河南省郑州市2015——2016学年九年级第一次质量预测数学试卷
2024届河南省郑州市高三毕业班第一次质量预测(一模)数学试题
一、单选题二、多选题1.将函数的图象向左平移个长度单位后得函数的图象,则函数的图象的一条对称轴方程为( )A.B.C.D.2. 已知函数是定义域为R的函数,,对任意,,均有,已知a ,b为关于x的方程的两个解,则关于t 的不等式的解集为( )A.B.C.D.3. 下列命题中,正确命题的个数是①单位向量都共线;②长度相等的向量都相等;③共线的单位向量必相等;④与非零向量共线的单位向量是.A .0B .1C .2D .34. 已知是抛物线的焦点,是抛物线上的一个动点.若为抛物线内部一点,且周长的最小值为,则抛物线的准线方程为( )A.B.C.D.5. 已知各项均不为0的数列的前项和为,若,则( )A.B.C.D.6. 已知的定义域为为奇函数,为偶函数,若当时,,则( )A.B .0C .1D .e7. 我们知道:反比例函数的图象是双曲线,它关于直线对称,以轴,轴为渐近线.实际上,将的图象绕原点顺时针或逆时针旋转一个适当的角,就可以得到双曲线或.则关于曲线,下列说法不正确的是( )A.该曲线的离心率为B.曲线的顶点为和C .曲线上的任意点到两点的距离之差为D .该曲线可由绕原点逆时针旋转后得到8. 已知,则的值为A.B.C.D.9. 给出下列说法,错误的有( )A.若函数在定义域上为奇函数,则B .已知的值域为,则的取值范围是C .已知函数的定义域为,则函数的定义域为D.已知函数,则函数的值域为10. 如图,在边长为3的正方体中,为边的中点,下列结论正确的有( )2024届河南省郑州市高三毕业班第一次质量预测(一模)数学试题2024届河南省郑州市高三毕业班第一次质量预测(一模)数学试题三、填空题四、解答题A .与所成角的余弦值为B.过三点的正方体的截面面积为C.在线段上运动,则三棱锥的体积不变D.为正方体表面上的一个动点,分别为的三等分点,则的最小值为11. 一简谐运动的图象如图所示,则下列判断错误的是()A.该质点的振动周期为B.该质点的振幅为C .该质点在和时速度最大D .该质点在和时加速度最大12. 已知复数,,则( )A.B.C.D .在复平面内对应的点位于第四象限13.已知正数满足,则的取值范围为________.14. 已知点P 为中心在坐标原点的椭圆C上的一点,且椭圆的右焦点为,线段的垂直平分线为,则椭圆C 的方程为______.15. 椭圆的焦距为4,则m 的值为___________.16. 已知函数().(1)若的零点有且只有一个,求的值;(2)若存在最大值,求的取值范围.17. 长方体中,底面是正方形,,,是上的一点.(1)求异面直线与所成的角;(2)若平面,求三棱锥的体积.18. 如图,四棱锥中,平面,,,,,点在线段上,且,平面.(1)求证:平面平面;(2)若,求平面和平面所成锐二面角的余弦值.19. 已知函数在点处的切线与直线垂直.(1)求;(2)求的单调区间和极值.20. 设函数.(1)讨论函数的单调性;(2)若时,存在实数b,使得对任意恒成立,求实数m的取值范围.21. 已知四棱锥中,平面,底面是边长为的菱形,,.(1)求证:平面平面;(2)设与交于点,为中点,若二面角的正切值为,求的值.。
2014-2015学年九年级第一次质量模拟试卷及答案
2015年九年级第一次质量预测数学模拟试卷(一)(满分120分,考试时间100分钟)学校:___________ 班级:_________ 姓名:________ 分数:__________一、选择题(每小题3分,共24分)1.与-3的差为0的数是()A.3 B.-3 C.1 3D.13-2.下列图形中,不是轴对称图形的是()A.B. C. D.3.国家统计局公布2013年中国国内生产总值568 845亿元,同比增长7.7%,完成了年初设定的7.5%的目标.请你以亿元为单位用科学记数法表示2013年我国的国内生产总值为(结果保留两个有效数字)()A.5.6×1013B.5.7×1013C.5.7×105D.5.6×1054.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,则它的俯视图为()A.B.C.D.5.不等式4-3x≥2x-6的非负整数解有()A.1个B.2个C.3个D.4个6.如图,双曲线myx=与直线y kx b=+相交于点M,N,且点M的坐标为(1,3),点N的纵坐标为-1.根据图象信息可得关于x的方程mkx bx=+的解为()A.-3,1 B.-3,3 C.-1,1 D.-1,37.如图,正方形OABC的两边OA,OC分别在x轴、y轴的正半轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D'的坐标是()A.(2,10)B.(-2,0) C.(2,10)或(-2,0)D.(10,2)或(-2,0)8.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长,交⊙O于点E,连接CE.若AB=8,CD=2,则CE的长为()A.215B.8C.210D.213二、填空题(每小题3分,共21分)9.当x=_______时,分式55xx--无意义.10.菱形ABCD中,若对角线AC=8cm,BD=6cm,则边长AB=_______cm.11.已知圆锥的底面半径为1,全面积为4π,则圆锥的母线长为_______.12.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_______.13.如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数kyx=(0x>)的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为_________.yxOABCFED CBANMEDCBA第13题图第14题图第15题图14.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=12∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.15.如图,在矩形ABCD中,AD AB>,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积之比为1:4,则MNBM的值为_________.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:2311221x xx x x x-⎛⎫-÷-⎪+++⎝⎭,其中x满足x2-x-1=0.NMxyOxyODC BAEDC BAO第6题图第7题图第8题图O EDC BA P x y O F ED CBA GP ABC DE H Oy x17. (9分)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图1和图2,请根据有关信息,解答下列问题:m %10%20%30%25%38号37号34号35号36号图18106412人数鞋号1224610838号37号34号35号36号图2(1)本次接受随机抽样调查的学生人数为_______,图1中m 的值是_____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 18. (9分)如图,矩形ABCD 的对角线AC ,BD 相交于 点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为菱形;(2)连接AE ,BE ,AE 与BE 相等吗?请说明理由.19. (9分)如图,将透明三角形纸片P AB 的直角顶点P 落在第四象限,顶点A ,B 分别落在反比例函数ky x=图象的两支上,且PB ⊥x 轴于点C ,P A ⊥y 轴于点D ,AB 分别与x 轴,y 轴相交于点F ,E .已知B (1,3). (1)k =_________;(2)试说明AE =BF ; (3)当四边形ABCD 的面积为214时,求点P 的坐标.20. (9分)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A ,B 的距离,如图,勘测飞机在距海平面垂直高度为1公里的点C 处,测得端点A 的俯角为45°,然后沿着平行于AB 的方向飞行3.2公里到点D ,并测得端点B 的俯角为37°,求钓鱼岛两端A ,B 的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)37°45°NCDBMA21. (10分)某工程机械厂根据市场需求,计划生产A ,B 两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B 成本(万元/台) 200 240 售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B 型挖掘机的售价不会改变,每台A 型挖掘机的售价将会提高 m 万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价-成本) 22. (10分)如图,在△ABC 中,∠B =45°,O 为AC 上一个动点,过O 作∠POQ =135°,且∠POQ与AB 交于P ,与BC 交于Q .(1)如图1,若11AB AOBC CO ==,,则OP OQ=______. (2)如图2,若1132AB AO BC CO ==,,求OP OQ 的值,写出求解过程. (3)如图3,若1325AB OP BC OQ ==,,则AOCO =_____.图3图2图1A COPQ B ACO PQB Q POCBA23. (11分)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A ,D 两点,与y轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4).已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式.(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度.(3)在(2)的条件下,是否存在这样的点P ,使得以P ,B ,G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.。
数学理卷·2014届河南省郑州市高中毕业年级第一次质量预测试题(解析版)(2014.01)
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{|2}A x x =>,{|2}B x x m =<,且R A C B ⊆,那么m 的值可以是( ) A .1 B .2 C .3 D .42.复数1iz i+=(i 是虚数单位)在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个 2.5PM 监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( ) A .甲 B .乙 C .甲乙相等 D .无法确定4.如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的表面积为( )A .15+..30+.所以33V sh ==⨯=.考点:1.三视图;2.四棱柱的体积.5.已知曲线23ln 4x y x =-的一条切线的斜率为12-,则切点的横坐标为( )A .3B .2C .1D .126.已知各项不为0的等差数列{}n a 满足2478230a a a -+=,数列{}n b 是等比数列,且77b a =,则2811b b b 等于( )A .1B .2C .4D .87.二项式6(ax 的展开式的第二项的系数为22a x dx -⎰的值为( )A .3B .73C .3或73D .3或103- 【答案】B 【解析】8.已知抛物线22y px =(0)p >,过其焦点且斜率为-1的直线交抛物线于,A B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为( ) A .1x = B .2x = C .1x =- D .2x =-9.设函数())cos(2)f x x x ϕϕ=+++(||)2πϕ<,且其图像关于直线0x =对称,则( )A .()y f x =的最小正周期为π,且在(0,)2π上为增函数 B .()y f x =的最小正周期为π,且在(0,)2π上为减函数C .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数10.已知,a b是两个互相垂直的单位向量,且1c a c b ∙=∙= ,则对任意的正实数t ,1||c ta b t++的最小值是( )A .2B ..4 D .11.已知椭圆221:12x y C m n -=+与双曲线222:1x y C m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为( )A .B .C .(0,1)D .1(0,)212.已知数列{}n a的通项公式为n a =*()n N ∈,其前n 项和为n S ,则在数列122014S S 、S 、中,有理数项的项数为( ) A . 42 B .43 C .44 D .45第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设,x y 满足约束条件130x y x y y -≥-⎧⎪+<⎨⎪>⎩,则z x y =-的取值范围为.考点:线性规划.14.执行如图的程序框图,若输出的3132S =,则输入的整数P 的值为 .15.已知三棱柱111ABC A B C -的侧棱垂直于底面,各项点都在同一球面上,若该棱柱的体积2AB =,1AC =,060BAC ∠=,则此球的表面积等于 .【答案】8π 【解析】16.定义在R 上的函数32()f x ax bx cx =++(0)a ≠的单调增区间为(1,1)-,若方程23(())2()0a f x bf x c ++=恰有6个不同的实根,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)如图ABC ∆中,已知点D 在BC 边上,满足0AD AC ∙=,sin 3BAC ∠=,AB =,BD =.(1)求AD的长;(2)求cos C.所以cos C .……………………………………………………..12分考点:1.向量垂直的充要条件;2.诱导公式;3.余弦定理;4.正弦定理;5.平方关系.18.(本小题满分12分)为迎接2014年“马”年的到来,某校举办猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,但都只有一个选项是正确的,正确回答问题A可获奖金a元,正确回答问题B可获奖金b元,活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止,假设一个参与者在回答问题前,对这两个问题都很陌生.(1)如果参与者先回答问题A,求其恰好获得奖金a元的概率;(2)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.19.(本小题满分12分)在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,1AB =,1AA =,D 为1AA 的中点,BD 与1AB 交于点O ,CO ⊥侧面11ABB A .(1)证明:1BC AB ⊥;(2)若OC OA =,求直线1C D 与平面ABC 所成角的正弦值.20.(本小题满分12分)已知ABC ∆的两顶点坐标(1,0)A -, (1,0)B ,圆E 是ABC ∆的内切圆,在边AC ,BC ,AB 上的切点分别为,,P Q R ,||1CP =(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M .(1)求曲线M 的方程;(2)设直线BC 与曲线M 的另一交点为D ,当点A 在以线段CD 为直径的圆上时,求直线BC 的方程.----------------------8分因为1122(2,),(2,)AC my y AD my y =+=+ ,所以21.(本小题满分12分)已知函数()ln f x x x =,()(1)g x k x =-.(1)若()()f x g x ≥恒成立,求实数k 的值;(2)若方程()()f x g x =有一根为11(1)x x >,方程''()()f x g x =的根为0x ,是否存在实数k ,使10x k x =?若存在,求出所有满足条件的k 值;若不存在,说明理由.令1()ln 1(1)xv x x e x -=-+>,11()x x x e ex v x e x xe --'=-=, 令(),()x xs x e ex s x e e '=-=-,当1x >时,总有()0s x '>,所以()s x 是(1,)+∞上的增函数,即()(1)0x s x e ex s =->=,故()0v x '>,()v x 在(1,)+∞上是增函数,所以()(1)0v x v >=,即1ln 10k k e --+=在(1,)+∞无解.综上可知,不存在满足条件的实数k . ----------------------12分考点:1.利用导数判断函数的单调区间;2.利用导数求函数的最值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,,,,A B C D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(1)若13EC CB =,1ED DA =,求DC AB的值; (2)若2EF FA FB =∙,证明://EF CD .∴EBF EDC ∠=∠,又AEB ∠为公共角,23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线12cos :1sin x t C y t =-+⎧⎨=+⎩(t 为参数),24cos :3sin x C y θθ=⎧⎨=⎩(θ为参数). (1)化12,C C 的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线2C 的左顶点且倾斜角为4π的直线l 交曲线1C 于,A B 两点,求||AB .24.(本小题满分10分)选修4-5:不等式选讲 设函数()|4|||f x x x a =-+-(4)a <(1)若()f x 的最小值为3,求a 的值;(2)求不等式()3f x x ≥-的解集.。
河南省郑州市2015年高中毕业年级第一次质量预测数学理试题卷
