,2==b aD .0,2=-=b a26.设b a<<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin 为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim0→为正整数)等于( ) A .nm B .mn C .n m nm --)1( D .mn m n --)1( 30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b aB .0,1==b aC .0,6==b aD .1,1==b a31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(limx f x ( )A .1B .0C .1-D .不存在 33.下列计算结果正确的是( )A .e x x x =+→10)41(lim B .410)41(lim e xx x =+→ C .410)41(lim --→=+e x x x D .4110)41(lim e x x x =+→34.极限x x xtan 0)1(lim +→等于( ) A . 1 B .∞ C .0 D .21 35.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sinlim 0的结果是 A .1- B .1 C .0 D .不存在36.()01sinlim≠∞→k kxx x 为 ( )A .kB .k1C .1D .无穷大量37.极限xx sin lim 2π-→=( )A .0B .1C .1-D .2π- 38.当∞→x时,函数x x)11(+的极限是( )A .eB .e -C .1D .1-39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,则a 的值是( )A .1B .1-C .2D .2- 42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小 D .)(x f 与)(x g 为等价无穷小47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x→,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim ∞→D .x x x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量 D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x +B .x tanC .()x cos 12-D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .xx 3B .xx cos C .x ln D .xe - 56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x→时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( )A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( )A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件 60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+= B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(= B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 则)(x f 在点0=x 处( )A .连续B .左连续C .右连续D .既非左连续,也非右连续 64.下列函数在0=x处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-00)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f C .⎩⎨⎧≥<-=00)(2x xx xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( ) A .不连续 B .连续但不可导 C .可导,但导数不连续 D .可导,且导数连续 66.设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在 67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( )A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=01200)(x x x x e x f x ,则函数)(x f ( ) A .当0→x 时,极限不存在 B .当0→x 时,极限存在 C .在0=x 处连续 D .在0=x 处可导69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞ 70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及n x x 10≠≠71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在 73.设11cot)(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2x y e x z y-+=的间断点是( )A .)1,1(),1,1(),0,1(--B .是曲线y e y -=上的任意点C .)1,1(),1,1(),0,0(-D .曲线2x y =上的任意点75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( )A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .00)()(lim)('0x x x f x f x f x x --=→ D .hx f h x f x f h )()21(lim)('0000--=→ 78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .2 79.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则h x f h x f h )()21(lim 000--→等于( )A .1-B .2C .1D .21-81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim 0--+→=( )A .)('a fB .)('2a fC .0D .)2('a f82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim( )A .4B .0C .2D .3 83.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( )A .0B .6-C .1D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim( )A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关 86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A .21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a等于( )A .a x ln 1B .a x ln 1C .x x a log 1D .x 189.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100- D .100-92.若==',y x y x 则( )A .1-⋅x x x B .x xxln C .不可导 D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在 94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x+- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x f B .)(0x f C .0 D .199.设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( ) A .211k k =B .121-=⋅k k C .121=⋅k k D .021=⋅k k100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f -> D .)()(0x f x f -<101.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f (或)('0x f 不存在),下列说法不正确的是( ) A .若0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值 B .若0x x <时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值 C .若0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0=x f ,0)(''0≠x f ,若0)(''0>x f ,则函数)(x f 在0x 处取得( )A .极大值B .极小值C .极值点D .驻点 103.b x a <<时,恒有0)(>''x f ,则曲线)(x f y =在()b a ,内( )A .单调增加B .单调减少C .上凹D .下凹 104.数()e x f x x =-的单调区间是( ) .A .在),(+∞-∞上单增B .在),(+∞-∞上单减C .在(,0)-∞上单增,在(0,)+∞上单减D .在(,0)-∞上单减,在(0,)+∞上单增 105.数43()2f x x x =-的极值为( ).A .有极小值为(3)fB .有极小值为(0)fC .有极大值为(1)fD .有极大值为(1)f -106.x e y =在点(0,1)处的切线方程为( )A .x y +=1 B .x y +-=1 C .x y -=1 D .x y --=1107.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) A .)0,61(- B .)0,1(- C .)0,61( D .)0,1(108.抛物线xy =在横坐标4=x的切线方程为 ( )A .044=+-y xB .044=++y xC .0184=+-y xD .0184=-+y x109.线)0,1()1(2在-=x y 点处的切线方程是( )A .1+-=x y B .1--=x y C .1+=x y D .1-=x y110.曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(1,1),则该曲线的方程是( ) A .12++-=x x y B .12-+-=x x y C .12++=x x y D .12-+=x x y111.线22)121(++=x e y x 上的横坐标的点0=x 处的切线与法线方程( )A .063023=-+=+-y x y x 与B .063023=--=++-y x y x 与C .063023=++=--y x y x 与D .063023=+-=++y x y x 与112.函数处在点则0)(,)(3==x x f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线 113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0=x 处的导数,0)0('=f 则0=x 称为)(x f 的( )A .极大值点B .极小值点C .极值点D .驻点 115.曲线)1ln()(2+=x x f 的拐点是( )A .)1ln ,1(与)1ln ,1(-B .)2ln ,1(与)2ln ,1(-C .)1,2(ln 与)1,2(ln -D .)2ln ,1(-与)2ln ,1(-- 116.线弧向上凹与向下凹的分界点是曲线的( )A .驻点B .极值点C .切线不存在的点D .拐点 117.数)(x f y =在区间[a,b]上连续,则该函数在区间[a,b]上( )A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值 118.下列结论正确的有( )A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程y x e xy+=确定的隐函数)(x y y ==dxdy( )A .)1()1(x y y x -- B .)1()1(y x x y -- C .)1()1(-+y x x y D .)1()1(-+x y y x120.=+=x y y xe y ',1则( )A .yy xe e -1 B .1-y y xe e C .yyxe e -+11 D .y e x )1(+121.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -122.设x x g e x f x cos )(,)(-==,则=)]('[x g fA .xe sin B .xecos - C .xecos D .xesin -123.设)(),(x t t f y φ==都可微,则=dyA .dt t f )(' B .)('x φdx C .)('t f )('x φdt D .)('t f dx124.设,2sin x e y =则=dy ( )A .xd e x2sin B .x d ex2sin sin 2C .xxd e x sin 2sin 2sin D .x d e x sin 2sin125.若函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) A .与x ∆等价的无穷小量 B .与x ∆同阶的无穷小量 C .比x ∆低阶的无穷小量 D .比x ∆高阶的无穷小量126.给微分式21xxdx -,下面凑微分正确的是( )A .221)1(xx d ---B .221)1(xx d -- C .2212)1(xx d ---D .2212)1(xx d --127.下面等式正确的有( ) A .)(sin sin x x x xe d e dx e e= B .)(1x d dx x=-C .)(222x d edx xe x x -=-- D .)(cos sin cos cos x d e xdx e x x =128.设)(sin x f y =,则=dy ( )A .dx x f )(sin ' B .x x f cos )(sin ' C .xdx x f cos )(sin ' D .xdx x f cos )(sin '-129.设,2sin x e y =则=dyA .xd e x 2sin B .x d ex2sinsin 2C .x xd e xsin 2sin 2sinD .x d e x sin 2sin三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .0)('=x f B .)()(F'x f x = C .0)(F'=x D .0)(=x f131.若函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,则有( )A .I x x x ∈∀=Φ),(F )('B .I x x x ∈∀Φ=),()(FC .I x x x ∈∀Φ=),()(F' D .I x C x x ∈∀=Φ-,)()(F132.有理函数不定积分2d 1x x x⎰+等于( ). A .2ln 12x x x C ++++ B .2ln 12x x x C --++ C .2ln 12x x x C -+++ D .2ln 122x xx C -+++ 133.不定积分x 等于( ).A .2arcsin x C +B .2arccos xC + C .2arctan x C +D .2cot arc x C +134.不定积分2e e (1)d xxx x-⎰-等于( ).A .1exC x -++ B .1e x C x -+ C .1e x C x ++ D .1e xC x--+135.函数x e x f 2)(=的原函数是( )A .4212+x e B .x e 22 C .3312+x e D .x e 231136.⎰xdx 2sin 等于( )A .c x +2sin 21 B .c x +2sin C .c x +-2cos2 D .c x +2cos 21137.若⎰⎰-=xdx x x dx x xf sin sin )(,则)(x f 等于( )A .x sinB .xx sin C .x cos D .x xcos138. 设x e -是)(x f 的一个原函数,则⎰=dx x xf )('( )A .c x e x+--)1( B .c x e x ++--)1( C .c x e x +--)1( D . c x e x ++-)1(139.设,)(x e x f -= 则⎰=dx xx f )(ln ' ( ) A .c x +-1 B .c x+1C .c x +-lnD .c x +ln140.设)(x f 是可导函数,则()')(⎰dx x f 为( )A .)