一次函数规律探索题(已整理)
中考数学专题复习——规律探索(详细答案)
中考数学复习专题——规律探索一.选择题1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,1,在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( )A .33B .301C .386D .5712.(2018•山东烟台市•3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )3.(2018•山东济宁市•3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( )A .B . B.C .D .4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( )A .8B .6C .4D .0二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P3A2A3,…都是等2.(2018•江苏淮安•3 分)如图,在平面直角坐标系中,直线l为正比例函数y=x 的图象,点A1的坐标为(1,,过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l 于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是(92)n﹣1 .3.(2018•山东东营市•3分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,那么点A2018的纵坐标是20173()2.4.(2018•临安•3 分.)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+ba=102×ba符合前面式子的规律,则a+b= .5. (2018•广西桂林•3分)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然记为6. (2018•广西南宁•3 分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018 的结果的个位数字是 .7. (2018·黑龙江龙东地区·3 分)如图,已知等边△A BC 的边长是 2,以 B C 边上的高 AB 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 AB 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1,△B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n = .8.(2018·黑龙江齐齐哈尔·3 分)在平面直角坐标系中,点 A (3,1)在射线 O M 上,点 B (3,3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 . 9.(2018•广东•3 分)如图,已B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ( ) .nn201810. (2018•广西北海•3 分)观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得 01220183+3+3+...3+的结果的个位数字是 。
完整版)一次函数专项练习题
完整版)一次函数专项练习题一次函数专项练题题型一、点的坐标在x轴上的点,其纵坐标为0,在y轴上的点,其横坐标为0.若两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数。
1、若点A(m,n)在第二象限,则点(|m|,-n)在第三象限;2、若点P(2a-1,2-3b)是第二象限的点,则a的范围为(0,1/2],b的范围为(0,2/3];3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=4,b=-(-2)=2;若A,B关于y轴对称,则a=-4,b=b;若A,B关于原点对称,则a=-4,b=-b;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第一象限。
题型二、关于点的距离的问题点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示。
任意两点A(xA,yA),B(xB,yB)的距离为√[(xA-xB)²+(yA-yB)²];A(xA,0),B(xB,0)的距离为|xA-xB|;若AB∥y轴,则A(0,yA),B(0,yB)的距离为|yA-yB|;点A(xA,yA)到原点之间的距离为√(xA²+yA²)。
1、点B(2,-2)到x轴的距离是2;到y轴的距离是2;2、点C(0,-5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5;3、点D(a,b)到x轴的距离是|b|;到y轴的距离是|a|;到原点的距离是√(a²+b²);4、已知点P(3,0),Q(-2,0),则PQ=5;已知点M(0,1),N(0,-1),则MN=2;已知点E(2,-1),F(2,-8),则EF的距离是7;已知点G(2,-3)、H(3,4),则GH两点之间的距离是7.5、求出点(3,-4)和(5,a)间的距离为2,可以利用两点间距离公式:$\sqrt{(5-3)^2+(a+4)^2}=2$,化简后得到$(a+4)^2=4$,解得$a=-2,2$。
中考数学专题复习《一次函数图象相关规律探索》测试卷-附带答案
中考数学专题复习《一次函数图象相关规律探索》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.对任意非零数m直线y=mx+2﹣5m都经过一定点则定点坐标为()A.(0 2)B.(1 2)C.(5 2)D.(2 ﹣2)2.定义:点A(x,y)为平面直角坐标系内的点若满足x=y 则把点A叫做“平衡点”.例如:M(1,1) N(-2,-2) 都是“平衡点”.当−1≤x≤3时直线y=2x+m上有“平衡点” 则m的取值范围是().A.0≤m≤1B.−3≤m≤1C.−3≤m≤3D.−1≤m≤0x的图象分别为直线l1、l2过点3.如图在平面直角坐标系中函数y=x和y=−12A1(1,−1)作x轴的垂线交l1于点A2过点A2作y轴的垂线交l2于点A3过点A3作x轴的垂线2交l1于点A4过点A4作y轴的垂线交l2于点A5……依次进行下去则点A2023的横坐标为()A.21012B.−21012C.−21011D.210114.正方形A1B1C1O A2B2C2C1A3B3C3C2…按如图所示的方式放置点A1A2A3…和点C1C2C3…分别在直线y=x+1和x轴上已知B1(1,1),B2(3,2)则点B n的坐标是()A.(2n−1,2n−1)B.(2n−1,2n−1)C.(2n−1,2n−1)D.(2n−1,2n−1)5.如图直线y=x+2与y轴相交于点A0过点A0作x轴的平行线交直线y=0.5x+1于点B1过点B1作y轴的平行线交直线y=x+2于点A1再过点A1作x轴的平行线交直线y= 0.5x+1于点B2过点B2作y轴的平行线交直线y=x+2于点A2… 依此类推得到直线y=x+2上的点A1A2A3… 与直线y=0.5x+1上的点B1B2B3… 则A8B9的长为()A.64B.128C.256D.5126.如图所示已知直线y=√33x+1与x y轴交于B C两点A(0,0)在△ABC内依次作等边三角形使一边在x轴上另一个顶点在BC边上作出的等边三角形分别是第1个△AA1B1第2个△B1A2B2第3个△B2A3B3…则第n个等边三角形的边长等于()A.√32n B.√32n−1C.12nD.√32n+17.如图在平面直角坐标系中点A1A2A3⋯和B1B2B3⋯分别在直线y=15x+ b和x轴上△OA1B1△B1A2B2△B2A3B3⋯都是等腰直角三角形如果点A1(1,1)那么A 2023的纵坐标是( )A .(32)2022B .(32)2023C .(43)2022D .(42)20238.如图 分别过点P i (i,0)(i =1 2 … 2024)作x 轴的垂线 交y =2x 2(x >0)的图象于点A i 交直线y =−2x 于点B i 则1A 1B 1+1A 2B 2+1A 3B 3+⋯+1A 2024B 2024的值为( )A .20232024B .20232025C .10132025D .101220259.如图 在平面直角坐标系中 直线l :y =√3x +√3与两坐标轴交于A B 两点 以AB 为边作等边△ABC 将等边△ABC 沿射线AB 方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B 点顺时针旋转120° 使点C 落在直线l 上 第二次翻滚:将等边三角形绕点C 顺时针旋转120° 使点A 落在直线l 上……当等边三角形翻滚2023次后点A 的对应点坐标是( )A .(2023,2023√3)B .(2022,2024√3)C .(2021,2022√3)D .(2021,2024√3)10.如图 Rt △A 1B 1C 1的斜边A 1B 1在直线y =√3x −√3上 点B 1在x 轴上 C 1点坐标为(2,0).先将△A 1B 1C 1沿较长直角边A 1C 1翻折得到△A 1B 2C 1 再将△A 1B 2C 1沿斜边A 1B 2翻折得到△A 1B 2C 2 再将△A 1B 2C 2沿较短直角边B 2C 2翻折得到△A 2B 2C 2 … 按此规律 点A 11的坐标为()A.(15,5√3)B.(15,6√3)C.(17,5√3)D.(17,6√3)11.如图在平面直角坐标系中点A1A2A3…都在x轴上点B1B2B3…都在直线y=x上△OA1B1△B1A1A2△B2B1A2△B2A2A3△B3B2A3…都是等腰直角三角形且OA1=1点B2023的横坐标是()A.(√2)2021B.22022C.22023D.(√2)202412.如图△OAB1△B1A1B2△B2A2B3,⋯都是边长为2的等边三角形点A在x轴上点O B1B2B3,⋯都在正比例函数y=kx的图象l上则点B2023的坐标是()A.(−2023√3,2023)B.(−2023,2023√3)C.(−2022√3,2022)D.(−2022,2022√3)13.如图平面直角坐标系中点A1的坐标为(1,2)以O为圆心OA1的长为半径画弧x于点B1过点B1作B1A2∥y轴交直线y=2x于点A2以O为圆心OA2长为半交直线y=12x于点B2过点B2作B2A3∥y轴交直线y=2x于点A3以点O为圆心径画弧交直线y=12x于点B3…按如此规律进行下去点B2023的坐标为()OA3长为半径画弧交直线y=12A.(22022,22023)B.(22021,22022)C.(22022,22021)D.(22023,22022) 14.如图在平面直角坐标系中点A1A2A3…都在x轴上点B1B2B3…都在直线y=x上△B1A1A2△B2A2A3△B3A3A4…都是等腰直角三角形且OA1=1则点B2023的坐标是()A.(22021,22021)B.(22022,22022)C.(22023,22023)D.(22024,22024) 15.如图在平面直角坐标系中点A1、A2、A3⋅⋅⋅A n在x轴上B1、B2、B3⋅⋅⋅B n在直线y=kx上∠B1OA1=30°若A1(1,0)且△A1B1A2△A2B2A3… △A n B n A n+1都是等边三角形从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3、⋅⋅⋅、S n.则S n可表示为()A.22n√3B.22n−1√3C.22n−2√3D.22n−3√316.如图已知直线l:y=√3x过点A1(1 0)作A1B1⊥x轴与直线l交于点B1以原点O为圆心以OB1为半径作弧交x轴于点A2再作A2B2⊥x轴交直线l于点B2以原点O为圆心以OB2为半径作弧交x轴于点A3……按此作法进行下去则点An的坐标为()A.(2n0)B.(2n﹣10)C.(2n+10)D.(2n+20)17.正方形A1B1C1A2A2B2C2A3A3B3C3A4…按如图所示的方式放置点A1A2A3…在直线y=x+1上点B1B2B3…在x轴上已知点A1是直线y=x+1与y轴的交点则C2022的纵坐标是()A.22021−1B.22021C.22022−1D.2202218.如图线段AB是直线y=x+1的一部分其中点A在y轴上点B横坐标为2 曲线BC是双曲线y=kx(k≠0)的一部分由点C开始不断重复“A−B−C”的过程形成一组波浪线点P(2019 m)与Q(2025 n)均在该波浪线上G为x轴上一动点则△PQG周长的最小值为()A.16B.6+2√13C.6+2√15D.9+√1719.如图在平面直角坐标系中四边形OA1B1C1,A1A2B2C2,A2A3B3C3…都是菱形点A1,A2,A3…都在x轴上点C1,C2,C3…都在直线y=√33x+√33上且∠C1OA1=∠C2A1A2=∠C3A2A3=⋯=60°,OA1=1则点C n的横坐标是()A.3×2n−2−1B.3×2n−2+1C.3×2n−1−1D.3×2n−1+1 20.直线y=−x+n分别与x轴y轴交于点A B在△AOB内横纵坐标均为整数的点叫做“好点”.分别记n=1,2,3,⋅⋅⋅时△AOB内的“好点”数为a1,a2,a3,⋅⋅⋅则1a3+1a4+⋅⋅⋅+1a20=()A.199B.179C.3019D.3619参考答案1.解:⊥y=mx+2-5m=m(x-5)+2⊥当x=5时y=2.故选C.2.解:⊥当−1≤x≤3时直线y=2x+m上有“平衡点”⊥满足x=y即x=-m⊥−1≤x≤3⊥−1≤−m≤3⊥−3≤m≤1故选择B.3.解:⊥过点A1(1,−12)作x轴的垂线交l1于点A2过点A2作y轴的垂线交l2于点A3过点A3作x轴的垂线交l1于点A4过点A4作y轴的垂线交l2于点A5……依次进行下去⊥A1与A2横坐标相同A2与A3纵坐标相同⊥当x=1时y=1⊥A2(1,1)⊥当y=1时x=−2A3(−2,1)同理可得:A4(−2,−2)A5(4,−2)A6(4,4)A7(−8,4)A8(−8,−8)…⊥A2n−1的横坐标为(−2)n−1当2n−1=2023时n=1012⊥点A2023的横坐标(−2)1012−1=−21011.故选:C.4.解:⊥点B1的坐标为(1 1)点B2的坐标为(3 2)⊥A3的坐标为(3 4)⊥点B3的坐标为(7 4)…⊥B n的横坐标是:2n−1纵坐标是:2n−1⊥B n的坐标是(2n−1,2n−1).故选:B.5.解:对于直线y=x+2令x=0求出y=2∴A0(0,2)∵A0B1∥x轴∴B1的纵坐标为2将y=2代入y=0.5x+1中得:x=2∴B1(2,2)∴A0B1=2=21∵A1B1∥y轴∴A1的横坐标为2将x=2代入直线y=x+2中得:y=4A1(2,4)∴A1与B2的纵坐标为4将y=4代入y=0.5x+1中得:x=6∴B2(6,4)∴A1B2=6−2=4=22同理A2B3=8=23… A n﹣1B n=2n则A8B9的长为29=512.故选:D.6.解:⊥直线y=√33x+1与x y轴交于B C两点⊥OB=√3,OC=1⊥BC=2⊥∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形∠A1AB1=60°⊥∠COA1=30°⊥∠CA1O=90°.在Rt△CAA1中AA1=√32OC=√32同理得:B1A2=12A1B1=√322依此类推第n个等边三角形的边长等于√32n.故选:A.7.解:过A1作A1E1⊥x轴于E1过A2作A2E2⊥x轴于E2过A3作A3E3⊥x轴于E3…如图⊥A1(1,1)在直线y=15x+b上⊥1=15+b⊥b=45⊥y=15x+45设A2(x2,y2)A3(x3,y3)A4(x4,y4)… A2023(x2023,y2023)则有y2=15x2+45y 3=15x 3+45…又⊥△OA 1B 1 △B 1A 2B 2 △B 2A 3B 3…都是等腰直角三角形 A 1E 1⊥x 轴 A 2E 2⊥x 轴 A 3E 3⊥x 轴… ⊥OB 1=2A 1EB 1B 2=2A 2E 2B 2B 3=2A 3E 3… ⊥x 2=2y 1+y 2x 3=2y 1+2y 2+y 3…x 2023=2y 1+2y 2+2y 3+⋯+2y 2022+y 2023将点坐标依次代入直线解析式得到:y 2=15(2y 1+y 2)+45⊥y 2=12y 1+1同理y 3=12y 1+12y 2+1=32y 2y 4=32y 3 …y 2023=32y 2022又⊥y 1=1 ⊥y 2=32 y 3=(32)2y 4=(32)3…y 2023=(32)2022故选:A .8.解:根据题意得:A i B i =2x 2−(−2x )=2x 2+2x =2x (x +1) ∴ 1A i B i=12x (x+1)=12(1x −1x+1)∴ 1A1B 1+1A2B 2+1A3B 3+⋯+1A2024B 2024=12(11×2+12×3+13×4+⋯+12024×2025)=12(1−12+12−13+13−14+⋯+12024−12025)=12(1−12025)=12×20242025=10122025.故选:D.9.