河南省郑州市2015年高中毕业年级第一次质量预测数学理试题卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}|12M x x =-<<,{}|N x x a =<,若M N ⊆,则实数a 的取值范围是( ) A. ()2,+∞ B. [2,)+∞ C. (),1-∞- D. (,1]-∞-2. 在复平面内与复数512iz i=+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( ) A. 12i + B. 12i - C. 2i -+ D. 2i +3.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( ) A. 1- B. 1 C. 2 D. 2-4. 命题:p “2a =-”是命题:q “直线310ax y +-=与直线6430x y +-=垂直”成立的( ) A. 充要条件 B. 充分非必要条件 C.必要非充分条件 D.既不充分也不必要条件5. 已知点(),P a b 是抛物线220x y =上一点,焦点为F ,25PF =,则ab =( )A. 100B.200C.360D.4006. 已知点(),P x y 的坐标满足条件11350x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩,那么点P 到直线34130x y --=的最小值为( )A.115 B. 2 C. 95D. 1 7. 某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A. 32B.C.64D.8. 如图,函数()()sin f x A x ωϕ=+(其中0,0,2A πωϕ>>≤)与坐标轴的三个交点,,P Q R 满足()1,0P ,(),2,24PQR M π∠=-为线段QR 的中点,则A 的值为( )A. B.C.3D. 9. .如图所示的程序框图中,若()()21,4f x x x g x x =-+=+,且()h x m ≥恒成立,则m 的最大值是( )A. 4B.3C. 1D. 010. 设函数()()224,ln 25x f x e x g x x x =+-=+-,若实数,a b 分别是()(),f x g x 的零点,则( )A. ()()0g a f b <<B. ()()0f b g a <<C. ()()0g a f b <<D. ()()0f b g a <<11. 在Rt ABC ∆中,3CA CB ==,,M N 是斜边AB 上的两个动点,且MN =CM CN ⋅的取值范围为( )A. 52,2⎡⎤⎢⎥⎣⎦B. []2,4C. []3,6D. []4,612. 设函数()()()122015,log ,1,2,,20152015i if x x f x x a i ====…,记 ()()()()2132k k k k k I f a f a f a f a =-+-+…()()20152014k k f a f a +-,1,2k =,则( )A. 12I I <B. 12I I =C. 12I I >D. 无法确定第II 卷本试卷包括必考题和选考题两部分,第13-21题为必考题,每个试题考生都必须作答,第22-24题为选考题,学生根据要求作答.二、填空题:本大题共4个小题,每小题5分. 13. 已知等比数列{}n a ,前n 项和为n S ,12453,64a a a a +=+=,则6S = 14. 已知20cos a xdx π=⎰,在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中,x 的一次项系数的值为15. 设函数()y f x =的定义域为D ,若对于任意的12,x x D ∈,当122x x a +=时,恒有()()122f x f x b +=,则称点(),a b 为函数()y f x =图象的对称中心.研究函数()3sin 2f x x x =++的某一个对称中心,并利用对称中心的上述定义,可得到()19120f f ⎛⎫-+-+ ⎪⎝⎭…()19120f f ⎛⎫++= ⎪⎝⎭16.给定方程:1sin 102xx ⎛⎫+-= ⎪⎝⎭,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(),0-∞内有且只有一个实数根;④若0x 是方程的实数根,则01x >-. 正确命题是三、解答题:解答题应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,,,a b c 分别为角A 、B 、C 的对边,D 为边AC的中点,4a ABC =∠= (I )若3c =,求sin ACB ∠的值;(II )若3BD =,求ABC ∆的面积.18.(本小题满分12分)某学校为了丰富学生的业余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取题目,背诵正确加10分,背诵错误减10分,只有“正确”和“错误”两种结果,其中某班级的正确率为23p =,背诵错误的的概率为13q =,现记“该班级完成n 首背诵后总得分为n S ”.(I ) 求620S =且()01,2,3i S i ≥=的概率; (II )记5S ξ=,求ξ的分布列及数学期望.19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面A B C D 为直角梯形,||AD BC ,PD ⊥底面A B C D ,190,1,22ADC BC AD PD CD ∠=︒====,Q 为AD 的中点,M 为棱PC 上一点. (I )试确定点M 的位置,使得||PA 平面BMQ ,并证明你的结论;(II )若2PM MC =,求二面角P BQ M --的余弦值.20.(本小题满分12分)已知动点P 到定点()1,0F 和直线:2l x =,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于,A B 两点,直线:l y mx n =+与曲线E 交于,C D 两点,与线段AB 相交于一点(与,A B 不重合)(I )求曲线E 的方程;(II )当直线l 与圆221x y +=相切时,四边形ABCD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.22. (本小题满分12分)已知函数()()222ln 2f x x x x ax =-++.(I )当1a =-时,求()f x 在点()()1,1f 处的切线方程;(II )当0a >时,设函数()()2g x f x x =--,且函数()g x 有且仅有一个零点,若2e x e -<<,()g x m ≤,求m 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分,答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图所示,EP 交圆于,E C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(I )求证:AB 为圆的直径;(II )若,5AC BD AB ==,求弦DE 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为cos 4πρθ⎛⎫=+ ⎪⎝⎭,直线l的参数方程为1x t y =⎧⎪⎨=-+⎪⎩(t 为参数),直线l 和圆C 交于,A B 两点,P 是圆C 上不同于,A B 的任意一点.(I )求圆心的极坐标;(II )求PAB ∆面积的最大值.24.(本小题满分10分)选修4-5:不等式选讲已知函数()121f x m x x =---+.(I )当5m =时,求不等式()2f x >的解集;(II )若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.2015年高中毕业年级第一次质量预测理科数学 参考答案一、选择题1-12:BCDA DBCC BADA 二、填空题 13.63414.-10 15.82 16.2,3,4. 三、解答题17.解:(Ⅰ) 42cos 23=∠=ABC a ,,3=c , 由余弦定理:ABC a c a c b ∠⋅⋅-+=cos 2222=18423232)23(322=⨯⨯⨯-+,………………………………2分∴ 23=b . ……………………………………………………………………4分又(0,)π∠∈ABC ,所以414cos 1sin 2=∠-=∠ABC ABC ,由正弦定理:ABC bACB c ∠=∠sin sin ,得47sin sin =∠⨯=∠b ABC c ACB .………………………………………6分 (Ⅱ)以BC BA ,为邻边作如图所示的平行四边形ABCE,如图,则42cos cos -=∠-=∠ABC BCE ,…………………8分 ,62==BD BE 在△BCE 中,由余弦定理:BCE CE CB CE CB BE ∠⋅⋅-+=cos 2222.即)42(23218362-⨯⨯⨯-+=CE CE , 解得:,3=CE 即,3=AB …………………10分 所以479sin 21=∠=∆ABC ac S ABC .…………………………………………12分 18.解:(Ⅰ)当206=S 时,即背诵6首后,正确个数为4首,错误2首,………………2分 若第一首和第二首背诵正确,则其余4首可任意背诵对2首;…………………3分若第一首正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵对1首,此时的概率为:811631)32(323132)31()32()32(21322242=⨯⨯⨯⨯⨯+⨯⨯⨯=C C p ………… …………5分 (2)∵5S =ξ的取值为10,30,50,又21,,32p q ==…………………6分BCDE∴8140)31()32()31()32()10(32252335=+==C C P ξ, 8130)31()32()31()32()30(41151445=+==C C P ξ5505552111(50)()().3381P C C ξ==+=…………………9分∴ξ的分布列为:∴81815081308110=⨯+⨯+⨯=ξE .…………………………………………12分 19.解:(1)当M 为PC 中点时,//PA 平面BMQ ,…………………2分 理由如下: 连结AC 交BQ 于N ,连结MN ,因为090ADC ∠=,Q 为AD 的中点,所以N 为AC 的中点.当M 为PC 的中点,即PM MC =时,MN 为PAC ∆的中位线,故//MN PA ,又MN ⊂平面BMQ ,所以//PA 平面BMQ .…………………………………………5分(2)由题意,以点D 为原点DP DC DA ,,所在直线分别为z y x ,,轴, 建立空间直角坐标系,…………………6分 则),0,2,1(),0,0,1(),2,0,0(B Q P …………………7分 由MC PM 2=可得点)32,34,0(M , 所以)32,34,1(),0,2,0(),20,1(-==-=QM , 设平面PQB 的法向量为),,(1z y x n =,则1120,2,0.20,PQ n x z x z y QB n y ⎧⋅=-==⎧⎪∴⎨⎨=⋅==⎩⎪⎩ 令)1,0,2(,11=∴=n z ,…………………9分y同理平面MBQ 的法向量为)1,0,32(2=n ,…………………10分 设二面角大小为θ,.65657cos ==θ…………………………………………12分 20.解:(1).设点),(y x P ,由题意可得,22|2|)1(22=-+-x y x ,…………………2分 整理可得:1222=+y x .曲线E 的方程是1222=+y x .………………………5分 (2).设),(11y x C ,),(22y x D,由已知可得:||AB =当0=m 时,不合题意. …………………6分 当0≠m 时,由直线l 与圆122=+y x 相切,可得:11||2=+m n ,即221.m n +=联立⎪⎩⎪⎨⎧=++=1222y x nmx y 消去y 得2221()210.2m x mnx n +++-=…………………8分02)1)(21(4422222>=-+-=∆m n m n m ,122,1222221+∆--=+∆+-=m mn x m mn x 所以,1222,1242221221+-=+-=+m n x x m mn x x ||||2112x x AB S ACBD-=四边形=12||2121222222+=++-m m m n m=2122||||m m ≤+10分 当且仅当||1||2m m =,即22±=m 时等号成立,此时26±=n ,经检验可知, 直线2622-=x y 和直线2622+-=x y 符合题意. ………………………………12分21.解:(1)当1a =-时,22()(2)ln 2f x x x x x =--+,定义域为()0,+∞,()()()22ln 22.f x x x x x '=-+-- …………………2分(1)3f '∴=-,又(1)1,f =()f x 在()()1,1f 处的切线方程340.x y +-= ……………4分(2)令()()20,g x f x x =--=则()222ln 22,x x x ax x -++=+即1(2)ln ,x xa x--⋅=令1(2)ln ()x xh x x--⋅=, …………………5分则2221122ln 12ln ().x x x h x x x x x ---'=--+= …………………6分 令()12ln t x x x =--,22()1x t x x x--'=--=,()0t x '<,()t x 在(0,)+∞上是减函数,又()()110t h '==,所以当01x <<时,()0h x '>,当1x <时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减,()max (1)1h x h ∴==.………8分 因为0>a , 所以当函数()g x 有且仅有一个零点时,1a =.当1a =,()()222ln g x x x x x x =-+-,若2,(),e x e g x m -<<≤只需证明max (),g x m ≤…………………9分()()()132ln g x x x '=-+,令()0g x '=得1x =或32x e -=,又2e x e -<<,∴函数()g x 在322(,)e e --上单调递增,在32(,1)e -上单调递减,在(1,)e 上单调递增,10分又333221()22g e e e ---=-+ , 2()23,g e e e =-333322213()2222()().22g e e e e e e e g e ----=-+<<<-=即32()()g e g e -< ,2max ()()23,g x g e e e ==- 223.m e e ∴≥- ………12分22.证明:(1)因为PD PG =,所以PGD PDG ∠=∠.由于PD 为切线,故DBA PDA ∠=∠,…………………2分 又因为PGD EGA ∠=∠,所以DBA EGA ∠=∠, 所以DBA BAD EGA BAD ∠+∠=∠+∠, 从而BDA PFA ∠=∠.…………………4分又,EP AF ⊥所以 90=∠PFA ,所以90=∠BDA , 故AB 为圆的直径.…………………5分 (2)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA . …………………7分又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . ………………8分因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,…………………9分所以ED 为直径,又由(1)知AB 为圆的直径,所以5==AB DE .…………………10分23.解:(Ⅰ)圆C 的普通方程为02222=+-+y x y x ,即22(1)(1) 2.x y -++=………2分 所以圆心坐标为(1,-1),圆心极坐标为7)4π;…………………5分 (Ⅱ)直线l 的普通方程:0122=--y x ,圆心到直线l 的距离32231122=-+=d ,…………………7分 所以,31029822=-=AB 点P 直线AB 距离的最大值为,3253222=+=+d r …………………9分 9510325310221max =⨯⨯=S .…………………10分 24.解:(Ⅰ)当5=m 时,,1,3411,21,63)(⎪⎩⎪⎨⎧>-≤≤-+--<+=x x x x x x x f ………………………3分由2)(>x f 易得不等式解集为)0,34(-∈x ;………………………5分(2)由二次函数2)1(3222++=++=x x x y ,该函数在1-=x 取得最小值2, 因为31,1()3,1131,1x m x f x x m x x m x ++<-⎧⎪=--+-≤≤⎨⎪-+->⎩在1-=x 处取得最大值2-m ,…………………7分所以要使二次函数322++=x x y 与函数)(x f y =的图象恒有公共点,只需22≥-m , 即 4.m ≥.……………………………10分。
河南省郑州市2015届高三第一次质量预测试题
河南省郑州市2015届高三第一次质量预测试题高三2011-01-11 11:20河南省郑州市2011年高中毕业年级第一次质量预测语文试题第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分),阅读下面的文字,完成1—3题。
诗和其他艺术都是情感的流露。
情感是心理中极原始的一种要素。
人在理智未发达之前先已有情感;在理智既发达之后,情感仍然是理智的驱遣者。
情感是心感于物所起的激动,其中有许多人所共同的成分,也有某个人所特有的成分。
这就是说,情感一方面有群性,一方面也有个性,群性是得诸遗传的,是永恒的,不易变化的;个性是成于环境的,是随环境而变化的。
环境随人随时而异,所以人类的情感时时在变化;遗传的倾向为多数人所共同,所以情感在变化之中有不变化者存在。
艺术是情感的返照,它也有群性和个性的分别,它在变化之中也有不变化者存在。
比如单拿诗来说,四言、五言、七言、古、律、绝、词的交替是变化,而格律则为变化中的不变化者。
变化就是创造,不变化就是因袭。
把不变化者归纳成为原则,就是自然律。
这种自然律可以用为规范律,因为它本来是人类共同的情感需要。
但是只有群性而无个性,只有整齐而无变化,只有因袭而无创造,也就不能产生艺术。
末流者忘记这个道理,所以往往把格律变成死板的形式。
格律在经过形式化之后往往使人受拘束,这是事实,但是这决不是格律本身的罪过,我们不能因噎废食。
格律不能束缚天才,也不能把庸手提拔到艺术家的地位。
如果真是诗人,格律会受他奴使;如果不是诗人,有格律他的诗固然腐滥,无格律它也还是腐滥。
古今大艺术家大半都从格律入手。
艺术须寓整齐于变化。
一味齐整,如钟摆摇动声,固然单调;一味变化,如市场嘈杂声,也还是单调。
由整齐到变化易,由变化到整齐难。
从整齐入手,创造的本能和特别情境的需要会使作者在整齐之中求变化以避免单调。
从变化入手,则变化之上不能再有变化,本来是求新奇而结果却仍还于单调。
古今大艺术家大半后来都做到脱化格律的境界。
河南省郑州市2013年高中毕业年级第一次质量预测数学(文科)试题(含答案)(高清扫描版)
设线段 的中点为 , ,直线 的斜率为 ,
注意到 ,则直线 的方程为 ,
由 消 得: ,
所以 ,故 ,
又点 在直线 上,所以 ,―――――8分
由 可得 ,
即 ,所以 ,――――10分
整理得 ,
所以在线段 上存在点 符合题意,其中 .――――12分
21.解:⑴当 时, , ,―――1分
18.解:⑴设第 组的频率为 ,
则由频率分布直方图知
所以成绩在260分以上的同学的概率 ,
故这2000名同学中,取得面试资格的约为280人.――――-6分
⑵不妨设两位同学为 ,且 的成绩在270分以上,
则对于 ,答题的可能有 ,对于 ,答题的可能有 ,
其中角标中的1表示正确,0表示错误,如 表示 同学第一题正确,第二题错误,将两位同学的答题情况列表如下:
又 平面 , 平面 ,
故 为棱 的中点时, .――――6分
⑵在平面 内作 于点 ,
,
又 底面 ,即 就是四棱锥 的高.
