山东省济南一中2014届高三12月月考 数学(理)试题 Word版含答案
山东省济南第一中学高三数学12月月考试题理

济南一中2016年12月阶段性测试高三数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.第I 卷(选择题 共75分)一、选择题(本大题共15 小题,每小题5 分,共75 分)1.已知集合{}{}31,2,3,,A B y y x x A A B =-==∈⋂=,则A.{}0B.{}1C.{}1-D.{}0,12.i 为虚数单位,复数2016i 的共轭复数为( ) A . 1 B .i C . -1 D .-i3.已知向量=(1,2)-,=(,2)x ,若⊥,则||b = AB.C .5D .204.已知(,)2παπ∈,3tan 4α=-,则sin()απ+等于 A.35B. 35-C. 45D. 45-0y m -+=5.22220x y x +--=与圆相切,则实数m 等于( )AB.C.-.-6.设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =( )A .6-B .4-C .2-D .27.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为( )A .0B .1C .32D .2 8.命题:,sin()cos p R απαα∃∈-=;命题:"04"q a <<是”关于x 的不等式210ax ax ++>的解集是实数集"R 的充分必要条件,则下面结论正确的是( )A. p 是假命题B. q 是真命题C. ""p q ∧是假命题D. ""p q ∨是假命题 9.如图是函数()sin()(0,0,)f x A x A x R ωϕω=+>>∈在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到sin ()y x x R =∈的图象,只要将函数)(x f 的图象上所有的点( ) A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 B .向右平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 D .向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 10.在边长为6的正ABC ∆中,点M 满足,2=则⋅等于( )6.A 12.B 18.C 24.D11.某三棱锥的三视图如图所示,该三棱锥的表面积是A .28+.30+C .56+.60+12.已知x >0,y >0,lg 2x +lg 8y=lg 2,则1x +13y 的最小值是()A .2B .2 2C .4D .2 313.函数sin xy x=,(,0)(0,)x ππ∈-的图象可能是下列图象中的 主视图左视图俯视图14.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( ).A. 31522⎛⎫ ⎪⎝⎭, B .[2,8) C .[2,8] D .[2,7]15.奇函数()f x 的定义域为R ,若()1f x +为偶函数,()12f =,则()()45f f +的值为 A.2B.1C. 1-D. 2-二、填空题(本大题共5小题,每小题5分,共25分)16.等比数列{}n a 的各项均为正数,154a a =,212225log log log a a a +++=L 17.若直线()012:02:21=++=+y a x l y ax l 和垂直,则实数a 的值为 . 18.已知在正方体1111ABCD A B C D - 中,点E 是棱11A B 的中点,则直线AE 与平面11BDD B 所成角的正弦值为 .12019.6)x dx =⎰20.对于函数()f x 给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数32()(0)f x ax bx cx d a =+++≠都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数32115()33212f x x x x =-+-,请你根据上面探究结果,计算1232016()()()()2017201720172017f f f f ++++= .三、解答题(本大题共4小题,共50分,解答应写出文字说明,证明过程或推演步骤)21.(12)分已知函数21()2cos ,f x x x x R =--∈.(1)求函数()f x 的最小值和最小正周期;(2)设ABC ∆的内角A,B,C 的对边分别为a,b,c 且c =()0f C =,若sin 2sin B A =,求a,b 的值.22. (12)分 已知数列{}n a ,当2≥n 时满足n n n a a S -=--11, (1)求该数列的通项公式;(2)令n n a n b )1(+=,求数列{}n b 的前n 项和n T .23. (12)分如图所示几何体中,四边形ABCD 和四边形BCEF 是全等的等腰梯形,且平面BCEF ⊥平面ABCD ,AB//DC ,CE//BF ,AD=BC ,AB=2CD ,∠ABC=∠CBF=60°,G 为线段AB 的中点. (I )求证:AC BF ⊥;(II )求二面角D FG B --(钝角)的余弦值.24. (14)分已知函数1ln(1)()(0)x f x x x++=>. (Ⅰ) 判断函数()f x 在(0,)+∞上的单调性; (Ⅱ) 若()1kf x x >+恒成立, 求整数k 的最大值; (Ⅲ)求证:23(112)(123)[1(1)]n n n e -+⨯+⨯++>.济南一中2014级高三阶段性测试数学(理科)2016.12一、选择题(本大题共15 小题,每小题5 分,共75 分. )二、填空题(本大题共5小题,每小题5分,共25分) 16. 5 17. 12-4 20. 