高中数学第二章数列2.3等差数列的前n项和课件新人教A版必修5
最新人教版高中数学必修5第二章《数列》本章概览
第二章数列
本章概览
三维目标
通过日常生活中的实例,了解数列的概念,认识数列是反映自然规律的基本数学模型.
了解数列的简单表示法(列表、图象、通项公式),认识数列是一种特殊函数.
通过实例,理解等差数列、等比数列的概念,探索并掌握等差数列、等比数列的通项公式与前n项和公式.
能在具体的问题情景中,发现数列的等差关系和解决相应的问题.
体会等差数列、等比数列、一次函数、指数函数的关系.
通过实际问题引入数列概念,体会数列的函数背景,感受数列是研究现实问题情境的数学模型.
知识网络。
新教材人教a版选择性必修第二册432等比数列的前n项和公式第1课时课件2
课前预习
(5)等比数列{an}中,只要a1>0,公比q>0,则前n项和Sn就可以趋向于+∞.( × )
课前预习
知识点二 等比数列的前n项和的性质
Sk
S2k-Sk S3k-S2k
图4-3-2
课前预习
q q
qmSn
课前预习
【诊断分析】 判断正误.(请在括号中打“√”或“×”) (1)在等比数列{an}中,Sn是其前n项的和,则S2n,S4n,S6n成等比数列.( × ) [解析]取常数列1,1,1,…,则S2n=2n,S4n=4n,S6n=6n,S2n,S4n,S6n不成等比数列. (2)在等比数列{an}中,Sn是其前n项的和,则S2n,S4n-S2n,S6n-S4n成等比数列.( × ) [解析]取数列-1,1,-1,…,则S2n=0,S4n-S2n=0,S6n-S4n=0,故S2n,S4n-S2n,S6n-S4n不成 等比数列.
课中探究
拓展 已知等比数列{an}共有32项, 其公比q=3,且奇数项之和比偶数 项之和少60,则数列{an}的所有项 之和是 ( D ) A.30 B.60 C.90 D.120
[解析] 设等比数列{an}的奇数项之和为S1, 偶数项之和为S2,则 S1=a1+a3+a5+…+a31,S2=a2+a4+a6+…+a3 2=q(a1+a3+a5+…+a31)=3S1,又S1+60=S2, 所以S1+60=3S1,可得S1=30,S2=90,故数列 {an}的所有项之和是30+90=120.
课前预习
知识点一 等比数列的前n项和
na1
高中数学第二章数列25等比数列的前n项和第1课时等比数列前n项和的求解课件新人教A版必修
另一方面,设每个月还贷 a 元,分 6 个月还清,到贷 款还清时,其本利和为
S2=a(1+0.01)5+a(1+0.01)4+…+a=
a[(1+1.001.0-1)1 6-1]=a(1.016-1)×102(元). 由 S1=S2,得 a=11.0.0116×6-1102. 因为 1.016≈1.061,所以 a=11.0.06611×-1102≈1 739. 故每月应支付 1 739 元.
=12+121-1-1212n-1-22nn-+11 =32-22nn++13, 所以 Sn=3-2n2+n 3. 答案:3-2n2+n 3
类型 1 等比数列求和公式的基本运算 [典例 1] 在等比数列{an}中: (1)S2=30,S3=155,求 Sn; (2)a1+a3=10,a4+a6=54,求 S5; (3)a1+an=66,a2an-1=128,Sn=126,求 q. 解:(1)由题意知aa11((11++qq)+=q2)30=,155,
[变式训练] 在等比数列{an}中:
(1)若 a1= 2,an=16 2,Sn=11 2,求 n 和 q; (2)已知 S4=1,S8=17,求 an.
解:(1)由 Sn=a11--aqnq得 112=Βιβλιοθήκη 2-16 1-q2q,
所以 q=-2,
又由 an=a1qn-1 得 16 2= 2(-2)n-1, 所以 n=5.
又 Sn=a11--aqnq=126, 所以 q 为 2 或12. 归纳升华 1.在等比数列{an}的五个量 a1,q,an,n,Sn 中, 已知其中的三个量,就能求出另两个量,这是方程思想 与整体思想在数列中的具体应用. 2.在解决与前 n 项和有关的问题时,首先要判断公 比 q 是否等于 1,若两种情况都有可能,则要分类讨论.