由 知,点 和 重合时,四棱锥 的体积取最大值.――10分
此时
故四棱锥 体积的最大值为 ―――――12分
20.解:⑴由题意 ,
注意到 ,所以 ,
所以 ,
即所求椭圆方程为 .――――4分
当 时, ,当 时, ,
所以函数 在 上为增函数,在 上为减函数,―――3分
即 ,所以当且仅当 时,函数 的最大值为 .―-5分
⑵由题意,函数的定义域为 , ,――6分
当 时,注意到 ,所以 ,
即函数 的增区间为 ,无减区间;―――8分
当 时, ,
由 ,得 ,
此方程的两根 ,
九年级数学月考试卷质量分析
九年级上册数学抽考试质量分析为了总结经验,吸取教训,取长补短,改进教学,提升质量,提高成绩,在全面评估xx学年度第x学期抽考质量检测九年级数学试卷、学生答题情况以及检测成绩后,做出如下总结剖析。
一、试题分析。
xx学年度第x学期抽考检测九年级数学试卷全卷分值100分,考试时间100分钟。
全卷共三道大题24道小题,包括10道单项选择题,8道填空题,6道解答题,实行线下考试、交叉阅卷。
全卷试题题量适宜,难度基本偏高,全面涉及到本学期目前教学的全部内容,重点考察一元二次方程、二次函数、概率、旋转等内容。
试卷内容比较灵活多样,对基础知识、生活实践、看图做题等都有考察,尤其是把课本知识融入生活实践中的这类题型,最能体现素质教育,同时也强调了数学教学与现实生活的紧密联系。
二、考情分析。
本人任教九年级(3)班数学教学,三率和为47.92:平均成绩35.92分,优秀率0.00,及格率12.00,未达到预期目标。
最高73分,最低9分,高低分之间相差近64分,相差悬殊,由此可知本班学生数学两极分化十分严重。
从学生答卷情况来看,大部分在平时能够重视数学课程,能够花功夫按时完成数学科目各项作业,课堂参与度高,对数学课程有兴趣,能够花时间预习复习数学课程的学生都取得了比较理想的成绩。
但总体而言,一是学生数学基础较差:如三分之一的学生不会解一元二次方程,三分之二会方法,但有的不会计算及化简等;二是学生思想问题、学习态度不端正;三是学生太懒了,依赖性太强。
三、教情分析。
1、紧扣书本内容适当拓展,巩固学生基础。
2、认真备课、备学生,预测教学中会遇到的问题,根据学生层次进行第二次备课,课上及时解决问题。
3、认真督促学生按时完成每节课课后作业,按时批改,对存在的问题耐心批改提示,必要时及时全班反馈。
4、通过适当的练习,掌握规律,做到熟能生巧。
本人充分利用练习课时间,对学生耐心讲解辅导。
通过分析质量检测成绩可以看出,以上教学措施基本正确有效。
河南省郑州市2024-2025学年九年级上学期数学第一次月考测试卷(二)
河南省郑州市2024-2025学年九年级上学期数学第一次月考测试卷(二)一、单选题1.下列性质中正方形具有而矩形不具有的是( )A .对边相等B .对角线相等C .四个角都是直角D .对角线互相垂直 2.下列各方程中:①210x +=;②20ax bx c ++=;③213x x +=;④2314y y +=;⑤()()()()112225x x x x x -+=+-+-一元二次方程的个数有( )A .1个B .2个C .3个D .4个3.如图,ABCD 是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:甲:则关于甲、乙两人的作法,下列判断正确的为( )A .仅甲正确B .仅乙正确C .甲、乙均正确D .甲、乙均错误 4.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是AB 的中点,若菱形的周长为20,则OE 的长为( )A .10B .5C .2.5D .15.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是( )A .5个B .6个C .7个D .8个6.如图是由8块全等的等腰直角三角形黑白瓷砖镶嵌而成的正方形,一只蚂蚁在上面自由爬动,那么蚂蚁停留在黑色瓷砖上的概率是( )A .14 B .38 C .12 D .587.一元二次方程22210x mx m ++-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定8.如图,矩形ABCD 中,对角线AC 与BD 相交于点O ,AE BD ⊥于点E ,若2B A E O A E ∠=∠,则AOB ∠的度数为( )A .18︒B .54︒C .70︒D .72︒9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,若45BED ∠=︒,则BFC ∠=( )A .30°B .45°C .60°D .75°10.如图,在菱形纸片ABCD 中,AB=2,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则EF 的长为( )A .74B .95C .1910 D二、填空题11.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a =. 12.把一元二次方程2x 2﹣x ﹣1=0用配方法配成a (x ﹣h )2+k =0的形式(a ,h ,k 均为常数),则h 和k 的值分别为13.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,且16AC =,12BD =,过点O 作OH AB ⊥,垂足为H ,则点O 到边AB 的距离OH =.14.如图,A 、B 、C 、D 是矩形的四个顶点,16AB cm =,6BC cm =,动点P 从点A 出发,以3/cm s 的速度向点B 运动,直到点B 为止;动点Q 同时从点C 出发,以2/cm s 的速度向点D 运动,当时间为时,点P 和点Q 之间的距离是10cm .15.如图,矩形ABCD 中,12AD =,8AB =,E 是AB 上一点,且3EB =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为.三、解答题16.用适当的方法解下列一元二次方程:(1)2520x x -=;(2)2(2)4x -=;(3)2230x x --=(用配方法);(4)2810x x -+=.17.已知关于x 的一元二次方程()2x n 3x 3n 0-++=.(1)求证:此方程总有两个实数根;(2)若此方程有两个不相等的整数根,请选择一个合适的n 值,写出这个方程并求出此时方程的根.18.某校为丰富学生的课余生活,开设了五类社团活动(要求每人必须参加且只参加一类活动):A .音乐社团;B .书法社团;C .文学社团;D .话剧社团;E .科创社团.该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图的两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查一共抽取了______名学生;请补全条形统计图;(2)求扇形统计图中E 所在扇形圆心角的度数;(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法,求出恰好选中甲、乙两名同学的概率.19.某大学为改善校园环境,计划在一块长80m ,宽60m 的长方形场地中央建一个长方形网球场,网球场占地面积为23500m .四周为宽度相等的人行走道,如图,若设人行走道宽为m x .(1)请列出相应的方程.(2)x 的值可能小于0吗?说说你的理由.(3)x 的值可能大于40吗?可能大于30吗?说说你的理由.(4)你知道人行走道的宽是多少吗?说说你的求解过程.20.又到了脐橙丰收季,某水果超市老板发现今年奉节脐橙和赣南脐橙很受欢迎,今年1月第一周购进奉节脐橙和赣南脐橙两个品种,已知1千克赣南脐橙的进价比1千克奉节脐橙的进价多4元,购买20千克赣南脐橙的价格与购买30千克奉节脐橙的价格相同.(1)今年1月第一周每千克奉节脐橙和赣南脐橙的进价分别是多少元?(2)今年1月第一周,水果超市老板以14元每千克售出奉节脐橙140千克,24元每千克售出赣南脐橙120千克;第二周水果超市老板又以第一周的价格购进一批奉节脐橙和赣南脐橙,为促进奉节脐橙的销量,该水果超市老板决定调整价格,每千克奉节脐橙的售价在第一周的基础上下降0.1m 元,每千克赣南脐橙的售价不变,由于此批奉节脐橙品质较好又便宜,第二周奉节脐橙的销量比第一周增加了4m 千克,而赣南脐橙的销量比第一周减少了0.5m 千克,最终该水果超市第二周销售两种脐橙总共获利2280元,求m 的值.21.如图1,直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,8AD =,6BC =,点M 从点D 出发,以每秒2个单位长度的速度向点A 运动,同时,点N 从点B 出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP AD ⊥于点P ,连接AC 交NP 于点Q ,连接MQ .设运动时间为t 秒.(1)AM =______,AP =______.(用含t 的代数式表示)(2)当四边形ANCP 为平行四边形时,求t 的值;(3)如图2,将AQM V 沿AD 翻折,得AKM V ,是否存在某时刻t ,①使四边形AQMK 为为菱形,若存在,求出t 的值;若不存在,请说明理由;②使四边形AQMK 为正方形,则AC =______.22..已知:在矩形ABCD 中,BD 是对角线,AE BD ⊥于点E ,CF BD ⊥于点F ;(1)如图1,求证:AE CF =;(2)如图2,当30ADB ∠=︒时,连接AF .CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18. 23.如图1,正方形ABCD 的边长为a ,E 为边CD 上一动点(点E 与点C 、D 不重合),连接AE 交对角线BD 于点P ,过点P 作PF ⊥AE 交BC 于点F .(1)求证:P A =PF ;(2)如图2,过点F 作FQ ⊥BD 于Q ,在点E 的运动过程中,PQ 的长度是否发生变化?若不变,求出PQ 的长;若变化,请说明变化规律.(3)请写出线段AB 、BF 、BP 之间满足的数量关系,不必说明理由.。
2022年河南省郑州市外国语中学九年级数学第一学期期末学业质量监测试题含解析
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=3892.如图,在Rt OAB 中,OA AB =,90OAB ∠=︒,点P 从点O 沿边OA ,AB 匀速运动到点B ,过点P 作PC OB ⊥交OB 于点G ,线段22AB =,OC x =,POC S y =△,则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .3.若关于x 的方程220x x a --=,它的一根为3,则另一根为( ) A .3 B .3- C .1- D .c4.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是( )A .①②B .①③C .②③D .③④5.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .cmB .3cmC .4cmD .4cm6.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+7.将抛物线y = x 2平移得到抛物线y = (x+2)2,则这个平移过程正确的是( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位8.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( )A .3.5B .4.2C .5.8D .79.若a 、b 、c 、d 是成比例线段,其中a =5cm ,b=2.5cm ,c=10cm ,则线段d 的长为( )A .2cmB .4cmC .5cmD .6cm10.用10m 长的铝材制成一个矩形窗框,使它的面积为62m .若设它的一条边长为xm ,则根据题意可列出关于x 的方程为( )A .(5)6x x -=B .(5)6x x +=C .(10)6x x -=D .(102)6x x -=11.已知正比例函数y =kx 的图象经过第二、四象限,则一次函数y =kx ﹣k 的图象可能是图中的( ) A . B .C .D .12.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠CAD=2.其中正确的结论有()A .4个B .3个C .2个D .1个二、填空题(每题4分,共24分)13.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 (结果保留π)14.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.15.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,如果点A 的坐标为(1,0),那么点2019B 的坐标为________.16.代数式a 2+a +3的值为7,则代数式2a 2+2a -3的值为________.17.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .18.如图,在平面直角坐标系中,点A 是x 轴正半轴上一点,菱形OABC 的边长为5,且tan ∠COA =34,若函数(0)k y x x =>的图象经过顶点B ,则k 的值为________.三、解答题(共78分)19.(8分)已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围. 20.(8分)如图,一次函数y =kx +b 与反比例函数y =m x的图象交于A (2,3),B (﹣3,n )两点.(1)求反比例函数的解析式;(2)过B 点作BC ⊥x 轴,垂足为C ,若P 是反比例函数图象上的一点,连接PC ,PB ,求当△PCB 的面积等于5时点P 的坐标.21.(8分)已知函数y =mx 1﹣(1m +1)x +1(m ≠0),请判断下列结论是否正确,并说明理由.(1)当m <0时,函数y =mx 1﹣(1m +1)x +1在x >1时,y 随x 的增大而减小;(1)当m >0时,函数y =mx 1﹣(1m +1)x +1图象截x 轴上的线段长度小于1.22.(10分)(1)解方程:x 2﹣4x ﹣3=0(201830(4)16π︒++-23.(10分)如图,在ABC ∆中,90C ∠=︒,以BC 为直径的O 交AB 于D ,点E 在线段AC 上,且ED EA =.(1)求证:ED 是O 的切线.(2)若3,60ED B =∠=︒,求O 的半径. 24.(10分)一艘运沙船装载着5000m 3沙子,到达目的地后开始卸沙,设平均卸沙速度为v (单位:m 3/小时),卸沙所需的时间为t (单位:小时).(1)求v 关于t 的函数表达式,并用列表描点法画出函数的图象;(2)若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围.25.(12分)如图1,抛物线y =ax 2+bx+c 的顶点(0,5),且过点(﹣3,114),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB =d (定值),将其弯折成互相垂直的两段AC 、CB 后,设A 、B 两点的距离为x ,由A 、B 、C 三点组成图形面积为S ,且S 与x 的函数关系如图所示(抛物线y =ax 2+bx+c 上MN 之间的部分,M 在x 轴上):(1)填空:线段AB 的长度d = ;弯折后A 、B 两点的距离x 的取值范围是 ;若S =3,则是否存在点C ,将AB 分成两段(填“能”或“不能”) ;若面积S =1.5时,点C 将线段AB 分成两段的长分别是 ; (2)填空:在如图1中,以原点O 为圆心,A 、B 两点的距离x 为半径的⊙O ;画出点C 分AB 所得两段AC 与CB 的函数图象(线段);设圆心O 到该函数图象的距离为h ,则h = ,该函数图象与⊙O 的位置关系是 . (提升)问题2,一个直角三角形斜边长为c (定值),设其面积为S ,周长为x ,证明S 是x 的二次函数,求该函数关系式,并求x 的取值范围和相应S 的取值范围.26.一个不透明的布袋中有完全相同的三个小球,把它们分别标号为1,2,3. 小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球,记下标号. 