解:⊥直线l:y=√3x+√3与两坐标轴交于A B两点⊥A(−1,0)B(0,√3)⊥AB=2OA=1OB=√3⊥tan∠BAO=OBOA=√3⊥∠BAO=60°如图等边△ABC经过第1次翻转后A1(−1,2√3)过点A2作A2M⊥x轴于点M则AA2=3AB=6⊥∠A2AM=60°⊥AM=AA2cos∠A2AM=6×12=3A2M=AA2sin∠A2AM=6×√32=3√3等边△ABC经过第2次翻转后A2(3,3√3)等边△ABC经过第3次翻转后点A仍在点A2处⊥每经过3次翻转点A向右平移3个单位向上平移3√3个单位⊥2023÷3=674……1第2次与第3次翻转后点A处在同一个点⊥点A经过2023次翻转后向右平移了3×674=2022个单位向上平移了3√3×674+ 2√3=2024√3个单位⊥等边三角形翻滚2023次后点A的对应点坐标是(2021,2024√3)故选:D.10.解:当y=0时x=1⊥B1(1,0)⊥Rt△A1B1C1的斜边A1B1在直线y=√3x−√3上⊥A1(2,√3)⊥C1点坐标为(2,0)⊥B1C1=1A1C1=√3⊥A1B1=2⊥∠A1B1C1=60°∠B1A1C1=30°⊥A2C1=3⊥A2(5,0)再由翻折可知∠B2A3A2=30°A2B2=2⊥A2A3=2√3⊥A3(5,2√3)同理可得A4(8,√3)A5(8,3√3)A6(11,2√3)A7(11,4√3)⊥A11(17,6√3).故选:D11.解:∵OA1=1∴点A1的坐标为(1,0)∵△OA1B1是等腰直角三角形∴A1B1=1∴B1(1,1)∵△B1A1A2是等腰直角三角形∴A1A2=1B1A2=√A1B12+A1A22=√12+12=√2∵△B2B1A2是等腰直角三角形∴A2A3=2∴B2(2,2)同理可得:B3(22,22)B4(23,23)…∴B2023(22022,22022)即点B2023的横坐标是22022故选B.12.解:⊥△OAB1△B1A1B2△B2A2B3…都是边长为2的等边三角形⊥OA=OB1=OB2=B2B3=2过点B1作B1H⊥x轴于点H如图所示:⊥H为OA的中点⊥OH=1根据勾股定理可得B1H=√3⊥B1(−1,√3)把点B1(−1,√3)代入y=kx中得k=−√3⊥直线l的解析式为y=−√3x⊥B2(−2,2√3)B3(−3,3√3)⋯⊥B n(−n,n√3)按照此规律可得B2023(−2023,2023√3)故选:B.13.解:由题意可得点A1的坐标为(1,2)设点B1的坐标为(a,12a)⊥a2+(12a)2=12+22解得a=2(负根舍去)⊥点B1的坐标为(2,1)同理可得点A2的坐标为(2,4)点B2的坐标为(4,2)点A3的坐标为(4,8)点B3的坐标为(8,4)……⊥点B2023的坐标为(22023,22022)故选:D.14.解:∵OA1=1∴点A1的坐标为(1,0)当x=1时y=1∴B1(1,1)∴A1B1=1∵△B1A1A2是等腰直角三角形∴A1A2=1则OA2=2当x=2时y=2∴B2(2,2)A2B2=2∵△B2A2A3是等腰直角三角形∴A2A3=2则OA3=4当x=4时y=4⊥B3(22,22)同理可得:B4(23,23)…∴B2023(22022,22022)故选:B.15.解:⊥A1(1,0)⊥OA1=1⊥△A1B1A2△A2B2A3… △A n B n A n+1都是等边三角形∠B1OA1=30°⊥∠B1A1A2=60°⊥∠OB1A1=∠B1A1A2−∠A1OB1=30°⊥OA1=A1B1=A1A2=B1A2=1过点B1作B1C⊥x轴于点C⊥△A1B1A2中A1C=12A1A2=12×1=12B1C=√A1B12−A1C2=√1−(12)2=√32在Rt△OCB1中OC=OA1+A1C=1+12=32⊥B1(32,√32)且B1在直线y=kx上⊥3 2k=√32解得k=√33⊥直线的解析式为y=√33x⊥△A1B1A2△A2B2A3… △A n B n A n+1都是等边三角形⊥A1B1∥A2B2∥A3B3∥⋯∥A n B n B1A2∥B2A3∥B3A4∥⋯∥B n A n+1∠A1B1A2=∠A1A2B1=∠B1A1A2=60°⊥∠B1OA1=30°∠OA1B1=120°若A1(1,0)⊥∠OB1A1=30°⊥∠OB1A2=∠OB2A3=∠OB3A4=⋯=∠OB n A n+1=90°⊥A1B1=A1A2=B1A2=1A2B2=A2A3=B2A3=2A3B3=A3A4=B3A4=4⊥A n B n=A n A n+1=B n A n+1=2n−1⊥B1B2=√3B2B3=2√3则B n B n+1=2n−1√3⊥S1=12×1×√3=√32S2=12×2×2√3=2√3则S n=12×2n−1×2n−1√3=22n−3√3故选:D.16.解:当x=1时y=√3x=√3即A1B1=√3在Rt△OA1B1中由勾股定理得OB1=2⊥OB1=OA2⊥A2(2 0)同理可求:A3(4 0)A4(8 0)A5(16 0)……由点:A1(1 0)A2(2 0)A3(4 0)A4(8 0)A5(16 0)……即:A1(200)A2(210)A3(220)A4(230)A5(240)…可得A n(2n-10)故选:B.17.解:由题意可知令y=x+1中x=0 解得y=1 即A1纵坐标为1同理可得A2的纵坐标为2 A3的纵坐标为4 A4的纵坐标为8 …∵四边形A1B1C1A2是正方形∴A1和C1A2和C2A3和C3…An和Cn的纵坐标相同且C1C2C3C4C5的纵坐标分别为1 2 4 8 16由此规律可知Cn的纵坐标为2n−1故点C2022的纵坐标是22022−1=22021故选:B.18.解:当x=2时y=x+1=2+1=3⊥B(2 3)上⊥B(2 3)在双曲线y=kx⊥k=6得:y=1把x=6代入y=6x⊥C(6 1)⊥2019÷6=336......3 2025÷6=337 (3)⊥点P落在第337个“A-B-C”的P处而点Q落在第338个“A-B-C”的Q处示意如图:,把x=3代入y=6x∴y=2,∴P(2019 2)Q(2025 2)∵△PQG周长的最小PQ=6定值∴只要GP+GQ最小即可过Q作QH⊥x轴使Q,H关于x轴对称连接HP交x轴于G,∴H(2025,−2),∴PQ=6,QH=4,由勾股定理得:PH=√PQ2+HQ2=√62+42=2√13.⊥△PQG周长的最小值为PQ+GP+GQ=PH+PQ=6+2√13.故选B.19.解:分别过点C1,C2,C3,...作x轴的垂线交于D1,D2,D3,...再连接C1D1,C2D2,C3D3,...如下图:∵OA1=1∴OC1=1∴∠C1OA1=∠C2A1A2=∠C3A2A3=⋯=60°在Rt△OC1D1中根据勾股定理得:OD12=OC12−C1D12即OD12=12−(12)2解得:OD1=√32∴C1的纵坐标为:√32横坐标为12∴C1(12√3 2 )∵四边形OA1B1C1A1A2B2C2A2A3B3C3…都是菱形∴A1C2=2A2C3=4A3C4=8…∴C2的纵坐标为:C2D2=√A1C22−A1D22=√4−1=√3代入y=√33x+√33求得横坐标为2∴C2(2,√3)C3的纵坐标为:C3D3=√A2C32−A2D32=√16−4=2√3代入y=√33x+√33求得横坐标为5∴C3(52√3)∴C4(114√3)C5(238√3)∴C6(4716√3)…C n(3×2n−2−1则点C n的横坐标是:3×2n−2−1故选:A.20.解:如图:a1=0a2=0a3=1a4=1+2a5=1+2+3⋯⊥a n=1+2+3+⋅⋅⋅+n−2=(n−2+1)(n−2)2=(n−1)(n−2)2⊥1 a n =2(n−1)(n−2)=2⋅(1n−2−1n−1).⊥1 a3+1a4+⋅⋅⋅+1a20=2(1−12+12−13+⋅⋅⋅+118−119)=3619.故选:D.。
一次函数的图象与找规律(压轴题)
一次函数的图象与找规律一.选择题(共3小题)1.如图所示,已知在△ABC中,A(0,0),B(,0),C(0,1),在△ABC 内依次作等边三角形,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,使B1、B2、B3、…在x轴上,A1、A2、A3、…在BC边上,则第n个等边三角形的边长等于()A.B.C.D.2.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n (n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、A nB n B n﹣1的面积依次记为S1、S2、…、S n,则S n=()四边形A n﹣1A.n2B.2n+1 C.2n D.2n﹣13.如图,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,…,按此做法进行下去,则点A8的坐标是()A.(15,0)B.(16,0)C.(8,0)D.(8﹣1,0)二.填空题(共7小题)4.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2007的坐标为.线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为.6.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标是.7.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.于点B1,以原点O为圆心,OB1长为半径画弧交y一轴于点A2;再过点A2作y 轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为(,);点A n的坐标为(,).9.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.。
一次函数经典测试题及答案解析
一次函数经典测试题及答案解析一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B点坐标为(b,-b+2),∴点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,∵A(2,0),∴∠AQO=45°,∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,∴b的取值范围为b<0或b>2.故选D.【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选A.【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( ) A .图象经过第一、二、四象限 B .y 随x 的增大而减小 C .图象与y 轴交于点()0,b D .当bx k>-时,0y > 【答案】D 【解析】 【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当bx k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>, ∴图象经过第一、二、四象限, A 正确; ∵k 0<,∴y 随x 的增大而减小, B 正确;令0x =时,y b =, ∴图象与y 轴的交点为()0,b , ∴C 正确; 令0y =时,b x k=-, 当bx k>-时,0y <; D 不正确; 故选:D . 【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④. 【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时,根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误; ④由图象知x=t 时,动车到达乙地, ∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误; 故选B. 【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】B 【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集. 【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0), ∴不等式 30mx +>的解集是:2x <, 故选:B . 【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】C 【解析】 【分析】由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案. 【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3), ∴-3=-6+b , 解得:b=3,∴一次函数的解析式为y=-6x+3, ∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C . 【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C 【解析】分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b , 将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元. 故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解. 【详解】解:一次函数y=kx+b 过一、二、四象限, 则函数值y 随x 的增大而减小,因而k <0; 图象与y 轴的正半轴相交则b >0, 因而一次函数y=-bx+k 的一次项系数-b <0, y 随x 的增大而减小,经过二四象限, 常数项k <0,则函数与y 轴负半轴相交, 因而一定经过二三四象限, 因而函数不经过第一象限. 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2 B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A 【解析】 【分析】直接利用一次函数的定义分析得出答案. 【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0, 解得:n=2,m≠2. 故选A . 【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】 【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】 当12x =时,2y = ,当2x =时,12y = ,∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.14.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.15.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N (﹣1,2),Q (2,7)为G 2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。
中考数学复习备考之一次函数(精选40题)