高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学
2.3 等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n a1+a n2S n=na1+n n-12d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和( )(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式( )(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1( )解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.预习课本P42~45,思考并完成以下问题答案:(1)√ (2)× (3)×2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n n +12解析:选 D 因为a 1=1,d =1,所以S n =n +n n -12×1=2n +n 2-n 2=n 2+n 2=n n +12,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20,即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n n -12d =-5,解得n =15或n =-4(舍). (2)由已知,得S 8=8a 1+a 82=84+a 82=172, 解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,这五个量可以“知三求二”.一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[活学活用]设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 8=11,则S 9等于( ) A .13 B .35 C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8, ∴S 9=9a 2+a 82=9×142=63.已知S n 求a n 问题[典例] 已知数列{a n }的前n 项和S n =-2n 2+n +2.(1)求{a n }的通项公式; (2)判断{a n }是否为等差数列? [解] (1)∵S n =-2n 2+n +2, ∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4,但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2;(2)S n =3n-1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n-1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1; ②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2, [法一 公式法]S n =25n +n n -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n2=-32n 2+n2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选 C 由等差数列的性质及求和公式得,S 13=13a 1+a 132=13a 7>0,S 15=15a 1+a 152=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92a 1+a 952a 1+a 5=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________. 解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +1a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3, 当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C. 3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a n b n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -122n -1b 1+b 2n -122n -1=A 2n -1B 2n -1=72n -1+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴a 1+a 4×42=28,a 1+a 4=14,a 2+a 3=14,又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c . 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧ a 1=50,d =-3,∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -12d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝ ⎛⎭⎪⎫-32×172+1032×17-⎝ ⎛⎭⎪⎫-32n 2+1032n =32n 2-1032n +884. ∴S n =⎩⎪⎨⎪⎧ -32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
2019_2020学年高中数学第二章数列2.3.1等差数列的前n项和练习(含解析)新人教A版必修5
第11课时 等差数列的前n 项和知识点一 等差数列前n 项和公式的简单应用1.已知等差数列{a n }中,a 2=7,a 4=15,则S 10等于( ) A .100 B .210 C .380 D .400 答案 B 解析 ∵d =a 4-a 24-2=15-72=4,又a 2=a 1+d =7,∴a 1=3.∴S 10=10a 1+10×92d =10×3+45×4=210.故选B .2.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48 答案 B 解析 ∵S 10=10a 1+a 102=5(a 2+a 9)=120,∴a 2+a 9=24.3.设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A .8 B .7 C .6 D .5 答案 D 解析 ∵S 7=a 1+a 72×7=35,∴a 1+a 7=10,∴a 4=a 1+a 72=5.知识点二 “知三求二”问题4.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12 答案 B解析 a 1=1,a 3+a 5=2a 1+6d =14,∴d =2,∴S n =n +n n -12×2=100.∴n =10.5.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 答案 2n解析 由已知⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n .知识点三 a n 与S n 的关系6.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2 B .-32n 2-n2C .32n 2+n 2D .32n 2-n 2 答案 A解析 易知{a n }是等差数列且a 1=-1,所以S n =n a 1+a n2=n 1-3n2=-32n 2+n2.故选A .7.已知等差数列{a n }的前n 项和S n =n 2+n ,则过P (1,a 1),Q (2,a 2)两点的直线的斜率是( )A .1B .2C .3D .4 答案 B解析 ∵S n =n 2+n ,∴a 1=S 1=2,a 2=S 2-S 1=6-2=4.∴过P ,Q 两点直线的斜率k =a 2-a 12-1=4-21=2.8.已知{a n }的前n 项之和S n =2n+1,则此数列的通项公式为________.答案 a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2解析 当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=2n +1-(2n -1+1)=2n -1,又21-1=1≠3,所以a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.易错点一 等差数列的特点考虑不周全9.已知数列{a n }的前n 项和S n =n 2+3n +2,判断{a n }是否为等差数列.易错分析 本题容易产生如下错解:∵a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2.a n +1-a n =[2(n +1)+2]-(2n +2)=2(常数),∴数列{a n }是等差数列.需注意:a n =S n -S n -1是在n ≥2的条件下得到的,a 1是否满足需另外计算验证. 解 a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2,∴a n =⎩⎪⎨⎪⎧6n =1,2n +2n ≥2,显然a 2-a 1=6-6=0,a 3-a 2=2,∴{a n }不是等差数列.易错点二 忽略对项数的讨论10.已知等差数列{a n }的第10项为-9,前11项和为-11,求数列{|a n |}的前n 项和T n . 