人教版九年级下学期数学总复习教案
期末复习之+第二十六章+反比例函数k的几何意义(教案)-2024-2025学年人教版数学九年级下册
《反比例函数与图形面积》本专题主要是反比例函数与图形面积的问题,反比例函数是中考考察中的重点也是难点,这一部分内容综合性比较强,要求学生具有数形结合的能力,也需要具有较强的几何分析能力。
因此,在复习的过程中,学生会觉得这一部分内容较综合,产生畏难情绪,在教学中一定要加强方法的引导。
一、教学目标知识与技能目标:理解反比例函数中k的几何意义,并能熟练的解决实际问题。
过程与方法目标:探究反比例函数图象背景下求几何图形面积的过程,培养观察、分析和归纳的能力,发展数学思维。
情感与态度目标:探究反比例函数图象背景下求几何图形面积的过程,体会转化思想、建模思想、数形结合思想以及分类讨论思想在解题中的应用。
教学重难点重点:理解反比例函数中k的几何意义难点:能熟练的应用反比例函数中k的几何意义解决实际问题。
二、教学过程【教学方法】学习方式:学生在教师指导下进行“分析情景→自我探究→合作交流→总结归纳→灵活应用”的一系列活动,积极思考,独立探索,自己发现并掌握相应的规律。
教学方式:通过具体的现实情境,从学生已有的生活经验出发,通过“分析情景→自我探究→合作交流→总结归纳→灵活应用”,经历自主探索、分组实验、合作交流等活动形式,以学生为主体,教师创设和谐,愉悦的环境,辅以适当的引导。
同时利用计算机演示教学内容,提高教学的交互性与直观性,打破教学常规,提高课堂效率。
【教学准备】教师:PPT ;学生:课堂练习本、导学案、作图工具【教学过程】一、合作探究探究1:1. 在反比例函数y =4x 的图象上分别取点P ,Q 向 x 轴、y 轴作垂线,围成面积分别为S 1,S 2的矩形,填写下面表格:2.若在反比例函数y =−4x 中也用同样的方法分别取 P ,Q 两点,填写表格:设计意图:本环节设计两个反比例函数,一个反比例函数的k 为正值,一个为负值。
探索反比例函数上的点向坐标轴作垂线构成的矩形面积和K 的关系,这个环节让学生自己探索,得出猜想,从特殊情况转向一般情况,进入到下一个环节的探索。
人教版九年级数学下册《反比例函数》章节复习教案
第26章-反比例函数复习教案一、【教材分析】
二、【教学流程】
2.双曲线y1、y2在第一象限的图象如
3.病人按规定的剂量服用某种药物,得服药后2小时,每毫升血液中的含药量达到最大值为4 毫克.已知服药后,2 小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时
2.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主
三、【板书设计】
四、【教后反思】
通过本节课的复习,有成功的地方,也有不足之处.
成功之处:
一、定位较准,立足于本校学情。
由于是复习课,学生对知识点的掌握相对而言就稍微轻松些。
我目的是落实知识点和掌握一些基本的题型.
二、习题设计合理,立足于思维训练。
本节课每个知识点都设计了针对性的变式练习,通过练习,学生的解题技巧、方法、思维都得到了一定训练.
三、注重了数学思想方法的渗透。
在复习反比例函数的性质时,我紧紧抓住关键词语,突破难点.性质强调“在同一象限内”,几何意义强调k的绝对值,而我们学生往往忽略这些问题,对此,采用讨论的观点,结合图像观察,让学生不仅看到还要理解到.这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结.这样来渗透数学思想方法:分类讨论和数形结合的思想方法.
不足之处:
一、讲的太多。
这主要体现在知识点回顾时,本来打算一点而过,结果学生的回答偏离了我的预想,让学生讲解我总怕学生不会,自己来讲从而浪费了学生练习的时间。
不能大胆放心把课堂交还给学生.
二、对学生的情感关注太少.在教学过程中对少数同学的回答能及时给予表扬和激励,对大部分学生关注太少.不能激大部分发学生的兴趣,坚定他们学习的信心.。
人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图研讨复习说课教学课件
6. 某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为 1
的矩形;左视图是半径为1 的四分之一圆以及高为1的矩形;俯视图是半径为
1
的圆,求此图形的体积
(参考公式:V球=
4 3
πR3).
解:由已知可得该几何体是一个下部为圆柱,上部为
1/4球的组合体.由三视图可得,下部圆柱的底面 半径为1,高为1,则V圆柱=π,上部1/4球的半径 为1,则V1/4球=π/3,故此几何体的体积为4π/3.
15
15
10 主视图
12 左视图
解:长方体,其体积为10×12×15=1800(cm3).
10 俯视图
新知讲解
例2:如图是一个几何体的三视图,根据所示数据,求该几何体的表面积和体积.
分析:由三视图可知该几何体是由圆柱、长方体组合而成.分别计算它们 的表面积和体积,然后相加即可.
新知讲解
解:该图形上、下部分分别是圆柱、长方体,根据图中数据得: 表面积为20×32π+30×40×2+25×40×2+25×30×2=(5 900+640π)(cm2), 体积为25×30×40+102×32π=(30 000+3 200π)(cm3).
学以致用
如图是一个几何体的三视图,试描绘出这个零件的形状,并求出此 三视图所描述的几何体的表面积.
解:该几何体的表面积为 π×22+2π×2×2+ 1/2×4×4π=20π
课堂小结
1.三种图形的转化:
三视图
立体图
展开图
2. 由三视图求立体图形的体积(或面积)的方法: (1)先根据给出的三视图确定立体图形,并确定立体图形的长、宽、高
新人教版九年级数学下册《二十七章 相似三角形专题复习--一线三垂直》教案_19
相似三角形专题复习——一线三垂直教学目标:1、深刻理解并掌握“一线三垂直”这一基本图形,并能应用基本图形的一般结论解决证明、计算等问题。
2、增强识图能力,能从图形中分解出基本图形。
3、从“一线三垂直”到“一线三等角”体会从特殊到一般的数学思想,对基本图形的提炼与研究有助于把习题类型化、知识系统化,从而培养举一反三、触类旁通的思维品质和创新能力。
教学重点:提炼基本图形,应用基本图形教学难点:发现基本图形并能灵活应用。
教学过程:一、回顾基本图形:在相似三角形中,我们已学习过哪些基本图形?二、归纳基本图形如图,在四边形ABCD 中, ∠B =∠C = 90°,P 为BC 上任意一点(与B 、C 不重合),∠APD =90°.观察:图中有哪些相似三角形?说说你的理由. △ABP ∽△PCD 一线三垂直在中考复习题中经常出现,掌握快速识别并解决此类题目的方法,我们的复习效果将事半功倍。
设计意图:学生们先观察得出图中所作图形的特点,三个直角顶点共线,再思考并回答有无相似三角形及原因,强调对应关系,引出一线三垂直。
三、应用基本图形1.如图,已知AB ⊥BC ,CD ⊥BC ,P 是线段BC 的中点,且AP ⊥PD ,AB =1,BC =4,则CD =_____.图1 图2PD P A CD BP PC AB ==2.如图2,在四边形ABCD 中,AB ∥CD ,∠B = ∠C = 90°,CD =2,AB =3,BC =7,若BC 上有一点P 使得PD ⊥PA ,则PC 的长度是 .3.如图3,矩形ABCD 中,把DA 沿AF 对折,使D 与CB 边上的点E 重合,若AD =10,AB =8,则EF = ______.图3 图4设计意图:首先通过三道小题让学生们应用基本图形解决计算类简单问题,明确相似三角形中的对应关系。
考虑到后面题目学生们做起来时间花费较多,这部分留作课前完成,课堂上对答案。
人教版九年级下数学教案
人教版九年级下数学教案人教版九年级下数学教案1教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).(3)掌握 ? = (a≥0,b≥0), = ? ;= (a≥0,b0), = (a≥0,b0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a ≥0); =a(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用 (a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如 (a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“ (a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).问题2:由勾股定理得AB=问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x0)、、、- 、、 (x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、 (x0)、、- 、 (x≥0,y≥0);不是二次根式的有:、、、 .例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时, + 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2)(2)若 + =0,求a2004+b2004的值.(答案: )五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如 (a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是( )A.-B.C.D.x2.下列式子中,不是二次根式的是( )A. B. C. D.3.已知一个正方形的面积是5,那么它的边长是( )A.5B.C.D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时, +x2在实数范围内有意义?3.若 + 有意义,则 =_______.4.使式子有意义的未知数x有( )个.A.0B.1C.2D.无数5.已知a、b为实数,且 +2 =b+4,求a、b的值. 第一课时作业设计答案:一、1.A 2.D 3.B二、1. (a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= .2.依题意得:,∴当x- 且x≠0时, +x2在实数范围内没有意义.3.4.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1. (a≥0)是一个非负数;2.( )2=a(a≥0).教学目标理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a ≥0);最后运用结论严谨解题.教学重难点关键1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;•用探究的方法导出( )2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:( )2=_______;( )2=_______;( )2=______;( )2=_______;( )2=______;( )2=_______;( )2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有( )2=4.同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以( )2=a(a≥0)例1 计算1.( )22.(3 )23.( )24.( )2分析:我们可以直接利用( )2=a(a≥0)的结论解题.解:( )2 = ,(3 )2 =32?( )2=32?5=45,( )2= ,( )2= .三、巩固练习计算下列各式的值:( )2 ( )2 ( )2 ( )2 (4 )2四、应用拓展例2 计算1.( )2(x≥0)2.( )23.( )24.( )2分析:(1)因为x≥0,所以x+10;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+10( )2=x+1(2)∵a2≥0,∴( )2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1 (4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴( )2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1. (a≥0)是一个非负数;2.( )2=a(a≥0);反之:a=( )2(a≥0).六、布置作业1.教材P8 复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》人教版九年级下数学教案2教材分析本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学面直角坐标系的学习做好准备。
人教版九年级数学下册全册教案
26.1.1反比例函数的意义教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学方法:类比启发教学辅助:多媒体投影片教学过程:一、创设情景探究问题随着速度的变化,全程所用时间发生怎样的变化?情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:2(3)速度v是时间t的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.全册每单元每课时 3[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.二、例题教学练习:1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=x15;(2)y=2x-1;(3)y=-3x;通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.练习:2:在函数y=2x-1,y=2x+1,y=x-1,y=12x中,y是x的反比例函数的有个.全册每单元每课时 4[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=2x-1通分为y=2-xx,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=2x可说成(y+1)与x成反比例.练习3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为.[说明]这个练习引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.例题:第5页例1三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.全册每单元每课时 52、已知函数y=(m+1)x22 m是反比例函数,则m的值为.[备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)板书设计:概念:例1解:练习练习全册每单元每课时 6教学反思:本节课学生对有关概念都很好的落实,亮点在于练习设计有梯度,学生认识清楚。
人教版九年级下册数学《解直角三角形应用举例》锐角三角函数研讨复习说课教学课件
学以致用
如图水坝的横断面是梯形,迎水坡的坡角∠B=30°,背
水坡的坡度为1: 2 (坡面的铅直高度DF与水平宽度AF的
比),坝高CE(DF)是45米,求AF、BE的长,迎水坡BC的长,
以及BC的坡度.