中考数学复习备考之一次函数(精选40题)1.当我们将一条倾斜的直线进行上下平移时,直线的左右位置也发生着变化.下面是关于“一次函数图象平移的性质”的探究过程,请补充完整.(1)如图1,将一次函数y=x+2的图象向下平移1个单位长度,相当于将它向右平移了个单位长度;(2)将一次函数y=﹣2x+4的图象向下平移1个单位长度,相当于将它向(填“左”或“右”)平移了个单位长度;(3)综上,对于一次函数y=kx+b(k≠0)的图象而言,将它向下平移m(m>0)个单位长度,相当于将它向(填“左”或“右”)(k>0时)或将它向(填“左”或“右”)(k<0时)平移了n(n>0)个单位长度,且m,n,k满足等式.2.在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.3.如图,直线y=x+1与x轴交于点A,点A关于y轴的对称点为A′,经过点A′和y 轴上的点B(0,2)的直线设为y=kx+b.(1)求点A′的坐标;(2)确定直线A′B对应的函数表达式.4.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有经验,请画出函数y=﹣|x|的图象,并探究该函数性质.(1)绘制函数图象①列表:下列是x与y的几组对应值,其中a=.x……﹣5﹣4﹣3﹣2﹣112345……y……﹣3.8﹣2.5﹣1155a﹣1﹣2.5﹣3.8……②描点:根据表中的数值描点(x,y),请补充描出点(2,a);③连线:请用平滑的曲线顺次连接各点,画出函数图象;(2)探究函数性质请写出函数y=﹣|x|的一条性质:;(3)运用函数图象及性质①写出方程﹣|x|=5的解;②写出不等式﹣|x|≤1的解集.5.某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.6.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?7.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?8.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.9.(3分)(2022•深圳)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜1元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少.10.(3分)(2022•黔西南州)某乡镇新打造的“田园风光”景区今年计划改造一片绿化地,种植A、B两种花卉,已知3盆A种花卉和4盆B种花卉的种植费用为330元,4盆A 种花卉和3盆B种花卉的种植费用为300元.(1)每盆A种花卉和每盆B种花卉的种植费用各是多少元?(2)若该景区今年计划种植A、B两种花卉共400盆,相关资料表明:A、B两种花卉的成活率分别为70%和90%,景区明年要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补的盆数不多于80盆,应如何安排这两种花卉的种植数量,才能使今年该项的种植费用最低?并求出最低费用.11.(3分)(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.12.(3分)(2022•济宁)某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如表:货车类型载重量(吨/辆)运往A地的成本(元/辆)运往B地的成本(元/辆)甲种161200900乙种121000750(1)求甲、乙两种货车各用了多少辆;(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.①写出w与t之间的函数解析式;②当t为何值时,w最小?最小值是多少?13.(3分)(2022•长春)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m=,n=;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.14.(3分)(2022•通辽)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y元,其函数图象如图所示.乙(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.15.(3分)(2022•广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥;(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由.16.(3分)(2022•恩施州)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?17.(3分)(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?18.(3分)(2022•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min 后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学生公寓的时间/min585087112离学生公寓的距离/km0.5 1.6(Ⅱ)填空:①阅览室到超市的距离为km;②小琪从超市返回学生公寓的速度为km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.19.(3分)(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.20.(3分)(2022•遵义)遵义市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.(1)求A,B型设备单价分别是多少元;(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.21.(3分)(2022•黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是km/h,乙车出发时速度是km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.22.(3分)(2022•吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80℃时,乙壶中水温是℃.23.(3分)(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.24.(3分)(2022•衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?25.(3分)(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k ≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.26.(3分)(2022•云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.27.(3分)(2022•凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.(1)求A、B两种类型羽毛球拍的单价.(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B 型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.28.(3分)(2022•丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达乙地?29.(3分)(2022•德阳)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?30.(3分)(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为米/分钟,乙的速度为米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.31.(3分)(2022•梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg.在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.32.(3分)(2022•十堰)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?33.(3分)(2022•齐齐哈尔)在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是米,乙的步行速度是米/分;(2)图中a=,b=,c=;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)34.(3分)(2022•黑龙江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲 乙进价(元/双)m m ﹣20 售价(元/双) 240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?35.(3分)(2022•兰州)在平面直角坐标系中,P (a ,b )是第一象限内一点,给出如下定义:k 1=和k 2=两个值中的最大值叫做点P 的“倾斜系数”k .(1)求点P (6,2)的“倾斜系数”k 的值;(2)①若点P (a ,b )的“倾斜系数”k =2,请写出a 和b 的数量关系,并说明理由; ②若点P (a ,b )的“倾斜系数”k =2,且a +b =3,求OP 的长;(3)如图,边长为2的正方形ABCD 沿直线AC :y =x 运动,P (a ,b )是正方形ABCD 上任意一点,且点P 的“倾斜系数”k <,请直接写出a 的取值范围.36.(3分)(2022•河北)如图,平面直角坐标系中,线段AB 的端点为A (﹣8,19),B (6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD,其中C(c,0).当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光.求此时整数m的个数.37.(3分)(2022•攀枝花)如图,直线y=x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD于点E,连结BE.(1)证明:=;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)38.(3分)(2022•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.39.(3分)(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.40.(3分)(2022•黑龙江)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.。
中考数学《规律探索》专题复习试题含解析
中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
一次函数与几何及动点综合题(含解析)
一、选择题(题型注释)1.如图反映的过程是:矩形ABCD 中,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x , ABP S y △.则矩形ABCD 的周长是(P )D A BC61295Oy xA .6B .12C .14D .15 【答案】C 【解析】试题分析:结合图象可知,当P 点在AC 上,△ABP 的面积y 逐渐增大,当点P 在CD 上,△ABP 的面积不变,由此可得AC=5,CD=4,则由勾股定理可知AD=3,所以矩形ABCD 的周长为:2×(3+4)=14.考点:动点问题的函数图象;矩形的性质.点评:本题考查的是动点问题的函数图象,解答本题的关键是根据矩形中三角形ABP 的面积和函数图象,求出AC 和CD 的长.2.小芳步行上学,最初以某一速度匀速前进,中途遇红灯,稍作停留后加快速度跑步去上学,到校后,她请同学们画出她行进路程s (米)与行进时间t (分钟)的函数图象的示意图.你认为正确的是( )【答案】C 【解析】试题分析:运用排除法解答本题,中间的停留路程不变,可排除BD 两项,最后的加速图象应为比最初的路程增加直线增速更快的图象,C 对3.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S n 为( )A.121nn++B.31nn-C.221nn-D.221nn+【答案】D.【解析】试题分析:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,∴A1(1,0),A2(2,0),A3(3,0),…A n(n,0),A n+1(n+1,0),∵分别过点A1、A2、A3、…、A n、A n+1,作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6),…B n(n,2n),B n+1(n+1,2n+2),根据题意知:P n是A n B n+1与 B n A n+1的交点,设:直线A n B n+1的解析式为:y=k1x+b1,直线B n A n+1的解析式为:y=k2x+b2,∵A n(n,0),A n+1(n+1,0),B n(n,2n),B n+1(n+1,2n+2),∴直线A n B n+1的解析式为:y=(2n+2)x﹣2n2﹣2n,直线B n A n+1的解析式为:y=﹣2n x+2n2+2n,∴P n(22221n nn++,24421n nn++)∴△A n B n P n的A n B n边上的高为:22221n nnn+-+=21nn+,△A n B n P n的面积S n为:21222121n nnn n⨯⋅=++.故选D .考点:一次函数图象上点的坐标特征. 4.如图,已知直线l :x y 33,过点A (0,1)作y 轴的垂线 交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过 点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为 A.(0,64) B.(0,128) C.(0,256) D.(0,512)【答案】C. 【解析】试题分析:∵直线l 的解析式为;3, ∴l 与x 轴的夹角为30°, ∵AB ∥x 轴, ∴∠ABO=30°, ∵OA=1, ∴OB=2, ∴3,∵A 1B ⊥l ,∴∠ABA 1=60°, ∴A 1O=4, ∴A 1(0,4),同理可得A 2(0,16), …∴A 4纵坐标为44=256, ∴A 4(0,256). 故选C .考点:一次函数综合题.5.如图,在矩形ABCD 中,O 是对角线AC 的中点,动点P ,Q 分别从点C ,D 出发,沿线段CB ,DC 方向匀速运动,已知P ,Q 两点同时出发,并同时到达终点B ,C .连接OP ,OQ .设运动时间为t ,四边形OPCQ 的面积为S ,那么下列图象能大致刻画S 与t 之间的关系的是【答案】A . 【解析】试题分析:作OE ⊥BC 于E 点,OF ⊥CD 于F 点,如图,设BC=a ,AB=b ,点P 的速度为x ,点F 的速度为y , 则CP=xt ,DQ=yt ,所以CQ=b-yt , ∵O 是对角线AC 的中点,∴OE 、OF 分别是△ACB 、△ACD 的中位线, ∴OE=12b ,OF=12a , ∵P ,Q 两点同时出发,并同时到达终点, ∴a bx y=,即ay=bx , ∴S=S △OCQ +S △OCP =12•12a•(b-yt )+12•12b•xt=14ab-14ayt+14bxt=14ab (0<t <a x), ∴S 与t 的函数图象为常函数,且自变量的范围为0<t <ax).故选A .考点:动点问题的函数图象.6.函数321+=x y 的图象与x 、y 轴分别交于点A 、B ,点P )(y x ,为直线AB 上的一动点(0>x )过P 作PC ⊥y 轴于点C ,若使PBC ∆的面积大于AOB ∆的面积,则P的横坐标x 的取值范围是( )A 、30<<xB 、3>xC 、63<<xD 、6>x【解析】试题分析:由题意知:PC=x ,OC=132x + ∴BC=12x ∵PBC ∆的面积大于AOB ∆的面积∴x >6. 故选D.考点: 一次函数综合题.7.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为 ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .6 【答案】A 【解析】 试题分析:动点P 从直角梯形ABCD 的直角顶点B 出发,沿BC ,CD 的顺序运动,则△ABP 面积y 在BC 段随x 的增大而增大;在CD 段,△ABP 的底边不变,高不变,因而面积y 不变化.由图2可以得到:BC=2,CD=3,△BCD 的面积是12×2×3=3. 故选A .考点:动点问题的函数图象.8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .【解析】当点P 由点A 向点D 运动时,y 的值为0; 当点p 在DC 上运动时,y 随着x 的增大而增大; 当点p 在CB 上运动时,y 不变;当点P 在BA 上运动时,y 随x 的增大而减小。
专题13 一次函数中的找规律问题训练(解析版)八年级数学下学期(人教版)