易错分析 对于特殊数列求和,往往要注意项数的影响,要对部分特殊项进行研究,否则计算易错.解 设等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,则⎩⎪⎨⎪⎧a 1+9d =-9,11a 1+11×102d =-11,解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以a n =9-2(n -1)=11-2n . 由a n >0,得n <112,则从第6项开始数列各项均为负数,那么 ①当n ≤5时,数列{a n }的各项均为正数,T n =n a 1+a n 2=n 9+11-2n 2=n (10-n );②当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5)=-S n +2S 5=n 2-10n +2×(10×5-52)=n 2-10n +50.所以T n =⎩⎪⎨⎪⎧n 10-n ,1≤n ≤5,n 2-10n +50,n ≥6.一、选择题1.在各项均不为零的等差数列{a n }中,若a n +1-a 2n +a n -1=0(n ≥2),则S 2n -1-4n =( ) A .-2 B .0 C .1 D .2 答案 A解析 ∵{a n }是等差数列,∴2a n =a n -1+a n +1(n ≥2).又a n +1-a 2n +a n -1=0(n ≥2),∴2a n-a 2n =0.∵a n ≠0,∴a n =2,∴S 2n -1-4n =(2n -1)×2-4n =-2.故选A .2.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是( )A .14斤B .15斤C .16斤D .18斤 答案 B解析 由题意可知等差数列中a 1=4,a 5=2,则S 5=a 1+a 5×52=4+2×52=15, ∴金杖重15斤.故选B .3.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n n -12×2d =90,a 2+a 4+…+a2n=na 2+n n -12×2d =72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.4.一同学在电脑中打出如下图案:○●○○●○○○●○○○○●○○○○○●…若将此图案依此规律继续下去,那么在前120个中的●的个数是( )A .12B .13C .14D .15 答案 C解析 S =(1+2+3+…+n )+n =n n +12+n ≤120,∴n (n +3)≤240,∴n =14.故选C .5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15.∴n =14,S 14=14×2+12×14×13×7=665.二、填空题6.已知数列{a n }的前n 项和S n =n 2+1,则a 1+a 5=________. 答案 11解析 由S n =n 2+1,得a 1=12+1=2,a 5=S 5-S 4=(52+1)-(42+1)=9.∴a 1+a 5=2+9=11.7.S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________.答案 35解析 ∵S n 是等差数列{a n }的前n 项和,S n S 2n =n +14n +2, ∴S 1S 2=a 1a 1+a 1+d =26=13,∴3a 1=2a 1+d ,∴a 1=d ,∴a 3a 5=a 1+2d a 1+4d =3d 5d =35.8.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10=________. 答案 -15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9, ∵a n <0,∴a 3+a 8=-3. ∴S 10=10a 1+a 102=10a 3+a 82=10×-32=-15. 三、解答题9.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n n -12×12=14n 2-94n . 10.已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n ,令c n =(-1)nS n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)dn -2+2n -1,a ∈R .(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围. 解 (1)设等差数列的公差为d ,因为c n =(-1)nS n ,所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,则10(3+d )+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n . (2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n=2(a -2)3n -1+2n-[2(a -2)3n -2+2n -1]=4(a -2)3n -2+2n -1=4·3n -2⎣⎢⎡⎦⎥⎤a -2+12⎝ ⎛⎭⎪⎫23n -2,由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,因为2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2最小值为54,所以a ≤54.。
【数学】2.3.2《等差数列前N项和公式》课件(新人教A必修5)
2.已知an 1024 lg 21 n , 2 0.3010),n N ,问: (lg
中,S n为前n项和,公差d 2 3.在等差数列 an
且S 4 1 ,求:a17 a18 a19 a20的值
?
1 1、已知数列a n 且a n 0,n N ,前n项的和s n 满足s n (a n 4) 2 8 ( )求该数列的通项,并 1 判断该数列是否为等差 数列
一.等差数列an 的首项a1 0, 公差d 0时,前n项和S n 有最大值
1、利用S n:S n d n 2 (a1 d )n.借助二次函数最值问题 2 2
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
二.等差数列anቤተ መጻሕፍቲ ባይዱ 的首项a1 0, 公差d 0时,前n项和S n 有最小值
例1:已知数列an 的前n项和为S n n 2 1 n, 求这个数列的通项公式 , 2 并判断这个数列是等差 数列吗?如果是,它的 首项与公差各是多少?
解:根据 Sn a1 a2 an 1 an与Sn 1 a1 a2 an 1 (n1)
1 (2)若有bn a n 30,求数列bn 的前n项和Tn的最值与此时的n值。 2
练习2:已知数列an 的前n项的和为: S n 1 n 2 2 n 3, 4 3 求数列通项公式。
解:根据 S n 1 n 2 2 n 3与S n 1 1 (n 1) 2 2 (n 1) 3(n1) 4 3 4 3
所以数列an 的通项公式为: an 2n 1 2
由此题,如何通过 数列前n项和来求 数列通项公式?
2017-2018年度高中数学 第二章 数列 2.3 等差数列的前n项和讲义 新人教A版必修5
[例 4] 已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式; (2)当 n 为何值时,数列{an}的前 n 项和取得最大值. 【思路点拨】
跟踪训练 2 已知数列{an}的前 n 项和 Sn=-2n2+n+2. (1)求{an}的通项公式; (2)判断{an}是否为等差数列?
解析:(1)因为 Sn=-2n2+n+2, 所以当 n≥2 时,Sn-1=-2(n-1)2+(n-1)+2 =-2n2+5n-1,
所以 an=Sn-Sn-1 =(-2n2+n+2)-(-2n2+5n-1)
A.138
B.135
C.95
D.23
解析:由 a2+a4=4,a3+a5=10,可得 d=3,a1=-4. 所以 S10=-40+10× 2 9×3=95. 答案:C
3.(教材同类改编)等差数列{an}中,d=2,an=11,Sn=35, 则 a1 等于( )
A.5 或 7 B.3 或 5 C.7 或-1 D.3 或-1
令 an≥0,则 11-2n≥0,解得 n≤121. ∵n∈N+,∴n≤5 时,an>0,n≥6 时,an<0. ∴S5 最大.
方法归纳,
求等差数列的前 n 项和 Sn 的最值有两种方法: (1)通项法 ①当 a1>0,d<0 时,{an}只有前面的有限项为非负数,从某 项开始其余所有项均为负数,所以由am≥0, am+1≤0 可得 Sn 的最大值为 Sm;②当 a1<0,d>0 时,{an}只有前面的有限项为负 数,从某项开始其余所有项均为非负数,所以由
=-4n+3.
又 a1=S1=1,不满足 an=-4n+3, 所以数列{an}的通项公式是
高中数学人教A版必修5课件 2-3 等差数列的前n项和 第10课时《等差数列前n项和的性质与应用》
【练习 2】 在等差数列{an}中,a1=25,S17=S9,求 Sn 的最大值.
解:解法一:利用前 n 项和公式和二次函数的性质. 由 S17=S9,得 25×17+127×(17-1)d=25×9+92×(9-1)d, 解得 d=-2. ∴Sn=25n+n2(n-1)(-2)=-(n-13)2+169. ∴由二次函数的性质,得当 n=13 时,Sn 有最大值 169.
法三:因为等差数列前 n 项和 Sn=an2+bn=a·nn+ba,根据已知, 可令 An=(7n+2)kn,Bn=(n+3)kn.