2016 三、解答题(本大题共4小题,共50分,解答应写出文字说明,证明过程或推演步骤) 21.解:()1 1cos 21()2sin(2)1226x f x x x π+=--=--,则()f x 的最小值是-2,最小正周期是22T ππ==;()2()sin(2)106f C C π=--=,则sin(2)16C π-=,0C π<<Q 022C π∴<< 112666C πππ∴-<-<,2C ππ∴-=,C π∴=,sin 2sin B A =Q ,由正弦定理,得12a b =,由余弦定理,得2222cos 3c a b ab π=+-,即223a b ab +-=,由解得1,2a b ==. 22. 解:(1)当2≥n 时,n n n a a S -=--11,则111n n n S a a ++-=-,作差得:1112n n n n a a a a +-+=-+,112n n a a -∴=. 又212121211112S a a a a a a a -=---=-⇒=即,知0n a ≠,112n n a a -∴=,∴{}n a 是首项为12,公比为12的等比数列,1111222n n n a -∴=⋅=().(2)由(1)得:12n n n b +=,1231234122222n n n n n T -+∴=+++++,234112*********n n n n n T ++∴=++++++ 23411111111222222n n n n T ++∴=+++++-, 111111334221122212n n n n n ++-⋅++=+-=--, 332n n n T +∴=-.23.24. 解:(Ⅰ)22111()[1ln(1)][ln(1)]11x f x x x x x x x '=--+=-++++----------------2分 210,0,0,ln(1)0,()01x x x f x x '>∴>>+>∴<+ ()(0,)f x ∴+∞在上是减函数 ---------------- 4分(Ⅱ)(1)[1ln(1)](),()1k x x f x h x k x x+++>=>+恒成立即恒成立, 即()h x 的最小值大于k .---------------5分21ln(1)(),x x h x x --+'=----------------6分令()1ln(1)(0)g x x x x =--+>,则()0,()(0,)1xg x g x x '=>∴+∞+在上单调递增, ----------------7分 又(2)1ln30,(3)22ln 20g g =-<=-> ,()0g x ∴=存在唯一实根a , 且满足(2,3),1ln(1)a a a ∈=++,----------------8分当x a >时,()0,()0;g x h x '>>当0x a <<时,()0,()0g x h x '<< ∴min (1)[1ln(1)]()()1(3,4)a a h x h a a a+++===+∈,故正整数k 的最大值是3 ----9分(Ⅲ)由(Ⅱ)知1ln(1)3(0)1x x x x ++>>+,∴333ln(1)12211x x x x x+>-=->-++----------------10分 令(1)(*)x n n n N =+∈, 则3ln[1(1)]2(1)n n n n ++>-+ ----------------11分∴ln(112)ln(123)ln[1(1)]n n +⨯++⨯++++333111(2)(2)[2]23[]1223(1)1223(1)1323(1)232311n n n n n n n n n n >-+-++-=-+++⨯⨯+⨯⨯+=--=-+>-++----------------13分 ∴23(112)(123)[1(1)]n n n e -+⨯+⨯++> ----------------14分方法二: n 23(112)(123)[1(1)]=n n n a e -+⨯+⨯++令则当n 2n-11(1)n 2=a n n a e ++≥时,----------------10分 当n21n-1n=21,a a a a 时,<∴<----------------11分 当nn n-1n-1n 31,a a a a ≥时,>∴>----------------12分 n min 2n 21==1,1a a a e∴()>∴>----------------13分 23(112)(123)[1(1)]n n n e -+⨯+⨯++∴>----------------14分。
山东省济南一中等四校2014届高三上学期期中联考 理科数学 含解析

山东省济南一中等四校2014届高三上学期期中联考理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则()UC A B 为( )A. {}1,2,4 B 。
{}2,34, C 。
{}0,2,4 D 。
{}0,2,34,2。
设x R ∈,则1x =是21x=的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3。
已知函数()f x 为奇函数,且当0x >时,()21f x x x=+,则()1f -=( )A 。
2 B. 0 C .1 D .﹣2【答案】D【解析】试题分析:()()2111121f f ⎛⎫-=-=-+=- ⎪⎝⎭. 考点:奇函数的性质及应用4。
函数ln x x y x=的图像可能是( )5。
已知数列{}na 的前n 项和为nS ,且22nn Sa =-,则2a 等于( )A .4B .2C .1D .-26。
为了得到函数sin 2y x =的图象,只需把函数sin 26πy x ⎛⎫=+ ⎪⎝⎭的图象( )A. 向左平移6π个单位 B .向左平移12π个单位C .向右平移6π个单位D .向右平移12π个单位7。
已知各项均为正数的等比数列{}na 中,1235a a a=,78910a a a =,则456a a a =( )A.52 B .7 C .6 D 。