AF=45 2 m BE=45 3
BC=90m
= 1: 3
知识点二:坡度、坡角的实际应用
角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
课堂小结
1.坡度:我们通常把坡面的铅直高度h和水平宽度 l 的比
叫坡度(或叫坡比)用字母 i 表示:
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
D.500
米
第5课时 解直角三角形
解直角三角形的应用
探索新知
例 1.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔
80海里的A处,它沿正南方向航行一段时间后,到达位于灯
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
典例讲评
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡
AB的坡度i=1:3,斜坡CD的坡度i' =1:2.5,求坝底宽AD和斜坡AB
的长.
(精确到0.1m,tan18°26′ ≈0.3333,sin18°26′≈0.3162)
课件
课件
课件
新人教版九年级数学下册全册教案
义务教育课程标准人教版数学教案九年级下册第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。
那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)x y 2-= (3)xy =21 (4)25+=x y (5)31+=xy 例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。
人教版九年级下册数学教案5篇
人教版九年级下册数学教案5篇人教版九年级下册数学教案1教学目标1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重难点教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学工具课件教学过程一、复习导入1、我们已经认识了比例,谁能说一下什么叫比例?2、应用比例的意义判断下面的比能否组成比例。
2.4:1.6和60:403、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例) 板书:比例的基本性质二、探究新知1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。
学生回答的同时,板书:组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2. 4 : 1.6 = 60 : 40 外项内项学生认一认,说一说比例中的外项和内项。
2、教学比例的基本性质。
出示例1、 (1)教师:比例有什么性质呢?现在我们就来研究。
(板书:比例的基本性质) 学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:两个外项的积是2.4_40=96 两个内项的积是1.6_60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢? 学生分组计算前面判断过的比例。
(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。
第26章反比例函数单元复习课教案2021-2022学年人教版数学九年级下册
第26章反比例函数单元复习课教学设计一、教学内容函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念,是研究现实世界变化规律的重要内容和数学模型.反比例函数是在前面已经学习了“一次函数”、“二次函数”基础上研究一类基本函数,本节课主要是复习反比例函数这一章的内容,在反比例函数的概念基础上,以函数图象为载体,以数形结合思想为主线,围绕“比较大小、图象法解方程与不等式、函数实际应用”核心内容进行。
二、学情分析反比例函数是函数的重要知识,核心知识是反比例函数的概念、图象、性质与应用.从学生学习情况分析,反比例函数的増减性与一次函数增减性容易相混,用函数观点看待方程、不等式、函数间的关系在理解上、思维方式上存在一定困难,用反比例函数解决实际问题需要建模的思想与策略,需要一定的生活背景知识,对学生有较高的要求.基于以上分析,从学习函数最本质的思想——数形结合思想为核心,让学生通过本节课的学习,加深对反比例函数乃至对三类函数的理解。
三、教学目标1.知识与技能:理解反比例函数的主要性质,能根据所给信息确定反比例函数表达式,能画出反比例函数的图象,并利用它们解决简单的实际问题,体会函数的应用价值。
2.过程与方法:回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合。
3.情感、态度与价值观:进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
四、教学重难点教学重点:1、能根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题;2、掌握反比例函数的图象特点及性质。
教学难点:1、理解反比例函数的概念;2、画反比例函数的图像,并从图像中获取信息;3、对反比例函数增减性的理解;4、反比例函数的应用。
五、教学方法与手段本节课主要采用启发探索式教学法,引导学生独立思考,主动探索等方式来解决具体问题。
本课利用多媒体辅助教学,增加课堂直观性,提高学习效率和质量,增加学习兴趣,调动积极性六、教学过程 (一)情境引入 头道中学为了美化校园要铺一块长方形草坪,面积为200 2m 。
中考数学总复习 第十二章 一元二次方程 第9课时 根的判别式教案-人教版初中九年级全册数学教案
一元二次方程第9课时:一元二次方程的根的判别式(二)教学目标:1、熟练运用判别式判别一元二次方程根的情况.2、学会运用判别式求符合题意的字母的取值X围和进行有关的证明.3、通过例题教学,渗透分类的思想.教学重点:运用判别式求出符合题意的字母的取值X围.教学难点:教科书上的黑体字“一元二次方程ax2+bx+c=0(a≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立.对此的正确理解是本节课的难点.可以把这个逆命题作为逆定理.教学过程:上节课学习了一元二次方程根的判别式,得出结论:“一元二次方程ax2+bx+c=0(a≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.”这个结论可以看作是一个定理.在这个判别方法中,包含了所有各种情况,所以反过来也成立,也就是说上述结论的逆命题是成立的,可作为定理用.本节课的目标就是利用其逆定理,求符合题意的字母的取值X围,以及进行有关的证明.本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用.通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用.不但不求根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练.一、新课引入:(1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项.(2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?二、新课讲解:将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c=0,如果方程有两个不相等的实数根,则△>0;如果方程有两个相等的实数根,则△=0;如果方程没有实数根,则△<0.”即根据方程的根的情况,可以决定△值的符号,‘△’的符号,可以确定待定的字母的取值X围.请看下面的例题:例1 已知关于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值时(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(1)方程无实数根.解:∵ a=2, b=-4k-1,c=2k2-1,∴ b2-4ac=(-4k-1)2-4×2×(2k2-1)=8k+9.方程有两个不相等的实数根.方程有两个相等的实数根.方程无实数根.本题应先算出“△”的值,再进行判别.注意书写步骤的简练清楚.练习1.已知关于x的方程x2+(2t+1)x+(t-2)2=0.t取什么值时,(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?学生模仿例题步骤板书、笔答、体会.教师评价,纠正不精练的步骤.假设二项系数不是2,也不是1,而是k,还需考虑什么呢?如何作答?练习2.已知:关于x的一元二次方程:kx2+2(k+1)x+k=0有两个实数根,求k的取值X围.和学生一起审题(1)“关于x的一元二次方程”应考虑到k≠0.(2)“方程有两个实数根”应是有两个相等的实数根或有两个不相等的实数根,可得到△≥0.由k≠0且△≥0确定k的取值X围.解:∵△=[2(k+1)]2-4k2=8k+4.原方程有两个实数根.学生板书、笔答,教师点拨、评价.例求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根.分析:将△算出,论证△<0即可得证.证明:△=(-2m)2-4(m2+1)(m2+4)=4m2-4m4-20m2-16=-4(m4+4m2+4)=-4(m2+2)2.∵不论m为任何实数,(m2+2)2>0.∴ -4(m2+2)2<0,即△<0.∴(m2+1)x2-2mx+(m2-4)=0,没有实根.本题结论论证的依据是“当△<0,方程无实数根”,在论证△<0时,先将△恒等变形,得到判断.一般情况都是配方后变形为:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……从而得到判断.本题是一道代数证明题,和几何类似,一定要做到步步有据,推理严谨.此种题型的步骤可归纳如下:(1)计算△;(2)用配方法将△恒等变形;(3)判断△的符号;(4)结论.练习:证明(x-1)(x-2)=k2有两个不相等的实数根.提示:将括号打开,整理成一般形式.学生板书、笔答、评价、教师点拨.三、课堂小结:1.本节课的主要内容是教科书上黑体字的应用,求符合题意的字母的取值X围以及进行有关的证明.须注意以下几点:(1)要用b2-4ac,要特别注意二次项系数不为零这一条件.(2)认真审题,严格区分条件和结论,譬如是已知△>0,还是要证明△>0.(3)要证明△≥0或△<0,需将△恒等变形为a2+2,-(a+2)2……从而得到判断.2.提高分析问题、解决问题的能力,提高推理严密性和思维全面性的能力.四、作业:1.教材P.29中B1,2,3.2.当方程x2+2(a+1)x+a2+4a-5=0有实数根时,求a的正整数解.参考题目:一、选择题(每题4分,共24分)将下列各题中唯一正确答案的序号填在题后括号内。
数学人教版九年级下册反比例函数中考复习课教学设计
9、如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).