∴a5=A5-A4 =(7×5+2)k×5-(7×4+2)k×4=65k,
b5=B5-B4=(5+3)k×5-(4+3)k×4=12k.
∴ab55=6152kk=6152. 法四:由AB22nn--11=abnn,有ba55=AB99=7×9+9+3 2=6152.
解法二:由解法一,得 d=-2. ∵a1=25>0,
由aann=+1=252-5-2n2-n≤10≥,0, 得nn≤≥11321212
.
∴当 n=13 时,Sn 有最大值,最大值为 S13=13×25+13×2 12×(-
2)=169.
解法三:由 S17=S9,得 a10+a11+…+a17=0, 而 a10+a17=a11+a16=a12+a15=a13+a14, 故 a13+a14=0. 由解法一,得 d=-2<0,a1>0, ∴a13>0,a14<0. 故 n=13 时,Sn 有最大值,最大值为 S13=13×25+13×2 12×(-
高中数学第二章数列2.3等差数列前n项和(第1课时)课件新人教A版必修5
时,易忽略验证第一项.
[活学活用] 已知等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式;(2)若数列{an}的前 k 项和 Sk=-35,求 k 的值. 解:(1)设等差数列{an}的公差为 d,则 an=a1+(n-1)d. 由 a1=1,a3=-3 可得 1+2d=-3.解得 d=-2. 从而,an=1+(n-1)×(-2)=3-2n. (2)由(1)可知 an=3-2n.所以 Sn=n1+23-2n=2n- n2.进而由 Sk=-35,可得 2k-k2=-35. 又 k∈N*,故 k=7 为所求.
归纳小结
等差数列的前 n 项和公式
已知量 首项,末项与项数 首项,公差与项数
选用 公式
Sn=na12+an
Sn=na1+nn2-1d
[化解疑难] 等差数列前 n 项和公式的特点
(1)两个公式共涉及到 a1,d,n,an 及 Sn 五个基本量,它 们分别表示等差数列的首项,公差,项数,通项和前 n 项和.
[答案] B
(2)[解] ∵数列{an}为等差数列, ∴S10,S20-S10,S30-S20,…,S110-S100 也成等差数列. 设其公差为 D,则 S10+(S20-S10)+(S30-S20)+…+(S100 -S90)=S100,
即 10S10+10×2 9×D=S100=10. 又∵S10=100,代入上式,得 D=-22, ∴S110-S100=S10+(11-1)×D=100+10×(- 22)=-120, ∴S110=-120+S100=-110.
答案:104
高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5
第十六页,共25页。
研一研·问题(wèntí)探究、课堂更高
效 例2
已知1a,1b,1c成等差数列,求证:b+a c,a+b c,a+c b也
成等差数列.
证明 ∵1a,1b,1c成等差数列,
本
∴2b=1a+1c,即 2ac=b(a+c).
讲 栏 目
∵b+a c+a+c b=cb+c+acaa+b=c2+a2+acba+c
开 关
(5)1,2,5,8,11,….
第七页,共25页。
研一研·问题探究(tànjiū)、课堂更 高效
解 (1)是等差数列,a1=4,d=3;
(2)是等差数列,a1=31,d=-6;
本 讲
(3)是等差数列,a1=0,d=0;
栏 目
(4)是等差数列,a1=a,d=-b;
开 关
(5)不是等差数列,a2-a1=1,a3-a2=3,∴a2-a1≠a3-a2.
高效 探究 若数列{an}满足:an+1=an+2an+2,求证:{an}是等差
数列.
证明 ∵an+1=an+2an+2
本
⇔2an+1=an+an+2
讲 栏
⇔an+2-an+1=an+1-an
目
开 关
∴an+1-an=an-an-1=…=a2-a1(常数).
∴{an}是等差数列.
第十三页,共25页。
跟踪训练 2 已知 a,b,c 成等差数列,那么 a2(b+c),b2(c
+a),c2(a+b)是否能构成等差数列?
证明 ∵a,b,c 成等差数列,∴a+c=2b.
本 ∴a2(b+c)+c2(a+b)=a2b+a2c+c2a+c2b
讲 栏
=(a2b+c2b)+(a2c+c2a)=b(a2+c2)+ac(a+c)
人教版高中数学必修五等差数列的前n项和课件 (1)
解析: 数列{an}的公差d=a1177--a11=-121-7--1 60=3, ∴an=a1+(n-1)d=-60+(n-1)×3=3n-63. 由an<0得3n-63<0,解得n<21. ∴数列{an}的前20项是负数,第20项以后的项都为非负 数. 设Sn,S′n分别表示数列{an}和{|an|}的前n项和, 当n≤20时,S′n=-Sn=--60n+nn2-1×3 =-32n2+1223n;
可利用配方法求出二次函数的最值来确定Sn的最值,但应注意
n∈N*. ,
2.(1)在数列{an}中,已知an=2n-49,则Sn取 得最小值时,n=( )
A.26
B.25
C.24 D.23
(2)若等差数列{an}的前n项和为Sn,且a1= 29,5a8=a5-8,则Sn的最大值为________.
解析: (1)由an=2n-49知a1=-47,d=2>0. Sn=na1+nn2-1d=-47·n+nn2-1×2 =n2-48n=(n-24)2-242 ∴当n=24时,Sn取得最小值.