(x f B .c x f +)( C .)('x f D .c x f +)('141. 以下各题计算结果正确的是( )A .⎰=+x x dxarctan 12B .c xdx x +=⎰21 C .⎰+-=c x xdx cos sin D .⎰+=c x xdx 2sec tan 142. 在积分曲线族⎰dx x x中,过点(0,1)的积分曲线方程为( )A .12+x B .1)(525+x C .x 2 D .1)(255+x143.⎰dx x 31=( )A .c x +--43 B .c x+-221 C . c x +-221 D . c x +-221 144.设)(x f 有原函数x x ln ,则⎰dx x xf )(=( )A .c x x ++)ln 4121(2B .c x x ++)ln 2141(2 C .c x x +-)ln 2141(2D .c x x +-)ln 4121(2 145.⎰=xdx x cos sin ( )A .c x +-2cos 41 B .c x +2cos 41 C .c x +-2sin 21 D .c x +2cos 21146.积分=+⎰dx x ]'11[2( ) A .211x + B .c x ++211 C .x tan arg D .c x +arctan147.下列等式计算正确的是( )A .⎰+-=c x xdx cos sin B .c x dx x +=---⎰43)4(C .c x dx x +=⎰32 D .c dx xx +=⎰22 148.极限⎰⎰→xxx xdxtdt000sin lim的值为( )A .1-B .0C .2D .1149.极限⎰⎰→x xx dx x tdt 0202sin lim的值为( )A .1-B .0C .2D .1150.极限4030sin limx dt t xx ⎰→=( )A .41 B .31 C .21D .1 151.=⎰+2ln 01x t dt e dxd( ) A .)1(2+xe B .ex C .ex 2 D .12+xe152.若⎰=xtdt dx d x f 0sin )(,则( )A .x x f sin )(=B .x x f cos 1)(+-=C .c x x f +=sin )( D .x x f sin 1)(-=153.函数()⎰+-=xdt t t tx 0213φ在区间]10[,上的最小值为( )A .21 B .31C .41D .0 154.若()⎰+==xtxc dt t e x f e x x g 02122213)(,)(,且23)(')('lim=+∞→x g x f x 则必有( )A .0=cB .1=cC .1-=cD .2=c155.⎰=+xdt t dx d14)1(( )A .21x + B .41x + C .2121x x+ D .x x+121 156.=⎰]sin [02dt t dx d x( ) A .2cos x B .2cos 2x x C .2sin x D .2cos t157.设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x ax x tdt x f x在0=x 点处连续,则a 等于( )A .2B .21C .1D .2- 158.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F x a≤≤=⎰则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f a x x x F xa⎰-=)(lim x F a x →=( ) A .2a B .)(2a f a C . 0 D .不存在160.函数x2sin 1的原函数是( )A .c x +tanB .c x +cotC .c x +-cotD . xsin 1-161.函数)(x f 在[a,b]上连续, ⎰=xadt t f x )()(ϕ,则( )A .)(x ϕ是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x ϕ的一个原函数C .)(x ϕ是)(x f 在[a,b]上唯一的原函数 D . )(x f 是)(x ϕ在[a,b]上唯一的原函数162.广义积分=⎰+∞-0dx e x ( )A .0B .2C .1D .发散 163.=+⎰dx x π2cos 1( )A .0B . 2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x -=⎰( )A .)(x FB .)(x F -C . 0D . 2)(x F165.下列广义积分收敛的是( )A .⎰+∞1xdx B .⎰+∞1xxdx C .dx x ⎰+∞1D .⎰+∞132xdx166.下列广义积分收敛的是( )A .⎰+∞13x dx B .⎰+∞1cos xdx C .dx x ⎰+∞1ln D .⎰+∞1dx e x167.⎰+∞->apxp dx e )0(等于( )A .pae- B .pae a-1 C .pa e p -1 D .)1(1pa e p --168.=⎰∞+ex x dx2)(ln ( ) A .1 B .e1C .eD .∞+(发散) 169.积分dx e kx-+∞⎰收敛的条件为( )A .0>kB .0<kC .0≥kD .0≤k170.下列无穷限积分中,积分收敛的有( ) A .⎰∞-0dx e x B .⎰+∞1xdxC .⎰∞--0dx e x D .⎰∞-0cos xdx171.广义积分⎰∞+edx xxln 为( ) A .1 B .发散 C .21D .2 172.下列广义积分为收敛的是( )A .⎰+∞e dx x xln B .⎰+∞e x x dx lnC .⎰∞+e dx x x 2)(ln 1 D .⎰+∞e dx x x 21)(ln 1173.下列积分中不是广义积分的是( ) A .⎰+∞+0)1ln(dx x B .⎰-42211dx x C .⎰11-21dx x D .⎰+03-11dx x174.函数()f x 在闭区间[a,b]上连续是定积分⎰badx x f )(在区间[a,b]上可积的( ). A .必要条件 B .充分条件C .充分必要条件D .既非充分又飞必要条件 175.定积分121sin 1xdx x -+⎰等于( ). A .0 B .1 C .2 D .1- 176.定积分⎰-122d ||x x x 等于( ). A .0 B . 1 C .174 D .174- 177.定积分x x x d e )15(405⎰+等于( ). A .0 B .5e C .5-e D .52e178.设)(x f 连续函数,则=⎰22)(dx x xf ( )A .⎰40)(21dx x f B .⎰2)(21dx x f C .⎰40)(2dx x f D .⎰4)(dx x f179.积分⎰--=-11sin 2xdx x e e xx ( )A .0B .1C .2D .3 180.设)(x f 是以T 为周期的连续函数,则定积分⎰+=Tl ldx x f I )(的值( )A .与l 有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关 181.设)(x f 连续函数,则=⎰2)(dx xx f ( ) A .⎰+210)(21dx x f B .⎰+210)(2dx x f C .⎰2)(dx x f D .⎰2)(2dx x f182.设)(x f 为连续函数,则⎰1)2('dx x f 等于( )A .)0()2(f f - B .[])0()1(21f f - C .[])0()2(21f f - D .)0()1(f f - 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分⎰b adx x f )(的值必定( )A .大于零B .大于等于零C .小于零D .不等于零 184.下列定积分中,积分结果正确的有( ) A .c x f dx x f ba+=⎰)()(' B .)()()('a f b f dx x f ba+=⎰C .)]2()2([21)2('a f b f dx x f ba-=⎰D .)2()2()2('a f b f dx x f b a -=⎰185.以下定积分结果正确的是( ) A .2111=⎰-dx x B .21112=⎰-dx x C .211=⎰-dx D .211=⎰-xdx 186.⎰=adx x 0)'(arccos ( ) A .211x-- B .c x+--211 C .c a +-2arccos πD .0arccos arccos -a187.下列等式成立的有( ) A .0sin 11=⎰-xdx x B .011=⎰-dx e xC .a b xdx abtan tan ]'tan [-=⎰D .xdx xdx d xsin sin 0=⎰188.比较两个定积分的大小( ) A .⎰⎰<213212dx x dx x B .⎰⎰≤213212dx x dx xC .⎰⎰>213212dx x dx x D .⎰⎰≥213212dx x dx x189.定积分⎰-+22221sin dx x xx 等于( ) A .1 B .-1 C .2 D .0 190.⎰=11-x dx ( )A .2B .2-C .1D .1- 191.下列定积分中,其值为零的是( ) A .⎰22-sin xdx x B .⎰2cos xdx xC .⎰+22-)(dx x e xD .⎰+22-)sin (dx x x192.积分⎰-=21dx x ( )A .0B .21 C .23 D .25 193.下列积分中,值最大的是( ) A .⎰12dx xB .⎰13dx x C .⎰14dx x D .⎰15dx x194.曲线x y -=42与y 轴所围部分的面积为()A .[]⎰--2224dy y B .[]⎰-224dy y C .⎰-44dx x D .⎰--444dx x195.曲线x e y =与该曲线过原点的切线及y 轴所围形的为面积( )A .()⎰-exxdx xe e1 B .()⎰-1ln ln dy y y yC .()⎰-1dx ex exD .()⎰-edy y y y 1ln ln196.曲线2x y x y ==与所围成平面图形的面积( )A .31B .31- C .1 D .-1四、常微分方程 197.函数y c x =-(其中c 为任意常数)是微分方程1x y y '+-=的( ). A .通解 B .特解 C .是解,但不是通解,也不是特解 D .不是解 198.函数23x y e =是微分方程40y y ''-=的( ).A .通解B .特解C .是解,但不是通解,也不是特解D .不是解 199.2()sin y y x y x '''++=是( ).A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程 200.下列函数中是方程0y y '''+=的通解的是( ). A .12sin cos y C x C x =+ B .x y Ce -=C .y C =D .12x y C e C -=+专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数.6.解:令t x-=1,则t t t t t f 21212211)(--=---+=,所以xx x f 212)(--= ,故选D 7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B 12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1lim lim x e x e x x e x e →→-==-,故选B .24.解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim20=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n nn ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim2121lim 21sin==∞→x x x x x ,故选B 29.解:nmnx mx nx mx x x ==→→00lim sin sin lim 故选A30.解:因为1tan lim230=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B31.解:1cos 1cos 1lim cos cos lim=+-=+-∞→∞→xxx xx x x x x x ,选A32.解:因为01lim )(lim 0=-=++→→)(xx x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(limx f x →不存在,故选D33.解:41414010])41(lim [)41(lim e xx x x x x =+=+→→,选D34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xxx x x x x ,选C 35.解:110sin 11sinlim 0-=-=⎪⎭⎫⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sinlim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim21=++→ax x x ,7-=a ,选B41.解:2),2(lim tan lim 00=+=-+→→a x xaxx x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C43.解:因为22lim )2sin(lim2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim0=+→xx x ),故选B45.解:因为33lim )3tan(lim2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim1)1(21lim11=++=-+-→→x x xx xx x ,故选C47.解:因为021lim 11lim 00==-+++→→xxx x ax ax ,所以1>a ,故选A48.解:因为02tan lim 20=→xxx ,故选D 49.解:由书中定理知选C 50.解:因为01cos 1lim=∞→xx x ,故选C51.解:因为6ln 13ln 32ln 2lim 232lim00=+=-+→→x x x x x x x ,选B 52.解:选A 53.解:1sin )cos 1(2lim20=-→x x x ,选C54.解:因为1)(lim =+∞→x f x ,选A55.解:选A 56.解:0sec 1sin lim0=+→xxx ,选C57.解:选C58.解:,11sinlim20=+→xx x x x 选D59.解:根据连续的定义知选B 60.C 61.解:选A 62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x ,011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C67.解:选C 68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B 70.解:313lim)(-=-=∞→nxnxx f x ,选A71.解:)0(2111limf x x x ≠=-+→,选A72.解:选C 73.解:因为0)11cot(lim )(lim211=-+=++→→x arc x x f x x , π=-+=--→→)11cot(lim )(lim 211x arc x x f x x 故选B74.解:选D 75.解:因为2lim ,lim-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C76.解:因为11sinlim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim 0000-=-=----→x f h x f h x f h ,选C81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→x x x x x x f x f x x ,故选B84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C85.解:因为0lim→h )(')()h - x (000x f hx f f -=-,故选B 86.解:因为=--→h f h f h )1()21(lim 021)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D87.解:222242)('',2)('xx x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim)0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D93.解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选D 94.解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选D95.解:选C 96.解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y ey x g x f -⋅='=-,选A97.C 98.A 99.B 100.A 101. C 102.B 103.C。