(1)确定k的值;
(2)计算△OAB的面积.
【教师活动】
1、出示习题1--8
学生独立完成后提问学生回答。
2出示习题9、10师生共同分析后学生板演完成。
【学生活动】
学生独立练习,合作练习相结合,互相评价。注意书写的规范。
A.m<-2 B.m<0
C. m>-2 D.m>0
3、点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=-的图象上,若x1<x2<0<x3
则y1,y2,y3的大小关系是()
A.y3<y1<y2 B.y1<y2<y3
C.y3<y2<y1 D.y2<y1<y3
4、左下图是反比例函数y=的图像,则一次
活动五推荐作业,强化反馈
作业
1、如图,已知反比例函数y=(x>0)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.
(1)写出反比例函数解析式;
(2)求证:△ACB∽△NOM;
(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.
拓展延伸,反馈补救
教学程序
问题与情境
师生互动
媒体使用与教学评价
活动一揭示课题,提出要求
中考要求
1、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。
2、能画出反比例函数的图象,探索并理解k>0或k<0时,图象的变化情况。
3、能用反比例函数解决简单的实际问题。
人教版九年级数学下册全册教案及教学反思教学计划及进度表
章末复习【知识与技能】1.进一步理解投影、三视图等概念.2.能画出几何体的三视图,能根据三视图想象物体的形状.【过程与方法】通过对具体实例的评析加深对本章知识的理解,感受到三视图、平面展开图与各立体图形之间的相互转化关系.【情感态度】关注有关生活中的投影,生产中的三视图问题,提高数学应用意识,增强学生的空间想象能力. 【教学重点】进一步加深对本章知识的理解,提高解题技能【教学难点】利用三视图想象实物形状,并根据相关数据进行计算.一、知识框图,整体把握【教学说明】构建本章知识结构图可由师生共同完成,教师指示,学生回顾思考,可让学生获得本章完整的知识体系.同时教师在黑板知构.二、释疑解惑,加深理解本章通过问题的形式来释疑解惑,以加深学生对知识的理解.问题1平行投影和中心投影的区别是什么?如何判别物体的投影是平行投影还是中心?问题2正投影和平行投影有什么关系?正投影与三视图的关系如何?画三视图时有哪些需要注意的问题?问题3怎样根据三视图想象立体图形的形状?【教学说明】教师出示问题,让学生独立思考,然后相互交流.教师在巡视中听取学生的观点,看学生有哪些地方存在误区,对此教师要予以纠正,然后作出系统的说明.三、典例精析,复习新知例1如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短例2主视图、左视图、俯视图分别是下列三个图形的物体是()例3下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )【教学说明】上述三道例题都可让学生自主完成,然后相互交流,探讨出正确结论.出现失误的学生在自查中反思,加深对知识的理解. 其中例3中小正方形内数字所表示的意义是解题关键.例4由一些大小相同的小立方体组成的简单几何体的主视图和俯视图如图所示.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,求n 的值.【分析】从俯视图可看出这个几何体有前后两排,前排并排有三个正方形,后排有两个正方形,从主视图可看出这个几何体分为左、中、右三列,左列最多只有一个立方块,中列最多有两个立方块,右列最多有三个立方块.由于这个几何体的左视图没有画出,故无法确定这个几何体的形状,但可知道这个几何体最少需要8个立方块,最多有11个立方块,而n=8,9,10,11四个值.它的左视图有或或或四种可能.【教学说明】本例的目的是让学生明确确定一个几何体必须从三个角度得到它的视图才行,仅有其中一个或两个都是不可能的.同时,通过本例可进一步加深学生的空间观念和分类讨论问题的能力.教学时仍可让学生先尝试着解决,最后教师予以评讲.例5 如图是某种物体的三视图及相关数据(单位:cm),求该物体的体积(732.13 ,π=3.14,精确到 0.01cm3).【分析】由三视图可想象出这个物体应该是一个正六棱柱中央挖出了一个圆柱,其体积为V≈1.16cm3.例6 如图所示,点P表示广场上的一盏照明灯. (1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P 到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)【分析】在(1)中,只需连接小敏的头的顶部(记为D)与点P连线,交地面(AB所在直线)于点C,则线段AC的长即为小敏在灯P下的影子(即图中粗线AC);在(2)中,过P作PH垂直于过Q点的水平线于H,即PH丄QH,再求PH的长即可.【教学说明】本例是一道投影和解直角三角形的综合问题,难度不大,学生能独立完成.教师在给出问题后,巡视全场,帮助学生完成解答.四、师生互动,课堂小结1.通过这节课的学习你有哪些问题?2.回顾本章知识,你还有哪些问题?【教学说明】学生相互交流,进一步加深对本章知识的理解,针对学生存在的疑问,可当堂解决,也可课后个别辅导,帮助他(她)完善对本章知识的认知.1.布置作业:从教材P109〜111复习题29中选取.2.完成创优作业中本课时的练习.本课时通过知识框图和例题的讲解,力求让学生对本章知识了然于胸,教师在教学时应注意让学生在全面掌握知识点的基础上抓住重点、举一反三.第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y 与x 之间的函数关系式吗?问题2 已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S 与n 的关系式如何?说说你的理由.思考 观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =k x(k ≠0)的函数称为反比例函数,其中x 是自变量, y 是x 的函数,自变量x 的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x ,只须把x =2,y=6代入,求出k 值,即可得y =12x ,再把x =4代入可求出 y=3.【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) Qx ≠0, y =12k k x.11220,k 0,0,k k k ≠≠∴≠Q 故y=12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数?y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==Q 时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.26.1.2 反比例函数的图象和性质第1课时反比例函数的图象和性质(1)【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】理解反比例函数性质,能用性质解决简单的问题.一、情境导入,初步认识问题我们知道,一次函数y = 6x的图象是一条直线,那么反比例函数y =6x的图象是什么形状呢?你能用“描点”的方法画出函数的图象?【教学说明】教师提出问题,学生思考、交流,尝试着解决问题,教师巡视,关注学生的画图,及时纠正个别同学在画图中的不足和失误之处,帮助学生尽可能得到其合适的图象.二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x和y =12x的图象;【教学说明】将全班同学分成两大组,分别完成问题y=6x、y =12x的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x≠0,故在x <0和x>0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x<0和x>0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.问题2 反比例函数y =-6x和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x和y =-6x的图象呢?同学间相互交流.【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知.【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减小),曲线越来越接近x轴(或y轴),但这两条曲线永不相交;(2) y = 6x和y =-6x及y =12x和y =-12x的图象分别关于x轴对称,也关于y轴对称.思考观察函数y = 6x和y =-6x以及y =12x和y =-12x的图象.(1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每个象限内y随x的变化如何变化?【归纳结论】反比例函数y =kx的图象及其性质:(1)反比例函数y=kx(k为常数,且k 0)的图象是双曲线;(2)当k>0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y随x值的增大而减小;(3)当k<0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y随x值的增大而增大.三、典例精析,掌握新知例如图,一次函数y = kx十b的图象与反比例函数y=mx的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.【分析】(1)观察图象,可直接写出A、B两点的坐标;(2)利用A、B两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A、B的坐标得出答案.解:(1)观察图象可知A( -6,-2),B(4,3)(2)由点B在反比例函数y =mx的图象上,所以把B(4,3)代入y =mx得3 =4m,故m =12,所以y=12x.由点A、B在一次函数y =kx十b的图象上,所以把A、B两点坐标代入y =kx十b得1 432 6+2,1k b kk bb⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 .所以一次函数解析式为y = 12x+1.(3)由图象可知,当一6<x<0或x>4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点.四、运用新知,深化理解1 .若反比例函数 y =21mx-的图象的一个分支在第三象限,则m的取值范围是.2.如图是某一函数的一部分,则这个函数的表达式可能是()A.y=5xB.y=-x+3C.y=-6 xD.y=4 x【教学说明】学生独立完成,然后相互交流,谈谈自己的看法,教师应参与学生的讨论,加深学生对反比例函数的图象及其性质的认识和理解,从而更好地掌握本节知识.