解析: 利用等差数列的性质求解. ∵{an}是等差数列,∴a2+a4=2a3=1+5,∴a3=3, ∴S5=5a12+a5=5×22a3=5a3=5×3=15.
答案: B
3.在等差数列{an}中,a1=1,a3+a5=14,其 前n项和Sn=100,则n=____________.
解析: ∵a3+a5=a1+a7=14,∴a7=13. 又a7=a1+(7-1)d,∴d=13- 6 1=2. Sn=na1+nn-2 1d. ∴n×1+nn2-1×2=100. 解得n=10或n=-10(舍).
2a1+5d=19, (2)由题设可得5a1+552-1d=40, 即a21a+1+2d5=d=8,19, 解得da=1=32,, 故 a10=2+3×(10-1)=29.
2020_2021学年高中数学第二章数列2.3.1等差数列的前n项和同步作业含解析新人教A版必修52
等差数列的前n项和(30分钟60分)一、选择题(每小题5分,共30分)1.已知等差数列{a n}的前10项和为30,a6=8,则a100=( )A.100B.958C.948D.18【解析】选C.设等差数列{a n}的公差为d,由已知解得所以a100=-42+99×10=948.2.已知等差数列{a n}的公差为3,且a1+a3=8,则数列{a n}的前4项的和S4的值为( ) A.10B.16C.22D.35【解析】选C.因为等差数列{a n}的公差为3,且a1+a3=8,所以2a1+2×3=8,所以a1=1,所以S4=4×1+×3=22.3.(2019·某某高二检测)已知等差数列的前n项和S n,且S3=S5=15,则S7=() A.4B.7C.14D.【解析】选B.等差数列的前n项和为S n,且S3=S5=15,所以a4+a5=0,所以2a1+7d=0.再根据S3=3a1+3d=15,可得a1=7,d=-2,则S7=7a1+d=49+21×(-2)=7.4.(2019·某某高一检测)在等差数列{a n}中,若a3+a4+a5+a6+a7=45,则S9=() A.45B.162C.81D.【解析】选C.因为在等差数列{a n}中,a3+a4+a5+a6+a7=5a5=45,所以a5=9.所以S9==9a5=81.5.等差数列{a n}的前n项和为S n,若=,则下列结论中正确的是( )A.=2B.=C.=D.=【解析】选C.由已知S n=a n,S n-1=a n-1(n≥2),两式相减可得a n=a n-a n-1(n≥2),化简得=(n≥2),当n=3时,=.6.数列{a n}的前n项和S n=2n2+n(n∈N*),则a n=( )A.2n-1B.2n+1C.4n-1D.3n+2【解析】选C.因为数列{a n}的前n项和S n=2n2+n,所以当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1,当n=1时,a1=S1=3,符合上式,所以综上a n=4n-1.二、填空题(每小题5分,共10分)7.设等差数列{a n}的前n项和为S n,S3=6,S4=12,则S6=________.【解析】方法一:设数列{a n}的首项为a1,公差为d,由S3=6,S4=12,得解得所以S6=6a1+15d=30.方法二:因为{a n}为等差数列,可设前n项和S n=An2+Bn,由S3=6,S4=12得解得即S n=n2-n,所以S6=36-6=30.答案:308.设等差数列{a n}的前n项和为S n,若S8=32,则a2+2a5+a6=__________.【解析】因为S8=32,所以=32.可得a4+a5=a1+a8=8,则a2+2a5+a6=2(a4+a5)=2×8=16.答案:16三、解答题(每小题10分,共20分)9.在各项为正的等差数列{a n}中,已知公差d=2,a n=11,S n=35,求a1和n.【解析】由题意得即解得或(舍去)故10.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ.(2)是否存在λ,使得{a n}为等差数列?并说明理由.【解析】(1)由a n a n+1=λS n-1知,a n+1a n+2=λS n+1-1,两式相减得,a n+1(a n+2-a n)=λa n+1,又因为a n+1≠0,所以a n+2-a n=λ.(2)存在.由a1=1,a1a2=λa1-1,得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.所以a n+2-a n=4,由此可得,{a2n-1}是首项为1,公差为4的等差数列,a2n-1=1+(n-1)·4=4n-3; {a2n}是首项为3,公差为4的等差数列,a2n=3+(n-1)·4=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得{a n}为等差数列.(45分钟75分)一、选择题(每小题5分,共25分)1.已知等差数列{1-3n},则公差d等于( )A.1B.3C.-3D.n【解析】选C.因为a n=1-3n,所以a1=-2,a2=-5,所以d=a2-a1=-3.2.设等差数列{a n}的前n项和为S n,若S17=255,a10=20,则数列{a n}的公差为( ) A.3B.4C.5D.6【解析】选C.根据等差数列的求和公式,可得S17=×17=17a9=255,可得a9=15,又a10=20,所以d=a10-a9=20-15=5.3.等差数列中,S n是前n项和,若a3+a8=5,S9=45,则S11=( )A.0B.10C.20D.25【解析】选A.设等差数列的首项为a1,公差为d,因为,所以,即,解得,则S11=25×11-×5=0.故选A.4.已知等差数列{a n}中,a2=6,a5=15,若b n=a2n,则数列{b n}的前5项和等于( ) A.30B.45C.90D.186【解析】选C.因为所以故所以a n=a1+(n-1)d=3n,故b n=a2n=6n,则因此{b n}的前5项和为S5=5×6+×6=90.5.(2019·定州高一检测)记等差数列{a n}的前n项和为S n,若a5=3,S13=91,则S11=( ) A.36B.72C.55D.110【解析】选C.因为S13==13a7=91,所以a7=7,因为a5=3,所以a5+a7=10,因为a1+a11=a5+a7=10,所以S11==55.二、填空题(每小题5分,共20分)6.(2019·全国卷Ⅲ)记S n为等差数列{a n}的前n项和,a1≠0,a2=3a1,则=________.【解析】设该等差数列的公差为d,因为a2=3a1,所以a1+d=3a1,故d=2a1(a1≠0,d≠0),所以====4.