专题13 一次函数中的找规律问题训练(时间:60分钟 总分:120) 班级 姓名 得分一、选择题1.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ,以22A B 为腰作等腰直角三角形223A B B ,…按照这样的规律进行下去,那么2020A 的坐标为( )A .()2019201921,2- B .()2019201922,2- C .()2020202021,2- D .()2020202022,2- 【答案】B 【分析】根据直线的解析式以及等腰直角三角形的性质即可得出A 2(0,2),A 3(2,4),A 4(6,8),根据坐标的变化即可找出变化规律A n (2n -1-2,2n -1).即可得出点A 2020的坐标. 【详解】解:∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4, ∵A 1(-1,1),∵A 2(0,2),A 3(2,4),A 4(6,8), ,…,∵A n (2n -1-2,2n -1).∵A 2020的坐标为(22019-2,22019). 故选:B . 【点睛】本题考查一次函数图象上点的坐标特征、等腰直角三角形的性质以及规律型中点的坐标,解题的关键是找出A n 坐标的变化规律,注意掌握解决该题型题目时,结合一次函数图象上点的坐标特征以及等腰直角三角形的性质找出线段的变化规律是解题的关键. 2.如图,在平面直角坐标系中,点1A ,2A ,3A ,和1B ,2B ,3B ,分别在直线15y x b =+和x 轴上,11OA B ∆,122B A B ∆,233B A B ∆,是以1A ,2A ,3A,为顶点的等腰直角三角形.如果点()11,1A ,那么点2020A 的纵坐标是( )A .201932⎛⎫ ⎪⎝⎭B .202032⎛⎫ ⎪⎝⎭C .201923⎛⎫ ⎪⎝⎭D .202023⎛⎫ ⎪⎝⎭【答案】A 【分析】设点A 2,A 3,A 4…,A 2019坐标,结合函数解析式,寻找纵坐标规律,进而解题. 【详解】 解:1(1,1)A 在直线15y x b =+, 45b ∴=, 1455y x ∴=+,设22(A x ,2)y ,33(A x ,3)y ,44(A x ,4)y ,⋯,20202020(A x ,2019)y ,则有221455y x =+,331455y x =+,⋯,202020201455y x =+,又∵11OA B ,∵122B A B ,∵233B A B ,⋯,都是等腰直角三角形, 2122x y y ∴=+,312322x y y y =++,⋯,2020123201920202222x y y y y y =+++⋯++.将点坐标依次代入直线解析式得到:21112y y =+,3121131222y y y =++=2y ,432y =3y ,⋯,2020201932y y =,又11y =,232y ∴=,233()2y =,343()2y =,⋯,201920203()2y =,故选:A . 【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.3.正方形1112A B C A ,2223A B C A ,3334A B C A ,…,按如图所示的方式放置,点123A A A ,…和点123B B B ,…分别在直线1y x =+和x 轴上.则点2020C 的纵坐标是( )A .20202B .20192C .202021-D .201921-【答案】B 【分析】先根据一次函数图象上点的坐标特征及正方形的性质确定点A 1,A 2,A 3,A 4,A 5进而确定C 1,C 2,C 3,C 4,C 5的坐标并总结出点C n 的纵坐标的规律为2n -1(n 为正整数),将n=2030代入即可解答. 【详解】解:由题意可知,A 1纵坐标为1,A 2的纵坐标为2,A 3的纵坐标为4,A 4的纵坐标为8, A 1和C 1,A 2和C 2,A 3和C 3,A 4和C 4的纵坐标相同,∵C 1,C 2,C 3,C 4,,C 5,…C n 的纵坐标分别为1,2,4,8,16,…2n -1 ∵2020C 的纵坐标为22020-1=22019. 故答案为B . 【点睛】本题考查了一次函数图像上点的坐标特征、正方形的性质以及找规律,找出C n 点纵坐标的规律为2n -1(n 为正整数)是解答本题的关键.4.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3……都是等腰Rt△,直角顶点P 1(3,3),P 2,P 3……,均在直线y =﹣13x+4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3……的面积分别为S 1,S 2,S 3……则S 2019的值为( )A .201894 B .201994 C .401894 D .401994【答案】A 【分析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案. 【详解】解:如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且∵P 1OA 1是等腰直角三角形, ∵OC =CA 1=P 1C =3, 设A 1D =a ,则P 2D =a , ∵OD =6+a ,∵点P 2坐标为(6+a ,a ), 将点P 2坐标代入y =﹣13x+4,得:﹣13(6+a )+4=a , 解得:a =32,∵A 1A 2=2a =3,P 2D =32, 同理求得P 3E =34、A 2A 3=32,∵S 1=12×6×3=9、S 2=12×3×32=94、S 3=12×32×34=294、…… ∵S 2019=201894.故选:A . 【点睛】本题考查了几何类的规律题,掌握等腰直角三角形的性质、三角形面积的规律是解题的关键. 5. 已知:直线y=1n n +x+11n +(n 为正整数)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+S 3+…+S 2019( ) A .20182019B .20192020C .20182038D .20194040【答案】D 【分析】依次求出S 1、S 2、S 3,就发现规律:S n =12×()11n n +,然后求其和即可求得答案.注意()11111n n n n =-++.【详解】解:∵当n=1时,直线为y=12x+12, ∵直线与两坐标轴的交点为(0,12),(-1,0),∵S 1=12×1×12=14;当n=2时,直线为y=23x+13, ∵直线与两坐标轴的交点为(0,13),(-12,0),∵S 2=12×12×13=12×()1221⨯+;当n=3时,直线为y=34x+14, ∵直线与两坐标轴的交点为(0,14),(-13,0), ∵S 3=12×13×14=12×()1331⨯+;…, S n =12×()11n n +, ∵S 1+S 2+S 3+…+S 2019=12×(1-12+1231-+1341-+…+12019-12020)=12⨯(1-12020)=20194040故选:D . 【点睛】本题考查的是一次函数图象上点的坐标特点,根据题意找出规律是解答此题的关键. 6.如图,函数y =x 和y =-12x 的图象分别为直线l 1、12,过点A 1(1,-12)作x 轴的垂线交l 1于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线交l 1于点A 4,过点A 4作y 轴的垂线交l 2于点A 5,……,依次进行下去,则A 2019的横坐标为( )A .-21007B .21008C .-21008D .-21009【答案】D 【分析】可根据点A 1坐标结合两条直线的解析式求出点23456,,,,A A A A A 这几个点的坐标,找出其横坐标的变化规律,再确定A 2019的横坐标 【详解】解:2A 点的横坐标与1A 的横坐标相同均为1,将21A x =代入y =x 得21A y =,可得31A y =,代入y =-12x 得32A x =-,依次类推可得23456(1,1),(2,1),(2,2),(4,2),(4,4)A A A A A ----, 观察可知其规律为01122123456(2,1),(2,1),(2,1),(2,2),(2,2),(2,4)A A A A A A ----,且一四象限点的横坐标相同,二三象限点的横坐标相同.所以先确定点2019A 的所在象限.20194504......3÷=∴点2019A 在第三象限与点2020A 的横坐标相同202021010÷=∴点2020A 的横坐标为10101100922--=-所以点2019A 的横坐标为10092- 故选:D 【点睛】本题是平面直角坐标系中点坐标规律的探究题,找准点的变化规律是解题的关键.二、填空题7.如图,点()12,2A 在直线y x =上,过点作11//A B y 轴交直线12y x =于点1B ,以点1A 为直角顶点,11A B 为直角边在11A B 的右侧作等腰直角111A B C △,再过1C 点作过点22//A B y 轴交直线y x =和直线12y x =于2A ,2B 两点,以点2A 为直角顶点,22A B 为直角边在22A B 的右侧作等腰直角222A B C △,…,按此规律进行下去,则等腰直角n n n A B C 的边长n n B C 为_____.(用含正整数n 的代数式表示)【答案】132n -⎛⎫ ⎪⎝⎭【分析】列出各点坐标寻找规律,横纵坐标成32倍扩大. 【详解】 解:点1(2,2)A 在直线y x =上, ∴点1B 横坐标为2,将2x =代入12y x =得1y =, ∴点1B 坐标为(2,1).∵111A B C 为等腰直角三角形,1111211A B AC ∴==-=,∴点1C 坐标为(3,2).11B C过1C 点作22//A B y 轴,2A ∴,2B 的横坐标为3,将3x =分别代入y x =与12y x =中得2A ,2B 的纵坐标分别为3,32, 即2(3,3)A ,23(3,)2B ,2233322A B =-=,2222B C B ∴==.点2C 坐标为9(,3)2.同理可得333()2B C =443()2B C =3()2n n n B C -∴=故答案为:3()2n - 【点睛】本题考查一次函数图象上点的特征及等腰直角三角形的性质,解题关键是通过计算找出点及边长变化规律.8.如图,在平面直角坐标系中,点123,,,,n A A A A 在x 轴上,点123,,,,n B B B B 在直线3y x =上.若1(1,0)A ,且1122231,,,n n n A B A A B A A B A +都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为123,,,,n S S S S ,则2021S 可表示为____.【答案】2【分析】由等边三角形性质可知,A 1B 1∵A 2B 2…∵A n B n ,因为直线y =与x 轴的夹角∵B 1OA 1=30°,∵OA 1B 1=120°,可得出OA 1=A 1B 1,A 1B 1=1,∵OB 2A 2=30°,…,∵OB n A n =30°,B 2A 2=OA 2=2,B 3A 3=4,…,B n A n =2n ﹣1,因为∵OB 1A 2=90°,根据勾股定理可知B 1B 2=则S 1112=⨯=【详解】解:由等边三角形可知: A 1B 1∵A 2B 2∵…∵A n B n , B 1A 2∵B 2A 3∵…∵B n A n +1,∵直线y =与x 轴的夹角∵B 1OA 1=30°,∵OA 1B 1=120°, ∵∵OB 1A 1=30°, ∵OA 1=A 1B 1, ∵A 1(1,0), ∵A 1B 1=1,同理∵OB 2A 2=30°,…,∵OB n A n =30°, ∵B 2A 2=OA 2=2,B 3A 3=4,…,B n A n =2n ﹣1, 可知∵OB 1A 2=90°,…,∵OB n A n +1=90°,∵B 1B 2=B 2B 3=…,B n B n +1=2n ﹣∵S 1112=⨯S 2122=⨯⨯=,…,S n =22n ﹣∵当n =2021时,0202142S =故答案为:2. 【点睛】本题主要考查了一次函数函数图像点的坐标特征,合理利用函数图像上点的坐标规律是解决本题的关键.9.如图,在平面直角坐标系中,函数3y x =和yx =-的图象分别为直线1l ,2l ,过点(1,0)作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点6A 的坐标为________;点2022A 的坐标为________.【答案】(27,27)-, ()101110113,3- 【分析】写根据一次函数图象上点的坐标特征可得出点A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8等的坐标,根据坐标的变化即可找出变化规律“A 4n +1(32n ,32n +1),A 4n +2(﹣32n +1,32n +1),A 4n +3(﹣32n +1,﹣32n +2),A 4n +4(32n +2,﹣32n +2)(n 为自然数)”,依此规律结合2022=505×4+2即可找出点A 2022的坐标.【详解】解:当x =1时,y =3x =3,∵点A 1的坐标为(1,3);当y =﹣x =3时,x =﹣3,∵点A 2的坐标为(﹣3,3);同理可得:A 3(﹣3,﹣9),A 4(9,﹣9),A 5(9,27),A 6(﹣27,27),A 7(﹣27,﹣81),…, ∵A 4n +1(32n ,32n +1),A 4n +2(﹣32n +1,32n +1),A 4n +3(﹣32n +1,﹣32n +2),A 4n +4(32n +2,﹣32n +2)(n 为自然数).∵2022=505×4+2,∵点A 2022的坐标为()101110113,3-, 故答案为:(﹣27,27),()101110113,3-. 【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律“A 4n +1(32n ,32n +1),A 4n +2(﹣32n +1,32n +1),A 4n +3(﹣32n +1,﹣32n +2),A 4n +4(32n +2,﹣32n +2)(n 为自然数)”是解题的关键.10.如图,直线y =x +4与y 轴交于A 1,按如图方式作正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,点A 1,A 2,A 3…在直线y =x +4上,点C 1,C 2,C 3,…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1,S 2,S 3…,S n ,则S n 的值为______(用含n 的代数式表示,n 为正整数).【答案】22n +1【分析】根据直线解析式判断出直线与坐标轴相交构成的三角形是等腰直角三角形,再求出OA 1,即第一个正方形的边长,同理依次求出第二个、第三个正方形的边长,然后根据规律写出第n个正方形的边长,如果根据阴影部分的面积等于相应正方形的面积的一半列式计算即可得解.【详解】∵直线y =x +4的k =1,∵直线与x 轴的夹角为45°,∵直线与坐标轴相交构成的三角形是等腰直角三角形,当x =0时,y =4,所以,OA 1=4,即第一个正方形的边长为4,所以,第二个正方形的边长为4+4=8,第三个正方形的边长为8+8=16,…,第n 个正方形的边长为2n +1,∵S 1=12×4×4=422, S 2=12×8×8=622, S 3=12×16×16=822, …,S n =12×2n +1×2n +1=2222n +=22n +1. 故答案为22n +1.【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质,根据直线解析式判断出等腰直角三角形是解题的关键,也是本题的难点.11.如图,在平面直角坐标系中,点123n A A A A ⋯,,,,在 x 轴上,123n B B B B ⋯,,,,在直线 y x =上,若1(2,0)A ,且 1122231,,,n n n A B A A B A A B A +⋯都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为 123,,,,n S S S S ⋯.则 n S 可表示为 _________ .【答案】22n -【分析】直线y x =与x 轴的成角1130B OA ∠=︒,可得2230OB A ∠=︒,⋯,30n n OB A ∠=︒,1290OB A ∠=︒,⋯,190n n OB A +∠=︒;根据等腰三角形的性质可知111A B =,2222B A OA ==,334B A =,⋯,12n n n B A -=;根据勾股定理可得12B B =23B B =⋯,1123n n n B B ,再由面积公式即可求解.【详解】解:∵112A B A 、∵223A B A ∵1n n n A B A +都是等边三角形,112233////////n n A B A B A B A B ,1223341////////n n B A B A B A B A ,直线3y x =与x 轴的成角1130B OA ∠=︒,11120OA B ∠=︒, 1130OB A ∴∠=︒,111OA A B ,∵1(2,0)A ,112A B ,同理2230OB A ∠=︒,⋯,30n n OB A ∠=︒,2224B A OA ,338B A ,⋯,2n n n B A ,易得1290OB A ∠=︒,⋯,190n n OB A +∠=︒,1223B B ,2343B B ,⋯,12n n B B += 11223232S ,21443832S ,⋯,211223232n n n n S ;故答案是:22n -【点睛】本题考查一次函数的图象及性质,等边三角形和直角三角形的性质;能够判断阴影三角形是直角三角形,并求出每边长、应用相似三角形规律求解是解题的关键.12.正方形111A B C O ,2221A B C C ,2333A B C C 2333A B C C …按如图的方式放置,1A ,2A ,3A …和点1C ,2C ,3C …分别在直线2y x =+和x 轴上,则点3C 的横坐标是_________【答案】14【分析】先利用直线的解析式可求出点1A 的坐标,从而可得1OC 的长,再利用直线的解析式分别求出23,A A 的坐标,然后利用正方形的性质即可得.【详解】对于直线2y x =+,当0x =时,2y =,即1(0,2)A ,12OA ∴=,四边形111A B C O ,2221A B C C ,2333A B C C 都是正方形,11121223232,,OC OA C C C A C C C A ∴====,∴点2A 的横坐标为2,将2x =代入直线解析式得:224y =+=,即2(2,4)A ,12124C C C A ∴==,2112246OC OC C C ∴=+=+=,∴点3A 的横坐标为6,将6x =代入直线解析式得:628y =+=,即3(6,8)A ,23238C C C A ∴==,32236814OC OC C C ∴=+=+=,则点3C 的横坐标为14,故答案为:14.【点睛】本题考查了正方形的性质、一次函数图象上的点坐标等知识点,熟练掌握一次函数的性质是解题关键.13.如图,已知直线a :y=x ,直线b :y=-12x 和点P(1,0),过点P 作y 轴的平行线交直线a 于点P 1,过点P 1作x 轴的平行线交直线b 于点p 2,过点p 2作y 轴的平行线交直线a 于点p 3,过点p 3作x 轴的平行线交直线b 于点p 4,…,按此作法进行下去,则点P 2021的横坐标为_____________.【答案】10102【分析】点(1,0)P ,1P 在直线y x =上,得到1(1,1)P ,求得2P 的纵坐标1P =的纵坐标1=,得到2(2,1)P -,即2P 的横坐标为12(2)-=-,同理,3P 的横坐标为12(2)-=-,4P 的横坐标为24(2)=-,25(2)P =-,36(2)P =-,37(2)P =-,48(2)P =-⋯,求得221(2)n n n P P +==-,于是得到结论.【详解】 解:点(1,0)P ,1P 在直线y x =上, 1(1,1)P ∴,12//PP x 轴,2P ∴的纵坐标1P =的纵坐标1=, 2P 在直线12y x =-上, 112x ∴=-, 2x ∴=-,2(2,1)P ∴-,即2P 的横坐标为12(2)-=-,同理,3P 的横坐标为12(2)-=-,4P 的横坐标为24(2)=-,25(2)P =-,36(2)P =-,37(2)P =-,48(2)P =-⋯,221(2)n n n P P +∴==-,令212021n +=,则1010n =2021P ∴的横坐标为10101010(2)2=-,故答案为:10102.【点睛】本题考查了一次函数图象上点的坐标特征,规律型:点的坐标,正确的作出规律是解题的关键.14.如图,在平面直角坐标系中,点)A ,点()0,1B ,作第一个正方形111OA C B 且点1A 在OA 上,点1B 在OB 上,点1C 在AB 上;作第二个正方形1222A A C B 且点2A 在1A A 上,点2B 在12AC 上,点2C 在AB 上…,如此下去,其中1C 纵坐标为______,点n C 的纵坐标为______.n⎝⎭【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:1bb+==⎪⎩,解得:31kb⎧=-⎪⎨⎪=⎩所以直线仍的解析式是:y=1x-+设C1的横坐标为x,则纵坐标为y=1x-+∵正方形OA1C1B1∵x=y,即1x x=+,解得x==∵点C1同理可得:点C2=232⎛-⎝⎭∵点C n的纵坐标为n⎝⎭.n⎝⎭.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.。