专升本高数复习资料(超新超全)

专升本高数复习资料(超新超全)

专升本高数复习资料(超新超全)严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

2.会求曲线上一点处的切线方程与法线方程。

3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

4.掌握隐函数的求导法与对数求导法。

会求分段函数的导数。

5.了解高阶导数的概念。

会求简单函数的高阶导数。

6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。

第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。

2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。

会利用函数的单调性证明简单的不等式。

3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。

4.会判断曲线的凹凸性,会求曲线的拐点。

5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

湖南工业大学专升本考试全部科目考纲

湖南工业大学专升本考试全部科目考纲

湖南工业大学2011年“专升本”选拔考试《大学语文》考试大纲(满分150分,时限120分钟)一、阅读分析考核要点及要求阅读分析主要考核学生对作品的基本观点、思想内容、层次结构、写作特点、语文修辞、创作特色等方面的分析理解。

1.议论文(1)归纳文章的中心论点和分论点。

(2)划分重要段落的层次,概括层次大意。

(3)认知文章所用论据的类别。

(4)识别文中所运用的各种论证方法或驳论方法。

(5)识别文中所采用的修辞手法及其作用。

(6)文言文实词、虚词的理解与特殊语法现象的辨识。

例如《论“费厄泼赖”应该缓行》概括文章各部分的大意,归纳全文的中心论点。

简要说明鲁迅认为“费厄泼赖”应该缓行的原因。

认知本文所运用的主要论证方法是类比法,结合有关段落说明类比的内容和作用。

结合有关段落,简要说明文中所运用的归纳论证法和对比论证法。

识别文中运用比喻、比拟、反语三种修辞手法的地方,简要说明它们的含义或作用。

结合本文,谈谈鲁迅杂文的艺术特色。

2.记叙文(1)归纳文章的中心思想。

(2)划分重要段落的层次,概括层次大意。

(3)认知文章的记叙方式。

(4)识别文中的人物描写方法,简要说明这些描写方法的作用。

(5)认知文中环境描写的类别,简要说明这些环境描写的作用。

(6)识别文中所运用的表现手法和修辞手法及其作用。

(7)文言文词语解释与特殊语法现象的辨识。

例如《廉颇蔺相如列传》概括文章所描述的三个主要故事,理解本文善于通过典型事件来刻画人物的特点。

归纳廉颇和蔺相如的主要性格特征。

划分“完璧归赵”、“渑池之会”两个场面的层次,识别其中的人物肖像描写、动作描写和语言描写,理解本文善于在尖锐矛盾冲突中刻画人物的特点。

结合文中有关段落,简要说明对话描写对刻画人物性格的作用。

简要说明“将相如”的意义。

辨识句子“幸于赵王”的句式特点(被动句式、倒序句式、使动与意动用法)。

3.说明文(1)归纳文章所说明的中心和要点。

(2)划分重要段落的层次,概括层次大意。

高等数学复习资料(含答案)

高等数学复习资料(含答案)