答案:47.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为________.【解析】(1)当n=1时,a1=S1=12-8=-7.(2)当n>1时,由S n=n2-8n得:S n-1=(n-1)2-8(n-1)=n2-10n+9,两式相减,得:a n=2n-9,n=1也符合,由a n=2n-9>0,得:n>4.5,所以,满足a n>0的n的最小值为5.答案:58.已知数列{a n}的前n项和S n=n2-2n+3,则a n=________.【解析】当n=1时,a1=S1=2,当n≥2,a n=S n-S n-1=n2-2n-(n-1)2+2(n-1)=2n-3,故a n=答案:9.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,天坛圆丘的地面由扇环形的石板铺成(如图所示),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是________.【解析】因为最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则每圈的石板数构成一个以9为首项,以9为公差的等差数列,所以a n=9n,当n=9时,第9圈共有81块石板,所以前9圈的石板总数S9=(9+81)=405.答案:405三、解答题(每小题10分,共30分)10.等差数列{a n}的前n项和记为S n,已知a10=30,a20=50.(1)求通项a n.(2)令S n=242,求n.【解析】(1)由a n=a1+(n-1)d,a10=30,a20=50,得方程组解得所以a n=2n+10.(2)由S n=na1+·d,S n=242,得方程12n+×2=242,解得n=11或n=-22(舍去),即n=11.11.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(1)若S5=5,求S6及a1.(2)求d的取值X围.【解析】(1)由题意知S6=-=-3,a6=S6-S5=-8,所以解得a1=7. 综上,S6=-3,a1=7.(2)因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2+9da1+10d2+1=0,所以(4a1+9d)2=d2-8,所以d2≥8.故d的取值X围为d≤-2或d≥2.12.(2017·某某高考)对于给定的正整数k,若数列{a n}满足a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”.(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【证明】(1)因为是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列是“P数列”.(2)数列既是“P数列”,又是“P数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n),④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2+a3+a3+2d′+a3+3d′=4(a3+d′),即a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,因为a3=a2+d′,所以a1+a2+a2+2d′+a2+3d′=4(a2+d′), 即a1=a2-d′,所以数列{a n}是等差数列.。
高中数学人教A版必修5课件:2.3.1 等差数列的前n项和
-4-
第1课时 等差数列的 前n项和
1 2
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
2.等差数列{an}的前 n 项和 设等差数列{an}的公差是 d,则 Sn=
������(������1+������������ ) 2
������(������1 +������������ ) 2
=
������ 6-2 2
53
= −5, 解得n=15.∴a15 =
=
8(4+������8 ) 2
= 172, 解得a8=39.
又 a8=4+(8-1)d=39,∴d=5. (3)由 ������������ = ������1 + (������-1)������, ������������ = ������������1 + ������ = 7, ������ = 5, 解方程组得 或 ������1 = 3 ������1 = -1.
-12-
第1课时 等差数列的 前n项和
题型一 题型二 题型三
M 目标导航
题型四
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
(2)设数列{an}的前 n 项和为 Sn,点
������
������������ ������, ������
D典例透析
IANLI TOUXI
【变式训练1】 (1)已知数列{an}的前n项和为Sn,且Sn=3· 2n+1,则 an= . 解析:当n=1时,a1=S1=7; 当n≥2时,an=Sn-Sn-1=3· 2n+1-3· 2n-1-1=3· 2n-3· 2n-1=3· 2n-1(21)=3· 2n-1. 当n=1时,不满足上式. 7,������ = 1, ∴an= 3· 2������ -1 ,������ ≥ 2. 7,������ = 1, 答案: 3· 2������ -1 ,������ ≥ 2
2019年高中数学第二章数列2.3等差数列的前n项和课件新人教A版必修5
等差数列前 n 项和的常用性质 (1)等差数列的连续 n 项的和仍成等差数列,即 Sn,S2n-Sn, S3n-S2n,…是等差数列. (2)数列Snn是等差数列,公差为数列{an}的公差的12.(3)若{an} 与{bn}均为等差数列,且前 n 项和分别为 Sn 与 S′n,则abnn= SS′2n2-n1-1.
2.在等差数列{an}中,S10=120,且在这 10 项中,SS奇偶=1113, 则公差 d=________. 解析:由SSS偶奇 奇=+S1113偶=120,得SS奇 偶= =5655,所以 S 偶-S 奇=5d=10, 所以 d=2. 答案:2
等差数列前 n 项和的最值问题 在等差数列{an}中,若 a1=25,且 S9=S17,求 Sn 的 最大值.
若将本例中的“Sn=3n-2”改为“Sn=n2+12n”,试判断{an} 是否为等差数列,并说明理由.