一次函数经典题型 习题(精华 含答案)
一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
一次函数习题集锦(含答案)
数学八年级上册一次函数练习题一、试试你的身手(每小题3分,共24分) 1.正比例函数12y x =-中,y 值随x 的增大而 . 2.已知y=(k-1)x+k 2-1是正比例函数,则k = .3.若y+3与x 成正比例,且x=2时,y=5,则x=5时,y= . 4.直线y=7x+5,过点( ,0),(0, ).5.已知直线y=ax-2经过点(-3,-8)和12b ⎛⎫ ⎪⎝⎭,两点,那么a= ,b= . 6.写出经过点(1,2)的一次函数的解析式为 (写出一个即可). 7.在同一坐标系内函数112y x =+,112y x =-,12y x =的图象有什么特点 .8.下表中,y 是x二、相信你的选择(每小题3分,共24分)1.下列函数中是正比例函数的是( )A .8y x=B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( ) A .少年儿童的身高与年龄 B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数y=|x |+3不是一次函数D .在y=kx+b(k 、b 都是不为零的常数)中, y-b 与x 成正比例 4.一次函数y=-x-1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.函数y=kx-2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( ) A .322y x =- B .122y x =- C .122y x =+ D .322y x =+7.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限三、挑战你的技能(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线;(2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形ABCD的一边BC上的点P从B点运动到C点,设PB=x,梯形APCD的面积为S.(1)写出S与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?参考答案一、1.减小2.1-3.174.57-,5 5.2,1-6.略(答案不惟一) 7.三条直线互相平行8.22y x =+,表格从左到右依次填2-,0,4 二、1.D 2.D 3.A 4.A 5.D6.A7.D8.B三、1.y x =-(答案不惟一) 2.(1)2y x =+ (2)43.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+ (2)图略; (3)4四、1.(1)4S x =-; (2)02x <<; (3)图略 2.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元一次函数 测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。
(沪教版)八年级数学专题训练专题07 一次函数的规律探究性问题(解析版)
专题07 一次函数的规律探究性问题(解析版)错误率:___________易错题号:___________一、单选题1.如图,在平面直角坐标系中,直线l :1y x =+交x 轴于点A ,交y 轴于点1A ,2A ,3A ,…在直线l 上,点1B ,2B ,3B ,…在x 轴的正半轴上,若11AOB ,212A B B △,323A B B △,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第10个等腰直角三角形是10910A B B ,其点10B 的横坐标为( )A .512B .1023C .2047D .2048【标准答案】B 【思路指引】先求出B 1、B 2、B 3…的坐标,探究其规律,即可得到答案. 【详解详析】解:直线y =x +1与x 轴、y 轴的交点分别为(-1,0),(0,1), 由题意得OA =OA 1=1,∵1A OB ∆,212A B B ∆,323A B B ∆,…均为等腰直角三角形,∴OB 1=OA 1=1, ∴点B 1(1,0), ∴B 1B 2=B 1A 2=1+1=2,∴OB2=OB1+B1B2=1+2=3,∴点B2(3,0),∴B2A3=B2B3=3+1=4,∴OB3=OB2+B2B3=3+4=7,∴点B3(7,0),∴B1(1,0),B2(3,0),B3(7,0)…,∵1=2-1,3=22-1,7=23-1,…,∴B n的横坐标为2n-1,∴当n=10时, 210-1=1024-1=1023故选择B.【名师指路】此题考查规律型:点的坐标、等腰直角三角形的性质,解题的关键是从特殊到一般,探究规律,利用规律解决问题.2.如图,在平面直角坐标系中,已知点A坐标为(4-,5),点B坐标为(0,3),点D在x轴上.若线段DB交直线12y x=-于点C,当点D从点O向x轴负半轴方向运动时,△ABC面积的变化趋势是()A.先变大再变小B.先变小再变大C.无法确定D.保持不变【标准答案】D【思路指引】根据点A、点B坐标求出所在直线解析式为132y=x-+,当点D从点O向x轴负半轴方向运动时,点C始终在线段DB交直线12y x=-上,在△ABC中,始终以AB边为底边,过C点作直线AB的垂线为高,根据两直线斜率可得出平行关系,利用平行线间距离处处相等可知无论点D运动到哪一点高不变,因此△ABC面积保持不变.【详解详析】解:设直线AB 的解析式为y=kx b +, 将点A (4-,5),点B (0,3)代入可得:5=4k b3=b -+⎧⎨⎩, 得出直线AB 的解析式为:132y=x -+,又∵点C 所在直线解析式为:12y x =-,∴//AB OC ,∵点C 始终在线段DB 交直线12y x =-上,在△ABC 中,以AB 边为底边, 则点D 运动过程中高不变, 故△ABC 面积保持不变. 故选:D . 【名师指路】本题考查了求一次函数的解析式、斜率的性质、利用平行线间的距离解决问题等性质及定理,熟练运用以上性质定理是解题的关键.3.如图,在直角坐标系中,正方形111A B C O 、2221A B C C 、…、1n n n n A B C C -按如图所示的方式放置,其中点1A 、2A 、3A 、…、n A 均在一次函数1y x =+的图象上,点1C 、2C 、3C 、…、n C 均在x 轴上,则点2021A 的坐标为( )A .()2021202121,2-B .()2020202021,2-C .()2021202021,2-D .()2020202121,2-【标准答案】B 【思路指引】首先分别求得A 1,A 2,A 3,A 4…的坐标,由此得到一定的规律,据此求出点2021A 的坐标. 【详解详析】解:把x =0代入1y x =+得,y =1,∴A 1的纵坐标是:1=20,A 1的横坐标是:0=20﹣1, 把x =1代入1y x =+得,y =2,∴A 2的纵坐标是:1+1=21,A 2的横坐标是:1=21﹣1,同理,A 3的纵坐标是:2+2=4=22,A 3的横坐标是:1+2=3=22﹣1, ∴A 4的纵坐标是:4+4=8=23,A 4的横坐标是:1+2+4=7=23﹣1, 据此可以得到A n 的纵坐标是:2n ﹣1,横坐标是:2n ﹣1﹣1. 即点2021A 的坐标为()2020202021,2-.故选:B . 【名师指路】此题主要考查了坐标的变化规律,正确得到点的坐标的规律是解题的关键.4.如图所示,已知点1B ,2B ,3B ……在直线2y x =-+上,点1A ,2A ,3A ……在x 轴上,点1C ,2C ,3C ……分别在y 轴、11A B 、22A B 上,四边形111A B C O 、2221A B C A 、3332A B C A ……都是正方形,则下列说法:①点1B 的坐标是(1,1);②11222A B A B =;③点n B 的横坐标是112n ⎛⎫- ⎪⎝⎭;④正方形1n n n n A B C A -的边长是112n -⎛⎫⎪⎝⎭其中错误的个数有( )A .1个B .2个C .3个D .0个【标准答案】A 【思路指引】根据2y x =-+,求出(0,2),(2,0)E F ,然后利用已知结合一次函数及正方形的性质,推出1(1,1)B 、211(1,)22B +、322111(1,)222B ++,,的规律,及推出正方形边长的规律111A B =,2212A B =,33212A B =,,112n n n A B -⎛⎫= ⎪⎝⎭,然后利用规律依次进行判断.【详解详析】 解:如图:2y x =-+,(0,2),(2,0)E F ∴,2OE OF ∴==,又90EOF ∠=︒, 45OEF OFE ∴∠=∠=︒,又四边形111OA B C 为正方形,1111111,90OC C B EC B B C O ∴=∠=∠=︒, 1145C B E OEF ∴∠=∠=︒, 111B C C E ∴=,1111OC C B ∴==,1(1,1)B ∴,故①正确; 又11//A B OE ,1145A B F OEF ∴∠=∠=︒,又四边形1222A A B C 为正方形,1222122122,90AC B C B C B AC B ∴=∠=∠=︒, 22121245C B B C B B ∴∠=∠=︒, 212221C B C B C A ∴==,2122111122C A C B A B ∴===, 11122222A B AC A B ∴==,故②正确;1(1,1)B 、211(1,)22B +、322111(1,)222B ++,,∴点n B 的横坐标是12111111++22222n n --⎛⎫++=- ⎪⎝⎭,故③错误;111A B =,2212A B =,33212A B =,,112n n n A B -⎛⎫= ⎪⎝⎭,故④正确; 综上所述:③错误, 故选:A . 【名师指路】本题考查点的坐标规律,解题的关键是熟练掌握一次函数图象上点的坐标特点,结合正方形的性质,寻找到点的坐标规律是解题的关键.5.如图所示,在平面直角坐标系中,点1A ,2A ,3A ,…都在x 轴上,点1B ,2B ,3B ,…都在直线y x=上,△11OA B ,△112B A A ,△212B B A ,△223B A A ,△323B B A ,…都是等腰直角三角形,如果11OA =,则点2021B 的坐标是( )A .()2021202122,B .()2020202022,C .()2019201922,D .()2018201822,【标准答案】B 【思路指引】利用直线y =x 上点的坐标特点及等腰直角三角形的性质,可分别求得B 1、B 2、B 3的坐标,由此归纳总结即可求得B 2021的坐标. 【详解详析】解:∵11OA B 是等腰直角三角形,11OA =, ∴A 1B 1=OA 1=1, ∴点B 1的坐标为(1,1), ∵112B A A 是等腰直角三角形,∴A 1A 2=A 1B 1=1, 又∵212B B A 是等腰直角三角形,∴22OA B 是等腰直角三角形, ∴A 2B 2=OA 2=OA 1+A 1A 2=2, ∴点B 2的坐标为(2,2), ∵323B B A 是等腰直角三角形,∴33OA B 是等腰直角三角形, ∴A 3B 3=OA 3=OA 2+A 2A 3=22, ∴点B 3的坐标为(22,22),同理可得:A 4B 4=OA 4=23,点B 4的坐标为(23,23), A 5B 5=OA 5=24,点B 5的坐标为(24,24), ……∴B 2021的坐标为(22020,22020), 故选:B . 【名师指路】本题主要考查一次函数图象上点的坐标,利用等腰直角三角形的性质求得B 1、B 2、B 3的坐标是解题的关键. 6.如图,正方形AOCD 、正方形111A CC D 、正方形2122A C C D 的顶点A 、1A 、2A 和O 、C 、1C 、2C 分别在一次函数1y x =+的图象和x 轴上,若正比例函数y kx =则过点5D ,则k 的值是( )A .6332B .3263C .3116D .1631【标准答案】B【思路指引】根据正方形的性质和一次函数图象上点的坐标特征求得点5D 的坐标,代入函数解析求得k 的值. 【详解详析】解:当0x =时,1y =,则(0,1)A ,1OC OA ∴==,则(0,1)C ,(1,1)D把1x =代入1y x =+知,2y =,则12A C =,则112CC AC ==. 此时1(12,12)D +⨯,即(3,2) 同理,2(124,22)D ++⨯,即(7,4).3(1248,222)D +++⨯⨯,即(15,8). 4(124816D ++++,42),即(31,16). 5(12481632D +++++,52),即(63,32).把5(63,32)D 代入y kx =, 得3263k =, 故选:B . 【名师指路】本题考查了一次函数图象上点的规律探究题、及正方形的性质,解题的关键是解答时按形成各点的形成顺序依次求出,从而找出规律.7.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O 、正方形2221A B C C ,、正方形1n n n n A B C C -,使得点123,,,A A A 在直线l 上,点123,,,C C C 在y 轴正半轴上,则点2021B 的坐标为( )A .()201920202,21-B .()202020202,2C .()202020212,21-D .()201920202,21+【标准答案】C 【思路指引】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“B n (2n -1,2n -1)(n 为正整数)”,依此规律即可得出结论. 【详解详析】解:当y =0时,有x -1=0, 解得:x =1,∴点A 1的坐标为(1,0). ∵四边形A 1B 1C 1O 为正方形, ∴点B 1的坐标为(1,1).同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…, ∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…, ∴B n (2n -1,2n -1)(n 为正整数), ∴点B 2021的坐标为(22020,22021-1). 故选:C . 【名师指路】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“B n (2n -1,2n -1)(n 为正整数)”是解题的关键. 8.如图,直线1:1l y x =+与直线211:22l y x =+相交于点()1,0P -.直线1l 与y 轴交于点A .