若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.(1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;(2)请判断这个游戏是否公平,并说明理由.参考答案一、选择题(每题4分,共48分)1、B【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389 (1+x) 元,则今年上半年发放给每个经济困难学生389 (1+x) (1+x) =389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.2、D【分析】分两种情况:①当P点在OA上时,即2≤x≤2时;②当P点在AB上时,即2<x≤1时,求出这两种情况下的PC长,则y=12PC•OC的函数式可用x表示出来,对照选项即可判断.【详解】解:∵△AOB是等腰直角三角形,AB=∴OB=1.①当P点在OA上时,即2≤x≤2时,PC=OC=x,S△POC=y=12PC•OC=12x2,是开口向上的抛物线,当x=2时,y=2;OC=x,则BC=1-x,PC=BC=1-x,S△POC=y=12PC•OC=12x(1-x)=-12x2+2x,是开口向下的抛物线,当x=1时,y=2.综上所述,D答案符合运动过程中y与x的函数关系式.故选:D.【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.3、C【分析】设方程的另一根为t ,根据根与系数的关系得到3+t=2,然后解关于t 的一次方程即可.【详解】设方程的另一根为t ,根据题意得:3+t=2,解得:t=-1,即方程的另一根为-1.故选:C .【点睛】本题主要考查了一元二次方程根与系数的关系:12x x 、是一元二次方程20x px q ++=的两根时,12x x p +=-,12x x q =.4、A【分析】利用勾股定理,求出四个图形中阴影三角形的边长,然后判断哪两个三角形的三边成比例即可.【详解】解:由图,根据勾股定理,可得出①图中阴影三角形的边长分别为:;③图中阴影三角形的边长分别为:④图中阴影三角形的边长分别为:22===, 所以图①②两个阴影三角形相似;故答案为:A.【点睛】 本题考查相似三角形的判定,即如果两个三角形三条边对应成比例,则这两个三角形相似;本题在做题过程中还需注意,阴影三角形的边长利用勾股定理计算,有的图形需要把小正方形补全后计算比较准确.5、C【解析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高:∵扇形的弧长=1206=4180ππ⋅⋅cm,圆锥的底面半径为4π÷2π=2cm,∴这个圆锥形筒的高为2262=42-cm.故选C.6、B【详解】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCEBE CE =,3CE x∴=,在直角△ABE中,3x,AC=50米,3350x x-=,解得253x=即小岛B到公路l的距离为253故选B.7、A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A.考点:抛物线的平移规律.8、D【详解】解:根据垂线段最短,可知AP的长不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的长不能大于1.∴3PA6≤≤故选D.9、C【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=5cm,b=2.5cm,c=10cm,解得:d=5.故线段d的长为5cm.故选:C.【点睛】本题主要考查成比例线段,解题突破口是根据定义ad=cb,将a,b及c的值代入计算.10、A【分析】一边长为xm,则另外一边长为(5﹣x)m,根据它的面积为1m2,即可列出方程式.【详解】一边长为xm,则另外一边长为(5﹣x)m,由题意得:x(5﹣x)=1.故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.11、A【分析】根据正比例函数y=kx的图象经过第二、四象限可判断出k的符号,进而可得出结论.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:A.【点睛】本题考查的是一次函数的图象与系数的关系,先根据题意判断出k的符号是解答此题的关键.12、B【解析】试题解析:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE ⊥AC 于点F ,∴∠EAC =∠ACB ,∠ABC =∠AFE =90°, ∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE =12AD =12BC , ∴12AF CF =, ∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,故③正确;设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有2b a a b =,即b ,∴tan ∠CAD =2CD b AD a == 故选B .【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.二、填空题(每题4分,共24分)13、3π 【解析】试题分析:此题考查扇形面积的计算,熟记扇形面积公式2360n r S π=,即可求解.根据扇形面积公式,计算这个扇形的面积为212033360S ππ==. 考点:扇形面积的计算14、274【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论. 【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AEBEBF CF =,即x mn y =,xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴ANDNCM DM =,即3132m xn y -==-,29y x ∴=-+,12mn =,2n m ∴=,()3m n m∴+=最大,∴当m最大时,()3m n m+=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x=-=⨯-时,28128mn m==最大,94m∴=最大,m n∴+的最大值为927344⨯=.故答案为:274.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.15、(2,0)-【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2由旋转得:OB=OB1=OB2=OB3=…2,∵将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,依次得到∠AOB=∠BOB1=∠B1OB2=…=45∘,∴B12),B2(−1,1),B32,0),…,发现是8次一循环,所以2019÷8=252…3,∴点B2019的坐标为2,0)【点睛】本题考查了旋转的性质,对应点到旋转中心的距离相等;对应点与旋转中心所连接线段的夹角等于旋转角,也考查了坐标与图形的变化、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法.16、3【分析】先求得a 2+a=1,然后依据等式的性质求得2a 3+2a=2,然后再整体代入即可.【详解】∵代数式a 2+a+3的值为7,∴a 2+a=1.∴2a 3+2a=2.∴2a 3+2a-3=2-3=3.故答案为3.【点睛】本题主要考查的是求代数式的值,整体代入是解题的关键.17、56. 【详解】解:由题意作出树状图如下:一共有36种情况,“两枚骰子朝上的点数互不相同”有30种,所以,P=305366=. 考点:列表法与树状图法.18、1 【分析】作BD ⊥x 轴于点D ,如图,根据菱形的性质和平行线的性质可得∠BAD =∠COA ,于是可得3tan tan 4BAD COA ∠=∠=,在Rt △ABD 中,由AB =5则可根据勾股定理求出BD 和AD 的长,进而可得点B 的坐标,再把点B 坐标代入双曲线的解析式即可求出k .【详解】解:作BD ⊥x 轴于点D ,如图,∵菱形OABC 的边长为5,∴AB =OA =5,AB ∥OC ,∴∠BAD =∠COA ,∴3tan tan 4BAD COA ∠=∠= 在Rt △ABD 中,设BD =3x ,AD =4x ,则根据勾股定理得:AB =5x =5,解得:x =1,∴BD =3,AD =4,∴OD =9,∴点B 的坐标是(9,3), ∵(0)k y x x=>的图象经过顶点B , ∴k =3×9=1. 故答案为:1.【点睛】本题考查了菱形的性质、解直角三角形、勾股定理和待定系数法求函数的解析式等知识,属于常考题型,熟练应用上述知识、正确求出点B 的坐标是解题的关键.三、解答题(共78分)19、-4≤a<-3. 【解析】试题分析:首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a 的不等式组求得a 的范围.试题解析:解:由5x +2>3(x ﹣2)得:x >﹣2,由12x ≤8﹣32x +2a 得:x ≤4+a . 则不等式组的解集是:﹣2<x ≤4+a .不等式组只有两个整数解,是﹣2和2.根据题意得:2≤4+a <2.解得:﹣4≤a <﹣3.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20、(1)y =6x ;(2)点P 的坐标为(﹣8,﹣34),(2,3). 【分析】(1)将A 坐标代入反比例函数解析式中求出m 的值,即可确定出反比例函数解析式;(2)由B 点(-3,n )在反比例函数y =6x的图象上,于是得到B (-3,-2),求得BC=2,设△PBC 在BC 边上的高为h ,根据三角形的面积公式列方程即可得到结论.【详解】(1)∵反比例函数y =m x 的图象经过点A (2,3), ∴m =1.∴反比例函数的解析式是y =6x; (2)∵B 点(﹣3,n )在反比例函数y =6x 的图象上, ∴n =﹣2,∴B (﹣3,﹣2),∴BC =2,设△PBC 在BC 边上的高为h ,则12BC •h =5, ∴h =5,∵P 是反比例函数图象上的一点,∴点P 的横坐标为:﹣8或2, ∴点P 的坐标为(﹣8,﹣34),(2,3).【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,一次函数与坐标轴的交点,以及反比例函数的图象与性质,熟练掌握待定系数法是解本题的关键.21、(1)详见解析;(1)详见解析.【分析】(1)先确定抛物线的对称轴为直线x =1+12m ,利用二次函数的性质得当m >1+12m 时,y 随x 的增大而减小,从而可对(1)的结论进行判断;(1)设抛物线与x 轴的两交的横坐标为x 1、x 1,则根据根与系数的关系得到x 1+x 1=21m m+,x 1x 1=2m ,利用完全平方公式得到|x 1﹣x 1|()212124x x x x +-212m ⎛⎫- ⎪⎝⎭=|1﹣1m |,然后m 取15时可对(1)的结论进行判断.【详解】解:(1)的结论正确.理由如下:抛物线的对称轴为直线(21)1122-+=-=+mxm m,∵m<0,∴当m>1+12m时,y随x的增大而减小,而1>1+12m,∴当m<0时,函数y=mx1﹣(1m+1)x+1在x>1时,y随x的增大而减小;(1)的结论错误.理由如下:设抛物线与x轴的两交的横坐标为x1、x1,则x1+x1=21mm+,x1x1=2m,|x1﹣x1|=|1﹣1m|,而m>0,若m取15时,|x1﹣x1|=3,∴当m>0时,函数y=mx1﹣(1m+1)x+1图象截x轴上的线段长度小于1不正确.【点睛】本题考查了二次函数的增减性问题,与x轴的交点问题,熟练掌握二次函数的性质是解题的关键.22、(1)x1=,x2=2;(2)1【分析】(1)方程利用配方法求出解即可;(2)原式利用二次根式性质,绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可求出值.【详解】(1)方程整理得:x2﹣4x=3,配方得:x2﹣4x+4=3+4,即(x﹣2)2=7,开方得:x﹣,解得:x1x2=2;(2) 018tan 30(4)16π︒++--3321163=⨯+-- =1.【点睛】 本题考查了利用配方法求一元二次方程的解以及实数的混合运算,涉及了:零指数、二次根式以及特殊角的三角函数值.解题的关键是熟练运用一元二次方程的解法以及特殊角的锐角三角函数的值.23、 (1)证明见解析;(2)O 的半径为1.【分析】(1)如图(见解析),连接OD ,先根据等边对等角求出,B DO ADE B A ∠=∠∠=∠,再根据直角三角形两锐角互余得90A B ∠+∠=︒,从而可得90ADE BDO ∠+∠=︒,最后根据圆的切线的判定定理即可得证;(2)先根据圆的切线的判定定理得出CA 是O 的切线,再根据切线长定理可得EC ED =,从而可得AC 的长,最后在Rt ABC ∆中,利用直角三角形的性质即可得.【详解】如图,连接ODED EA =A ADE ∴∠=∠OB OD =B BDO ∴∠=∠又90C ∠=︒,则90A B ∠+∠=︒90ADE BDO A B ∴∠+∠=∠+∠=︒180()90ODE ADE BDO ∴∠=︒-∠+∠=︒OD ED ∴⊥,且OD 为O 的半径∴ED 是O 的切线;(2)90C ∠=︒,BC 是直径CA ∴是O 的切线由(1)知,ED 是O 的切线ED EC ∴= 3,ED ED EA ==3ED EC EA ∴===23AC EC EA ∴=+=在Rt ABC ∆中,60,90B C ∠=︒∠=︒,则9030A B ∠=︒-∠=︒2222,AB BC AB BC AC ∴==+2BC ∴=112OB BC ∴== 故O 的半径为1.【点睛】本题考查了等腰三角形的性质、直角三角形的性质、勾股定理、圆的切线的判定定理、切线长定理,较难的是(2),利用切线长定理求出EC 的长是解题关键.24、(1)v =5000t,见解析;(2)200≤v≤1 【分析】(1)直接利用反比例函数解析式求法得出答案;(2)直接利用(1)中所求解析式得出v 的取值范围.【详解】(1)由题意可得:v =5000t, 列表得:v… 10 11 625 … t … 2 4 6 … 描点、连线,如图所示:;(2)当t =20时,v =500020=1, 当t =25时,v =500020=200, 故卸沙的速度范围是:200≤v≤1.【点睛】本题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.25、抛物线的解析式为:y =﹣14x 2+5;(2)<x <;(2,相离或相切或相交;(3)相应S 的取值范围为S >14c 2. 【分析】将顶点(0,5)及点(﹣3,114)代入抛物线的顶点式即可求出其解析式; (2)由抛物线的解析式先求出点M 的坐标,由二次函数的图象及性质即可判断d 的值,可由d 的值判断出x 的取值范围,分别将S =3和2.5代入抛物线解析式,即可求出点C 将线段AB 分成两段的长;(2)设AC =y ,CB =x ,可直接写出点C 分AB 所得两段AC 与CB 的函数解析式,并画出图象,证△OPM 为等腰直角三角形,过点O 作OH ⊥PM 于点H ,则OH =12PM ,分情况可讨论出AC 与CB 的函数图象(线段PM )与⊙O 的位置关系;(3)设直角三角形的两直角边长分别为a ,b ,由勾股定理及完全平公式可以证明S 是x 的二次函数,并可写出x 的取值范围及相应S 的取值范围.【详解】解:∵抛物线y =ax 2+bx+c 的顶点(0,5),∴y =ax 2+5,将点(﹣3,114)代入, 得114=a×(﹣3)2+5, ∴a =14﹣ , ∴抛物线的解析式为:y =2154x +﹣ ; (2)∵S 与x 的函数关系如图所示(抛物线y =ax 2+bx+c 上MN 之间的部分,M 在x 轴上),在y =2154x +﹣,当y =0时,x 2=x 2=﹣∴M (0),即当x =S =0,∴d 的值为∴弯折后A 、B 两点的距离x 的取值范围是0<x <当S =3 时,设AC =a ,则BC =a ,∴12a (a )=3,整理,得a 2﹣=0,∵△=b 2﹣4ac =﹣4<0,∴方程无实数根;当S =2.5时,设AC =a ,则BC =a ,∴12a (a )=2.5,整理,得a 2﹣=0,解得1a 2a ,∴当a ﹣a当a a +∴若面积S =2.5时,点C 将线段AB +故答案为:0<x <+ (2)设AC =y ,CB =x ,则y =﹣2所示的线段PM ,则P (0,,M (0),∴△OPM 为等腰直角三角形,∴PM OP =,过点O 作OH ⊥PM 于点H ,则OH =12PM =∴当0<x 时,AC 与CB 的函数图象(线段PM )与⊙O 相离;当x AC 与CB 的函数图象(线段PM )与⊙O 相切;<x <AC 与CB 的函数图象(线段PM )与⊙O 相交;故答案为:10,相离或相切或相交; (3)设直角三角形的两直角边长分别为a ,b ,则222-a b c a b x c ++=,= ,∵(a+b )2=a 2+b 2+2ab ,∴(x ﹣c )2=c 2+2ab ,∴2111242ab x cx =-, 即S =()22211114244x cx x c c -=-+, ∴x 的取值范围为:x >c ,则相应S 的取值范围为S >214c .