解:根据 Sn=a1+a2+…+an-1+an 与 Sn-1=a1+a2+…+
an - 1(n>1), 可 知 , 当
n>1
时
,
an
=
Sn
-
Sn
-
1
=
n2
+
1 2
n
-
(n-1)2+12(n-1)=2n-12,①
在等差数列{an}中, (1)a1=1,a4=7,求 S9; (2)a1=4,S8=172,求 a8 和 d; (3)a1=56,an=-32,Sn=-5,求 n 和 d.
解:(1)设等差数列{an}的公差为 d,则 a4=a1+3d=1+3d=7, 所以 d=2.故 S9=9a1+9×2 8d=9+9×2 8×2=81. (2)由已知得 S8=8(a1+2 a8)=8(4+2 a8)=172, 解得 a8=39, 又因为 a8=4+(8-1)d=39,所以 d=5. 所以 a8=39,d=5.
高中数学第二章数列2.3等差数列的前n项和一课件新人教A版必修5
泰姬陵坐落于印度古都阿格,是
十七世纪莫卧儿帝国皇帝沙杰罕为
纪念其爱妃所建,她宏伟壮观,纯
白大理石砌建而成的主体建筑叫人
心醉神迷,成为世界七大奇迹之一。
陵寝以宝石镶饰,图案之细致令人
叫绝。
传说陵寝中有一个三角形图案,
以相同大小的圆宝石镶饰而成,共
有100层(见左图),奢靡之程度,
可见一斑。
=10d+10d+…+10d =100d,类似可得
10个
(a21+a22+…+a30)-(a11+a12+…+a20)=100d. ∴a1+a2+…+a10,a11+a12+…+a20,a21+a22+…+a30是等差数列.
探究点1 等差数列前n项和公式的应用
命题角度1 方程思想 例1 已知一个等差数列{an}的前10项的和是310,前20项的和是1 220, 由这些条件能确定这个等差数列的前n项和的公式吗?
阅读教材 P42~P44 例 2,完成下列问题.
1.数列的前 n 项和的概念
一般地,称 a1+a2+…+an = a1+a2+…+an .
为数列{an}的前 n 项和,用 Sn 表示,即 Sn
2.等差数列的前 n 项和公式
已知量 首项、末项与项数 首项、公差与项数
求和公
na1+an
式
Sn=
2
Sn= na1+nn2-1d
合作探究
问题1
高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51) =101×50迅速求出了等差数列前100项的和.但如果是求1+ 2+3+…+n,不知道共有奇数项还是偶数项怎么办?
不知道共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相
加来回避这个问题: 设Sn=1+2+3+…+(n-1)+n, 又Sn=n+(n-1)+(n-2)+…+2+1, ∴2Sn=(1+n)+[2+(n-1)]+…+[(n-1)+2]+(n+1), ∴2Sn=n(n+1),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
(a1- d )n.设 A= d ,B=a1- d ,上式可写成 Sn=An2+Bn.当 A≠0(即 d≠0)时,Sn
2
2
2
是关于 n 的二次函数式(常数项为 0).数列 S1,S2,S3,…,Sn 的图象是抛物线 y=Ax2+Bx 上的一群孤立的点.
(2)等差数列奇偶项和的性质 若 S 奇表示奇数项的和,S 偶表示偶数项的和,公差为 d, ①当项数为偶数 2n 时,S 偶-S 奇=nd, S奇 = an ;
2.3 等差数列的前n项和
[目标导航]
课标要求 素养达成
1.了解等差数列前n项和公式的推导过程. 2.掌握等差数列前n项和公式及其应用. 3.能灵活应用等差数列前n项和的性质解题. 4.理解an与Sn的关系,会利用这种关系解决有关问题. 通过对等差数列前n项和的学习,培养学生观察、归纳 和逻辑推理的能力.
法二 由 S5= 5a1 a5 =24,得 a1+a5= 48 ,
2
5
则 a2+a4=a1+a5= 48 . 5
方法技巧
一般地,等差数列的五个基本量a1,an,d,n,Sn,知道其中任意三个量 可建立方程组,求出另外两个量,即“知三求二”问题,若能巧妙地 利用等差数列(或前n项和)的性质会使计算更简便.
①求数列{an}的通项公式; ②求数列{an}的前n项和的最小值,并指出何时取得最小值.
解:(2)①设{an}的首项、公差分别为 a1,d.
则
aa11
9d 2d
18, 3,
解得 a1=-9,d=3,所以 an=3n-12.
②Sn= na1 an = 1 (3n2-21n)= 3 (n- 7 )2- 147 ,
(2)在等差数列{an}中,已知a3=16,S20=20,若Sn=110,求n.
解:(2)设{an}的公差为 d,则
a1 2d 16,
20 19
20a1 2
d
20,
解得
a1=20,d=-2,
所以 20n+ nn 1 ×(-2)=110,
2 即 n2-21n+110=0, 所以 n=10 或 n=11.
2
2
法二 由已知条件得
a5 a10 a1 a10 4d 58,
a4
a9
a1
a10
2d
50,
所以 a1+a10=42,所以 S10= 10a1 a10 =5×42=210.
2 法三 由(a5+a10)-(a4+a9)=2d=58-50=8,得 d=4. 由 a4+a9=50,得 2a1+11d=50,所以 a1=3. 故 S10=10×3+ 10 9 ×4=210.