一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的点1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运动,到达直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动,…照此规律运动,动点C 依次经过点1B ,1A ,2B ,2A ,3B ,3A ,…,2014B ,2014A ,…则当动点C 到达2021A 处时,运动的总路径的长为( )A .22021B .202122-C .202021+D .202222-【标准答案】D 【思路指引】由直线l 1:y =x +1可知,A (0,1),则B 1纵坐标为1,代入直线l 2:y =12x +12中,得B 1(1,1),又A 1、B 1横坐标相等,可得A 1(1,2),则AB 1=1,A 1B 1=2-1=1,可判断△AA 1B 1为等腰直角三角形,利用平行线的性质,得△A 1A 2B 2、△A 2A 3B 3、…、都是等腰直角三角形,根据平行于x 轴的直线上两点纵坐标相等,平行于y 轴的直线上两点横坐标相等,及直线l 1、l 2的解析式,分别求AB 1+A 1B 1,A 1B 2+A 2B 2的长,得出一般规律. 【详解详析】解:由直线l 1:y =x +1可知,A (0,1),根据平行于x 轴的直线上两点纵坐标相等,平行于y 轴的直线上两点横坐标相等,及直线l 1、l 2的解析式可知,B 1(1,1),AB 1=1, A 1(1,2),A 1B 1=2-1=1,AB 1+A 1B 1=2,B 2(3,2),A 2(3,4),A 1B 2=3-1=2,A 2B 2=4-2=2,A 1B 2+A 2B 2=2+2=4=22, …,由此可得A n -1B n +A n B n =2n ,所以,当动点C 到达A n 处时,运动的总路径的长为2+22+23++2n =2n +1-2,所以,当动点C 到达A 2021处时,运动的总路径的长为22022-2, 故选:D . 【名师指路】本题考查了一次函数的综合运用.关键是利用平行于x 轴的直线上点的纵坐标相等,平行于y 轴的直线上点的横坐标相等,得出点的坐标,判断等腰直角三角形,得出一般规律.9.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线3333y x =+上,且11212323160,1C OA C A A C A A OA ∠=∠=∠==︒=,则点n C 的横坐标是( )A .2321n -⨯-B .2321n -⨯+C .1321n -⨯-D .1321n -⨯+【标准答案】A【思路指引】分别过点123,,,...C C C 作x 轴的垂线,交于123,,,...D D D ,再连接112233,,,...C D C D C D,利用勾股定理及根据菱形的边长求得1A 、2A 、3A ⋯的坐标然后分别表示出1C 、2C 、3C ⋯的坐标找出规律进而求得n C 的坐标. 【详解详析】解:分别过点123,,,...C C C 作x 轴的垂线,交于123,,,...D D D ,再连接112233,,,...C D C D C D 如下图:11OA =,11OC ∴=,1121232360C OA C A A C A A ∴∠=∠=∠=⋯=︒,在11Rt OC D 中,111122OD OC ==根据勾股定理得:2221111OD OC C D =-,即222111()2OD =-,解得:13OD =1C ∴3横坐标为12,11(2C ∴3),四边形111OA B C ,1222A A B C ,2333A A B C ,⋯都是菱形, 122A C ∴=,234A C =,348A C =,⋯,2C ∴的纵坐标为:22122122413A C D D AC =--代入3333y x =+,求得横坐标为2,2(2,3)C ∴,3C 的纵坐标为:2223233316423C D A A C D =-=-=,代入3333y x =+,求得横坐标为5, 3(5C ∴,23), 4(11C ∴,43),5(23C ,83), 6(47C ∴,163);,⋯,2(321n n C -⨯-,223)n -则点n C 的横坐标是:2321n -⨯-, 故选:A . 【名师指路】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C 点的坐标,找出规律是解题的关键. 10.如图所示,直线3333y x =+与y 轴相交于点D ,点1A 在直线3333y x =+上,点1B 在x 轴上,且11OA B 是等边三角形,记作第一个等边三角形;然后过1B 作121B A OA ∥与直线3333y x =+相交于点2A ,点2B 在x 轴上,再以12B A 为边作等边三角形221A B B ,记作第二个等边三角形;同样过2B 作231B A OA ∥与直线3333y x =+相交于点3A ,点3B 在x 轴上,再以23B A 为边作等边三角形332A B B ,记作第三个等边三角形;…依此类推,则第n 个等边三角形的顶点n A 纵坐标为( )A .12n -B .22n -C .123n -D .223n -【标准答案】D 【思路指引】可设直线与x 轴相交于C 点.通过求交点C 、D 的坐标可求∠DCO =30°.根据题意得△COA 1、△CB 1A 2、△CB 2A 3…都是等腰三角形,且腰长变化有规律.在正三角形中求高即可得解. 【详解详析】解:设直线与x 轴相交于C 点.分别过A 1、A 2、A 3作x 轴的垂线,垂足分别为E 、F 、G令x =0,则y = 3y =0,则x =-1. ∴OC =1,OD =3 ∴2222CD OC OD OC +== ∴∠DCO =30°. ∵△OA 1B 1是正三角形, ∴∠A 1OB 1=60°. ∴∠CA 1O =∠A 1CO =30°, ∴OA 1=OC =1. ∴OE =12OA 1=12. ∴13A E =即A 13同理可得:第二个正三角形的边长=1+1=2,23A F 即A 23 第三个正三角形的边长=1+1+2=4,323A G =即A 3纵坐标为23 ∴第n 个正三角形的边长=12n -,A n 纵坐标为223n - 故选:D . 【名师指路】此题考查一次函数的应用及正三角形的有关计算,综合性强,难度大.二、填空题11.如图在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3…均在直线143y x =-+上,则点P 2021的纵坐标是 ___.【标准答案】202032【思路指引】过点123P P P 、、分别作112233PB x P B x P B x ⊥、⊥、⊥,分别求出23P P 、两点的纵坐标,找出规律,即可求解. 【详解详析】解:过点123P P P 、、分别作112233PB x P B x P B x ⊥、⊥、⊥,如下图:△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3…都是等腰直角三角形 则点123B B B 、、分别为线段11232OA A A A A 、、的中点,由直角三角形的性质可得1111PB A B =,221222P B A B A B ==,332333P B A B A B == 由()133P ,,则1B (30),,1(6,0)A 设2(0)B a ,,则22126P B A B a ==-,2(,6)P a a - 又因为P 2,P 3…均在直线143y x =-+上所以1643a a -=-+,解得152a =,2153(,)22P同理可以求出3393(,)44P123P P P 、、的纵坐标分别为11332-=,2132-,3132- 可以得到n P 的纵坐标为132n -则点2021P 的纵坐标为202032故答案为202032【名师指路】此题考查了直角坐标系中点坐标规律的探索,涉及了等腰直角三角形的性质,一次函数的性质等,根据已知条件利用相关性质求出23P P 、的坐标,找到规律是解题的关键.12.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,已知点()11,1B ,()23,2B ,则n B 的横坐标是_____.【标准答案】12n - 【思路指引】根据()11,1B ,()23,2B ,()37,4B ,()415,8B ,……,即可归纳出n B 的横坐标. 【详解详析】解:∵点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,已知点()11,1B ,()23,2B , ∴1A (0,1),2A (1,2),3A (3,4),……, ∴()37,4B ,4A (7,8),()415,8B ,∴()121,2n n n B --,故答案是:12n -. 【名师指路】本题主要考查一次函数图像和正方形的性质,根据点()11,1B ,()23,2B ,()37,4B ,()415,8B ,找出n B 横坐标的变化规律,是解题的关键.13.如图,在平面直角坐标系中,点123,,,A A A ,都在x 轴正半轴上,点123,,,B B B ,都在直线y kx=上,1130B OA ∠=︒,112223334,,,A B A A B A A B A ∆∆∆,都是等边三角形,且11OA =,则点6B 的横坐标是_______.【标准答案】48 【思路指引】设△1n n n B A A +的边长为n a ,根据直线的解析式得出30n n A OB ∠=︒,再结合等边三角形的性质及外角的性质即可得出30n n OB A ∠=︒,190n n OB A +∠=︒,从而得出13n n n B B a +=,由点1A 的坐标为(1,0),得到11a =,2112a =+=,31214a a a =++=,412318a a a a =+++=,⋯,12n na ,即可解决问题.【详解详析】解:过1B 作1B C x ⊥轴于C ,过2B 作2B D x ⊥轴于D ,过3B 作3B E x ⊥轴于E ,如图所示:设△1n n n B A A +的边长为n a ,则121212AC A C A A ==,232312A D A D A A ==,⋯, 113BC ∴,223B D ,333B E ,⋯, 13(2B ∴3),点1B ,2B ,3B ,⋯是直线y kx =上的第一象限内的点, 3k ∴=30n n A OB ∠=︒,又△1n n n A B A +为等边三角形,160n n n B A A +∴∠=︒,30n n OB A ∴∠=︒,190n n OB A +∠=︒,13n n n n B B OB a +∴==,11OA =,∴点1A 的坐标为(1,0),11a ∴=,2112a =+=,31214a a a =++=,412318a a a a =+++=,⋯, 12n na ,632a ∴=,∴点6B 的横坐标为633324822a =⨯=, 故答案为:48. 【名师指路】本题考查了一次函数的性质、等边三角形的性质、规律型、以及三角形外角的性质等,解题的关键是找出规律13n n n n B B OB a +==.14.如图,在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点1A 、2A 、3A 、…在直线l 上,点1C 、2C 、3C 、…在y 轴正半轴上,则点2021B 的坐标是__________.【标准答案】(22020,22021-1) 【思路指引】根据一次函数图象上点的坐标特征结合正方形的性质,可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标变化可找出变化规律:“B n (2n -1,2n -1)(n 为正整数)”,依此规律即可得出结论. 【详解详析】解:当y =0时,有x -1=0, 解得:x =1,∴点A 1的坐标为(1,0). ∵四边形A 1B 1C 1O 为正方形, ∴点B 1的坐标为(1,1).同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…, ∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…, ∴B n (2n -1,2n -1)(n 为正整数), ∴点B 2021的坐标是(22020,22021-1). 故答案为:(22020,22021-1). 【名师指路】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“B n (2n -1,2n -1)(n 为正整数)”是解题的关键.15.正方形111A B C O ,正方形2221A B C C ,正方形3332A B C C ,…按如图所示放置,点1A ,2A ,3A ,…在直线y kx b =+上,1C ,2C ,3C ,…在x 轴上,已知()11,1B ,()23,2B ,则n B 的坐标为______.【标准答案】()121,2n n -- 【思路指引】首先利用待定系数法求得直线A 1A 2的解析式,然后分别求得B 1,B 2,B 3...的坐标,可以得到规律:B n (2n -1,2n -1),据此即可求解. 【详解详析】B 1的坐标为(1,1),点B 2的坐标为(3,2),..正方形111A BC O 边长为1,正方形2221A B C C 边长为2,∴A 1的坐标是(0,1),A 2的坐标是 (1,2),代入y kx b =+得:12b k b =⎧⎨+=⎩,解得:11k b =⎧⎨=⎩, 则直线A 1A 2的解析式是:1y x =+, A 1B 1= 1,点B 2的坐标为(3,2),∴点A 3的坐标为(3,4), ∴A 3C 2= A 3 B 3 = B 3C 3= 4,∴点B 3的坐标为(7,4),∴B 1的纵坐标是:1=20,B 1的横坐标是:1 =21 -1, ∴B 2的纵坐标是:2=21,B 2的横坐标是:3 =22-1, ∴B 3的纵坐标是:4=22,B 3的横坐标是7 =23-1, ∴B n 的纵坐标是:2n -1,横坐标是:2n -1,则B n :( 2n -1 ,2n -1), 故答案为:( 2n -1 ,2n -1) 【名师指路】此题主要考查了待定系数法求函数解析式和坐标的变化规律. 此题难度较大,注意正确得到点的坐标的规律是解题的关键.16.如图,在平面直角坐标系中,点1A ,2A ,3A ,⋯和1B ,2B ,3B ,⋯分别在直线15y x b =+和x 轴上,△11OA B ,△122B A B ,△233B A B ,⋯都是等腰直角三角形,如果点1(1,1)A ,那么点2020A 的纵坐标是__.【标准答案】20193()2【思路指引】 由题意易得1455y x =+,设22(A x ,2)y ,33(A x ,3)y ,44(A x ,4)y ,⋯,20202020(A x ,2020)y ,则有221455y x =+,331455y x =+,…..,202020201455y x =+,然后根据等腰直角三角形的性质可得2122x y y =+,312322x y y y =++,….,进而将点的坐标依此代入即可求解.【详解详析】解:1(1,1)A 在直线15y x b =+, 45b ∴=, 1455y x ∴=+, 设22(A x ,2)y ,33(A x ,3)y ,44(A x ,4)y ,⋯,20202020(A x ,2020)y , 则有221455y x =+,331455y x =+,⋯202020201455y x =+,又△11OA B ,△122B A B ,△233B A B ,⋯都是等腰直角三角形,2122x y y ∴=+, 312322x y y y =++,⋯2020123201920202222x y y y y y =+++⋯++,将点坐标依次代入直线解析式得到:21112y y =+, 3121131222y y y =++= 2y , 432y = 3y , ⋯202032y =2019y , 又11y =,232y ∴=, 33(2y =2), 43(2y =3),⋯20203(2y =2019),故答案为:3(22019). 【名师指路】本题主要考查一次函数的规律题,解题的关键是找到点的坐标规律.17.平面直角坐标系xOy 中,点A 1,A 2,A 3,……和B 1,B 2,B 3,……分别在直线y =13x +23和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,……都是等腰直角三角形,如果A 1(1,1),则点A 2021的纵坐标是 ___.【标准答案】22020 【思路指引】利用待定系数法可得A 1、A 2、A 3的坐标,进而得出各点的坐标的规律. 【详解详析】 解:∵A 1(1,1),∵△OA 1B 1为等腰直角三角形 ∴点B 1 (0,2),∵直线OA 1,B 1A 2,B 2A 3互相平行,而已知直线OA 1的解析式为:y x = ∴直线12B A l 的解析式为:2y x =-, ∴设A 2(2+a ,a ),则a =13(a +2)+23,解得a =2, ∴A 2(4,2),∵△B 1A 2B 2为等腰直角三角形 ∴点B 2 (0,6),直线23B A l 的解析式为:6y x =- 设A 3(6+b ,b ),则有b =13(6+b )+23,解得b =4, ∴A 3(10,4),由此发现点A n 的纵坐标为2n -1, 即点A 2021的纵坐标是22020,故答案为:22020. 【名师指路】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.如图,已知直线a :y x =,直线b :12y x =-和点()1,0P ,过点P 作y 轴的平行线交直线a 于点1P ,过点1P 作x 轴的平行线交直线b 于点2P ,过点2P 作y 轴的平行线交直线a 于点3P ,过点3P 作x 轴的平行线交直线b 于点4P ,…,按此作法进行下去,则点2021P 的横坐标为________.【标准答案】21010. 