428。
已知角x 的终边上一点坐标为55(sin ,cos )66ππ,则角x 的最小正值为( )A .56π B .116π C .53π D .23π考点:特殊角的三角函数值9。
设3log 6a =,5log 10b =,7log14c =,则( )A. c>b 〉aB.b 〉c 〉aC.a 〉c>bD.。
2014山东高考数学(理)真题及详细答案(Word版)

2014年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2、第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()=•P AB P A P B 。
第Ⅰ卷(共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C) i 43- (D) i 43+ 答案:D解析:a i -与2bi +互为共轭复数,()()2222,124434a b a bi i i i i∴==∴+=+=++=+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A (A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 答案:C 解析:[][][)12212132,0,21,41,3x x x x y x y A B -<∴-<-<∴-<<=∈∴∈∴⋂=3.函数1)(log 1)(22-=x x f 的定义域为(A))210(, (B) )2(∞+,(C) ),2()210(+∞ , (D) )2[]210(∞+,, 答案:C 解析:()22log 10x ->2log 1x ∴>或2log 1x ∴<-2x ∴> 或102x ∴<>。
山东省济南一中2014届高三12月月考数学(理)试题

济南一中2014届高三12月月考数学(理)试题一、选择题:本大题共12小题,每小题5分,共60分。
1. 若全集为实数集R ,集合A =12{|log (21)0},R x x C A ->则= ( )A .1(,)2+∞B .(1,)+∞C .1[0,][1,)2+∞ D .1(,][1,)2-∞+∞2. 若O 为平行四边形ABCD 的中心,14AB e =, 2216,32BC e e e =-等于 ( )A .AOB .BOC .COD .DO3. 下列命题中,真命题是( ) A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 4. 已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a = ( )A. 31-B .31C .3-D .3 5. 若,2παπ⎛⎫∈⎪⎝⎭,1tan ,sin 47παα⎛⎫+==⎪⎝⎭则( ) A.35 B .45 C .35- D .45- 6. 函数xx x f 2)1ln()(-+=的零点所在的大致区间是 ( )A. )1,0( B .)2,1( C .),2(e D .)4,3(7. 在等比数列{n a }中,若232a a +=,12133a a +=,则2223a a +的值是 ( ) A .94 B .49 C .92 D . 298. 已知实数,x y 满足y x z m y x x y y -=⎪⎩⎪⎨⎧≤+-≤≥如果目标函数,121的最小值为-1,则实数m 等于( )A .7B .5C .4D .39. 已知0a b <<,且1a b +=,则下列不等式中,正确的是 ( ) A .2log 0a > B .122a b-< C .12a b b aa+<D .22log log 2a b +<-10. 已知12F F 、是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段12F F 为边作正三角形,若双曲线恰好平分正三角形的另两边,则双曲线的离心率是 ( ) A .324+B .213+ C .13- D .13+11. 函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos 2g x x =的图像,则只要将()f x 的图像 ( ) A.向右平移6π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度 D .向左平移12π个单位长度12. 已知函数()f x 对任意x R ∈都有(6)()2(3)f x f x f ++=,(1)y f x =-的图象关于点(1,0)对称,则=)2013(f ( )A .0B .4-C .8-D .16-第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分。
山东省济南一中高三12月月考试题(数学理)

山东省济南一中高三12月月考试题(数学理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
共150分。
考试时间1。