【点睛】本题考查了待定系数法求解析式,二次函数的图象及性质,直线与圆的位置关系等,解题关键是熟练掌握二二次函数的图象及性质并能灵活运用.26、(1)(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);(2)不公平,理由见解析【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;使用树状图分析时,一定要做到不重不漏.(2)根据题意可以分别求得他们获胜的概率,即可进行判断.【详解】解:方法一:(1)由题意画出树状图所有可能情况如下:(11)(12),(13)(21)(22)(2,3)(31)(32)(33),,,,,,,,,,,,,,,;(2)由(1)可得:标号之和分别为2,3,4,3,4,5,4,5,6,()49P =和为奇数, ()59P =和为偶数, 因为4599≠,所以不公平; 方法二:(1)由题意列表 小林小华12 3 1 ()1,1 ()1,2()1,3 2 ()2,1()2,2 ()2,3 3()3,1 ()3,2()3,3 所有可能情况如下: (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);(2)由(1)可得:标号之和分别为2,3,4,3,4,5,4,5,6,()49P =和为奇数, ()59P =和为偶数, 因为4599≠,所以不公平. 【点睛】本题主要考查了游戏公平性的判断、用画树状图或列表的方法解决概率问题;判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.。
河南省郑州市2024-2025学年九年级上学期期中考试数学试卷[含答案]
2024-2025学年上期九年级期中考试数学试题考试范围:九年级上册考试时间:100分钟,试卷满分:120分一、选择题(共10小题,每小题3分,共30分)1.公元前5世纪,古希腊数学家毕达哥拉斯首次提出了关于一元二次方程的概念.下列关于x 的方程中,是一元二次方程的为( )A .210x x+=B . 20x xy -=C . 221x x +=D . 20ax bx +=(a 、b 为常数)2.“斗”是我国古代称量粮食的量器,它无盖.如图所示.下列图形是“斗”的俯视图的是( )A .B .C .D .3.已知线段a 、b 、c ,作线段x ,使b :a =x :c ,则正确的作法是( )A .B .C .D .4.将标有“最”“美”“河”“南”的四个小球装在一个不透明的口袋中(每个小球上仅标一个汉字),这些小球除所标汉字不同外,其余均相同.从中随机摸出一个球,放回后再随机摸出一个球,则摸到的球上的汉字可以组成“河南”的概率是( )A .13B .14C .16D .185.若把方程2410x x --=化为2()x m n +=的形式,则n 的值是( )A .5B .2C .2-D .5-6.如图,已知矩形ABCD 中,E 为BC 边上一点,DF AE ^于点F ,且6AB =,12AD =,10AE =,则DF 的长为( )A .5B .113C .365D .87.如图是某地下停车场的平面示意图,停车场的长为40m ,宽为22m .停车场内车道的宽都相等,若停车位的占地面积为2520m ,求车道的宽度(单位:m ).设停车场内车道的宽度为m x ,根据题意所列方程为( )A .(402)(22)520x x --=B .(40)(22)520x x --=C .(40)(222)520x x --=D .(40)(22)520x x -+=8.下列给出的条件不能得出ABD ACB ∽△△的是( )A .AD BDAB BC=B .ABD ACB Ð=ÐC .2AB AD AC=×D .ADB ABCÐ=Ð9.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则D 点坐标为( )A .1,22æöç÷èøB .1,13æöç÷èøC .()1,2D .1,24æöç÷èø10.如图(1),正方形ABCD 的对角线相交于点O ,点P 为OC 的中点,点M 为边BC 上的一个动点,连接OM ,过点O 作OM 的垂线交CD 于点N ,点M 从点B 出发匀速运动到点C ,设BM x =,PN y =,y 随x 变化的图象如图(2)所示,图中m 的值为( )A B .1C D .2二、填空题(共5小题,每小题3分,共15分)11.若1x =是关于x 的一元二次方程260x mx +-=的一个根,则m 的值为 .12.工人师傅做铝合金窗框分下面三个步骤进行:先截出两对符合规格的铝合金窗料(如图①),使AB CD =、EF GH =;然后摆放成如图②四边形;将直角尺紧靠窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学原理是:.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO = 度.14.如图,在平行四边形ABCD 中,E 是线段AB 上一点,连结AC DE 、交于点F .若23AE EB =,则ADF AEF S S =△△ .15.如图,在矩形纸片ABCD中,2AD AB ==,点P 是AB 的中点,点Q 是BC 边上的一个动点,将PBQ V 沿PQ 所在直线翻折,得到PEQ V ,连接DE CE ,,则当DEC V 是以DE 为腰的等腰三角形时,BQ 的长是 .三、解答题(共8小题,共75分)16.解方程:(1)2630x x -+=;(2)23210x x --=.17.在一个不透明的袋子里装了只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n 1002003005008001000摸到黑球的次数m 65118189310482602摸到黑球的频m na0.590.630.620.6030.602(1)当n 很大时,摸到黑球的频率将会趋近 (精确到0.1);(2)某小组成员从袋中拿出1个黑球,3个白球放入一个新的不透明袋子中,随机摸出两个球,请你用列表或树状图的方法求出随机摸出的两个球颜色不同的概率.18.一张矩形纸ABCD ,将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E .将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F ,折叠出四边形AECF .(1)求证:AF //CE ;(2)当∠BAC = 度时,四边形AECF 是菱形?说明理由.19.已知关于x 的一元二次方程210x ax a -+-=.(1)求证:该方程总有两个实数根;(2)若方程的两个实数根1x 、2x 满足123x x -=,求a 的值;20.2024年巴黎奥运会顺利闭幕,吉祥物“弗里热”深受奥运迷的喜爱,一商场以20元的进价进一批“弗里热”纪念品,以30元每个的价格售出,每周可以卖出500个,经过市场调查发现,价格每涨10元,就少卖100个.若商场计划一周的利润达到8000元,并且更大优惠让利消费者,售价应定为多少钱?21.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A 'B ′,∠A ′(∠A ′=∠A ),以线段A ′B ′为一边,在给出的图形上用尺规作出△A 'B ′C ′,使得△A 'B ′C ′∽△ABC ,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.22.一数学兴趣小组为了测量校园内灯柱AB 的高度,设计了以下三个方案:方案一:在操场上点C 处放一面平面镜,从点C 处后退1m 到点D 处,恰好在平面镜中看到灯柱的顶部A 点的像;再将平面镜向后移动4m (即4m FC =)放在F 处.从点F 处向后退1.5m 到点H 处,恰好再次在平面镜中看到灯柱的顶部A 点的像,测得的眼睛距地面的高度ED 、GH 为1.5m ,已知点B ,C ,D ,F ,H 在同一水平线上,且GH FH ^,ED CD ^,AB BH^(平面镜的大小忽略不计).方案二:利用标杆CD 测量灯柱的高度,已知标杆CD 高1.5m ,测得2m DE =,2.5m CE =.方案三:利用自制三角板的边CE 保持水平,并且边CE 与点M 在同一直线上,已知两条边0.4m CE =,0.2m EF =,测得边CE 离地面距离0.3m DC =.三种方案中, 方案不可行,请根据可行的方案求出灯柱的高度.23.在ABC V 中,AB AC =,BAC a Ð=,点D 为线段CA 延长线上一动点,连接DB ,将线段DB 绕点D 逆时针旋转,旋转角为a ,得到线段DE ,连接BE ,CE .(1)如图1,当60a =°时,ADCE的值是______;DCE Ð的度数为______°;(2)如图2,当90a =°时,请写出ADCE的值和DCE Ð的度数,并就图2的情形说明理由;(3)如图3,当120a =°时,若8AB =,7BD =,请直接写出点E 到CD 的距离.1.C【分析】本题考查一元二次方程的识别,形如20ax bx c ++=(其中a 、b 、c 为常数且0a ¹)的方程叫作一元二次方程,由此逐项判断即可.【详解】解:A .关于x 的方程210x x+=不是整式方程,不是一元二次方程,不符合题意;B .20x xy -=,含有两个未知数,不是一元二次方程,不符合题意;C .221x x +=是一元二次方程,符合题意.D .20ax bx +=(a 、b 为常数),当0a =时,不是一元二次方程,不符合题意;故选:C .2.D【分析】根据三视图解答即可.本题考查了几何体的三视图,熟练掌握三视图的作法是解题的关键.【详解】解:“斗”的俯视图是,故选D .3.B【分析】把已知比例式化为等积式,再根据平行线分线段成比例先写出比例式,再化为等积式,比较后可得结论.【详解】解:Q b :a =x :c ,,ax bc \=由平行线分线段成比例可得:选项A :,b ac x= 可得:,ac bx = 故A 不符合题意;选项B :,b ax c= 可得:,ax bc = 故B 符合题意;选项C :,b xc a= 可得:,ab cx = 故C 不符合题意;选项D :,a xb c= 可得:,ac bx = 故D 不符合题意;故选:B【点睛】本题考查的是平行线分线段成比例,掌握“平行线分线段成比例,把比例式化为等积式”是解题的关键.4.D【分析】本题主要考查等可能情形下的概率计算,能够准确地用画出树状图或列举法表示出所有等可能的结果是解题的关键.先根据题意列举出所有等可能的结果,再利用概率公式进行计算即可.【详解】从中随机摸出一个球,放回后再随机摸出一个球等可能的结果如下:最美河南最最最最美最河最南美最美美美河美南河最河美河河河河南南最南美南河南南南一共16种结果,其中摸到的球上的汉字可以组成“河南”的结果有2种,∴摸到的球上的汉字可以组成“河南”的概率是21168=,故选D .5.A【分析】根据配方法求解即可.【详解】解:将2410x x --=配方得,2(2)5x -=,则5n =,故选A .【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.6.C【分析】通过证明ADF EAB V V ∽,可得DF ADAB AE=,即可求解.【详解】解:∵四边形ABCD 是矩形,∴90B Ð=°,AD BC ∥,∴DAE AEB ÐÐ=,∵DF AF ^,∴90DFA B ÐÐ==°,∴ADF EAB V V ∽,∴DF ADAB AE =,∴12610DF =,∴DF =365,故选:C .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,证明三角形相似是解题的关键.7.B【分析】本题考查根据实际问题列一元二次方程,将两个停车位合在一起,可以得到一个大的长方形,用含x 的式子表示出该长方形的长和宽,根据停车位的占地面积为2520m 列方程即可.【详解】解:设停车场内车道的宽度为m x ,将两个停车位合在一起,则长为()40m x -,宽为()22m x -,因此(40)(22)520x x --=,故选B .8.A【分析】本题主要考查了相似三角形的判定,掌握两个角对应相等的三角形相似和两边对应成比例且夹角相等的两个三角形相似成为解答本题的关键.【详解】解:A. A A Ð=Ð,AD BDAB BC=,不是夹对应角的两边对应成比例,不能得到ABD ACB ∽△△,故符合题意;B.A A Ð=Ð,ABD ACB Ð=Ð,根据两角对应相等的两个三角形相似可以得到ABD ACB ∽△△,故不符合题意;C.A A Ð=Ð,2AB AD AC =×即AB ACAD AB=,根据两边成比例且夹角相等的两个三角形相似可以得到ABD ACB ∽△△,故不符合题意;D.A A Ð=Ð,ADB ABC Ð=Ð,根据两角对应相等的两个三角形相似可以得到ABD ACB ∽△△,故不符合题意;故选A .9.C【分析】根据位似图形的性质结合相似比得出AD 的长和//AD BG ,得到OAD OBG ∽△△,得出AO 的长,进而求出D 点坐标.【详解】解:∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,∴13AD BG =,//AD BG ,∵6BG =,∴2AB AD ==,∵//AD BG ,∴OAD OBG ∽△△,∴13==OA AD OB BG ,即123==++OA OA OA AB OA ,解得:1OA =,∴D 点坐标为()1,2.故选:C .【点睛】本题考查的是位似变换以及相似三角形的判定与性质.正确得出OA 的长是解题的关键.10.B【分析】当点M 与点B 重合时,可得m PN CP ==;当点M 与点C 重合时,可得PN PD ==.在Rt POD V 中,求解CP 即可.【详解】解:当点M 与点B 重合时,如图:∵四边形ABCD 是正方形∴AC BD^此时,点N 与点C 重合m PN CP\==当点M 与点C 重合时,如图:∵四边形ABCD 是正方形∴,AC BD OD OC^=此时,点N 与点D 重合结合图2可知:PN PD ==设OD OC a==∵点P 为OC 的中点12OP CP a \==在Rt POD V 中,2222221,2PD OP OD a a æö=+=+ç÷èø解得:122,2a a ==-(舍去)∴1CP =,即1m =故选:B 【点睛】本题考查了正方形的性质、函数图象.由动点的特殊位置入手是解题关键.11.5【分析】:把1x =代入方程260x mx +-= ,求出关于m 的方程的解即可.【详解】把1x =代入方程260x mx +-= ,得160m +-=,解得5m =.故答案为:5.【点睛】本题考查了一元二次方程的解.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12. 矩 有一个角是直角的平行四边形是矩形【分析】本题考查的是平行四边形和矩形的判定,根据两组对边相等的四边形是平行四边形和有一个角是直角的平行四边形是矩形,作答即可.【详解】因为AB CD =、EF GH =,所以窗框是平行四边形,当直角尺的两条直角边与窗框无缝隙时,即有一个角是直角的平行四边形是矩形.故答案为:矩,有一个角是直角的平行四边形是矩形.13.24【分析】由菱形的性质可得OD =OB ,∠COD =90°,由直角三角形的斜边中线等于斜边的一半,可得OH =12BD =OB ,可得∠OHB =∠OBH ,由余角的性质可得∠DHO =∠DCO ,即可求解.