专升本高等数学复习资料一、函数、极限和连续 1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是 2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数 3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同 4.函数42y x x =-+-的定义域为( )A .(2,4)B .[2,4]C .(2,4]D .[2,4)5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A .x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln =9.以下各对函数是相同函数的有( ) A .x x g x x f -==)()(与 B .x x g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --=D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B .]0,1[- C .[0,1] D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=2020022)(2x x x x x x f 的定义域是( c ) A .)2,2(- B .]0,2(- C .]2,2(- D . (0,2]13.若=---+-=)1(,23321)(f xx x x x f 则( b )A .3-B .3C .1-D .1 14.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( b )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( b )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x F16. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( d )A .12-πB .182-πC . 0D .无意义17.函数x x y sin 2=的图形( c )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称18.下列函数中,图形关于y 轴对称的有( )A .x x y cos = B .13++=x x yC .2xx e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f -的图形对称于直线( )A .0=y B .0=x C .x y = D .x y -=20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称21.对于极限)(limx f x →,下列说法正确的是( ) A .若极限)(limx f x →存在,则此极限是唯一的 B .若极限)(limx f x →存在,则此极限并不唯一C .极限)(limx f x →一定存在D .以上三种情况都不正确 22.若极限A )(lim=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在 C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等 D .A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x 23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ). A . 0 B . 1 C .∞ D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b aB .1,1==b aC .1,2==b aD .0,2=-=b a 26.设b a <<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a +27.极限xx 10321lim+→的结果是A .0B .21C .51D .不存在 28.∞→x limxx 21sin为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim0→为正整数)等于( ) A .nm B .mn C .n m nm --)1( D .mn m n --)1( 30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b aB .0,1==b aC .0,6==b aD .1,1==b a 31.极限xx x x x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(limx f x ( )A .1B .0C .1-D .不存在 33.下列计算结果正确的是( )A .e x x x =+→10)41(lim B .410)41(lim e xx x =+→ C .410)41(lim --→=+e x x x D .4110)41(lim e x x x =+→34.极限x x xtan 0)1(lim +→等于( ) A . 1 B .∞ C .0 D .2135.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sinlim 0的结果是 A .1- B .1 C .0 D .不存在36.()01sin lim ≠∞→k kxx x 为 ( )A .kB .k1C .1D .无穷大量37.极限x x sin lim 2π-→=( )A .0B .1C .1-D .2π-38.当∞→x 时,函数xx)11(+的极限是( ) A .e B .e - C .1 D .1-39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,则a 的值是( )A .1B .1-C .2D .2-42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是43.当0→x时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( )A .xxsin B .)1ln(x +C .)11(2x x -++D .)1(2+x x45.当0→x时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小 D .)(x f 与)(x g 为等价无穷小 47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( ) A .1>a B .0>a C .a 为任一实常数 D .1≥a 48.当0→x时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x→,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim ∞→D .xx x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量 D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x时,与2sin x 等价的无穷小量是 ( )A .)1ln(x + B .x tan C .()x cos 12- D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量 55. 当0→x时,下列变量是无穷小量的有( )A .xx 3B .xx cos C .x ln D .xe - 56. 当0→x时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x→时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( )A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( )A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件 60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+= B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .xx f 1)(=B .⎩⎨⎧>≤=0cos 0sin )(x xx xx fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=021a r c t a n )(x x x x f π 则)(x f 在点0=x 处( )A .连续B .左连续C .右连续D .既非左连续,也非右连续 64.下列函数在0=x处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-0)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f C .⎩⎨⎧≥<-=00)(2x x x xx f D .⎩⎨⎧≤->+=0)1ln()(2x xx x x f 65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( ) A .不连续 B .连续但不可导 C .可导,但导数不连续 D .可导,且导数连续 66.设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在 67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( )A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=012000)(x x x x e x f x,则函数)(x f ( )A .当0→x时,极限不存在 B .当0→x 时,极限存在C .在0=x 处连续D .在0=x 处可导69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞ 70.设nxnxx f x -=∞→13lim)(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及n x x 10≠≠71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在 73.设11cot)(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2x y e x z y-+=的间断点是( )A .)1,1(),1,1(),0,1(--B .是曲线y e y -=上的任意点C .)1,1(),1,1(),0,0(-D .曲线2x y =上的任意点75.设2)1(42-+=xx y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( )A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .00)()(lim)('0x x x f x f x f x x --=→ D .hx f h x f x f h )()21(lim)('0000--=→ 78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .2 79.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则h x f h x f h )()21(lim 000--→等于( )A .1-B .2C .1D .21-81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim 0--+→=( )A .)('a fB .)('2a fC .0D .)2('a f 82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim( )A .4B .0C .2D .3 83.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( )A .0B .6-C .1D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim( )A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关 86.设)(x f 在1=x 处可导,且21)1()21(lim=--→h f h f h ,则=)1('f ( )A .21 B .21-C . 41D .41- 87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .288.导数)'(log x a等于( )A .a x ln 1B .a x ln 1C .x x a log 1 D .x189.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100-D .100-92.若==',y x y x 则( )A .1-⋅x x x B .x xxln C .不可导 D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在 94.设==-',)2(y x y x 则( )A .)1()2(x x x +-- B .2ln )2(xx -C .)2ln 21()2(x x x+- D .)2ln 1()2(x x x +-- 95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅ 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x f B .)(0x f C .0 D .199.设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( )A .211k k =B .121-=⋅k kC .121=⋅k kD .021=⋅k k100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f -> D .)()(0x f x f -<101.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f (或)('0x f 不存在),下列说法不正确的是( ) A .若0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值 B .若0x x <时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值 C .若0x x <时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0=x f ,0)(''0≠x f ,若0)(''0>x f ,则函数)(x f 在0x 处取得( )A .极大值B .极小值C .极值点D .驻点 103.b x a<<时,恒有0)(>''x f ,则曲线)(x f y =在()b a ,内( )A .单调增加B .单调减少C .上凹D .下凹 104.数()e x f x x =-的单调区间是( ) .A .在),(+∞-∞上单增B .在),(+∞-∞上单减C .在(,0)-∞上单增,在(0,)+∞上单减D .在(,0)-∞上单减,在(0,)+∞上单增 105.数43()2f x x x =-的极值为( ). A .有极小值为(3)f B .有极小值为(0)f C .有极大值为(1)f D .有极大值为(1)f -106.x e y =在点(0,1)处的切线方程为( )A .x y +=1 B .x y +-=1 C .x y -=1 D .x y --=1 107.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) A .)0,61(- B .)0,1(- C .)0,61( D .)0,1(108.抛物线x y =在横坐标4=x 的切线方程为 ( )A .044=+-y x B .044=++y x C .0184=+-y x D .0184=-+y x109.线)0,1()1(2在-=x y 点处的切线方程是( )A .1+-=x y B .1--=x y C .1+=x y D .1-=x y110.曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(1,1),则该曲线的方程是( ) A .12++-=x x y B .12-+-=x x y C .12++=x x y D .12-+=x x y111.线22)121(++=x e y x 上的横坐标的点0=x 处的切线与法线方程( )A .063023=-+=+-y x y x 与B .063023=--=++-y x y x 与C .063023=++=--y x y x 与D .063023=+-=++y x y x 与112.函数处在点则0)(,)(3==x x f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线 113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0=x 处的导数,0)0('=f 则0=x 称为)(x f 的( )A .极大值点B .极小值点C .极值点D .驻点 115.曲线)1ln()(2+=x x f 的拐点是( )A .)1ln ,1(与)1ln ,1(-B .)2ln ,1(与)2ln ,1(-C .)1,2(ln 与)1,2(ln -D .)2ln ,1(-与)2ln ,1(-- 116.线弧向上凹与向下凹的分界点是曲线的( )A .驻点B .极值点C .切线不存在的点D .拐点 117.数)(x f y =在区间[a,b]上连续,则该函数在区间[a,b]上( )A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值 118.下列结论正确的有( )A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程yx exy +=确定的隐函数)(x y y ==dxdy( )A .)1()1(x y y x -- B .)1()1(y x x y -- C .)1()1(-+y x x y D .)1()1(-+x y y x120.=+=x y y xe y ',1则( )A .yyxe e -1 B .1-yy xe e C .yyxe e -+11 D .y e x )1(+121.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -122.设x x g e x f x cos )(,)(-==,则=)]('[x g fA .xe sin B .xecos - C .xecos D .xesin -123.设)(),(x t t f y φ==都可微,则=dyA .dt t f )(' B .)('x φdx C .)('t f )('x φdt D .)('t f dx124.设,2sin xey =则=dy ( )A .x d e x 2sinB .x d e x 2sin sin 2C .xxd e x sin 2sin 2sin D .x d e x sin 2sin125.若函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) A .与x ∆等价的无穷小量 B .与x ∆同阶的无穷小量 C .比x ∆低阶的无穷小量 D .比x ∆高阶的无穷小量126.给微分式21xxdx -,下面凑微分正确的是( )A .221)1(xx d ---B .221)1(xx d -- C .2212)1(xx d ---D .2212)1(xx d --127.下面等式正确的有( ) A .)(sin sin x x x xe d e dx e e= B .)(1x d dx x=-C .)(222x d e dx xe x x -=-- D .)(cos sin cos cos x d e xdx e x x =128.设)(sin x f y =,则=dy ( )A .dx x f )(sin ' B .x x f cos )(sin ' C .xdx x f cos )(sin ' D .xdx x f cos )(sin '-129.