【思路指引】点P (1,0),P 1在直线y =x 上,得到P 1(1,1),求得P 2的纵坐标=P 1的纵坐标=1,得到P 2(-2,1),即P 2的横坐标为-2=-21,同理,P 3的横坐标为-2=-21,P 4的横坐标为4=22,P 5=22,P 6=-23,P 7=-23,P 8=24…,求得242nn P =,于是得到结论. 【详解详析】解:∵点P (1,0),P 1在直线y =x 上, ∴P 1(1,1), ∵P 1P 2∥x 轴,∴P 2的纵坐标=P 1的纵坐标=1,∵P 2在直线12y x =-上,∴112x =-∴x =-2,∴P 2(-2,1),即P 2的横坐标为-2=-21,同理,P 3的横坐标为-2=-21,P 4的横坐标为4=22,P 5=22,P 6=-23,P 7=-23,P 8=24…,∴242nn P =,∴P 2020的横坐标为1202022⨯=21010, ∴P 2021的横坐标为21010, 故答案为:21010. 【名师指路】本题考查了一次函数图象上点的坐标特征,规律型:点的坐标,正确的作出规律是解题的关键.19.如图,在平面直角坐标系中,点()11,1A 在直线y x =图象上,过1A 点作y 轴平行线,交直线y x =-于点1B ,以线段11A B 为边在右侧作正方形1111D C B A ,11C D 所在的直线交y x =的图象于点2A ,交y x =-的图象于点2B ,再以线段22A B 为边在右侧作正方形2222A B C D 依此类推,按照图中反应的规律,第2020个正方形的边长是_______.【标准答案】201923⨯ 【思路指引】通过计算可得第一个正方形的边长为2,第二个正方形的边长为6,……,通过探究规律,利用规律解决问题即可. 【详解详析】解:由题意,1(1,1)A ,1(1,1)B -,112A B ,∴第一个正方形的边长为2,112A D ∴=,2(3,3)A ∴,2(3,3)B -,2223=6A B ∴=⨯,∴第二个正方形的边长为6,226A D ∴=,3(9,9)A ∴,3(9,9)B -,即:232(3)3A ,, 223(33)B ,-,233=2318A B ∴⨯=,∴第三个正方形的边长为18,4(27,27)A ∴,4(27,27)B -,即:334(3)3A ,, 334(33)B ,-,434=2354A B ∴⨯=⋯,可得1(3n n A -,13)n -,1(3n n B -,13)n --,1=23n n n A B -⨯ 第2020个正方形的边长为201923⨯. 故答案为: 201923⨯. 【名师指路】本题考查一次函数图像上的点的特征,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型. 20.如图,点B 1在直线l :y =12x 上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l ,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;照这个规律进行下去,则第n 个正方形A n B n B n +1C n 的边长为 ___(结果用含正整数n 的代数式表示).5×(32)n -1 【思路指引】设直线y =12x 与x 轴夹角为α,过B 1作B 1H ⊥x 轴于H ,由点B 1的横坐标为2,点B 1在直线l :y =12x 上,可得OH =2,B 1H =1,OB 12215OH B H +tan α=1B H OH=12,Rt △A 1B 1O 中,求得A 1B 1=OB 1•tan α5,即第15,在Rt △A 2B 2O 中,求得第25×32,在Rt △A 3B 3O 中,求得第3个5×945×(32)2,在Rt △A 4B 4O 中,求得第45×2785×(32)3,......观察规律即可得:第n 个正方形边长是52×(32)n -1. 【详解详析】解:设直线y =12x 与x 轴夹角为α,过B 1作B 1H ⊥x 轴于H ,如图:∵点B 1的横坐标为2,点B 1在直线l :y =12x 上,令x =2得y =1, ∴OH =2,B 1H =1,OB 12215OH B H +∴tan α=1B H OH=12, Rt △A 1B 1O 中,A 1B 1=OB 1•tan α5,即第15, ∴OB 2=OB 1+B 1B 2555×3,Rt △A 2B 2O 中,A 2B 2=OB 2•tan α5×3×125×32,即第25×32,∴OB 3=OB 2+B 2B 35×35×325×92,Rt △A 3B 3O 中,A 3B 3=OB 3•tan α5×92×125×94,即第35×945×(32)2,∴OB 4=OB 3+B 3B 45×925×945×274,Rt △A 4B 4O 中,A 4B 4=OB 4•tan α5×274×125×278,即第45×2785×(32)3,......根据规律可知:第n 5×(32)n -1, 5×(32)n -1. 【名师指路】本题考查一次函数图象上点的特征,涉及解直角三角形、规律探索等知识,解题的关键是tan α=12的应用.三、解答题21.在学习了一次函数后,某校数学兴趣小组根据学习的经验,对函数y=-|x |-2的图象和性质进行了探究,下面是该兴趣小组的探究过程,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如表: x ... -3 -2 -1 0 1 2 3 ... y ...-5-4-3n-3-4-5...①n= ;②如图,在所给的平面直角坐标系中,描出以表中各组对应值为坐标的点,根据描出的点画出该函数的图象;(2)当一2<x≤5时,y 的取值范围是 ; (3)根据所画的图象,请写出一条关于该函数图象的性质.【标准答案】(1)①-2,②见解析;(2)72y -≤≤-;(3)函数图象关于y 轴对称;顶点坐标为(0,-2)等等. 【思路指引】(1)①把x=0代入函数表达式,即可得出n 的值;②把表格中7个点画在坐标系中,根据点的变化趋势,即可画出此函数的图象; (2)结合图象,当一2<x≤5时,72y -≤≤-. (3)结合图象,可得当x=-2时,y=0. 【详解详析】解:(1)①把x=0代入y=-x-2,得y=-2 ②如图所示即为函数图象;(2)当一2<x≤5时,从图像中可看出最高点纵坐标为-2,最低点纵坐标为-7, ∴72y -≤≤-.(3)结合图象,可得函数图象关于y 轴对称;顶点坐标为(0,-2)等等.【名师指路】本题主要考查一次函数的图象与性质,解题的关键是掌握函数自变量的取值范围、函数值的求法、列表描点画函数图象及一次函数的性质.22.数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则”.材料一:平方运算和开方运算是互逆运算.如a 2±2ab+b 2=(a±b )2,222a ab b a b ±+=±,如何将双526±56±(22236232±=完全平方的形式,因()25263232±±材料二:在直角坐标系xOy 中,对于点P(x,y)和Q(x,y’)给出如下定义:若(0)y (0)y x y x ≥⎧=⎨-<'⎩则称点Q 为点P的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).问题: (1)点(2,3-的“横负纵变点”为 ,点()33,2--的“横负纵变点”为 ;(27210+;(3)已知a 为常数(1≤a≤2),点M(-2是关于x 的函数12121y a a a a x=-+---图像上的一点,点M’是点M 的“横负纵变点”,求点M’的坐标. 【标准答案】(1)2-3,,()-332,;(2253)(22)【思路指引】(1)根据“横负纵变点”的定义即可解决问题.(2)模仿例题解决问题即可.(3)首先化简双重二次根式,再根据待定系数法,“横负纵变点”解决问题即可. 【详解详析】解:(1)根据题目意思,(0)(0)y x y y x ≥⎧=⎨-<'⎩0和0-<,点的“横负纵变点”为,点()2--的“横负纵变点”为()2,,故答案为:,()2;(2)∵257,2510+=⨯=(3)∵1(1)a a +-=,1(1)1a a -=- 112-11-y xx x⎛⎫=-==⎪⎝⎭∵点M(是关于x 的函数1y x=-图像上的一点,∴m =-即:M (,又∵点M’是点M 的“横负纵变点∴M′的坐标为( 【名师指路】本题属于一次函数综合题,考查了待定系数法,横负纵变点”的定义,双重二次根式的化简等知识,解题的关键是理解题意,学会模仿解决问题,属于中考常考题型.23.小东同学根据函数的学习经验,对函数y =1x - +3x +进行了探究,下面是他的探究过程: (1)已知x =-3时3x += 0;x =1 时1x -= 0,化简: ①当x <-3时,y = ; ②当-3≤x ≤1时,y = ; ③当x >1时,y = .(2)在平面直角坐标系中画出y =|x ﹣1|+|x +3|的图象,根据图象,写出该函数的一条性质: ;【标准答案】(1)①﹣2﹣2x;②4;③2x+2;(2)画出图象见解析;函数图象不过原点.【思路指引】(1)根据已知条件及绝对值的化简法则计算即可;(2)画出函数图象,则易得一条函数性质;【详解详析】解:(1)∵x=﹣3时|x+3|=0;x=1时|x﹣1|=0∴当x<﹣3时,y=1﹣x﹣x﹣3=﹣2﹣2x;②当﹣3≤x≤1时,y=1﹣x+x+3=4;③当x>1时,y=x﹣1+x+3=2x+2;故答案为:﹣2﹣2x;4;2x+2.(2)在平面直角坐标系中画出y=|x﹣1|+|x+3|的图象,如图所示:根据图象,该函数图象不过原点.故答案为:函数图象不过原点;【名师指路】本题考查了一次函数的图象上的点的坐标特点及绝对值的化简计算,数形结合是解题的关键.24.城关中学九(6)班的毕业复习资料复印业务原来由宏图复印社承接,其收费y 1(元)与复印页数x (页)的关系如下表:(1)y 1与x 的函数关系是否满足一次函数关系?(2)现在另一家复印社明晰复印社表示:若学校先按每月付给200元的承包费,则可按每页0.10元收费,请写出明晰复印社每月收费y 2(元)与复印页数x (页)的函数表达式; (3)你若是班级的学习委员,在复印资料时,选择哪家复印社比较优惠,说明理由.【标准答案】(1)y 1与x 的函数关系满足一次函数关系.(2)y 2=0.1x+200.(3)当复印量等于4000时,选择两家均可;当复印量大于4000页时,选择明晰复印社;当复印量小于4000页时,选择宏图复印社. 【思路指引】(1)设y 1=kx+b,由题意找出满足两个量的函数关系式,即可得解. (2)由题中三个量的关系即可得出函数表达式.(3)由前两题的函数表达式,找出中间量,由此再得出一元一次不等式,即可得解. 【详解详析】解:(1)设y 1=kx+b,把(100,15)和(200,30)分别代入,得:1001520030k b k b +⎧⎨+⎩==, 解得:0.150k b ⎧⎨⎩==.∴函数的表达式可能为y 1=0.15x ;把(400,60)和(1000,150)分别代入,可得等式成立. ∴y 1与x 的函数关系满足一次函数关系. (2)由题意得,y 2=0.1x+200.(3)由0.150.1200y xy x ⎧⎨+⎩==,解得: 4000600x y ⎧⎨⎩==. 即当复印4000页是,两家收费均为600元;∴此时选择两家都可以.由0.15x>0.1x+200,解得:x>4000;∴当复印量大于4000页时,宏图复印社的收费大于明晰复印社,此时应选择明晰复印社.同理,当复印量小于4000页时,选择宏图复印社.综上所述,当复印量等于4000时,选择两家均可;当复印量大于4000页时,选择明晰复印社.当复印量小于4000页时,选择宏图复印社.【名师指路】本题主要考查一元一次不等式和一次函数的应用,理解题中各个量的关系是解题的关键.25.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…按如图所示的方式放置点A1、A2、A3、…和点C1、C2、C3、…分别在直线y=ka+b(k>0)和x轴上,已知点B1(1,1),B2(3,2).(1)求k、b的值;(2)填写下列各点的坐标:B3( , ),B n( , ).【标准答案】(1)11kb=⎧⎨=⎩;(2)7,4;2n﹣1,2n﹣1【思路指引】(1)根据已知B1(1,1),B2(3,2),求出A1(0,1),A2(1,2),就可以确定一次函数的解析式;(2)根据图象能够求得B3(7,4),通过观察图象可以得到B n的横坐标是A n+1的横坐标,B n的纵坐标是A n 的纵坐标;再通过A n(2n﹣1﹣1,2n﹣1)的规律,确定B n(2n﹣1,2n﹣1)的规律,进而求解本题.【详解详析】解:(1)∵点B1(1,1),B2(3,2),∴A1(0,1),A2(1,2),将点A1,A2代入直线y=kx+b(k>0)得:12bk b=⎧⎨+=⎩,解得:11kb=⎧⎨=⎩;(2)通过观察图象可知B n的横坐标是A n+1的横坐标,B n的纵坐标是A n的纵坐标, ∵A3(3,4),A4(7,8),∴A n(2n﹣1﹣1,2n﹣1),∴B n(2n﹣1,2n﹣1),∴B3(7,4).故答案为:(1)11kb=⎧⎨=⎩;(2)7,4,2n﹣1,2n﹣1.【名师指路】本题主要考查了一次函数图象上点的坐标性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.26.平面直角坐标系中,设一次函数y=(2a﹣1)x+3﹣b的图象是直线l1.(1)如果把l1向下平移2个单位后得到直线y=3x+1,求a,b的值;(2)当直线l1过点(m,6﹣b)和点(m+3,4a﹣7)时,且﹣3<b<12,求a的取值范围;(3)点P(﹣2n+3,3n﹣1)在直线l2上运动,直线l2与直线l1无交点,求a、b所需满足的条件.【标准答案】(1)a的值为2,b的值为0;(2)﹣132<a<1;(3)1412ab⎧=-⎪⎪⎨⎪≠-⎪⎩【思路指引】(1)根据一次函数平移的规律列方程组求解;(2)将两点坐标代入解析式得出方程组,求出a、b的等量关系式,再根据b的取值范围求出a的取值范围;(3)先设点P(x,y),然后根据点P坐标找出x、y之间关系式,利用两直线无交点即平行(k相等,b不等)列出算式求解.【详解详析】解:(1)∵y=(2a﹣1)x+3﹣b向下平移2个单位后得到直线y=3x+1,∴213 321ab-=⎧⎨--=⎩,∴20 ab=⎧⎨=⎩,即a的值为2,b的值为0;(2)由题意知,代入点(m ,6﹣b )和点(m +3,4a ﹣7),得 ()()()2136213347a m b ba mb a ⎧-+-=-⎪⎨-++-=-⎪⎩, 两式相减得,b =2a +10, ∵﹣3<b <12, ∴﹣3<2a +10<12, ∴﹣132<a <1; (3)设点P 坐标为(x ,y ),则2331n x n y -+=⎧⎨-=⎩①② , 由①知,n =12(3﹣x )=3-22x ,代入②得,3(3-22x)﹣1=y ,∴y =3722x -+,∵直线l 2与直线l 1无交点, ∴3212732a b ⎧-=-⎪⎪⎨⎪-≠⎪⎩,解得1412a b ⎧=-⎪⎪⎨⎪≠-⎪⎩.【名师指路】本题考查一次函数的图象和性质,以及一次函数平移的规律,掌握基本的性质是解题的关键.27.一个水库的水位在最近5h 内持续上涨.表记录了这5h 内6个时间点的水位高度,其中t 表示时间,y 表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你能发现水位变化有什么规律吗?(2)水位高度y 是否为时间t 的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位的变化规律吗?(3)据估计这种上涨规律还会持续2h ,预测再过2h 水位高度将为多少米.【标准答案】(1)是,在这个时间段中水位可能是始终以同一速度均匀上升的;(2)0.3305()y t t =+≤≤,图见解析,可以近似地表示水位的变化规律;(3)5.1m 【思路指引】(1)根据题目要求描出表中数据对应的点,连接画出的点可得这些点是在一条直线上,继而根据一次函数的性质得出规律;(2)根据待定系数法求解析式,根据数形结合的思想画出函数图象,结合一次函数的性质即可求得水位的变化规律;(3)由题意可得再过2h ,即()527h t =+=,代入函数解析式即可求解. 【详解详析】解:(1)如图,描出表中数据对应的点可以看出,这6个点在一条直线上.再结合表中数据,可以发现每小时水位上升0.3m .由此猜想,如果画出这5h 内其他时刻(如 2.5h t =等)及其水位高度所对应的点,它们可能也在这条直线上,即在这个时间段中水位可能是始终以同一速度均匀上升的.(2)由于水位在最近5h 内持续上涨,对于时间t 的每一个确定的值,水位高度y 都有唯一的值与其对应,所以y 是t 的函数.开始时水位高度为3m ,以后每小时水位上升0.3m .∴函数0.3305()y t t =+≤≤是符合表中数据的一个函数,它表示经过h t 水位上升0.3m t ,即水位y 为()0.33m t +.其图象是图中点()0,3A 和点()5,4.5B 之间的线段AB .。
中考数学题型训练---规律探究
规律探索题常用技巧:1、观察法,对于比较明显的变化,可直接加以解决,比如呈现周期性变化的题2、一次函数法,通过一组数据,对于n的变化,考察数据是在坐标轴上成直线的变化,可以设此变化规律为y=kx+b,记得解出后要检验。
3、二次函数法,对于n的变化,考察数据在坐标上呈现弧形,可联想到二次函数,设此规律为y=ax2+bx+c,找出三组数据,然后解出来。