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.m>122. C五、师生互动,课堂小结本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.“反比例函数的图象和性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在学习反比例函数图象和性质时k>0时,双曲线的两个分支在一、三象限;k<0时,双曲线的两个分支在二、四象限),学生可由画法观察图象得知.而增减性由解析式y=kx(k≠0)可得到,学生也容易理解.但从图象观察增减性较难,借助计算机的动态演示就容易多了,所以本课教学最好用多媒体,因为运用多媒体比较函数图象,可以使学生更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性. 虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高.第2课时反比例函数的图象和性质(2)【知识与技能】理解并掌握反比例函数的图象和性质,能灵活运用性质解决具体问题.【过程与方法】在运用反比例函数的图象及其性质解决具体问题过程中,进一步增强学生分析问题,解决问题的能力.【情感态度】在运用所学新知识解决具体问题过程中,体验成功的快乐,激发学习兴趣.【教学重点】灵活运用反比例函数性质解决问题.【教学难点】反比例函数的增减性的描述及其与kyx=中k的对应关系.一、情境导入,初步认识问题(1)反比例函数kyx=(0k≠)的图象及其性质如何,不妨说说看.(2)反比例函数在各自象限内的增减性与kyx=(0k≠)中k的对应关系如何?与同伴交流,谈谈你的看法.【教学说明】学生相互交流,温习回顾上节知识,为本节的应用作铺垫,教师可予以总结,加深学生认知.二、思考探究,获取新知反比例函数的性质主要研究它的图象的位置和函数值的反比例函数 k y x=(0k ≠) k 的符号 k >0 k <0 图象性质 (1)自变量x 的取值范围为:x ≠0; (2)函数图象的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小 (1)变量x 的取值范围为:x ≠0; (2)函数图象的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大理一遍反比例函数的图象与性质,列表归纳,鼓励学生自主总结.【归纳结论】(1)反比例函数k y x=(0k ≠),因为x ≠0,y ≠0,故图象不经过原点.双曲线是由两个分支组成的,一般不说两个分支经过第一、第三象限(或第二、第四象限),而说图象的两个分支分别在第一、第三象限(或第二、第四象限).(2)反比例函数的增减性不是连续的,因此在谈到反比例函数的增减性时,一般都是在各自的象限内的增减情况.(3)反比例函数的图象无限接近坐标轴,但永远不能和坐标轴相交,也不能“翘尾巴”(4)反比例函数图象的位置和函数的增减性都是反比例系数k 的符号决定的;反过来,由双曲线所在位置和函数的增减性,也可以推断出k 的符号.如:已知双曲线k y x= 在第二、第四象限,则可知k <0.三、典例精析,掌握新知例1 已知反比例函数k y x=(0k ≠)的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y 随x 值的增大如何变化?(2)点 B(3,4),C(122- ,445- ),D (2,5)是否在这个函数的图象上?【分析】由反比例函数的表达式k y x=(0k ≠)经过点A ,把A点坐标(2,6)代入相应的x,y后,可得k=12,故12yx =;由于k=12>0,知函数的图象位于第一、三象限,在各个象限内y随x值的增大而减小(增减性可先想象出图象,再依据图象特征可作出说明,注意“各个象限”或“各个分支”是描述反比例函数增减性的前提条件,不能漏掉),再把B、C、D三点坐标代入12yx=中可判断B、C、D三点是否在该函数的图象上.【教学说明】本例应先让学生独立思考,锻炼分析问题、解决问题的能力,教师再根据学生的完全情况确定评讲方法.例2 如图是反比例函数5myx-=的图象的一个分支,根据图象回答下列问题:(1)图象的另一个分支位于哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2),如果 x1>x2,那么y1与y2的大小关系如何?说说你的理由.【分析】反比例函数的图象只有两种可能,位于第一、第三象限或者位于第二、第四象限.观察图象知,此反比例函数的图象的一支位于第一象限,那么另一支必位于第三象限,而位于第一、三象限的反比例函数的表达式中k>0,即m-5>0,∴ m>5 .而当m>5时,在图象的各个分支上y随x值的增大而减小,故当x1>x2时 y1<y2.【教学说明】本例仍应先让学生自主探索,形成初步认识后,教师再与全班同学一道分析并给出解答过程,让学生通过反思加深对反比例函数的图象及其性质的理解.四、运用新知,深化理解1.如图是反比例函数7nyx+=的图象的一支,根据图象回答下列问题:(1)图象的另一支位于哪个象限,常数n的取值范围是什么?(2 ) 在这个函数图象的某一支上任取点 A (a,b)和B (a' ,b' )如果a<a',那么b与b'的大小关系如何?为什么?2.如图,正比例函数y = kx与反比函数3 yx =的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC.求△ABC的面积.【教学说明】第1题学生能轻松获得结论,而第2题则需教师给予点拨引导,教师可让学生先分别求出S△AOB 和S△BOC,再求出S. 在完成上述题目后,教师引导学生完成创优作△ABC业中本课时的“名师导学”部分.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你感觉到本节知识有哪些地方是较难理解的?与同伴交流.1. 布置作业:从教材“习题26.1”中选取.2. 完成创优作业中本课时的“课时作业”部分.反比例函数的图象和性质是以前函数内容的延续,也是以后学习二次函数的基础.本课时的学习是学生对反比例函数图象和性质的一个再认知的过程,由于八年级学生是刚刚接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识.另外在教学时,教师要与学生进行互动交流,并积极让学生自主探究反比例函数中k值的几何意义.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.。
人教版九年级数学下册全册教案(完整版)教学设计
人教版九年级数学下册全册教案(完整版)教学设计26.1 反比例函数26.1.1 反比例函数(第1课时)教学目标一、基本目标【知识与技能】1.理解并掌握反比例函数的定义,能判断一个给定的函数是否为反比例函数.2.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.【过程与方法】1.用类比的思想方法,从实际问题中抽象出反比例函数的概念,发展学生的观察能力、探究能力及交流总结能力.2.经历探索具体问题中数量关系和变化规律的过程,体会建立函数模型的思想.【情感态度与价值观】通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生应用数学的意识.二、重难点目标【教学重点】1.理解并掌握反比例函数的定义.2.能根据已知条件确定反比例函数的解析式.【教学难点】根据已知条件,求反比例函数的解析式.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.如果两个变量x、y满足xy=k(k为常数,k≠0),那么x、y就成为反比例关系.例如,速度v、时间t与路程s之间满足vt=s,如果路程s一定,那么速度v与时间t就成反比例关系.2.一般地,在某一变化过程有两个变量x和y,如果对于变量x的每一个值,变量y都有唯一的值与它对应,我们就称y 是x 的函数.其中,x 是自变量,y 是因变量.3.形如y =kx(k 是常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是因变量.自变量x 的取值范围是不等于0的一切实数.4.y =k x,y =kx -1,xy =k 是反比例函数的三种表现形式.其中k 是常数,k ≠0. 5.下列函数中,反比例函数有哪些?每一个反比例函数相应的k 值是多少? ①y =2x +1;②y =2x 2;③y =15x ;④y =-23x ;⑤xy =3;⑥2y =x ;⑦xy =-1.解:反比例函数有③④⑤⑦.③y =15x 中k =15;④y =-23x 中k =-23;⑤xy =3中k =3;⑦xy =-1中k =-1.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】已知y 是x 的反比例函数,当x =2时,y =6. (1)写出y 与x 的函数关系式; (2)求当x =4时y 的值.【互动探索】(引发学生思考)因为y 是x 的反比例函数,所以设y =k x,再把x =2时,y =6代入上式就可求出常数k 的值.【解答】(1)设y =k x,因为当x =2时y =6, 则有6=k2,解得k =12.∴y =12x.(2)把x =4代入y =12x ,得y =124=3.【互动总结】(学生总结,老师点评)用待定系数法求反比例函数解析式的一般步骤:①设出含有待定系数的反比例函数解析式,形如y =kx(k 为常数,k ≠0);②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数;④写出解析式.【例2】已知函数y =(2m 2+m -1)x 2m 2+3m -3是反比例函数,求m 的值.【互动探索】(引发学生思考)在反比例函数y =kx -1中的隐含条件是x 的次数为-1,k ≠0.【解答】∵y =(2m 2+m -1)x 2m 2+3m -3是反比例函数,∴⎩⎪⎨⎪⎧2m 2+3m -3=-1,2m 2+m -1≠0,解得m =-2.【互动总结】(学生总结,老师点评)反比例函数也可以写成y =kx -1(k ≠0)的形式,注意x 的次数为-1,系数不等于0.活动2 巩固练习(学生独学)1.反比例函数y =(m +1)x -1中m 的取值范围是( B ) A .m ≠1 B .m ≠-1 C .m ≠±1D .全体实数2.当m =6时,y =3xm -7是反比例函数.3.某蓄水池的排水管每小时排水8 m 3,6 h 可将满池水全部排空. (1)蓄水池的容积为48 m 3;(2)若每小时排水用Q (m 3)表示,则排水时间t (h)与Q (m 3)的函数解析式为t =48Q.4.已知y 与3x 成反比例,且当x =1时,y =23.(1)写出y 与x 的函数解析式; (2)当x =13时,求y 的值;(3)当y =12时,求x 的值.解:(1)y =23x . (2)y =2. (3) x =43.活动3 拓展延伸(学生对学)【例3】已知y =y 1+y 2,y 1与(x -1)成正比例,y 2与(x +1)成反比例,当x =0时,y =-3;当x =1时,y =-1.求:(1)y 关于x 的关系式; (2)当x =-12时,y 的值.