S偶 an1
②当项数为奇数 2n-1 时,S 奇-S 偶=an, S奇 = n ,S2n-1=(2n-1)an. S偶 n 1
课堂探究·素养提升
题型一 等差数列前n项和的基本运算
[例 1](2019·山东烟台检测)已知等差数列{an}中,
(1)a1= 3 ,d=- 1 ,Sn=-15,求 n 和 an;
[备用例1](1)(2019·江西新余检测)在等差数列{an}中; ①已知a5+a10=58,a4+a9=50,求S10;
解:(1)①法一 由已知条件得
aa54
a10 a9
2a1 13d 58, 2a1 11d 50,
解得
ad1
3, 4.
所以 S10=10a1+ 10 10 1 d=10×3+ 10 9 ×4=210.
2
2
22 8
所以当 n=3 或 4 时,前 n 项的和取得最小值为-18.
题型三 等差数列前n项和的性质及应用
[例3](1)在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20=
.
解析:(1)由等差数列的性质知S4,S8-S4,S12-S8,…也构成等差数列,不 妨设为{bn},且b1=S4=1,b2=S8-S4=3,于是可求得b3=5,b4=7,b5=9, 即a17+a18+a19+a20=b5=9. 答案:(1)9
题型二 等差数列前n项和的最值问题
[例2]已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式;
规范解答:(1)由a1=9,a4+a7=0,得 a1+3d+a1+6d=0,………………………………2分 解得d=-2,……………………………………4分 所以an=a1+(n-1)·d=11-2n.………………6分
2
2
解得 n=4.
又由 an=a1+(n-1)d,即-512=1+(4-1)d, 解得 d=-171.
(3)S5=24,求a2+a4.
解:(3)法一 设等差数列的首项为 a1,公差为 d,
则 S5=5a1+ 5 5 1 d=24,得 5a1+10d=24,即 a1+2d= 24 .
2
5
所以 a2+a4=a1+d+a1+3d=2(a1+2d)=2× 24 = 48 . 55
[备用例2](1)(2019·福建泉州检测)在等差数列{an}中,a1=25,S17=S9,求 Sn的最大值;
解:(1)法一 由 S17=S9,得
25×17+ 17 ×(17-1)d=25×9+ 9 ×(9-1)d,
2
2
解得 d=-2,
所以 Sn=25n+ nn 1 ×(-2)=-(n-13)2+169,
2
2
法三 同法一先求出 d=-2.
由 S17=S9,得 a10+a11+…+a17=0,而 a10+a17=a11+a16=a12+a15=a13+a14,故 a13+a14=0. 因为 d=-2<0,a1>0,所以 a13>0,a14<0,
故 n=13 时,Sn 有最大值,最大值 S13= a1 a13 13 = 25 25 24 13 =169.
2 3.等差数列前n项和的性质 记等差数列{an}中,其前n项和为Sn,则{an}中连续的n项之和构成的数列 Sn,S2n-Sn,S3n-S2n,S4n-S3n,…构成公差为n2d的等差数列.
名师点津
(1)等差数列前 n 项和的函数特点
对于等差数列{an},如果 a1,d 是确定的,前 n 项和 Sn=na1+ nn 1 d= d n2+
(2)当n为何值时,数列{an}的前n项和取得最大值.
规范解答:(2)法一 a1=9,d=-2,Sn=9n+ nn 1 ·(-2)………8 分
2 =-n2+10n=-(n-5)2+25………………………………………………10 分 所以当 n=5 时,Sn 取得最大值.……………………………………12 分 法二 由(1)知 a1=9,d=-2<0,所以{an}是递减数列.……………8 分
即时训练1-1:(1)在等差数列{an}中,a4=9,a9=-6,若Sn=63,求n的值;
解:(1)设等差数列{an}的首项为 a1,公差为 d,
则
96a1a1 3d8d,
,
解得
ad1
18, 3.
所以 63=Sn=18n- 3 n(n-1). 2
解得 n=6 或 n=7.
2
2
2
问题,借助函数单调性来解决.
(2)邻项变号法:
当
a1>0,d<0
时,满足
an 0, an1 0
的项数
n
使
Sn
取最大值,当
a1<0,d>0
时,满
足 aann1 0,0 的项数 n 使 Sn 取最小值.
即时训练2-1:已知{an}是一个等差数列,且a2=1,a5=-5. (1)求{an}的通项an; (2)求{an}前n项和Sn的最大值.
答案:等差数列{an}的前 n 项和的 2 个公式涉及 a1,an,Sn,n,d 共 5 个量,至 少要知道其中 3 个量才能求解.在运用等差数列的前 n 项和公式求和时,一
般地,若已知首项 a1 及末项 an 用公式 Sn= na1 an 较简便;若已知首项 a1
2
及公差 d 用公式 Sn=na1+ nn 1 d 较好.
2
②已知S7=42,Sn=510,an-3=45,求n.
解:②S7= 7a1 a7 =7a4=42,
2
所以 a4=6.
所以 Sn= na1 an = na4 an3 = n6 45 =510.
2
2
2
所以 n=20.
(2)已知等差数列{an}中,a1=1,a3=-3. ①求数列{an}的通项公式; ②若数列{an}的前k项和Sk=-35,求k的值.
2
由二次函数的性质知,当 n=13 时,Sn 有最大值 169.
法二 同法一先求出 d=-2,因为 a1=25>0,
由
an 25 2 an1 25
n
2n
1
0,
0,
得
n n
13 12
1 2 1
, .
2
所以当 n=13 时,Sn 有最大值,最大值 S13= a1 a13 13 = 25 25 24 13 =169.