记得检验3、(公式法)等差数列:1+2+3+…+n=1+3+5+7+…++15=3+6+9+12+15+18+…+3n=等比数列:2+4+8+…+2n= 3+32+33+…+3n=1、数据规律类1、(2012滨州)求1+2+22+23+...+22012的值,可令S=1+2+22+23+...+22012,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012﹣1B.52013﹣1C.D.2、(2012珠海,20,9分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.a ≤9,写出表示“数字对称等(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤b式”一般规律的式子(含a、b),并证明.3、(2012山东省荷泽市)一个自然数的立方,可以分裂成若干个连续奇数的和,例如:23,33,和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;……;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是_____.4、(2012·湖北省恩施市,题号16 分值4)观察下表:根据表中数的排列规律,B+D=_________.2、几何变化类 1、(2012贵州省毕节市)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有个小正方形。
(word完整版)中考数学规律探索专题复习
中考数学规律探索专题复习一、典例精析类型之一 数字规律型例1. (2011丽江)下面是按一定规律排列的一列数:23,45-,87,169-,…那么第n 个数是 . 【简析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n 个数为12(1)21nn n +-•+。
【答案】解:∵n=1时,分子:2=(-1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(—1)3•22,分母:5=2×2+1; n=3时,分子:8=(—1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(-1)5•24,分母:9=2×4+1;…,∴第n 个数为:12(1)21n n n +-•+ 故答案为:12(1)21n n n +-•+. 例2:(2010深圳) 观察下列算式,用你所发现的规律得出22010的末位数字是( )。
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【简析】有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.通过观察可以发现,本题中的数字从第1个到第4个为一个循环节,以此规律总结下来,第2010个图形应该就是一个循环节中的第2个数字,故选B.【答案】B对应练习1。
有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.(2011湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 类型之二 图形规律型例3:(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这……样的图形中共有 个等腰梯形.【简析】本题考查了图形的变化,解题的关键是按照一定的顺序依次找到符合条件的等腰梯形,做到不重复不遗漏.由于图②4个=2+1+1,图③8个3+2+2+1+1,图④16=4+3+3+2+2+1+1,由此即可得到第10个图形中等腰梯形的个数为:10+9+9+8+8+7+7+6+6+5+5+4+4+3+3+2+2+1+1=100. 【答案】100.例4: (2011兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
一次函数找规律题
一次函数找规律题一次函数找规律题:在数学的奇妙世界里,一次函数有着独特的规律。
简单来说,一次函数的表达式为 y = kx + b(其中 k 、b 为常数,k ≠ 0),当 k > 0 时,函数图像是从左到右上升的,y 随 x 的增大而增大;当 k < 0 时,函数图像从左到右下降,y 随 x 的增大而减小。
这就好比我们去爬山,k 就像是山坡的陡峭程度。
当 k > 0 ,这山坡就是个让人兴奋的缓坡,你越往上爬(x 增大),所处的位置就越高(y 增大)。
而当 k < 0 时,这山坡就变成了让人望而却步的陡坡,你越往前走(x 增大),反而越往下掉(y 减小)。
再想象一下,一次函数的图像是一辆行驶中的汽车。
k 是汽车的油门,当 k > 0 ,就像猛踩油门,车一路飞驰,y 值越来越大;当 k < 0 ,如同猛踩刹车,车逐渐减速,y 值越来越小。
咱们来举个例子吧,比如说电话费的计算。
假设每月基础费用是 b 元,每分钟通话费用是 k 元,通话时长是 x 分钟,那么总费用 y 就可以用一次函数 y = kx + b 来表示。
如果每分钟通话费用 k 是 0.2 元,基础费用 b 是 20 元,通话 50 分钟,那总费用 y 就是 0.2×50 + 20 = 30 元。
又比如,小明去跑步,他的初始速度是 b ,每秒加速 k ,跑了 x 秒,那他的速度 y 就可以用这个一次函数来计算。
在实际生活中,一次函数的规律应用广泛。
比如商家制定销售策略,根据成本和预期利润,通过一次函数来确定商品的定价和销量之间的关系。
科学家在研究物理现象时,也常常会用到一次函数来描述变量之间的关系。
总结一下,一次函数的规律就像是一把神奇的钥匙,能帮我们打开很多问题的大门。
它在数学、物理、经济等领域都发挥着重要作用,让我们能更清晰地理解和预测各种变化。
如果您对一次函数的规律还意犹未尽,想要深入探究,那我推荐您去阅读《数学之美》这本书,或者登录“中国科普网”,那里有丰富的数学知识等着您去探索。
一次函数规律探索题(已整理)
一次函数规律题1.如图所示,直线y =x +1与y 轴相交于点A 1,以OA 1为边作正方形OA 1B 1C 1,记作第一个正方形;然后延长C 1B 1与直线y =x +1相交于点A 2,再以C 1A 2为边作正方形C 1A 2B 2C 2,记作第二个正方形;同样延长C 2B 2与直线y =x +1相交于点A 3,再以C 2A 3为边作正方形C 2A 3B 3C 3,记作第三个正方形;…依此类推,则第n 个正方形的边长为________________ . 2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B n 的坐标是______________.3.如图,直线3y x =,点1A 坐标为(1,0),过点1A 作x 的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A x 的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点5A 的坐标为( , )。
4.如图,直线y=33x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原O 为圆心,OB 1长为半径画弧x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此做法进行下去,点An 的横坐标为_______5.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为____________6.如图,在平面直角坐标系中,直线y=-33x+3交x 轴于A 点,交y 轴于B 点,点C 是线段AB 的中点,连接OC ,然后将直线OC 绕点C 顺时针旋转30°交x 轴于点D ,再过D 点作直线DC 1∥OC ,交AB 与点C 1,然后过C 1点继续作直线D 1C 1∥OC ,交x 轴于点D 1,并不断重复以上步骤,记△OCD 的面积为S 1,△DC 1D 1的面积为S 2,依次类推,后面的三角形面积分别是S 3,S 4…,那么S 1= ______,若S=S 1+S 2+S 3+…+S n ,当n 无限大时,S 的值无限接近于_______ .7.如图7所示,直线OP 经过点P(4, 43),过x 轴上的点l 、3、5、7、9、11……分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S 1、S 2、S 3……S n 则S n 关于n 的函数关系式是__________.yx O C 1 B 2A 2C 3 B 1 A 3 B 3 A 1 C 2(第2题图) 第3题 第4题 第5题 第6题 0 1 3 5 7 9 11 S 1 S 2 S 3图7 x y p8.如图8,直线1l x ⊥轴于点(1,0),直线2l x ⊥轴于点(2,0),直线3l x ⊥轴于点(3,0),…直线n l x ⊥轴于点(,0)n .函数y x =的图象与直线1l ,2l ,3l ,…n l 分别交于点1A ,2A ,3A ,…n A ;函数2y x =的图象与直线1l ,2l ,3l ,…n l 分别交于点1B ,2B ,3B ,…n B .如果11OA B ∆的面积记作1S ,四边形1221A A B B 的面积记作2S ,四边形2332A A B B 的面积记作3S ,…四边形11n n n n A A B B --的面积记作n S ,那么2011S = .9.如图,已知A (4,0),点A 1、A 2、…、A n-1将线段OAn 等分,点B 1、B 2、…、B n-1、B 在直线y=0.5x 上,且A 1B 1∥A 2B 2∥…∥A n-1B n-1∥AB ∥y 轴.记△OA 1B 1、△A 1A 2B 2、…、△A n-2A n-1B n-1、△A n-1AB 的面积分别为S 1、S 2、…S n-1、S n .当n 越来越大时,猜想S 1+S 2+…+S n 最近的常数是( )A.1 B.2 C.4 D.810.如图,点A 、B 、C 在一次函数y=-2x+m 的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是_________.11.如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y=ax ,y=(a+1)x ,y=(a+2)x 相交,其中a >0.若图中阴影部分的面积是75a ,则a 为_________.12.如图所示,直线y=33x+33与y 轴相交于点D ,点A 1在直线y=33x+33上,点B1在X 轴上,且△OA 1B 1是正三角形,记作第一个正三角形;然后过B 1作B 1A 2∥OA 1与直线y=33x+33相交于点A 2,点B 2在X 轴上,再以B 1A 2为边作正三角形A 2B 2B 1,记作第二个正三角形;…依此类推,则第n 个正三角形的顶点An 的纵坐标为_______________13.如图已知:点(00)A ,,(30)B ,,(01)C ,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于 _______.14.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线33y x =上,则点A 2014的坐标是________. (第14题图) y x B 3B 2 B 1 A 2 A 1OA . . . O y x (A ) A 1 C 1 1 2B A 2 A 3 B 3 B 2 B 1 13题图第8题 第9题 第10题 第11题第12题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数规律题
1.如图所示,直线y =x +1与y 轴相交于点A 1,以OA 1为边作正方形OA 1B 1C 1,记作第一个正方形;然后延长C 1B 1与直线y =x +1相交于点A 2,再以C 1A 2为边作正方形C 1A 2B 2C 2,记作第二个正方形;同样延长C 2B 2与直线y =x +1相交于点A 3,再以C 2A 3为边作正方形C 2A 3B 3C 3,记作第三个正方形;…依此类推,则第n 个正方形的边长为________________ . 2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2), 则B n 的坐标是______________.
3.如图,直线3y x =,点1A 坐标为(1,0),过点1A 作x 的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A x 的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点
3A ,…,按此做法进行下去,点5A 的坐标为
( , )。
4.如图,直线y=33x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原O 为圆心,OB 1长为半径画弧x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此做法进行下去,点An 的横坐标为_______
5.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直
线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为____________
6.如图,在平面直角坐标系中,直线y=-3
3x+3交x 轴于A 点,交y 轴于B 点,点C 是线段AB 的中点,连接OC ,然后将直线OC 绕点C 顺时针旋转30°交x 轴于点D ,再过D 点作y
x
O C 1 B
A 2
C 3 B A 3 B 3 A C 2 (第2题图)
第3题 第6题 0 1 3 5 7 9 11 S 1 S 2 S 3 图7 x y p
直线DC 1∥OC ,交AB 与点C 1,然后过C 1点继续作直线D 1C 1∥OC
,交x 轴于点D 1,并不断重复以上步骤,记△OCD 的面积为S 1,△DC 1D 1的面积为S 2,依次类推,后面的三角形面积分别是S 3,S 4…,那么S 1= ______,若S=S 1+S 2+S 3+…+S n ,当n 无限大时,S 的值无限接近于_______ .
7.如图7所示,直线OP 经过点P(4, 43),过x 轴上的点l 、3、5、7、9、11……分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S 1、S 2、S 3……S n 则S n 关于n 的函数关系式是__________.
8.如图8,直线1l x ⊥轴于点(1,0),直线2l x ⊥轴于点(2,0),直线3l x ⊥轴于点(3,0),…直线n l x ⊥轴于点(,0)n .函数y x =的图象与直线1l ,2l ,3l ,…n l 分别交于点1A ,2A ,3A ,…n A ;函数2y x =的图象与直线1l ,2l ,3l ,…n l 分别交于点1B ,2B ,3B ,…n B .如果11OA B ∆的面积记作1S ,四边形1221A A B B 的面积记作2S ,四边形2332A A B B 的面积记作3S ,…四边形11n n n n A A B B --的面积记作n S ,那么2011S = .
9.如图,已知A (4,0),点A 1、A 2、…、A n-1将线段OAn 等分,点B 1、B 2、…、B n-1、B 在直线y=上,且A 1B 1∥A 2B 2∥…∥A n-1B n-1∥AB ∥y 轴.记△OA 1B 1、△A 1A 2B 2、…、△A n-2A n-1B n-1、△A n-1AB 的面积分别为S 1、S 2、…S n-1、S n .当n 越来越大时,猜想S 1+S 2+…+S n 最近的常数是( ) .2 C
10.如图,点A 、B 、C 在一次函数y=-2x+m 的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是_________.
11.如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y=ax ,y=(a+1)x ,y=(a+2)x 相交,其中a >0.若图中阴影部分的面积是75a ,则a 为_________.
12.如图所示,直线y=33x+33与y 轴相交于点D ,点A 1在直线y=33x+3
3上,点B1在X 轴上,且△OA 1B 1是正三角形,记作第一个正三角形;然后过B 1作B 1A 2∥OA 1与直线第8题 第9题 第10题 第11题
y=33x+3
3相交于点A 2,点B 2在X 轴上,再以B 1A 2为边作正三角形A 2B 2B 1,记作第二个正三角形;…依此类推,则第n 个正三角形的顶点An 的纵坐标为_______________
13.如图已知:点(00)A ,,(30)B ,,(01)C ,在ABC △内依次作等边三角形,使一边在x
轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于 _______.
14.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线33
y x 上,则点A 2014的坐标是________.
(第14题图) y
x B 3
B 2 B 1 A 2 A 1 O A
. . . O y x (A )
A 1
C 1 1 2 B A 2 A 3 B 3 B 2 B 1 13题图 第12题。