【互动探索】根据正比例函数和反比例函数的定义设出y 1、y 2的关系式,进而得到y 的关系式,把所给两组数据代入即可求出相应的比例系数,也就求得了所要求的关系式.【解答】 (1)∵y 1与(x -1)成正比例,y 2与(x +1)成反比例, ∴设y 1=k 1(x -1)(k 1≠0),y 2=k 2x +1(k 2≠0).∵y =y 1+y 2,∴y =k 1(x -1)+k 2x +1.∵当x =0时,y =-3;当x =1时,y =-1, ∴⎩⎪⎨⎪⎧-3=-k 1+k 2,-1=12k 2,解得k 1=1,k 2=-2,∴y =x -1-2x +1. (2)把x =-12代入(1)中函数关系式,得y =-112.【互动总结】(学生总结,老师点评)根据题意设出y 1、y 2的函数关系式并用待定系数法求得函数关系式是解答此题的关键.注意不同的函数关系要用不同的待定系数,如本题y 1的待定系数用k 1, y 2的待定系数用k 2.环节3 课堂小结,当堂达标 (学生总结,老师点评)反比例函数⎩⎪⎨⎪⎧定义三种常见形式:y =k x 、xy =k 、y =k-1其中k 为常数,k ≠0求解析式的方法:待定系数法练习设计请完成本课时对应练习!26.1.2 反比例函数的图象和性质 第2课时 反比例函数的图象和性质教学目标 一、基本目标 【知识与技能】1.用描点法画出反比例函数y =kx的图象. 2.根据图象理解和掌握反比例函数y =k x的性质. 【过程与方法】1.经历探索和发现反比例函数的图象的特点和性质的过程,获得研究函数性质的经验. 2.通过函数图象探究函数性质,进一步体会运用数形结合思想研究函数的性质的方法. 3.经历知识的形成过程,了解从特殊到一般的认识过程,培养学生观察、探究、归纳及动手能力.【情感态度与价值观】1.经历画图、观察、猜想、思考、交流等活动,获得研究问题和合作交流的方法与经验,体验数学活动中的探索性和创造性.2.在学习过程中,感受数学美,发现学习数学的乐趣. 二、重难点目标 【教学重点】用描点法画反比例函数的图象,探索反比例函数的图象特点和性质. 【教学难点】运用反比例函数的图象和性质解决问题. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P4~P6的内容,完成下面练习. 【3 min 反馈】1.用“描点法”画函数图象的一般步骤:列表、描点、连线.2.反比例函数y =k x(k 为常数,k ≠0)中,自变量x 的取值范围是不等于0的一切实数. 3.反比例函数图象是双曲线.4.在反比例函数y =k x(k ≠0,k 为常数)中,(1)当k >0时,双曲线位于第一、三象限,在每一个象限内y 随x 的增大而减小;(2)当k <0时,双曲线位于第二、四象限,在每一个象限内y 随x 的增大而增大.5.反比例函数y =-5x的图象大致是( D )6.已知反比例函数y =4-kx.(1)若函数的图象位于第一、三象限,则k <4; (2)若在每一象限内,y 随x 增大而增大,则k >4. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】画出反比例函数y =6x 和y =12x的图象.【互动探索】(引发学生思考)描点法:列表→描点→连线 【解答】列表表示几组x 与y 的对应值:x … -6 -4 -3 -2 -1 1 2 3 4 6 … y =6x … -1 -1.5 -2 -3 -6 6 3 2 1.5 1 … y =12x…-2-3-4-6-12126432…描点连线:以表中各对应值为坐标,描出各点,并用平滑的曲线顺次连结这些点,就得到函数y =6x 和y =12x的图象.【互动总结】(学生总结,老师点评)作反比例函数图象时要注意:(1)列表时:自变量的值可以选取一些互为相反数的值,这样既可简化计算,又便于对称描点;(2)列表描点时:要尽量多取一些数值,多描一些点,这样既可以方便连线,又可以准确地表达函数变化趋势;(3)连线时:一定要养成按自变量从小到大的顺序,依次用平滑的曲线连结,从中体会函数的增减性.【例2】若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =-1x图象上的点,并且x 1<0<x 2<x 3,判断y 1、y 2、y 3的大小关系.【互动探索】(引发学生思考)要根据函数值的大小判断自变量的大小,需考虑函数的增减性.先画出函数图象,再描出已知点位置,最后判断y 1、y 2、y 3的大小关系.【解答】∵反比例函数y =-1x中k =-1<0,∴此函数的图象在第二、四象限,且在每一象限内y 随x 的增大而增大,如图. ∵x 1<0<x 2<x 3,∴点(x 1,y 1)在第四象限,(x 2,y 2)、(x 3,y 3)两点均在第二象限, ∴y 2<y 3<y 1.【互动总结】(学生总结,老师点评)利用反比例函数的性质比较函数值或自变量的大小的方法:(1)看k 的符号,明确函数的增减情况;(2)看两点是否在同一个象限内;若不在同一个象限内,借助图象即可判断函数值或自变量的大小,若在同一个象限内,则比较两个横(纵)坐标的大小,根据函数的增减情况,得出函数值(自变量)的大小.活动2 巩固练习(学生独学)1.下列四个点中,在反比例函数y =-6x的图象上的是( A )A .(3,-2)B .(3,2)C .(2,3)D .(-2,-3)2.设x 为一切实数,在下列函数中,当x 减小时,y 的值总是增大的函数是( C ) A .y =-5x -1B .y =x2C .y =-2x +2D .y =4x3.对于反比例函数y =3x,下列说法正确的是( D )A .图象经过点(1,-3)B .图象在第二、四象限C .x >0时,y 随x 的增大而增大D .x <0时,y 随x 的增大而减小4.若反比例函数y =k x(k <0)的图象过点P (2,m ),Q (1,n ),则m 与n 的大小关系是:m >n .活动3 拓展延伸(学生对学)【例3】若ab <0,则正比例函数y =ax 和反比例函数y =b x在同一坐标系中的大致图象可能是下图中的( )【互动探索】∵ab <0,∴a 、b 异号,分两种情况:(1)当a >0,b <0时,正比例函数y =ax 的图象过原点、第一、三象限,反比例函数图象在第二、四象限内,无此选项;(2)当a <0,b >0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限内,选项C 符合.【答案】C【互动总结】(学生总结,老师点评)这类题既可以用分析法,也可以用排除法.用分析法时,根据题干逐一分析,得出不同条件下的结果,再与选项对比得出答案.用排除法时,每个选项逐一分析,看是否满足题干条件.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.反比例函数的图象:双曲线既是轴对称图形又是中心对称图形. 2.反比例函数的性质:(1)当k >0时,双曲线的两支分别位于第一、三象限,在每个象限内y 值随x 值的增大而减小;(2)当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内y 值随x 值的增大而增大.练习设计请完成本课时对应练习!第3课时 反比例函数图象与性质的综合应用教学目标 一、基本目标 【知识与技能】1.进一步理解和掌握反比例函数的图象与性质,并能用待定系数法求反比例函数解析式.2.理解并掌握反比例函数y =k x(k ≠0)中比例系数k 的几何意义. 3.运用反比例函数的图象和性质解决与其他函数或几何知识综合的问题. 【过程与方法】1.通过探究反比例函数性质的应用,感受反比例函数解析式与图象之间的联系,体会数形结合思想的魅力.2.经历观察、思考、分析、交流等学习过程,提高学生数学学习能力及合作精神,逐步提高学生分析问题、解决问题的能力.【情感态度与价值观】通过解决反比例函数与一次函数、二次函数有关的综合题,增强学生的自信心,培养学生学习的兴趣,提高学生综合运用知识解决问题的能力.二、重难点目标 【教学重点】灵活运用反比例函数图象与性质解决综合问题. 【教学难点】比例系数k 的几何意义. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P7~P8的内容,完成下面练习. 【3 min 反馈】1.填表分析正比例函数和反比例函数的区别.函数 正比例函数反比例函数解析式 y =kx (k ≠0)y =kx(k ≠0) 图象形状直线 双曲线 k >0位置第一、三象限第一、三象限增减性y 随x 的增大而增大每个象限内,y 随x 的增大而减小k <0位置第二、四象限第二、四象限增减性y 随x 的增大而减小 每个象限内,y 随x 的增大而增大2.反比例函数y =x的图象经过点(2,5),若点(1,n )在反比例函数图象上,则n 等于( A )A .10B .5C .2D .-63.下列各点在反比例函数y =-2x的图象上的是( B )A.⎝ ⎛⎭⎪⎫-43,-32B .⎝ ⎛⎭⎪⎫-43,32C.⎝ ⎛⎭⎪⎫34,43 D .⎝ ⎛⎭⎪⎫34,834.反比例函数y =k x的图象经过(2,-1),则k 的值为-2. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】已知反比例函数的图象经过点A (2,6).(1)这个函数的图象分布在哪些象限?y 随x 的增大如何变化? (2)点B (3,4)、C ⎝ ⎛⎭⎪⎫-212,-445和D (2,5)是否在这个函数的图象上?【互动探索】(引发学生思考)(1)求出反比例函数的解析式,再判断该函数的性质;(2)若点满足所求函数的解析式,则点在这个函数的图象上,否则不在这个函数的图象上.【解答】(1)解法1:见教材P7例3. 解法2:设这个反比例函数为y =k x, ∵图象过点A (2,6),∴6=k2,解得k =12. ∴这个反比例函数的表达式为y =12x.∵k >0,∴这个函数的图象在第一、三象限.在每个象限内,y 随x 的增大而减小. (2)把点B 、C 、D 的坐标代入y =12x,可知点B 、C 的坐标满足函数关系式,点D 的坐标不满足函数关系式,故点B 、C 在函数y =12x的图象上,点D 不在这个函数的图象上.【互动总结】(学生总结,老师点评)求反比例函数的解析式一般用待定系数法. 【例2】如图是反比例函数y =m -5x的图象的一支,根据图象回答下列问题: (1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)在这个函数图象的某一支上任取点A (x 1,y 1)和B (x 2,y 2),如果x 1>x 2,那么y 1和y 2有怎样的大小关系?【互动探索】(引发学生思考)(1)反比例函数图象的分布只有两种可能,分布在第一、三象限,或者在第二、四象限.(2)根据反比例函数的性质解答.【解答】(1)∵这个函数的图象的一支在第一象限, ∴另一支必在第三象限.∵函数的图象在第一、三象限, ∴m -5>0,解得m >5.(2)解法1(性质法):详细解答参考教材P7~P8例4. 解法2(图象法或数形结合法): ∵函数的图象在第一、三象限, 如图,在图中描出符合条件的两个点, ∴由图象易知y 1<y 2.【互动总结】(学生总结,老师点评)在解决问题(2)时,用数形结合法能更快速准确地求出结果.活动2 巩固练习(学生独学)1.