设,2sin xey =则=dyA .x d e x 2sinB .x d e x2sinsin 2C .x xd e xsin 2sin 2sinD .x d e x sin 2sin三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .0)('=x f B .)()(F'x f x = C .0)(F'=x D .0)(=x f131.若函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,则有( )A .I x x x ∈∀=Φ),(F )('B .I x x x ∈∀Φ=),()(FC .I x x x ∈∀Φ=),()(F' D .Ix C x x ∈∀=Φ-,)()(F132.有理函数不定积分2d 1x x x⎰+等于( ). A .2ln 12x x x C ++++ B .2ln 12x x x C --++ C .2ln 12x x x C -+++ D .2ln 122x xx C -+++ 133.不定积分22d 1x x-⎰-等于( ). A .2arcsin x C + B .2arccos x C + C .2arctan x C + D .2cot arc x C +134.不定积分2e e (1)d xxx x-⎰-等于( ).A .1exC x -++ B .1e x C x -+ C .1e x C x ++ D .1e xC x--+135.函数x e x f 2)(=的原函数是( )A .4212+xe B .x e 22 C .3312+x e D .x e 231136.⎰xdx 2sin 等于( )A .c x +2sin 21 B .c x +2sin C .c x +-2cos2 D .c x +2cos 21137.若⎰⎰-=xdx x x dx x xf sin sin )(,则)(x f 等于( )A .x sinB .xxsin C .x cos D .x x cos138. 设x e -是)(x f 的一个原函数,则⎰=dx x xf )('( )A .c x e x+--)1( B .c x e x ++--)1( C .c x e x +--)1( D . c x e x ++-)1(139.设,)(x e x f -= 则⎰=dx xx f )(ln ' ( ) A .c x +-1 B .c x+1C .c x +-lnD .c x +ln140.设)(x f 是可导函数,则()')(⎰dx x f 为( )A .)(x f B .c x f +)( C .)('x f D .c x f +)('141. 以下各题计算结果正确的是( )A .⎰=+x x dx arctan 12 B .c xdx x +=⎰21C .⎰+-=c x xdx cos sin D .⎰+=c x xdx 2sectan142. 在积分曲线族⎰dx x x中,过点(0,1)的积分曲线方程为( )A .12+x B .1)(525+x C .x 2 D .1)(255+x143.⎰dx x 31=( ) A .c x +--43 B .c x+-221 C . c x +-221 D . c x +-221 144.设)(x f 有原函数x x ln ,则⎰dx x xf )(=( )A .c x x++)ln 4121(2B .c x x ++)ln 2141(2C .c x x +-)ln 2141(2D .c x x +-)ln 4121(2 145.⎰=xdx x cos sin ( )A .c x +-2cos 41 B .c x +2cos 41 C .c x +-2sin 21 D .c x +2cos 21146.积分=+⎰dx x ]'11[2( ) A .211x + B .c x++211C .x tan argD .c x +arctan 147.下列等式计算正确的是( )A .⎰+-=c x xdx cos sin B .c x dx x+=---⎰43)4(C .c x dx x+=⎰32D .c dx x x +=⎰22148.极限⎰⎰→xxx xdxtdt00sin lim的值为( )A .1-B .0C .2D .1149.极限⎰⎰→x xx dxx tdt202sinlim的值为( )A .1-B .0C .2D .1150.极限43sin limxdttxx ⎰→=( )A .41B .31 C .21 D .1151.=⎰+2ln 01x t dt edxd( )A .)1(2+xe B .ex C .ex 2 D .12+xe152.若⎰=xtdt dx dx f 0sin )(,则()A .x x f sin )(=B .x x f cos 1)(+-=C .c x x f +=sin )( D .x x f sin 1)(-=153.函数()⎰+-=xdt t t tx 0213φ在区间]10[,上的最小值为( )A .21 B .31C .41D .0 154.若()⎰+==xtx c dt t e x f e x x g 02122213)(,)(,且23)(')('lim=+∞→x g x f x 则必有( )A .0=cB .1=cC .1-=cD .2=c 155.⎰=+xdt t dx d14)1(( )A .21x + B .41x + C .2121x x+ D .x x+121 156.=⎰]sin [02dt t dx d x( ) A .2cos x B .2cos 2x x C .2sin x D .2cos t157.设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x a x x tdt x f x在0=x 点处连续,则a 等于( ) A .2 B .21C .1D .2-158.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F xa≤≤=⎰则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f ax x x F xa ⎰-=)(lim x F a x →=( ) A .2a B .)(2a f a C . 0 D .不存在160.函数x2sin 1的原函数是( ) A .c x +tan B .c x +cot C .c x +-cot D . xsin 1-161.函数)(x f 在[a,b]上连续, ⎰=xadt t f x )()(ϕ,则( )A .)(x ϕ是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x ϕ的一个原函数C .)(x ϕ是)(x f 在[a,b]上唯一的原函数 D . )(x f 是)(x ϕ在[a,b]上唯一的原函数162.广义积分=⎰+∞-0dx e x ( )A .0B .2C .1D .发散 163.=+⎰dx x π2cos 1( )A .0B . 2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x -=⎰( )A .)(x FB .)(x F -C . 0D . 2)(x F165.下列广义积分收敛的是( )A .⎰+∞1xdx B .⎰+∞1xxdx C .dx x ⎰+∞1D .⎰+∞132xdx166.下列广义积分收敛的是( )A .⎰+∞13x dx B .⎰+∞1cos xdx C .dx x ⎰+∞1ln D .⎰+∞1dx e x167.⎰+∞->apxp dx e )0(等于( )A .pae- B .pa e a -1 C .pa e p -1 D .)1(1pa e p-- 168.=⎰∞+ex x dx2)(ln ( )A .1B .e1C .eD .∞+(发散) 169.积分dx e kx-+∞⎰收敛的条件为( )A .0>kB .0<kC .0≥kD .0≤k170.下列无穷限积分中,积分收敛的有( ) A .⎰∞-0dx e xB .⎰+∞1xdxC .⎰∞--0dx exD .⎰∞-0cos xdx171.广义积分⎰∞+edx xxln 为( ) A .1 B .发散 C .21 D .2172.下列广义积分为收敛的是( )A .⎰+∞e dx x xln B .⎰+∞e x x dx lnC .⎰∞+e dx x x 2)(ln 1 D .⎰+∞e dx x x 21)(ln 1173.下列积分中不是广义积分的是( ) A .⎰+∞+0)1ln(dx x B .⎰-42211dx x C .⎰11-21dx x D .⎰+03-11dx x174.函数()f x 在闭区间[a,b]上连续是定积分⎰badx x f )(在区间[a,b]上可积的( ).A .必要条件B .充分条件C .充分必要条件D .既非充分又飞必要条件 175.定积分121sin 1xdx x -+⎰等于( ). A .0 B .1 C .2 D .1- 176.定积分⎰-122d ||x x x 等于( ). A .0 B . 1 C .174 D .174- 177.定积分x x x d e )15(405⎰+等于( ). A .0 B .5e C .5-e D .52e178.设)(x f 连续函数,则=⎰22)(dx x xf ( )A .⎰40)(21dx x f B .⎰2)(21dx x f C .⎰40)(2dx x f D .⎰40)(dx x f 179.积分⎰--=-11sin 2xdx x e e xx ( )A .0B .1C .2D .3 180.设)(x f 是以T 为周期的连续函数,则定积分⎰+=Tl ldx x f I )(的值( )A .与l 有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关 181.设)(x f 连续函数,则=⎰2)(dx xx f ( ) A .⎰+210)(21dx x f B .⎰+210)(2dx x f C .⎰2)(dx x f D .⎰2)(2dx x f182.设)(x f 为连续函数,则⎰1)2('dx x f 等于( )A .)0()2(f f - B .[])0()1(21f f - C .[])0()2(21f f - D .)0()1(f f - 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分⎰b adx x f )(的值必定( )A .大于零B .大于等于零C .小于零D .不等于零 184.下列定积分中,积分结果正确的有( ) A .c x f dx x f ba +=⎰)()(' B .)()()('a f b f dx x f ba+=⎰C .)]2()2([21)2('a f b f dx x f ba-=⎰D .)2()2()2('a f b f dx x f b a -=⎰185.以下定积分结果正确的是( )A .2111=⎰-dx x B .21112=⎰-dx x C .211=⎰-dx D .211=⎰-xdx 186.⎰=adx x 0)'(arccos ( )A .211x-- B .c x+--211 C .c a +-2arccos πD .0arccos arccos -a187.下列等式成立的有( ) A .0sin 11=⎰-xdx x B .011=⎰-dx e xC .a b xdx abtan tan ]'tan [-=⎰D .xdx xdx d xsin sin 0=⎰188.比较两个定积分的大小( ) A .⎰⎰<213212dx x dx x B .⎰⎰≤213212dx x dx xC .⎰⎰>213212dx x dx x D .⎰⎰≥213212dx x dx x189.定积分⎰-+22221sin dx x xx 等于( ) A .1 B .-1 C .2 D .0 190.⎰=11-x dx ( )A .2B .2-C .1D .1-191.下列定积分中,其值为零的是( ) A .⎰22-sin xdx x B .⎰2cos xdx xC .⎰+22-)(dx x e x D .⎰+22-)sin (dx x x192.积分⎰-=21dx x ( )A .0B .21 C .23 D .25193.下列积分中,值最大的是( ) A .⎰12dx x B .⎰103dx x C .⎰104dx x D .⎰15dx x194.曲线x y -=42与y 轴所围部分的面积为()A .[]⎰--2224dy y B .[]⎰-224dy y C .⎰-44dx x D .⎰--444dx x195.曲线x e y =与该曲线过原点的切线及y 轴所围形的为面积( )A .()⎰-exxdx xe e1B .()⎰-1ln ln dy y y yC .()⎰-1dx ex exD .()⎰-edy y y y 1ln ln196.曲线2x y x y ==与所围成平面图形的面积( )A .31B .31- C .1 D .-1四、常微分方程 197.函数y c x =-(其中c 为任意常数)是微分方程1x y y '+-=的( ).A .通解B .特解C .是解,但不是通解,也不是特解D .不是解 198.函数23x y e =是微分方程40y y ''-=的( ). A .通解 B .特解 C .是解,但不是通解,也不是特解 D .不是解 199.2()sin y y x y x '''++=是( ).A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程 200.下列函数中是方程0y y '''+=的通解的是( ). A .12sin cos y C x C x =+ B .x y Ce -=C .y C =D .12x y C e C -=+专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数.6.解:令t x-=1,则t t t t t f 21212211)(--=---+=,所以xx x f 212)(--= ,故选D7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B 12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1limlim x e x e x x e x e →→-==-,故选B . 24.解:这是∞∞型未定式 22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim20=+→x x b ax x 所以0)(lim 20=+→b ax x ,得0=b ,2sin lim 20=→xx ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n nn ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim2121lim 21sin==∞→x x x x x ,故选B29.解:nmnx mx nx mx x x ==→→00lim sin sin lim故选A 30.解:因为1tan lim230=+→x x b ax x 所以0)(lim 20=+→b ax x ,得0=b ,1tan lim 230=→xx ax x ,所以1=a ,故选B31.解:1cos 1cos 1limcos cos lim =+-=+-∞→∞→xxx xx x x x x x ,选A32.解:因为01lim )(lim 0=-=++→→)(xx x e x f ,11sin lim )(lim 0=+=--→→)(x x f x x 所以)(limx f x →不存在,故选D33.解:41414010])41(lim [)41(lim e xx x x x x =+=+→→,选D34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xxx x x x x ,选C 35.解:110sin 11sinlim 0-=-=⎪⎭⎫⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sinlim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim 21=++→ax xx ,7-=a ,选B41.解:2),2(lim tan lim 00=+=-+→→a x xaxx x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C43.解:因为22lim )2sin(lim2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim0=+→xx x ),故选B45.解:因为33lim )3tan(lim2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim1)1(21lim11=++=-+-→→x x xx xx x ,故选C47.解:因为021lim 11lim 00==-+++→→xxx x ax a x ,所以1>a ,故选A 48.解:因为02tan lim 20=→xxx ,故选D 49.解:由书中定理知选C 50.解:因为01cos 1lim=∞→xx x ,故选C51.解:因为6ln 13ln 32ln 2lim 232lim 00=+=-+→→x x x x x x x ,选B52.解:选A 53.解:1sin )cos 1(2lim20=-→xx x ,选C54.解:因为1)(lim =+∞→x f x ,选A55.解:选A 56.解:0sec 1sin lim0=+→xxx ,选C57.解:选C58.解:,11sinlim20=+→xx x x x 选D59.解:根据连续的定义知选B 60.C 61.解:选A 62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续, 但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x ,011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C67.解:选C 68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x时,极限存在,选B69.解:选B 70.解:313lim)(-=-=∞→nxnxx f x ,选A71.解:)0(2111limf x x x ≠=-+→,选A72.解:选C 73.解:因为0)11cot (lim )(lim 211=-+=++→→x arc x x f x x , π=-+=--→→)11cot (lim )(lim 211x arc x x f x x 故选B74.解:选D 75.解:因为2lim ,lim-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C76.解:因为11sinlim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim0000-=-=----→x f hx f h x f h ,选C 81.解:)('2])()()()([lim )()(lim00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B 82.解:因为=--+→h h f h f h )2()2(lim0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A 83.解:)0('f 6)3)(2)(1(lim )0()(lim00-=---=-=→→x x x x x x f x f x x ,故选B 84.解:因为=--→h h f h f h )()(lim0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C 85.解:因为0lim→h )(')()h - x (000x f hx f f -=-,故选B86.解:因为=--→h f h f h )1()21(lim21)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D87.解:222242)('',2)('x x x ex ex f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim)0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D93.解:,1202lim 2)2()(lim )2('22=---=--=++→→+x x x f x f f x x ,1202lim 2)2()(lim )2('22-=---=--=--→→-x x x f x f f x x 选D94.解:[]]1)2ln([)2('')2ln(--==--x x e y x x x ,选D95.解:选C 96.解:])()(')()('[21,)](ln )([ln 21x g x g x f x f y y ey x g x f -⋅='=-,选A97.C 98.A 99.B 100.A 101. C 102.B 103.C。