【详解】【解答】解:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∠DAB =∠DCB =48°,∵DH ⊥AB ,∴OH =12BD =OB ,∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO =12∠DCB =24°,故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH 是BD 的一半,和∠DHO =∠DCO 是解决本题的关键.14.52【分析】四边形ABCD 是平行四边形,则,AB CD AB CD =P ,可证明EAF DCF V V ∽,得到DF CD AB EF AE AE==,由23AE EB =进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴,AEF CDF EAF DCF Ð=ÐÐ=Ð,∴EAF DCF V V ∽,∴DF CD AB EF AE AE ==,∵23AE EB =,∴52AB AE =,∴52ADF AEF S DF AB S EF AE ===△△.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明EAF DCF V V ∽是解题的关键.151【分析】存在两种情况:当DE DC =,连接DP DQ ,,勾股定理求得DP 的长,可判断P ,E ,D 三点共线,根据勾股定理即可得到结论;当DE EC =,证明BPEQ 是正方形,可得到结论.【详解】解:①当DE DC =时,如图1,连接DP DQ ,,∵点P 是AB的中点,2AB AD ==,ABCD 是矩形,∴901A AP PB Ð=°==,,∴3DP ===,∵将PBQ V 沿PQ 所在直线翻折,得到PEQ V ,∴1PE PB ==,∵2DE DC AB ===,∴123PE DE +=+=,∴点P ,E ,D 三点共线,∵90B DCB Ð=Ð=°,∴90DEQ DCQ Ð=Ð=°,设BQ x =,则QE x CQ x ==,,在Rt DEQ △和Rt DCQ △中,根据勾股定理得:22222DQ DE EQ DC CQ =+=+,∴()222222x x +=+,解得:x =,∴BQ =②当DE EC =时,如图2,∵DE EC =,∴点E 在线段CD 的垂直平分线上,∴点E 在线段AB 的垂直平分线上,∵点P 是AB 的中点,∴EP 是AB 的垂直平分线,∴90BPE Ð=°,∵将PBQ V 沿PQ 所在直线翻折,得到PEQ V ,∴90B PEQ PB PE Ð=Ð=°=,,∴四边形BPEQ 是正方形,∴1BQ PB ==,综上所述:BQ 或1.1.【点睛】本题考查了翻折变换(折叠问题),矩形的性质,等腰三角形的性质,正方形的判定和性质,分类讨论思想的运用是解题的关键.16.(1)1233x x ==;(2)113x =-,21x =.【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)根据配方法解一元二次方程即可;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)2630x x -+=,2696x x -+=,∴()236x -=,即3x -=解得:1233x x ==;(2)23210x x --=,∴()()3110x x +-=,解得:113x =-,21x =.17.(1)0.6;(2)12【分析】本题考查了频率估计概率,列表法求概率;(1)根据频率的概念及表中频率稳定的数值求解即可;(2)根据列表法,得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】(1)当n 很大时,摸到黑球的频率将会趋近0.6,故答案为:0.6;(2)列表如下:黑白白白黑(白,黑)(白,黑)(白,黑)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)由表知,共有12种等可能结果,其中随机摸出的两个球颜色不同的有6种结果,所以随机摸出的两个球颜色不同的概率为61 122=18.(1)见解析;(2)30,理由见解析.【分析】(1)证出∠HAF=∠MCE,即可得出AF//CE;(2)证出四边形AECF是平行四边形,再证出AF=CF,即可得出四边形AECF是菱形.【详解】(1)证明:∵四边形ABCD为矩形,∴AD//BC,∴∠DAC=∠BCA,由翻折知,∠DAF=∠HAF=12∠DAC,∠BCE=∠MCE=12∠BCA,∴∠HAF=∠MCE,∴AF//CE;(2)解:当∠BAC=30°时四边形AECF为菱形,理由如下:∵四边形ABCD是矩形,∴∠D=∠BAD=90°,AB//CD,由(1)得:AF//CE,∴四边形AECF是平行四边形,∵∠BAC=30°,∴∠DAC=60°.∴∠ACD=30°,由折叠的性质得∠DAF=∠HAF=30°,∴∠HAF=∠ACD,∴AF=CF,∴四边形AECF是菱形;故答案为:30.【点睛】本题考查矩形的性质、平行线的判定、平行四边形的判定与性质、菱形的判定等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.(1)见解析(2)5a =或1a =-【分析】本题考查了根的判别式以及根与系数的关系,解题的关键是利用一元二次方程的根的判别式以及根与系数的关系.(1)根据根的判别式24b ac D =-,即可判断;(2)利用根与系数关系求出12x x +,12x x ×,即()2212121249x x x x x x -=+-=,从而列出关于a 的方程,解出即得出结果.【详解】(1)证明:∵()()()222414420a a a a a =---=-+=-³V ,\该方程总有两个实数根;(2)解:Q 方程的两个实数根1x ,2x ,由根与系数关系可知,12x x a +=,121x x a ×=-,123x x -=Q 2129x x \-=()()2212121249x x x x x x \-=+-=,∴24(1)9a a \--=即2(2)9a -=,23a \-=或23a -=-,∴5a =或1a =-.20.40元【分析】本题考查了一元二次方程的应用,设售价应定为x 元,由商场计划一周的利润达到8000元,列出方程,然后解方程并检验即可,读懂题意,找出等量关系,列出一元二次方程是解题的关键.【详解】解:设售价应定为x 元,由题意可得:()()1002050030800010x x éù---=êúëû,整理得:210024000x x -+=,解得:140x =,260x =,∵更大优惠让利消费者,∴40x =,答:售价应定为40元.21.(1)作图见解析;(2)证明见解析.【分析】(1)作∠A 'B 'C =∠ABC ,即可得到△A 'B ′C ′;(2)依据D 是AB 的中点,D '是A 'B '的中点,即可得到A D AB AD AB ¢¢¢¢=,根据△ABC ∽△A 'B 'C ',即可得到A B A C AB AC ¢¢¢¢=,∠A '=∠A ,进而得出△A 'C 'D '∽△ACD ,可得C D A C k CD AC¢¢¢¢==.【详解】(1)如图所示,△A 'B ′C ′即为所求;(2)已知,如图,△ABC ∽△A 'B 'C ',A B B C A C AB BC AC¢¢¢¢¢¢===k ,D 是AB 的中点,D '是A 'B '的中点,求证:C D CD ¢¢=k .证明:∵D 是AB 的中点,D '是A 'B '的中点,∴AD =12AB ,A 'D '=12A 'B ',∴1212A B A D A B AD AB AB ¢¢¢¢¢¢==,∵△ABC ∽△A 'B 'C ',∴A B A C AB AC ¢¢¢¢=,∠A '=∠A ,∵A D A C AD AC¢¢¢¢=,∠A '=∠A ,∴△A 'C 'D '∽△ACD ,∴C D A C CD AC¢¢¢¢==k .【点睛】本题考查了相似三角形的性质与判定,主要利用了相似三角形的性质,相似三角形对应边成比例的性质,以及两三角形相似的判定方法,要注意文字叙述性命题的证明格式.22.二、三,12米【分析】本题考查了相似三角形的应用,掌握相似三角形的性质与判定是解题的关键.根据相似三角形的知识可知方案二中ABE V 缺少边长的条件,故方案二不可行,根据光的反射角相等,以及90EDC ABC Ð=Ð=°,进而证明ABC EDC V V ∽,同理可得ABF GHF △∽△,根据方案一的数据计算即可【详解】解:相似三角形的知识可知方案二中ABE V 缺少边长的条件,故方案二不可行,方案三中AMC V 缺少边长的条件,故方案三不可行,故答案为:二,三选方案一,ECD ACB EDC ABC Ð=ÐÐ=ÐQ ,ABC EDC \V V ∽,AB BC ED CD\=,∵1CD =,1.5 1.51BC ED BC AB BC CD ´\===,设BC x =,则 1.5AB x =,同理可得ABF GHF △∽△,AB BF GH FH=,1.5,4, 1.5, 1.5AB x BF BC CF x GH FH ==+=+==Q ,1.541.5 1.5x x +\=,解得8x =.1.512AB x ==米.23.(1)160(2)45AD DCE CE =Ð=°,理由见解析【分析】(1)当60a =°时,ABC V 和BDE V 为等边三角形,证明ABD CBE V V ≌即可求解;(2)当60a =°时,ABC V 和BDE V 为等腰直角三角形,证明ABD CBE ∽△△即可求解;(3)过点A 作AH BC ^于H ,将线段BD 绕点D 逆时针旋转,旋转角为120°,得到线段DE ,连接BE ,CE .过点B 作BM AC ^于点E ,过点E 作EN AC ^于点N ,则点E 到CD 的距离就是EN 的长度,分两种情况进行讨论,当当D 在线段AM 上时或当D 在线段AM 延长线上时,类似(2)构造相似三角形求解即可.【详解】(1)解:当60a =°时,∵AB AC =,∴ABC V 为等边三角形,∴AB BC =,60ABC ACB Ð=Ð=°,120BAD Ð=°,由旋转的性质可得:60BDE Ð=°,BD ED =,∴BDE V 为等边三角形,∴BD BE =,60EBD Ð=°,∴60DBE ABC Ð=Ð=°,∴DBA EBCÐ=Ð在ABD △和CBE △中DB EB DBA EBCAB BC =ìïÐ=Ðíï=î∴ABD CBEV V ≌∴=AD CE ,120BAD BCE Ð=Ð=°,∴1AD CE=,60DCE BCE ACB Ð=Ð-Ð=°.故答案为:1,60;(2)解:45AD DCE CE =Ð=°,理由如下:当90a =°时,∵AB AC =,∴ABC V 为等腰直角三角形,∴AB BC =,45ABC ACB Ð=Ð=°,90BAD Ð=°,由旋转的性质可得:90BDE Ð=°,BD ED =,∴BDE V 为等腰直角三角形,∴BD BE =45EBD Ð=°,∴45DBE ABC Ð=Ð=°,∴DBA EBC Ð=Ð,又AB BD BC BE ==∴ABD CBE∽△△∴AD AB CE BC ===90BAD BCE Ð=Ð=°,∴45DCE BCE ACB Ð=Ð-Ð=°;(3)解:过点A 作AH BC ^于H ,将线段BD 绕点D 逆时针旋转,旋转角为120°,得到线段DE ,连接BE ,CE .过点B 作BM AC ^于点E ,过点E 作EN AC ^于点N ,则点E 到CD 的距离就是EN 的长度,当D 在线段AM 上时,如下图:由题意可得:8AB AC ==∵120a =°,∴60MAB Ð=°,30ABC ACB Ð=Ð=°,2BC BH =,∴4AH =,BH =∴AB BC =,同理BD BE =30EBD Ð=°,∴AB BD BC BE ==EBD ABC Ð=Ð,∴ABD CBE Ð=Ð,∴ABD CBE ∽△△,∴AD AB CE BC =,60BAD BCE Ð=Ð=°,∴CE ,30ECN ECB ACB Ð=Ð-Ð=°,在Rt ABM V 中,8AB =,60MAB Ð=°,∴4AM =,=BM在Rt BDM V 中,=BM 7BD =,∴1MD =,∴3AD AM DM =-=,∴ CE =∵30ECN Ð=°,EN AC ^,∴12EN EC =当D 在线段AM 延长线上,如下图:同理:CE =,30ECN Ð=°,5AD AM DM =+=,∴CE ∴12EN EC =综上所述:点E 到CD 【点睛】本题考查了旋转的性质、全等三角形的判定及性质、相似三角形的判定及性质、等腰三角形的性质以及勾股定理,综合性比较强,熟练掌握相关基本性质是解题的关键.。
河南省郑州市2015届九年级一模模拟数学试题及答案
郑州2015年九年级一模模拟测试数学试题一选择题(每小题3分,共24分,下列各小题均有四个答案,其中只有一个是正确) 1.-5的绝对值是()A.15- B.15C. 5-D. 52.下列四个交通标志中,轴对称图形是()3.不等式组:2011xx+≥⎧⎨-<⎩的解集在数轴上表示正确的是()4.某校有21名学生参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.最高分B。
平均分 C.极差 D.中位数5.一个几何体的三视图如图所示,则这个几何体摆放的位置是()6.三角形两边的长是3和4,第三边的长是方程212350x x-+=的根,则该三角形的周长为()A. 14B. 12C. 14 或12D.以上都不对7.如图,线段AB是⊙O的直径,弦C D⊥AB,∠CAB =20°,则∠AOD等于()A. 160°B. 150°C. 140°D.120°C主视图左视图俯视图8.如图,在正方形ABCD 中,AB=3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 从A 点出发沿折线AD →DC →CB 以每秒3cm 的速度运动,到达B 时运动同时停止,设△AMN 的面积为y (cm 2),运动时间为x(秒),则下列图象中能大致反映y 与x 之间的函数关系的是 ( )二、填空题(每小题3分,共21分)9.01)=______________10.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC与DE 交于点M ,如果∠ADF =100°,那么∠BMD 为_____________度11.如图,A 、B 两点在双曲线4y x=上,分别经过A 、B 两点向坐标轴作垂线,已知S 阴影=1,则12S S +=__________________12.如图,经过点B (-2,0)的直线y kx b =+与直线42y x =+相交于点A (-1,-2),则不等式4x+2<kx+b<0的解集为__________________13.三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车,则两人同坐3号车的概率是______ 14.如图,在R t △ABC 中,∠ABC=90°,AB=3,AC=5,点E 在BC 上,将△ABC 沿AE 折叠,使点B 落在AC 边上的点B ′处,则BE 的长为___________15.如图,正方形ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE=30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q ,若PQ=AE ,则AP 等于___________cm.第15题EB ′A BCE 第14题三、解答题(本题共8个小题,共75分)16.(8分)请你化简 22236911211x x x x x x x +++÷+--++,再取恰当x 的值代入求值。
河南省郑州市一中集团校2023-2024学年九年上学期数学第一次学情评估调研试题