正比例函数y =6x 的图象与反比例函数y =6x的图象的交点位于( D )A .第一象限B .第二象限C .第三象限D .第一、三象限2.若反比例函数y =k x的图象经过点A (-1,-2),则当x >1时,函数值y 的取值范围是( D )A .y >1B .0<y <1C .y >2D .0<y <23.如图所示,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线y =3x(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( C )A .逐渐增大B .不变C .逐渐减小D .先增大后减小4.如图所示,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =k x(x >0)的图象上,OA =1,OC =6,则正方形ADEF 的边长为2.5.如图所示,已知反比例函数y =mx的图象与一次函数y =ax +b 的图象相交于点A (1,4)和点B (n ,-2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.解:(1)把点A (1,4)代入y =m x,得m =1×4=4,∴反比例函数解析式为y =4x.把点B (n ,-2)代入y =4x,得-2n =4,∴n =-2,∴点B 坐标为(-2,-2).把(1,4),(-2,-2)代入y =ax +b ,得⎩⎪⎨⎪⎧a +b =4,-2a +b =-2,解得⎩⎪⎨⎪⎧a =2,b =2,∴所求一次函数解析式为y =2x +2.(2)x <-2或0<x <1.活动3 拓展延伸(学生对学)【例3】如图所示,点A 在反比例函数y =k x的图象上,AC 垂直x 轴于点C ,且△AOC 的面积为2,求该反比例函数的表达式.【互动探索】反比例函数的比例系数与三角形的面积有什么关系? 【解答】∵点A 在反比例函数y =k x的图象上, ∴x A ·y A =k ,∴S △AOC =12·k =2,∴k =4,∴反比例函数的表达式为y =4x.【互动总结】(学生总结,老师点评)过双曲线上任意一点与原点所连的线段与坐标轴和向坐标轴作垂线所围成的直角三角形的面积等于|k |2.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.反比例函数中系数k 的几何意义; 2.反比例函数图象上点的坐标特征; 3.反比例函数与一次函数的交点问题. 练习设计请完成本课时对应练习!26.2 实际问题与反比例函数教学目标 一、基本目标 【知识与技能】1.能运用反比例函数的意义和性质解决相关的实际问题. 2.建立反比例函数模型,解决实际问题.3.综合运用反比例函数知识与几何、方程、不等式、物理等跨学科知识解决相关的实际问题.【过程与方法】1.经历利用反比例函数解决实际问题的过程,学会用数学的思想方法去观察、研究和解决日常生活中所遇到的问题,体验数学建模的思想.2.经历“实际问题——建立模型——求解模型——拓展应用”的过程,增强学生发现和提出问题、分析和解决问题的能力.【情感态度与价值观】1.通过将反比例函数的有关知识灵活应用于实际,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感.2.体会数学与实际生活紧密联系,经历将实际问题抽象为数学问题的过程,体会数学中转化和数形结合的思想.二、重难点目标 【教学重点】运用反比例函数的意义和性质解决生活实际问题和跨学科问题. 【教学难点】根据实际问题建立反比例函数的数学模型.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P12~P15的内容,完成下面练习. 【3 min 反馈】1.(1)反比例函数y =kx(k 为常数,k ≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(3)当k <0,双曲线的两支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;2.地下室的体积V 一定,那么底面积S 和深度h 的关系是反比例函数;表达式是S =V h . 3.运货物的路程s 一定,那么运货物的速度v 和时间t 是反比例函数;表达式是v =s t. 4.电学知识告诉我们,用电器的输出功率P 、两端的电压U 和电器的电阻R 有如下关系:PR =U 2.这个关系式还可以写成P =U 2R ,或R =U 2P.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) (一)反比例函数模型在生活中的应用【例1】市煤气公司要在地下修建一个容积为104 m 3的圆柱形煤气储存室. (1)储存室的底面积S (单位:m 2)与其深度d (单位:m)有怎样的函数关系? (2)公司决定把储存室的底面积S 定为500 m 2,施工队施工时应该向下掘进多深? (3)当施工队按(2)中的计划掘进到地下15 m 时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深改为15 m ,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)?【温馨提示】详细解答过程见教材P12例1.【例2】码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间. (1)轮船到达目的地后开始卸货,平均速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天要卸载多少吨?【温馨提示】详细解答过程见教材P13例2.(二)反比例函数在物理中的应用【例3】小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别为1200 N和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【温馨提示】详细解答过程见教材P14例3.【例4】一个电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?【温馨提示】详细解答过程见教材P15例4.活动2 巩固练习(学生独学)1.下列各问题中,两个变量之间的关系不是反比例函数的是( C )A.小明完成100 m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系B.菱形的面积为48 cm2,它的两条对角线的长为y(cm)与x(cm)的关系C.一个玻璃容器的体积为30 L时,所盛液体的质量m与所盛液体的体积V之间的关系D.压力为600 N时,压强p与受力面积S之间的关系2.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长、宽分别为x、y,剪去部分的面积为20,若2≤x≤10,记y=f(x),则y=f(x)的图象是( A )3.有一面积为60的梯形,其上底长是下底长的13,若下底长为x ,高为y ,则y 与x的函数关系是y =90x.4.实验表明,当导线的长度一定时,导线的电阻与它的横截面面积成反比例.一条长为100 km 的铝导线的电阻R (Ω)与它的横截面面积S (cm 2)的函数关系如图所示,那么当S =5 cm 2时,R =295Ω.5.在某一电路中保持电压不变,电流I (A)与电阻R (Ω)将如何变化?若已知当电阻R =5 Ω时,电流I =2 A.(1)求I 与R 之间的关系式; (2)电阻是8 Ω时,电流是多少?(3)如果要求电流的最大值为10 A ,那么电阻R 的最小值是多少? 解:(1)由物理知识知U =IR . ∵R =5,I =2,∴U =5×2=10, ∴I 与R 之间的关系式为I =10R(R >0).(2)当R =8时,I =108=1.25,∴电流是1.25 A.(3)当I =10时,R =1010=1,∴电阻的最小值为1 Ω. 活动3 拓展延伸(学生对学)【例5】如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x 分钟.据了解,该材料在加热过程中温度y 与时间x 成一次函数关系,已知该材料在加热前的温度为4 ℃,加热一段时间使材料温度达到28 ℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.已知第12分钟时,材料温度是14 ℃.(1)分别求出该材料加热和停止加热过程中y 与x 的函数关系式(写出x 的取值范围); (2)根据该食品制作要求,在材料温度不低于12 ℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?【互动探索】 (1)材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例函数关系,将题中数据代入即可求得两个函数的关系式;(2)把y =12分别代入两个函数关系式中,求出对应自变量的值,从而可得对该材料进行特殊处理所用的时间.【解答】 (1)设加热停止后反比例函数表达式为y =k 1x(k 1≠0). ∵y =k 1x过(12,14), ∴k 1=12×14=168,则y =168x.当y =28时,28=168x,解得x =6.设加热过程中一次函数表达式为y =k 2x +b (k 2≠0). 由图象知y =k 2x +b 过点(0,4)与(6,28),∴⎩⎪⎨⎪⎧b =4,6k 2+b =28,解得⎩⎪⎨⎪⎧k 2=4,b =4,即一次函数的关系式为y =4x +4. ∴y =⎩⎪⎨⎪⎧4x +40≤x ≤6,168xx >6.(2)令12=4x +4,解得x =2. 令12=168x,解得x =14.∴对该材料进行特殊处理所用的时间为14-2=12(分钟).【互动总结】(学生总结,老师点评)现实生活中存在大量成反比例函数关系的两个变量,解答此类问题的关键是首先确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.环节3 课堂小结,当堂达标(学生总结,老师点评)建立反比例函数模型,解决实际问题的一般步骤:(1)审题:弄清题意,分析问题中等量关系;(2)建模:根据等量关系,将实际问题转化为数学问题,利用反比例函数知识建立数学模型;(3)解模:根据反比例函数的性质解决问题.练习设计请完成本课时对应练习!27.1 图形的相似第1课时相似图形教学目标一、基本目标【知识与技能】1.在具体生活实例中认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的特征,掌握相似图形的识别方法.【过程与方法】通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活的密切联系,激发学生学习的兴趣.【情感态度与价值观】通过识别生活中的相似图形,激发学生探究、发现数学问题的兴趣.二、重难点目标【教学重点】理解并掌握相似图形、相似多边形的概念及特征.【教学难点】理解相似图形的特征,掌握识别相似图形的方法.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P24~P25的内容,完成下面练习.【3 min反馈】1.把形状相同的图形图形叫做相似图形.两个图形相似,其中一个图形可以看作是由另一个图形放大和缩小得到的.2. 下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角是80°的两个等腰三角形;⑤两个正六边形;⑥有一个内角是100°的两个等腰三角形.其中一定是相似图形的是②⑤⑥.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】观察下列图形,哪些是相似图形?第一组:第二组:【互动探索】(引发学生思考)要找出图中的相似图形,只要仔细观察每个图形特征,通过图形变化后是否具备“形状相同”这一特征.【解答】第一组图,图1,2,5是相似图形.第二组相似图形分别是:(1)和(8);(2)和(6);(3)和(7).【互动总结】(学生总结,老师点评)所谓“形状相同”,与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.活动2 巩固练习(学生独学)1.下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的正方形都相似;④所有的菱形都相似.其中正确的有( D )A.2个B.3个C.4个D.1个2.下列图形不是相似图形的是( C )A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面照片。