高等数学考试大纲(适合专升本考生)

高等数学考试大纲(适合专升本考生)

《高等数学I 》课程考试大纲一、课程基本信息1.课程性质:公共基础课2.适用对象:怀化学院专升本考生二、课程考试目的《高等数学》课程考试旨在考察学生对知识的掌握情况以及运用知识解决实际问题的能力.三、考试内容与要求第一章 函数极限与连续(一)考试内容一元函数的概念,函数的性质(有界性、单调性、奇偶性、周期性),反函数,基本初等函数的概念、性质及其图形,复合函数,初等函数,数列极限,函数极限,无穷小与无穷大,无穷小与极限之间的关系,无穷小与无穷大之间的关系,极限的运算法则,极限存在准则,两个重要极限,无穷小的比较,函数的连续性,函数的间断点及其类型,连续函数的运算定理,初等函数的连续性,闭区间上连续函数的基本性质.(二)考试要求1.理解函数、初等函数的概念;2.了解函数的性质以及反函数的概念;3.掌握基本初等函数的性质及其图形;4.理解极限的概念,思想方法;5.了解极限的,,N X εεδε---定义;6.掌握左、右极限的概念,左、右极限与双边极限的关系;7.掌握极限四则运算法则;8.了解两个极限存在准则,熟练掌握两个重要极限;9.理解无穷小的概念及与极限的关系;10.了解无穷小的比较;11.理解连续的两种定义,掌握连续性的证明方法、连续函数的运算性质,会判定间断点的类型;12.知道闭区间上连续函数的性质,会用零点定理判别方程的根。

第二章 导数与微分(一)考试内容导数的概念,基本初等函数的导数,函数的和,差、积、商的导数,反函数和复合函数的导数,高阶导数,由隐函数、参数方程确定的函数的导数,微分的基本公式,微分形式不变性,微分在近似计算中的应用.(二)考试要求1.理解导数的概念,掌握利用概念求某些特殊极限的方法;2.掌握导数的几何意义,掌握求切线和法线方程的方法,明确可导与连续的关系;2.熟练掌握导数的运算;3.理解微分的概念、几何意义、微分形式不变性,明确可导与可微的关系;4.掌握微分在近似计算中的应用;第三章中值定理与导数的应用。

高等数学(专升本)考试大纲

高等数学(专升本)考试大纲

《高等数学》(专升本)考试大纲一、考试内容与要求(一)函数、极限和连续1.函数考试内容:函数的简单性质;反函数;函数的四则运算与复合运算基本初等函数;初等函数。

要求:会求函数的定义域、表达式及函数值。

并会作出简单的分段函数图像。

理解和掌握函数的简单性质,会判断所给函数的类别。

会求单调函数的反函数。

掌握基本初等函数的简单性质及其图象。

2.极限考试内容:数列极限的概念,性质,收敛准则;函数极限的概念,函数极限的定理;无穷小量和无穷大量;两个重要极限。

要求:理解极限的概念。

会求函数在一点处的左极限与右极限。

了解极限的有关性质,掌握极限的四则运算法则。

掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较。

会运用等价无穷小量代换求极限。

熟练掌握用两个重要极限求极限的方法。

3.连续考试内容:函数连续的概念;函数在一点处连续的性质;闭区间上连续函数的性质;初等函数的连续性。

要求:理解函数连续与间断的概念,理解函数在一点连续与极限存在的关系。

会求函数的间断点及确定其类型。

掌握在闭区间上连续函数的性质,会运用介值定理推证一些简单命题。

会利用连续性求极限。

(二)一元函数微分学1.导数与微分考试内容:导数概念;求导法则,方法;高阶导数的概念;微分。

要求:了解可导性与连续性的关系,会用定义求函数在一点处的导数。

会求各类函数的导数。

会求简单函数的高阶导数。

理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

2.中值定理及导数的应用考试内容:中值定理;洛必达法则;函数增减性的判定法;函数极值与极值点,最值;曲线的凹凸性、拐点;曲线的水平渐近线与垂直渐近线。

要求:会用罗尔中值定理证明方程根的存在性。

会用拉格朗日中值定理证明简单的不等式。

熟练掌握洛必达法则求未定式的极限方法。

掌握利用导数判定函数单调性的方法,会利用增减性证明简单的不等式。

掌握求函数的极值和最值的方法,并且会解简单的应用问题。

2024年三年制专转本高等数学考试大纲

2024年三年制专转本高等数学考试大纲

2024年三年制专转本高等数学考试大纲2024年三年制专转本高等数学考试大纲参考内容高等数学是一门重要的数学学科,它在理工科和经济管理科学等领域有着广泛的应用。

下面是2024年三年制专转本高等数学考试的参考内容。

一、极限与连续1.极限的定义和性质2.函数的极限与极限的计算3.无穷大与无穷小的比较4.函数的连续性与间断点的分类5.闭区间上连续函数的性质与介值定理二、导数与微分1.导数的概念与求导法则2.高阶导数与高阶导数的计算3.隐函数与参数方程的导数4.导数在几何与物理问题中的应用5.微分的概念和运算法则三、不定积分与定积分1.不定积分的概念及常用的求导法则2.换元积分法与分部积分法3.定积分的概念与性质4.定积分的计算方法及应用5.定积分在几何与物理问题中的应用四、多元函数微分学1.二元函数的极限与连续性2.偏导数与全微分3.复合函数的偏导数与全微分4.隐函数的偏导数5.多元函数的极值与条件极值五、重积分与曲线积分1.重积分的概念、性质与计算方法2.极坐标与二重积分3.三重积分的计算与应用4.曲线积分的概念、计算与应用5.曲面积分的概念与计算六、常微分方程1.微分方程的基本概念2.一阶微分方程的解法3.二阶线性微分方程的解法4.常系数齐次线性微分方程的解法5.常微分方程在物理和生物学问题中的应用以上是2024年三年制专转本高等数学考试的参考内容,内容包括极限与连续、导数与微分、不定积分与定积分、多元函数微分学、重积分与曲线积分、常微分方程等。