河南省郑州市一中集团校2023-2024学年九年上学期数学第一次学情评估调研试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .9B .124.关于x 的一元二次方程(3m -A .4m <且3m ≠B .4m >5.若()()2222412a b a b +⋅++=,则A .2或6-B .2-或6.如图,在正方形ABCD 中,点G ,连接DE ,若10AB =,EFA .①②③B .①②④8.如图,在Rt ABC △中,90,A P ∠=︒为边F ,动点P 从点B 出发,沿着BC 匀速向终点()A .一直增大B .一直减小9.冰墩墩是2022年北京冬季奥运会的吉祥物,其以国宝熊猫为原型设计创作,将熊猫憨态可掬的形象与富有超能量的冰晶外壳相结合,点,一经开售供不应求.已知该款吉祥物在某电商平台上2月5日和2月6日的总销售量是x ,则x 满足的方程是()A .()25000122500x +=C .()5000500015000x +++10.如图,正方形ABCD 的边长为EF DE ⊥,交射线BC 于点F ,以中不正确的是()A .矩形DEFG 是正方形C .CG 平分DCH ∠二、填空题11.如图所示,某小区规划在一个长三条同样宽的小路,使其中两条与使草坪的总面积为144m 2,求小路的宽度.若设小路的宽度为为.12.如图,菱形ABCD 中,点,则PE PB +的最小值是13.如图,在ABC 中,90A ∠= ,AB =x三、解答题16.解下列方程:(1)()5454x x x +=+;(2)2322240-+-=x x ;(3)()()8112x x ++=-;(4)()()32314x x x ++=+.17.如图,菱形ABCD 的对角线AC BD ,交于点O ,且,BE AC AE BD ∥∥,连接EO .(1)试判断四边形AEBO 的形状,并说明理由;(2)若6CD =,求OE 的长.18.如图,在四边形ABCD 中,E ,F 分别是AD ,BC 的中点,G ,H 分别是对角线BD ,AC 的中点,依次连接E ,G ,F ,H ,连接EF ,GH .(1)求证:四边形EGFH 是平行四边形;(2)当AB CD =时,EF 与GH 有怎样的位置关系?请说明理由;21.兰溪联华超市今年三月初以每件件60元时,三月份共销售192础上,五月份的销售量达到(1)求四、五两个月销售量的月平均增长率;(2)从六月份起,在五月份的基础上,场调查发现,该年糕每件降价下,当年糕每件降价多少元时,联华超市六月份仍可获利为22.如图1,△ABC为等腰三角形,PE∥AB.⑴用a表示四边形ADPE的周长为⑵点P运动到什么位置时,四边形⑶如果△ABC不是等腰三角形ADPE是菱形(不必说明理由,为平行四边形ABCD的对角线,点23.如图,AC BD长线上,且EF BE =,EF 与CD 交于点G ,连结DF .(1)求证:DF AC ∥.(2)连结DE CF ,,若AB BF ⊥,且G 恰好是CD 的中点,求证:四边形CFDE 是菱形.(3)在(2)的条件下,若四边形CFDE 是正方形,且2AB =,求BC 的长.。
河南省郑州市郑州中学2024-2025学年上学期九年级第一次月考数学 试卷(无答案)
郑州中学初中部2024-2025学年上学期第一次综合调研九年级数学(时间:100分钟 满分:120分)一、单选题(每小题3分,共30分)1.下列方程是关于x 的一元二次方程的是( )A.B. C. D.2.解方程时,小明进行了相关计算并整理如下:则该方程必有一个根满足( )x 00.51 1.525.2513A. B. C. D.3.某同学现有一装有若干个黄球的袋子.为了估计袋子中黄球的数量,该同学向这袋黄球中放入了30个绿球(所有球除颜色外其余均相同),摇匀后随机抓取60个,其中绿球共计10个,则袋子中黄球的数量约为( )A.200个B.180个C.240个D.150个4.如图,菱形中,过点C 作交于点E ,若,则( ))A.59°B.62°C.69°D.72°5.下列条件中,不能判定平行四边形是矩形的是( )A. B. C. D.6.在平面直角坐标系中,已知点,,,,以这四个点为顶点的四边形最准确是( )A.矩形B.菱形C.正方形D.梯形7.某公司2008年第一季度的利润是20万元,受金融危机影响,以后每季度利润减少率为x ,则该公司第三季度的利润为( )A. B. C. D.8.某校运动会的接力赛中,甲、乙两名同学都是第一棒,这两名同学各自随机从四个赛道中抽取一个赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为( )A. B. C. D.9.关于x 的一元二次方程的根的情况是( )20ax bx c ++=212x x +=31x x y +=-()()23121x x +=+212150x x +-=21215x x +-15-8.75-2-1.52x <<1 1.5x <<0.51x <<00.5x <<ABCD CE BC ⊥BD 118BAD ∠=︒CEB ∠=ABCD A C ∠=∠A B ∠=∠AC BD =AB BC ⊥()0,2A ()2,0B ()0,2C -()2,0D -ABCD ()201x -()201x +()2201x -()2201x +4400m ⨯121416182210x bx +-=A.实数根的个数由b 的值确定B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根10.如图,矩形中,,,P 为矩形边上的一个动点,运动路线是,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A. B. C. D.二、填空题(每小题3分,共15分)11.如果关于x 的一元二次方程的一个解是,则______.12.若方程是关于x 的一元二次方程,则a 的值为______.13.三张背面完全相同的数字牌,正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张记为a ,将数字牌放回洗匀,再随机抽取一张记为b ,则的概率是______.14.将连接四边形对边中点的线段称为“中对线”.如图,凸四边形的对角线,且两条对角线的夹角为60°,那么该四边形较短的“中对线”的长度为______.(第14题)15.如图,矩形纸片中,,,点E 、F 分别在边、上,将纸片沿折叠,使点D 的对应点在边上,点C 的对应点为,则的最小值为______,的最大值为______.(第15题)三、解答题(共8题,共75分)16.(9分)解下列方程:(1)(用配方法解)ABCD 2AB =4BC =A B C D A →→→→210ax bx +-=1x =2024a b --=()222430a a x x --++=a b ≤ABCD 4AC BD ==ABCD 6AB =8BC =AD BC ABCD EF D 'BC C 'DE CF 22410x x --=(2)(用因式法解)(3)(用公式法解)17.(9分)如图是一张对边平行的纸片,点A ,C 分别在平行边上,连接.(1)求作:菱形,使点A ,D 落在纸片的同一边上;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:四边形是菱形.(3)在(1)的条件下,,交于点O ,若,,求菱形的面积.18.(9分)已知关于x 的一元二次方程(p 为常数)有两个不相等的实数根和.(1)填空:______;______;(2)求,;(3)已知,求p 的值.19.(8分)3张相同的卡片上分别写有中国二十四节气中的“小满”、“芒种”、“夏至”的字样,将卡片的背面朝上.(1)洗匀后,从中任意抽取1张卡片,抽到写有“小满”的卡片的概率等于______;(2)洗匀后,从中任意抽取2张卡片,用画树状图或列表的方法,求抽到一张写有“芒种”,一张写有“夏至”的卡片的概率.20.(9分)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元…455565…日销售量y /件…554535…(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围)(2)该商品日销售额能否达到2600元?如果能,求出每件售价;如果不能,请说明理由.21.(10分)如图,在矩形中,,.点P 从点D 出发向点A 运动,运动到点A 即停止;同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是.连接、、.设点P 、Q 运动的时间为.(1)当______时,四边形是矩形;()()223320x x -+-=2187x x -=AC ABCD ABCD AC BD 6BC =3OC =ABCD 210x px -+=1x 2x 12x x +=12x x =1211x x +111x x +221221x x p +=+ABCD 3cm AB =6cm BC =1cm/s PQ AQ CP s t t =ABQP(2)当______时,四边形是菱形;(3)在运动过程中,沿着把翻折,当t 为何值时,翻折后点B 的对应点恰好落在边上.22.(10分)【问题发现】我国数学家赵爽在其所著的《勾股圆方图注》中记载了一元二次方程的几何解法.例如,可变形为.如图1,构造一个长为、宽为x 、面积为35的矩形;如图2,将4个矩形构造成一个边长为的大正方形,中间恰好是一个边长为2的小正方形.大正方形的面积可表示为,也可表示为,由此可得新方程:,易得这个方程的正数解为.注意:这种构造图形的方法只能求出方程的一个根!(1)尝试:小颖根据赵爽的解法解方程,请将其解答过程补充完整:第一步:将原方程变为,即x (______);第二步:利用四个全等的矩形构造“空心”大正方形;(在画图区画出示意图,标明各边长)第三步:根据大正方形的面积可得新的方程:______解得原方程的一个根为______;(2)【思维拓展】参照以上方法求出关于x 的一元二次方程的正数解(用含b ,c 的数式表示).图1 图2 画图区23.(11分)综合与实践:数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在和中,,,,连接,,延长交于点D .则与的数量关系:____________.(2)类比探究:t =AQCP AQ ABQ △B 'PQ 22350x x +-=()235x x +=2x +()2x x ++()22x x ++24352⨯+()22144x x ++=5x =22320x x +-=23102x x +-=1=()20,0x bx c b c +=>>ABC △AEF △AB AC =AE AF =30BAC EAF ∠=∠=︒BE CF BE CF BE CF BDC ∠=如图2,和均为等腰直角三角形,,连接,,且点B ,E ,F 在一条直线上,过点A 作,垂足为点M .请猜想,,之间的数量关系,并说明理由;(3)实践应用:如图3,正方形中,,M 点为线段中点.将正方形绕点A 顺时针旋转,形成正方形.连接、,直线交直线于点P ,则线段最大值为______.ABC △AEF △90BAC EAF ∠=∠=︒BE CF AM BF ⊥BF CF AM ABCD 2AB =AD ABCD AB C D '''DD 'BB 'DD 'BB 'PM。
河南省郑州市中学牟县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】
学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河南省郑州市中学牟县2025届九年级数学第一学期开学教学质量检测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在矩形ABCD 中,4AB =,2BC =,P 为BC 上的一点,设(02)BP x x =<<,则APC ∆的面积S 与x 之间的函数关系式是()A .212S x =B .2S x =C .2(2)S x =-D .2(2)S x =-2、(4分)下列计算正确的是()A .358B 2525C .333D 7﹣773、(4分)如图,在Rt ABC ∆中,90BAC ∠=度.以Rt ABC ∆的三边为边分别向外作等边三角形'A BC ∆,'AB C ∆,'ABC ∆,若'A BC ∆,'AB C ∆的面积分别是8和3,则'ABC ∆的面积是()A .33B .3C .53D .54、(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和5、(4分)如图,边长为1的方格纸中有一四边形ABCD (A ,B ,C ,D 四点均为格点),则该四边形的面积为()A .4B .6C .12D .246、(4分)如图,ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的是()A .AC BD ⊥B .AC BD =C .AB BC =D .12∠=∠7、(4分)已知一次函数1y kx =+的图象经过点A ,且函数值y 随x 的增大而减小,则点A 的坐标可能是()A .()2,4B .()1,2-C .()1,4--D .()5,18、(4分)下列命题的逆命题是真命题的是()A .对顶角相等B .全等三角形的面积相等C .两直线平行,内错角相等D .等边三角形是等腰三角形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一元二次方程x 2-6x +a =0有一个根为2,则另一根为_______.10、(4分)如图,DB AE ⊥于B ,DC AF ⊥于C ,且DB DC =,40BAC ∠=︒,120ADG ∠=︒,则DGF ∠=_______.11、(4分)如图,在ABC ∆中,6AB =,4AC =,AD 是角平分线,AE 是中线,过点C 作CG AD ⊥于点F ,交AB 于点G ,连接EF ,则线段EF 的长为_____.12、(4分)如图,矩形ABCD 中,6AB =,8BC =,点E 是BC 边上一点,连接AE ,把B Ð沿AE 折叠,使点B 落在点B '处.当CB E '∆为直角三角形时,则AE 的长为________.13、(4分)已知ABCD □的面积为27,如果:2:3AB BC =,30ABC ∠=︒,那么ABCD □的周长为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在ABC ∆中,AB AC =,点E 、F 分别是BC 、AC 边上的中点,过点A 作//AD BC ,交EF 的延长线于点D .(1)求证:四边形ABED 是平行四边形;(2)若4AB =,120BAC ∠=,求四边形ABED 的周长.15、(8分)选择合适的方法解一元二次方程:2280x x +-=16、(8分)武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间m 分成A 、B 、C 、D 四个等级(A 等:90100m ≤≤,B 等:8090m ≤<,C 等:6080m ≤<,D 等:60m <;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:(1)C 组的人数是____人,并补全条形统计图.(2)本次调查的众数是_____等,中位数落在_____等.(3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.17、(10分)如图1,在平画直角坐标系中,直线384y x =+交x 轴于点E ,交y 轴于点A ,将直线27y x =--沿x 轴向右平移2个单位长度交x 轴于D ,交y 轴于B ,交直线AE 于C .(1)直接写出直线BD 的解析式为______,ABC S =______.(2)在直线AE 上存在点F ,使BA 是BCF ∆的中线,求点F 的坐标;(3)如图2,在x 轴正半轴上存在点P ,使2PBO PAO ∠=∠,求点P 的坐标.18、(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:摸到球的次数n 10020030050080010003000摸到白球的次数m 651241783024815991803摸到白球的概率m n 0.650.620.5930.6040.6010.5990.601(1)请估计当n 很大时,摸到白球的频率将会接近______;(精确到0.1);(2)假如随机摸一次,摸到白球的概率P (白球)=______;(3)试估算盒子里白色的球有多少个?B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在四边形ABCD 中,对角线AC 、BD 互相垂直平分,若使四边形ABCD 是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)20、(4分)化简226xy x y =______.21、(4分)如果等腰直角三角形的一条腰长为1,则它底边的长=________.22、(4分)数据5,5,6,6,6,7,7的众数为_____23、(4分)一组数据10,9,10,12,9的中位数是__________.二、解答题(本大题共3个小题,共30分)24、(8分)己知:如图1,⊙O 的半径为2,BC 是⊙O 的弦,点A 是⊙O 上的一动点.图1图2(1)当△ABC 的面积最大时,请用尺规作图确定点A 位置(尺规作图只保留作图痕迹,不需要写作法);(2)如图2,在满足(1)条件下,连接AO 并延长交⊙O 于点D ,连接BD 并延长交AC 的延长线于点E,若∠BAC=45°,求AC 2+CE 2的值.25、(10分)已知等腰三角形的周长是18cm ,底边()y cm 是腰长()x cm 的函数。