人教版九年级下学期数学总复习教案
九年级下学期复习数学教案第一章实数与中考中考要求及命题趋势1.正确理解实数的有关概念;2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。
4.掌握实数的四则运算、乘方、开方运算以及混合运算5.会用多种方法进行实数的大小比较。
2012年中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。
实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。
应试对策牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。
第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值大纲要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。
实数的有关概念(1)实数的组成1(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)乘积为1的两个数,叫做互为倒数);零没有倒数. 【例题经典】理解实数的有关概念例1 ①a 的相反数是则a 的倒数是_______. ②实数a 、b 在数轴上对应点的位置如图所示 则化简│b-a │.③(2006年泉州市林业用地面积约为10200000亩,用科学记数法表示为约______________________.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.例2.(-2)3与-23( ).(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16 A例的绝对值是;的倒数是 ;的平方根是 .分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。
数学人教版九年级下册中考数学复习课教学设计
中考数学复习课教学设计数学中考复习首先要依据《数学课程标准》的精神、教材的内容(依纲靠本),同时又要结合我省《考试说明》上好复习课。
一、中考复习课设计的宏观把握教师对课程内容的宏观把握上,应熟悉课程理念,并明确课程目标、内容标准。
(1)初中《数学课程标准》中的基本理念涉及6个方面:数学课程观,数学观,数学学习观,数学教学观,数学评价观,现代信息技术观。
(2)初中《课标》中的课程目标包括4个方面:知识与技能,数学思想,解决问题,情感与态度。
(3)初中阶段的内容标准包括4个领域:数与代数(数与式、方程与不等式、函数),空间与图形(图形的认识、图形与变换、图形与坐标、图形与证明),统计与概率(统计、概率),实践与综合应用(课题学习)。
目的是发展学生的数感、符号感、空间观念、统计观念、应用意识和推理能力,具体表现为教材各章节的200个左右知识点。
(4)知识技能目标有了解、理解、掌握、灵活运用四个水平,过程性目标有经历、体验、探索三个层次。
二、复习课设计的基本指导思想1、重视基础,全面复习,做到“三抓五过关”(1)三抓是:①抓基本概念的准确性和实质性理解。
②抓公式、定理的熟练和初步应用。
③抓基本技能正用、逆用、变用、连用、巧用。
(2)五过关是:①能准确理解书中的概念。
(学生能说出书中有几个重要概念吗?)②能独立证明书中的定理。
(学生能说出书中有几条重要定理吗?)③能熟练求解书中的例题。
(学生做到了没有?)④能说出书中各单元的作业类型。
(学生弄清了没有?)⑤能掌握书中的基本数学思想、思维方法和基本解题方法。
(3)在上述基础上,把教学中分割讲授的知识单点、知识片断组合成知识结构。
要做到:①基础知识系统化。
(从单一到综合、从分散到集中)②基本方法类型化。
(从模仿到熟练、从分散到集中)③解题步骤规范化。
(从书写到思路、从思路到程序)2、由厚到薄——构建知识网络。
教材是按知识块螺旋上升安排的,教学又是把每一个知识块分解为知识单点或知识片断来讲授的,中考复习就要将它们由粗到细、由大到小整理成知识网络,这不仅有利于“弄清家底”,而且有助于理解与记忆,还便于提取与应用。
寒假课程 【精品讲义】人教版 九年级 数学 总复习 第十讲 抛物线的对称平移问题(学生版)
第十讲 抛物线的对称平移问题明确目标﹒定位考点在二次函数一章中抛物线的对称性和平移问题是一个重点内容,也是中考常考的知识点。
掌握其对称和平移的规律能为我们解题带来很多方便,也能为我们从中节省很多时间。
热点聚焦﹒考点突破考点1 抛物线关于x 轴、y 轴、原点、顶点对称的抛物线的解析式。
二次函数图象的对称一般有四种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+注: 对于以上四种对称要在结合开个方向、对称轴的位置以及与y 轴的交点三个方面结合图像理解记忆。
而对于抛物线关于定点对称问题我们一般都是化成顶点式再变换.【例1】二次函数432--=x x y 关于Y 轴的对称图象的解析式为 ,关于X 轴的对称图象的解析式为 ,关于原点的对称图象的解析式为 ,关于顶点旋转180度的图象的解析式为 。
【例2】将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ).A .221216y x x =--+B .221216y x x =-+-C .221219y x x =-+- D .221220y x x =-+-【变式训练1】1.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .B .C .D .【规律方法】掌握抛物线的四种对称方式,理解公式的推导过程。
寒假课程 【精品讲义】人教版 九年级 数学 总复习 第三讲 相似和四边形(教师版)
第三讲 相似和四边形明确目标﹒定位考点相似三角形与四边形的考查形式是一道选择题(3分),解答题通常会与一般四边形或者特殊的四边形相结合起来考查,往往分值范围在10-14分之间。
热点聚焦﹒考点突破考点1 相似与平行四边形【例1】如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=42,则ΔCEF 的周长为( )A.8B.9.5C.10D.11.5【规律方法】题意在综合考查平行四边形、相似三角形、和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查.【例2】已知,如图,F 为平行四边形ABCD 边DC 延长线上一点,连结AF ,交BC 于G ,交BD 于E ,试说明2AE =EG ·EF【规律方法】通过证明三角形相似得到线段间的相似比,再通过中间的线段比搭桥过渡即可。
考点2 相似与矩形ABC FG ED【例3】已知矩形ABCD,长BC=12 cm,宽AB=8 cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1 cm/s的速度沿AB方向运动,同时,Q自点B出发以2 cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?【规律方法】当文字叙述的两个三角形相似时,往往要分类讨论。
【例4】(2014年广东华侨中学,24,14分)如图,在矩形ABCD中,点E在边AD上,联结BE,MN BD,与BE相=,联结BD.点M为线段DE上的任意一点,过点M作//∠=︒,BE DEABE30交于点N.AB=,求边AD的长;(1)如果23⊥,垂足(2)如图,在(1)的条件下,如果点M为线段DE的中点,联结CN.过点M作MF CN为点F,求线段MF的长;、、这三条线段的长度之间有怎样的数量关系?请证明你的结论.(3)试判断BE MN MD【规律方法】本题结合矩形的性质考查了平行线分线段成比例、勾股定理的应用、直角三角形的解法.本题是利用图形间的角、边关系求解.(1)根据矩形的四个内角都是直角、对边相等的性质求得AB=CD,∠A=∠ADC=90°.然后在Rt △ABE 中利用特殊角的三角函数值求得AB 、AE 、BE 及DE 的值;所以由AD=AE+DE 求得AD 的值即可;(2)连接CM .在Rt △ABD 中,利用勾股定理求得BD=43,然后利用直角三角形的边角关系求得∠ADB=30°,由平行线MN ∥BD 的内错角相等知,∠AMN=∠ADB=30°;再由平行线MN ∥BD 分线段成比例求得MN 的长度;最后在Rt △CDM 中利用边角关系、勾股定理求解;(3)过点E 作EF ⊥BD ,垂足为点F (图1).由已知条件BE=DE ,EF ⊥BD ,求得BD=2DF ;然后在Rt △DEF 中,利用边角关系求得BD 与BE 的数量关系;再有平行线MN ∥BD 分线段成比例解得EN 与MN 的关系.考点3 相似与菱形【例5】如图,矩形纸片ABCD (AB AD >)中,将它折叠,使点A 与C 重合,折痕EF 交AD 于E ,交BC 于F ,交AC 于O ,连结AF 、CE . (1)求证:四边形AFCE 是菱形;(2)过E 作AD EP ⊥交AC 于P ,求证:AP AO AE ⋅=2; (3)若8=AE ,ABF ∆的面积为9,求BF AB +的值.(第5题图)【规律方法】本题考查了菱形的判定和性质、勾股定理、矩形的性质以及相似三角形的判定和性质的综合运用.考点4 相似与正方形【例6】如图,正方形DEMF 内接于△ABC ,若1=∆ADE S ,4=DEFM S 正方形,求ABC S ∆AE DC FBPO【规律方法】首先利用正方形的面积求出其边长,过A 点作AQ ⊥BC 于Q ,交DE 于P ,利用ADE S ∆可得AP 及AQ 的长,再由△ADE ∽△ABC 求出BC ,从而求得ABC S ∆。
人教版九年级数学下册《一线三垂直专题复习》教学设计
2017年中考复习校际公开课教案一线三垂直专题复习一、教学目标:1、学生会运用两组对应角分别相等的两个三角形为相似三角形的判断方法证明两个三角形相似。