考生需要详细学习和掌握这些内容,通过习题训练和实践应用,提高数学解决问题的能力。

专升本《高等数学(一)》课程考试大纲

专升本《高等数学(一)》课程考试大纲

专升本《高等数学(一)》课程考试大纲一、考试对象参加专升本考试的各工科专业专科学生。

二、考试目的《高等数学(一)》课程考试旨在考核学生对本课程知识的掌握和运用能力,包括必要的高等数学基础知识和基本技能,一定的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力,比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力等。

三、考试的内容要求第一章函数、极限与连续1. 函数(1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。

(2)了解函数的有界性、单调性、周期性和奇偶性。

(3)理解复合函数及分段函数的概念,了解隐函数及反函数的概念。

(4)掌握基本初等函数的性质及其图形,理解初等函数的概念。

2.数列与函数的极限(1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质与极限存在的两个准则。

(2)掌握极限四则运算法则,会应用两个重要极限。

3.无穷小与无穷大(1)理解无穷小的概念,掌握无穷小的基本性质和比较方法。

(2)了解无穷大的概念及其与无穷小的关系。

4.函数的连续性(1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

(2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。

第二章导数与微分1.导数概念理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。

2.函数的求导法则掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数、隐函数及由参数方程所确定的函数的求导法,了解对数求导法。

3.高阶导数理解高阶导数的概念,会求简单函数的高阶导数。

4.函数的微分理解微分的概念,掌握导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

第三章微分中值定理与导数的应用1.微分中值定理理解罗尔定理和拉格朗日中值定理,了解柯西中值定理,掌握这三个定理的简单应用。

湖南工业大学高等数学考试大纲

湖南工业大学高等数学考试大纲

湖南工业大学2012年“专升本”选拔考试《高等数学》考试大纲(满分150分,时限120分钟)一、函数考核知识点1.函数的概念:函数的定义;函数的表示法;分段函数2.函数的简单性质:有界性;单调性;奇偶性;周期性3.反函数:反函数的定义;反的函数的图形4.基本初等函数及其图形:幂函数 指数函数 对数函数 三角函数 反三角函数5.复合函数6.初等函数考核要求1.理解函数的概念(定义域、对应规律)。

理解函数记号()f x 的意义并会运用。

熟练掌握求函数的定义域、表达式及函数值。

会建立简单实际问题中的函数关系式。

2.了解函数的几种简单性质,掌握函数的有界性、奇偶性的判别。

3.掌握基本初等函数及其图形的有关知识。

4.理解复合函数概念。

掌握将一个复合函数分解为基本初等函数或简单函数的复合方法。

二、极限与连续(一)极限考核知识点1.数列的极限:数列极限的定义;数列极限的性质;数列极限的四则运算法则2.函数的极限:函数极限的定义;左极限与右极限的概念;自变量趋向于有限值时函数极限存在的充分必要条件;函数极限的四则运算法则两个重要极限01sin lim(1)lim 1x x x x e x x→∞→+== 3.无穷小量和无穷大量:无穷小量和无穷大量的定义;无穷小量和无穷大量的关系;无穷小量的性质考核要求1.了解极限概念(对极限定义的“N ε-”,“εδ-”等形式的描述不作要求),了解左极限与右极限概念,知道自变量趋向于有限值时函数极限存在的充分必要条件。

2.掌握极限四则运算法则。

3.掌握用两个重要极限求极限的方法。

4.了解无穷小量、无穷大量的概念。

知道无穷小量的性质,无穷小量与无穷大量的关系。

(二)连续考核知识点1.函数连续的概念函数在一点连续的定义 左连续与右连续 函数(含分段函数)在一点连续的充分必要条件 函数的间断点及其分类2.连续函数的运算与初等函数的连续性3.闭区间上连续函数的性质有界性定理介值定理(包括零点定理) 最大值与最小值定理考核要求1.理解函数在一点连续与间断的概念。

湖南专升本数学考试大纲

湖南专升本数学考试大纲

湖南专升本数学考试大纲湖南省专升本数学考试大纲如下:第一部分:基本概念和基本方法1. 基本概念- 数、集合- 数的四则运算- 点、线、面的基本概念- 函数和方程的基本概念- 数列和数列的极限2. 基本方法- 解方程和不等式- 判断函数的性质- 求函数的导数和原函数- 求解数列的极限第二部分:函数与方程1. 函数与图像- 一次函数和二次函数的性质和图像- 指数函数、对数函数和幂函数的性质和图像- 三角函数的性质和图像- 反函数和复合函数的概念2. 函数的运算与性质- 函数的和、差、积、商和乘法逆元- 函数的奇偶性、周期性和单调性- 函数的极值和最值3. 方程与不等式- 一元一次方程和一元二次方程的解法- 一元一次不等式和一元二次不等式的解法- 绝对值方程和绝对值不等式的解法- 二元一次方程和二元一次不等式的解法第三部分:几何与向量1. 几何基本概念和性质- 直线、圆、多边形的性质- 平行线和垂直线的性质- 三角形和四边形的性质- 圆的定理和证明方法2. 三角函数与解三角形- 三角函数的基本概念和性质- 三角函数的图像和变换- 解三角形的基本方法3. 向量与空间几何- 向量的基本概念和运算- 向量的数量积和向量积- 空间点、直线和平面的基本性质第四部分:数列与级数1. 数列的概念和性质- 等差数列和等比数列的概念和性质- 通项公式和前n项和公式- 递推数列和递推关系2. 极限的概念和性质- 数列的极限和函数的极限- 极限的四则运算法则- 极限的存在性判定方法3. 级数的概念和性质- 级数的基本概念和性质- 级数的收敛性和发散性- 级数的审敛法和比值判别法。

高等数学专升本考试大纲

高等数学专升本考试大纲

高等数学专升本考试大纲--(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--湖南工学院“专升本”基础课考试大纲《高等数学》考试大纲总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。

应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。

内容一、函数、极限和连续(一)函数1.考试范围(1)函数的概念:函数的定义函数的表示法分段函数(2)函数的简单性质:单调性奇偶性有界性周期性(3)反函数:反函数的定义反函数的图象(4)函数的四则运算与复合运算(5)基本初等函数:幂函数指数函数对数函数三角函数反三角函数(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。

会求分段函数的定义域、函数值,并会作出简单的分段函数图像。

(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。

(3)了解函数y=?(x)与其反函数y=?-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限1. 考试范围(1)数列极限的概念:数列数列极限的定义(2)数列极限的性质:唯一性有界性四则运算定理夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限函数极限的几何意义(4)函数极限的定理:唯一性定理夹逼定理四则运算定理(5)无穷小量和无穷大量无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量与无穷大量的性质 两个无穷小量阶的比较(6)两个重要极限1x sinx lim 0x =→ e x11lim x x =+∞→)( 2. 要求(1)理解极限的概念(对极限定义中“ε- N ”、“ε- δ”、“ε- M ”的描述不作要求),能根据极限概念分析函数的变化趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分 函数、极限与连续考核知识点1.函数的概念:函数的定义;函数的表示法;分段函数2.函数的简单性质:有界性;单调性;奇偶性;周期性3.反函数:反函数的定义;反的函数的图形4.基本初等函数及其图形:幂函数 指数函数 对数函数 三角函数 反三角函数5.复合函数6.初等函数考核要求1.理解函数的概念(定义域、对应规律)。

理解函数记号()f x 的意义并会运用。

熟练掌握求函数的定义域、表达式及函数值。

会建立简单实际问题中的函数关系式。

2.了解函数的几种简单性质,掌握函数的有界性、奇偶性的判别。

3.掌握基本初等函数及其图形的有关知识。

4.理解复合函数概念。

掌握将一个复合函数分解为基本初等函数或简单函数的复合方法。

练习1.1(函数)1、设u y =,,sin ,22x v v u =+=将y 表示成x 的函数表达式为 。

2、与2)(x x f =等价的函数是( ) A.x B.()2x C.()33x D.x 3、函数21)(x x x f +=在定义域内为( ) A.有上界无下界 B.无上界有下界C.有界,且21)(21≤≤-x f D.有界,2)(2≤≤-x f 4、函数712arcsin 62-+--=x x x y 的定义域为 。