河南省郑州市2015届高三上学期第一次质量预测生物试题 扫描版含答案
2015年高中毕业年级第一次质量预测
生物 参考答案
一、选择题(本题包括30个小题,每小题只有一个选项符合题意。
每小题2分,共60分)
二、非选择题(除注明的外,每空均为1分,共40分)
31.(10分) (1)① 水在光下分解 ②④ ② (2)光照强度、温度 大 (3)见右图(4分) 32.(10分)
(1)原核生物(细胞) 细胞壁、荚膜(写出一项即可)
(2)效应T 细胞 浆细胞 抗体 信息交流 溶酶体含有多种水解酶
(3)基因突变 能刺激人体产生抗体和记忆细胞;对人体无伤害(2分)
33.(10分)
(1)S 逐渐减小 捕食、竞争、寄生(2分。
写出一项不得分,写出两项得1分。
)
(2)生产者、非生物的物质和能量 是 次生演替
(3)第一 野兔用于自身生长、发育和繁殖的能量(储存在野兔体内的能量)
(4)16%
34.(10分)
(1)染色体结构
(2)低温抑制纺锤体的形成 同源染色体(的非姐妹染色单体)
(3)雌性 雄性
(4)aaBb 3/16
(5)16/81 60(2分) 光合作用速率。
河南省郑州市郑东新区九年制实验学校实验班九年级(上)月考数学试卷(10月份)
河南省郑州市郑东新区九年制实验学校实验班九年级(上)月考数学试卷(10月份)一、选择题:(3分10=40分)1.(3分)下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等2.(3分)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S:S△ABF=4:25,则S△DEF:S△ADF=()△DEFA.2:3B.2:5C.3:5D.3:23.(3分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11B.10C.9D.84.(3分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)5.(3分)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S的值为()四边形BCEDA.1:3B.2:3C.1:4D.2:56.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为()A.0.36π米2B.0.81π米2C.2π米2D.3.24π米2 7.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16B.17C.18D.198.(3分)已知a,b,c是△ABC的三条边,对应高分别为h a,h b,h c,且a:b:c=4:5:6,那么h a:h b:h c等于()A.4:5:6B.6:5:4C.15:12:10D.10:12:15 9.(3分)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.510.(3分)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题:(3分10=30分)11.(3分)已知==,且3x+4z﹣2y=40,则x的值为.12.(3分)两相似三角形对应高的比为3:10,且这两个三角形周长差为56cm,则较大三角形的周长为.13.(3分)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为.14.(3分)将一副三角尺如图所示叠放在一起,则的值是.15.(3分)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..16.(3分)如图,Rt△ABC∽Rt△BDC,若AB=3,AC=4.则DE的长为.17.(3分)如图,△ABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,则S梯形DFGE:S梯=.形FBCG18.(3分)如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有条.19.(3分)如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=4,则GH的长为.20.(3分)如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=时,△CPQ与△CBA 相似.三.解答题(共40分)21.(8分)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.22.(8分)如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.(9分)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长是宽的2倍,则边长是多少?24.(15分)如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.河南省郑州市郑东新区九年制实验学校实验班九年级(上)月考数学试卷(10月份)参考答案一、选择题:(3分10=40分)1.D;2.B;3.D;4.B;5.A;6.B;7.B;8.C;9.D;10.D;二.填空题:(3分10=30分)11.4;12.24cm;13.1.5米;14.;15.;16.;17.8:27;18.3;19.;20.4.8或;三.解答题(共40分)21.;22.;23.;24.;。
河南省郑州市第一中学2024-2025学年高一上学期第一次模拟测试数学试题
河南省郑州市第一中学2024-2025学年高一上学期第一次模拟测试数学试题一、单选题1.设全集U R =,(){}{}30,1M x x x N x x =+<=<-,则如图中阴影部分表示的集合为( )A .{|1}x x ≥-B .{|30}-<<x xC .{|3}x x ≤-D .{|10}x x -≤< 2.命题“x ∃∈R ,310x x +>”的否定是( ) A .x ∃∈R ,310x x+≥ B .x ∃∈R ,310x x +≤ C .x ∀∈R ,310x x +≤ D .x ∀∈R ,310x x +> 3.已知函数()()2,1,2,1x x f x f x x -≤⎧=⎨>⎩的值为( ) A .2- B .0 C .2 D .44.已知3()2f x x x =+,若a ,b ,c ∈R ,且0a b +>,0a c +>,0b c +>,则()()()f a f b f c ++的值( )A .大于0B .等于0C .小于0D .不能确定 5.函数()22111x f x x +=-+的部分图象大致为( )A .B .C .D .6.已知0a b >>,则下列不等式一定成立的是( )A .22a b a b +>+B .2()4a b ab +≤C .2b a a b +<D .22b b a a +<+ 7.已知Z a ∈,关于x 的一元二次不等式280x x a -+≤的解集中有且仅有3个整数,则a 的值不可能是( )A .13B .14C .15D .168.已知函数212,()23,3x c f x x x x c x ⎧-+<⎪=⎨⎪-+≤≤⎩,若()f x 的值域为[2,6],则实数c 的取值范围是( )A .11,4⎡⎤--⎢⎥⎣⎦B .1,04⎡⎫-⎪⎢⎣⎭C .[1,0)-D .11,2⎡⎤--⎢⎥⎣⎦二、多选题9.下列函数中,既是奇函数,又在(0,)+∞上单调递增的是( )A.()f x B .()||f x x x =C .2()1x x f x x -=- D .3()f x x = 10.命题“[1,2)x ∀∈,20x a -≤”为真命题的一个充分不必要条件可以是( )A .4a ≥B .5a >C .6a ≥D .7a >11.设x 为实数,不超过x 的最大整数称为x 的整数部分,记作[]x .例如[1.2]1=,[ 1.4]2-=-.称函数()[]f x x =为取整函数,下列关于取整函数()f x 的结论中正确的是( )A .()f x 在R 上是单调递增函数B .对任意x ∈R ,都有()1f x x >-C .对任意x ∈R ,k ∈Z ,都有()()f x k f x k +=+D .对任意x ,y ∈R ,都有()()()f xy f x f y =三、填空题12.用列举法表示6N N 1a a ⎧⎫∈∈=⎨⎬-⎩⎭∣. 13.函数()f x 是R 上的偶函数, 且当0x >时,函数的解析式为2()1f x x=-,则(1)f -=;当0x <时,函数的解析式为.14.已知a ,b 为非负实数,且21a b +=,则22211a b a b +++的最小值为.四、解答题15.已知全集R U =,集合{}2|560A x x x =-+>,{|230}B x x =->.(1)求A B ⋂;(2)求()()U U A B U 痧.16.设命题[]:1,1p x ∀∈-,使得不等式2230x x m --+<恒成立;命题[]:0,1q x ∃∈,不等式2223x m m -≥-成立.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围.17.设函数()22a f x x a x+=-+为定义在(,0)(0,)-∞+∞U 上的奇函数. (1)求实数a 的值;(2)判断函数()f x 的单调性,并用定义法证明()f x 在(0,+∞)上的单调性.18.已知某园林部门计划对公园内一块如图所示的空地进行绿化,用栅栏围4个面积相同的小矩形花池,一面可利用公园内原有绿化带,四个花池内种植不同颜色的花,呈现“爱我中华”字样.(1)若用48米长的栅栏围成小矩形花池(不考虑用料损耗),则每个小矩形花池的长、宽各为多少米时,才能使得每个小矩形花池的面积最大?(2)若每个小矩形的面积为983平方米,则当每个小矩形花池的长、宽各为多少米时,才能使得围成4个小矩形花池所用栅栏总长度最小?19.已知集合A 中含有三个元素,,x y z ,同时满足①x y z <<;②x y z +>;③x y z ++为偶数,那么称集合A 具有性质P .已知集合{}1,2,3,,2n S n =L *(N ,4)n n ∈≥,对于集合n S 的非空子集B ,若n S 中存在三个互不相同的元素,,a b c ,使得,,+++a b b c c a 均属于B ,则称集合B 是集合n S 的“期待子集”.(1)试判断集合{}1,2,3,5,7,9A =是否具有性质P ,并说明理由;(2)若集合{}3,4,B a =具有性质P ,证明:集合B 是集合4S 的“期待子集”;(3)证明:集合M 具有性质P 的充要条件是集合M 是集合n S 的“期待子集”.。
河南省郑州市第九十六中学2024-2025学年九年级上学期第一次月考数学试题
河南省郑州市第九十六中学2024-2025学年九年级上学期第一次月考数学试题一、单选题1.菱形具有而矩形不一定具有的性质是( )A .内角和等于360︒B .对角相等C .对角线互相垂直D .对边平行且相等 2.一元二次方程220x x -=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =- 3.观察表格,一元二次方程x 2+x =1.2的一个近似解是( )A .0.70B .1.19C .1.44D .1.714.用配方法解一元二次方程2220230x x --=时,将它转化为2()x a b +=的形式,则b a 的值为( )A .2024-B .2024C .1-D .15.某县2020年人均可支配收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( )A .()22.71 2.36x +=B .()22.361 2.7x += C .()22.71 2.36x -= D .()22.361 2.7x -= 6.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠ 7.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是( )A .102a -<< B .112b << C .2241a b -<+< D .1420a b -<+<8.如图,ABCD 是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:甲:则关于甲、乙两人的作法,下列判断正确的为( )A .仅甲正确B .仅乙正确C .甲、乙均正确D .甲、乙均错误 9.如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE ,连结,AE AD ,设AED △,ABE V ,ACD V 的面积分别为12,,S S S ,若要求出12S S S --的值,只需知道( )A .ABE V 的面积B .ACD V 的面积C .ABC V 的面积D .矩形BCDE 的面积 10.小明同学手中有一张矩形纸片ABCD ,12cm AD =,10cm CD =,他进行了如下操作: 第一步,如图①,将矩形纸片对折,使AD 与BC 重合,得到折痕MN ,将纸片展平. 第二步,如图②,再一次折叠纸片,把ADN △沿AN 折叠得到AD N '△,AD '交折痕MN 于点E ,则线段EN 的长为( )A .8cmB .169cm 24C .167cm 24D .55cm 8二、填空题11.一元二次方程2210x x --=有两个实根(填“相等”或“不等”).12.如图,以正方形ABCD 的边AB 向内作等边ABE V ,则AED =∠.13.如图,某小区要在长为16m ,宽为12m 的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为m .14.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,且16AC =,12BD =,DH 垂直BC 于H ,则DH =.15.矩形ABCD 的面积是90,对角线AC BD ,交于点O ,点E 是BC 边的三等分点,连接DE ,点P 是DE 的中点,3OP =,连接CP ,则PC PE +的值为.三、解答题16.解下列方程:(1)()2x+=;2118(2)2611-=;x x(3)23420--=;x x(4)()2155=.x x--17.如图,已知矩形ABCD.(1)尺规作图:作对角线AC的垂直平分线,交CD于点E,交AB于点F;(不写作法,保留作图痕迹)(2)连接AE CF、.求证:四边形AFCE是菱形.⨯的正方形网格,每个小正方形的边长均为1,每个小正方形18.图①、图②、图③均是33的顶点称为格点.点A、B均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD,使其是轴对称图形且点C、D均在格点上.(1)在图①中,四边形ABCD面积为2;(2)在图②中,四边形ABCD面积为3;(3)在图③中,四边形ABCD面积为4.19.关于x的方程2240-+-=有两个不等的实数根.求m的取值范围.x x m20.有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?21.某数学兴趣小组活动,准备将一张三角形纸片(如图)进行如下操作,并进行猜想和证明.(1)用三角板分别取,AB AC 的中点,D E ,连接DE ,画AF DE ⊥于点F ;(2)用(1)中所画的三块图形经过旋转或平移拼出一个四边形(无缝隙无重叠),并用三角板画出示意图;(3)请判断(2)中所拼的四边形的形状,并说明理由.22.我们定义:一组邻边相等且对角互补的四边形叫做“等补四边形”.如图1,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,则四边形ABCD 叫做“等补四边形”.【概念理解】(1)①在等补四边形ABCD 中,若50C ∠=︒,则A ∠=______︒;②在以下四种图形中,一定是“等补四边形”的是______.A .平行四边形B .菱形C .矩形D .正方形【性质探究】(2)如图1,在等补四边形ABCD 中,AB AD =,连接AC ,AC 是否平分BCD ∠?请说明理由.【知识运用】(3)如图2,在四边形ABCD 中,BD 平分ABC ∠,AD CD =,BC BA >.求证:四边形ABCD 是等补四边形.【拓展应用】(4)将斜边相等的两块三角板按如图3放置,其中含45︒角的三角板ABC 的斜边与含30︒角的三角板ADC 的斜边重合,B 、D 位于AC 的两侧,其中30ACD ∠=︒,若4AB BC ==,连接BD ,则BD 的长为______.。