2、学生经历观察、比较、归纳的学习过程,归纳出“一线三垂直”图形的基本特征,并且能在不同的背景中认识和把握基本图形。
3、学生在学习过程中感受几何直观图形对几何学习的重要性。
二、教学重难点1、重点:运用判断方法解决“一线三垂直”的相关计算和证明。
2、难点:在不同背景中识别基本图形。
三、教学方法教师主导和学生合作探究相结合四、教学过程<一>知识引入1、如图、AB⊥BD于点B,CD⊥BD于点D,P是BD上一点,且AP=PC,AP⊥PC,求证:△ABP≌△PDC2、问题拓展(1)在前一题三个直角的前提下,除AP=CP这个条件,你还能添加什么条件,使得△ABP≌△PDC?(2)如果没有边相等的条件,这两个三角形具有什么关系?3、课堂练习如图四边形ABCD、EFGH、NHMC都是正方形,A、B、N、E、F在同一直线上,若四边形ABCD、EFGH的边长分别是3、4,求四边形NHMC的边长。
<二>知识提升1、如图,将矩形ABCD的一个顶点D沿着线段AE翻折后落于BC边上的点P,其中的AB=6,AD=10.(1)求BP (2)求EC2、如图,由8个大小相等的小正方形构成的图案,它的四个顶点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,若AB=4,BC=6,求DG的长<三>知识应用1、1、如图,在四边形ABFG中,AB=10,BF=4,∠B=60°,设AE=x,AG=y,求y与x 的函数关系式2.如图,已知点A (1,2)是函数)0(2>x xy =的图象上的点,连接OA ,作OA ⊥OB ,与图象)0(6->x xy =交于点B ,求点B 的坐标。
3、如图,在△ABC 中,∠BAC =60°,∠ABC=90°,直线l 1∥l 2∥l 3,l 1与l 2之间距离是1,l 2与l 3之间距离是2.且l 1,l 2,l 3分别经过点A ,B ,C ,则边AC 的长为多少?<四>课堂练习如图,已知抛物线与x 轴交于A 、B 两点,与y 轴交于C 点.(1)求此抛物线的表达式;(2)抛物线上有一点P ,满足∠PBC=90°,求点P 的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下学期复习数学教案第一章实数与中考中考要求及命题趋势1.正确理解实数的有关概念;2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。
4.掌握实数的四则运算、乘方、开方运算以及混合运算5.会用多种方法进行实数的大小比较。
2012年中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。
实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。
应试对策牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。
第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值大纲要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。
实数的有关概念(1)实数的组成一二{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 【例题经典】理解实数的有关概念例1 ①a 的相反数是-15,则a 的倒数是_______.②实数a 、b 在数轴上对应点的位置如图所示:0ab则化简│b-a │.③(2006年泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约______________________.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.例2.(-2)3与-23( ).(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16 分析:考查相反数的概念,明确相反数的意义。
答案:A例3.-3的绝对值是 ;-321 的倒数是 ;94的平方根是 .分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。
答案:3,-2/7,±2/3三例4.下列各组数中,互为相反数的是 ( )DA .-3与3B .|-3|与一31C .|-3|与31D .-3与2(-3)分析:本题考查相反数和绝对值及根式的概念掌握实数的分类例1 下列实数227、sin60°、3π0、3.14159、-2)个 A .1 B .2 C .3 D .4【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.第二讲 实数的运算【回顾与思考】知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。
大纲要求:1. 了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2. 了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3. 了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。
4 了解电子计算器使用基本过程。
会用电子计算器进行四则运算。
考查重点:1. 考查近似数、有效数字、科学计算法; 2. 考查实数的运算; 3. 计算器的使用。
实数的运算 (1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值; 任何数与零相加等于原数。
(2)减法 a-b=a+(-b) (3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即⎪⎩⎪⎨⎧⋅-⋅=)(0),(||||),(||||为零或异号同号b a b a b a b a b a ab四(4)除法)0(1≠⋅=b ba b a (5)乘方个n na aa a = (6)开方 如果x 2=a 且x ≥0,那么a =x ; 如果x 3=a ,那么x a =3在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面. 3.实数的运算律(1)加法交换律 a+b =b+a (2)加法结合律 (a+b)+c=a+(b+c) (3)乘法交换律 ab =ba . (4)乘法结合律 (ab)c=a(bc) (5)分配律 a(b+c)=ab+ac其中a 、b 、c 表示任意实数.运用运算律有时可使运算简便.【例题经典】例1、(宝应 )若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为A . 4―22 =-18 B.22-4=18 C. 22―(―4)=26 D.―4―22=-26点评:本题涉及对正负数的理解、简单的有理数运算,试题以应用的方式呈现,同时也强调“列式”,即过程。
选(A )例2.我国宇航员杨利伟乘“神州五号”绕地球飞行了14周,飞行轨道近似看作圆,其半径约为6.71×103千米,总航程约为(π取3.14,保留3个有效数字) ( ) A .5.90 ×105千米 B .5.90 ×106千米 C .5.89 ×105千米 D .5.89×106千米 分析:本题考查科学记数法 答案:A 例3.化简273-的结果是( ).(A)7-2 (B) 7+2 (C)3(7-2) (D)3(7+2)分析:考查实数的运算。
答案:B例4.实数a、b 、c 在数轴上的对应点的位置如图所示,下列式子中正确的有( ). ①b+c>0②a+b>a+c ③bc>ac ④ab>ac(A)1个 (B)2个 (C)3个 (D)4个分析:考查实数的运算,在数轴上比较实数的大小。
答案:C五例5 (2006年成都市)计算:-113-⎛⎫⎪⎝⎭+(-2)2×(-1)0-│【点评】按照运算顺序进行乘方与开方运算。
例5.校学生会生活委员发现同学们在食堂吃午餐时浪费现象十分严重,于是决定写一张标语贴在食堂门口,告诫大家不要浪费粮食.请你帮他把标语中的有关数据填上.(已知1克大米例7.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级……逐步增加时,楼梯的上法数依次为:1,2,3,5,8,13,21,...…(这就是著名的斐波那契数列).请你仔细观察这列数中的规律后回答:上10级台阶共有 种上法.分析:归纳探索规律:后一位数是它前两位数之和 答案:89例8.观察下列等式(式子中的“!”是一种数学运算符号) 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,计算:!98!100= .分析:阅读各算式,探究规律,发现100!=100*99*98!答案:9900第二章 代数式与中考中考要求及命题趋势1、掌握整式的有关知识,包括代数式,同类项、单项式、多项式等;2、熟练地进行整式的四则运算,幂的运算性质以及乘法公式要熟练掌握,灵活运用;3、熟练运用提公因式法及公式法进行分解因式 ;4、了解分式的有关概念式的基本性质;5、熟练进行分式的加、减、乘、除、乘方的运算和应用。
2012年中考整式的有关知识及 整式的四则运算仍然会 以填空 、选择和解答题的形式出现,乘法公式、因式分解正逐步渗透到综合题 中去进行考查 数与似的应用题 将是今后中考的一个热点。
分式 的概念及 性质,运算仍是考查 的重点。
特别注意 分式的应用题 ,即要 熟悉背景 材料,又要从实际问题中抽象出数学模型。
应试对策掌握整式 的有关概念及 运算法则,在运算过程中注意 运算顺序,掌握运算规律,掌握乘法 公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视。
要掌握并灵活运用分式的基本性质,在通分和约分 时 都要注意分解因式知识的应用。
化解 求殖题,一要注意 整体思想,二要注意解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型。
第一讲整式【回顾与思考】知识点代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。
大纲要求1、了解代数式的概念,会列简单的代数式。
理解代数式的值的概念,能正确地求出代数式的值;2、理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;3、掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;4、能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab)进行运算;5、掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。
考查重点1.代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2.整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。