判断对错:5、分段函数都不是初等函数。

( )6、函数⎩⎨⎧=为无理数当为有理数当x x x f ,0,1)(是周期函数。

( ) 计算:7、下列函数可以看成由哪些简单函数复合而成: (1) 2arccos x e y -= (2))]ln[ln(ln 3x y = 8、设⎪⎩⎪⎨⎧≤≤=-=其它,当0,20t 0201)(,3)(t f x x g ,求)).(())((x g f t f g 、考核知识点1.数列的极限:数列极限的定义;数列极限的性质;数列极限的四则运算法则2.函数的极限:函数极限的定义;左极限与右极限的概念;自变量趋向于有限值时函数极限存在的充分必要条件;函数极限的四则运算法则两个重要极限01sin lim(1)lim 1x x x x e x x→∞→+== 3.无穷小量和无穷大量:无穷小量和无穷大量的定义;无穷小量和无穷大量的关系;无穷小量的性质考核要求1.了解极限概念(对极限定义的“N ε-”,“εδ-”等形式的描述不作要求),了解左极限与右极限概念,知道自变量趋向于有限值时函数极限存在的充分必要条件。

2.掌握极限四则运算法则。

3.掌握用两个重要极限求极限的方法。

4.了解无穷小量、无穷大量的概念。

知道无穷小量的性质,无穷小量与无穷大量的关系。

练习1.2(数列的极限)1、2512lim +-∞→n n n 。

2、()n n 2842222lim ⋅⋅⋅⋅∞→ 。

3、)],1()1)(1)(1[(lim 242n n x x x x ++++∞→ 其中.1<x 4、().321lim 1n n n n ++∞→练习1.3(函数的极限)1、24lim 22--→x x x = ; 2、=+∞→x x 11lim ;3、x x cos lim 0→= ; 4、=∞-→x x arctan lim ;5、=→x x ln lim 1。

判断对错:6、,tan x y =则2π→x 时,y 的极限存在。

( ) 7、,cos x y =则∞→x 时,y 的极限存在。

( )计算:8、求函数⎩⎨⎧≥-<+=1,121,4)(x x x x x f 的)01(-f 及)01(+f ,并确定)(lim 1x f x →是否存在? 9、设⎩⎨⎧>+≤-=1,31,)(x x x x x f ,⎩⎨⎧>-≤=1,121,)(3x x x x x g ,试讨论)]([x g f 在1=x 处的极限。

10、证明:用求左右极限证明,0lim 0=→x x 而xx x 0lim →不存在。

练习1.4(无穷小与无穷大,极限的运算法则)判断对错:1、无穷小量与一个非无穷小量的和、差、积为无穷小量。

( )2、两个非无穷小量的和、差、积、商一定不是无穷小量。

( )3、两个无穷小的商一定是无穷小。

( )4、若)(x f 为无穷小量,则)(1x f 一定为无穷大量。

( )5、计算下列极限(1)351lim 232+--→x x x x (2)⎪⎭⎫ ⎝⎛---→x x x 1113lim 31 (3)x x x cos lim 0⋅→(4)323lim 243+-+-∞→x x x x x (5) 1111lim 20-++-+→x x x x 练习1.5(两个重要极限,无穷小的比较)判断对错1、1sin lim 1=→x x x ( )2、1sin lim =∞→x x x ( )3、1sin lim 20=→xx x ( ) 4、11sin lim 0=⋅→x x x ( ) 5、11)1sin(lim 1=--→x x x ( ) 6、11sin lim =⋅∞→xx x ( ) 计算:7、x x x ⎪⎭⎫ ⎝⎛-∞→11lim 8、x x x 1cos lim 0-→ 9、x x x x 30sin sin tan lim -→ 10、1cos 1)1(lim 3120--+→x x x 考核知识点1.函数连续的概念函数在一点连续的定义 左连续与右连续 函数(含分段函数)在一点连续的充分必要条件 函数的间断点及其分类2.连续函数的运算与初等函数的连续性3.闭区间上连续函数的性质有界性定理 介值定理(包括零点定理) 最大值与最小值定理考核要求1.理解函数在一点连续与间断的概念。

掌握判断简单函数(含分段函数)在一点的连续性。

了解函数在一点连续与在一点极限存在之间的关系。

2.掌握求函数的间断点及确定其类型。

3.了解初等函数在其定义区间的连续性。

了解在闭区间上连续函数的性质,会运用介值定理推证一些简单命题。

练习1.6(函数的连续性和间断点)1、当α= 时,⎪⎪⎩⎪⎪⎨⎧>+=<=0,11s i n 0,0,s i n )(x x x x x x x x f α在其定义域内连续。

2、1=x 是231)(22+--=x x x x f 的 型间断点;补充定义=)1(f ,则)(x f 在1=x 处连续。

3、判断对错:⎩⎨⎧≤≤-<≤=21,310,2)(x x x x x f 在[]2,0上连续。

( ) 4、求极限:(1) 221lim x x +→ (2)93lim 23--→x x x5、证明证明方程01423=+-x x 在区间(0,1)至少有一个根。

自 测 题 1一、选择或填空1、函数21arccos 1++-=x x y 的定义域是( ) A.1≤x B.13≤≤-x C.(-3,1) D.{}{}131≤≤-<x x x x2、函数⎩⎨⎧≤<+≤≤--=30,104,3)(2x x x x x f 的定义域是( )A.04≤≤-xB.30≤<xC.(-4,3)D.{}{}3004≤<≤≤-x x x x3、函数x x x y sin cos +=是( )A.偶函数B.奇函数C.非奇非偶函数D.奇偶函数4、函数2cos 1)(xx f π+=的最小正周期是( ) A. π2 B. π C. 4 D.215、设000≠b a 、,则当( )时,有00110110l i m b a b x b x b a x a x a nn n m m m x =++++++--∞→ A. n m > B. n m = C. n m < D. n m 、任意取6、设⎩⎨⎧≤<≤<--=10,01,1)(x x x x x f ,则=→)(lim 0x f x ( )A. -1 B. 1 C. 0 D.不存在 7、当0→x 时,与2sin x 等价的无穷小量是( )A.)1ln(x + B. x tan C.)cos 1(2x - D.1-x e 8、已知数列{}{}n n n x ])1(1[-+=,则( )A. 0lim =∞→n n xB. ∞=∞→n n x limC. ∞≠∞→n n x lim ,但无界D. 发散,但有界 9、若极限a x f x x =→)(lim 0(常数),则函数)(x f 在点0x ( ) A.有定义且a x f =)(0 B.不能有定义C.有定义,但)(0x f 可以为任意数值D.可以有定义也可以没有定义10、函数⎩⎨⎧≥--<=1,1)1(1,sin )(x x a x ax x f 在1=x 处连续,则=a .二、计算:1、22)1(12lim n n n n -++∞→ 2、 321lim 3--+→x x x 3、x x x 20)1(lim +→ 4、121sin lim 22-+∞→x x x x 三、证明奇次多项式)0()(01221120≠+++=++a a x a x a x P n n n 至少存在一个实根。

第二部分 导数与微分考核知识点导数的定义 函数的可导性与连续性的关系 导数的几何意义与物理意义2.导数的四则运算法则 导数的基本公式3.求导方式复合函数的求导法 隐函数的求导法 对数求导法 由参数方程确定的函数的求导法4.高阶导数的概念5.微分微分的定义 微分的几何意义 微分与导数的关系 微分法则 一阶微分形式不变性 考核要求1.理解导数概念。

知道导数的几何意义及了解函数的可导性与连续性之间的关系。

2.掌握求曲线上一点处的切线方程与法线方程。

3.熟练掌握导数基本公式及导数的四则运算法则。

熟练掌握复合函数的求导方法。

4.掌握求隐函数及由参数方程所确定的函数的一阶导数的方法。

会使用对数求导法。

5.了解高阶导数的概念,掌握初等函数的二阶导数求法。

6.理解函数的微分概念及微分的几何意义。

掌握微分运算法则。

会求函数(含隐函数)的微分。

练习2.1(导数的概念)1、,)(x x f =则其导函数定义域为( ) A.0≥x B.0≠x C.0>x D.0≤x2、设函数)(x f 在点0x 不可导,则( )A.)(x f 在点0x 没有切线B. )(x f 在点0x 有铅直切线C. )(x f 在点0x 有水平切线D.有无切线不一定3、若)(x f 在0x 处可导,则hx f h x f h )()(lim 000--→=( ) A.)(0x f '- B. )(0x f -' C. )(0x f ' D. )(0x f -'-4、初等函数在其定义域区间内是( ) A.单调的 B.有界的 C.连续的 D.可导的5、设函数)()()(x a x x f ϕ-=,其中)(x ϕ在a 点连续,则必有( )A.)()(x x f ϕ='B. )()(a a f ϕ='C. )()(a a f ϕ'='D. )()()()(x a x x x f ϕϕ'-+='计算:6、设),100)(99()2)(1()(----=x x x x x x f 求)0(f '。

相关文档
最新文档