第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填涂在答题卡上1已知集合M ={}R x x x ∈<<-,22|,N ={}R x x x ∈<,1|,则M ∩N 等于( )A .(1,2)B .(-2,1)C .∅D .(-∞,2)2.下列命题是真命题的为A .若x y <,则 22x y <B .若21x =,则1x = C .若x y =,.若11x y =,则x y =3.命题:“若12<x ,则11<<-x ”的逆否命题是( )A.若12≥x ,则11-≤≥x x ,或 B.若11<<-x ,则12<xC.若11-<>x x ,或,则12>x D.若11-≤≥x x ,或,则12≥x 4.已知向量等于则AD CD y x BC AB ),3,2(),,(),1,6(--=== ( )A .)2,4(--y xB .)2,4(-+y xC .)2,4(+---y xD .)2,4(++y x5.定义运算,)()(⎩⎨⎧>≤=⊗b a bb a ab a 则函数f(x)=x21⊗的图象是 ( )6.设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的 ( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件 7. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S=( )A .138B .135C .95D .238. 已知则 等于 ( ) A. B.7 C. D.7- 9.函数y=log 21()232+-x x 的递增区间是 ( )A.(-∞,1)B.(2,+∞)C.(-∞,23)D.(23,+∞)1717-3(,),sin ,25παπα∈=tan()4πα+10.已知x >0,y >0,x,a,b,y 成等差数列,x,c,d,y 成等比数列,则()cdb a 2+的最小值是( )A.0B.1C.2D. 411.已知圆的方程为22680x y x y +--=,设圆中过点(2,5)的最长弦与最短弦分别为AB 、CD ,则直线AB 与CD 的斜率之和为( )A.1-B.0C. 1D.2-12.设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处切线倾斜角的取值范围是⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 ( )A.⎥⎦⎤⎢⎣⎡--21,1 B.[-1,0] C.[0,1] D.⎥⎦⎤⎢⎣⎡1,21二、填空题:本大题共4小题,每小题4分,共16分。
山东省济南市2014届高三上学期期末考试数学(理)试题(含答案)

山东省济南市2014届高三上学期期末质量调研考试数学(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题共60分)一、选择题(本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若ibi a 4325+=+(a 、b 都是实数,i 为虚数单位),则a +b = A .1B . -1C .7D .-72.已知集合}1|{2+==x y y M ,}1|{22=+=y x y N ,则=N M A .)}1,0{(B .}2,1{-C .}1{D .),1[+∞-3.设,2.0e P =2.0ln =Q ,715sin π=R ,则 A .Q R P << B .P Q R <<C .Q P R <<D .P R Q <<4.等比数列}{n a 的前n 项和为S n ,若63=a ,xdx s 433⎰=,则公比q 的值为A .1B .21-C .l 或21-D .-1或21-5.将函数x x y cos sin +=的图象向左平移)0(>m m 个长度单位后,所得到的函数为偶函数,则m 的最小值是A .4πB .6π C .43π D .65π6.“m =3”是“直线057)3()1(21=-+-++m y m x m l :与直线052)3(2=-+-y x m l :垂直”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+≤-1210y x y x y x ,则目标函数y x z 5+=的最大值为A .2B .3C .4D .58.函数)(22R ∈-=x x y x的图象大致为9.已知m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ;②若α⊥m ,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//.其中正确命题的序号是A .①④B .②③C .②④D .①③10.设M 是ABC ∆边BC 上任意一点,N 为AM 的中点,若AC AB AN μ+λ=,则λ+μ的值为 A .21B .31 C .41 D .111.已知抛物线)0(22>=p px y 与双曲线)0,0(12222>>=-b a by a x 有相同的焦点F ,点A 是两曲线的一个交点,且x AF ⊥轴,则双曲线的离心率为A .2B .31+C .22+D .21+12.设)(x f 是定义在R 上的可导函数,当x ≠0时,0)()(>+xx f x f ',则关于x 的函数)(x g xx f 1)(+=的零点个数为 A .lB .2C .0D .0或 2第Ⅱ卷(非选择题,共90分)注意事项:1.将第Ⅱ卷答案用0.5 mm 的黑色签字笔答在答题纸的相应位置上. 2.答卷将密封线内的项目填写清楚. 二、填空题(本题共4小题,共16分)13.执行如图所示的程序框图,则输出的结果S 是________.14.一个四棱锥的三视图如图所示,其中主视图是腰长为1的等腰直角三角形,则这个几何体的体积是________.15.已知定点)1,2(-Q ,F 为抛物线x y 42=的焦点,动点P 为抛物线上任意一点,当||||PF PQ +取最小值时P 的坐标为________.16.已知0>m ,0>n ,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则n m +的取值范围是________.三、解答题(本题共6小题,共74分) 17.(本小题满分12分)已知)cos sin ,sin 2(x x x -=,)cos sin ,cos 3(x x x +=,函数.)(x f ⋅= (1)求函数)(x f 的解析式;(2)在ABC ∆中,角C B A 、、的对边为c b a ,,,若2)2(=Af ,1=b ,ABC ∆的面积为23,求a 的值.18.(本小题满分12分)已知函数xx mx f 24)(+=是奇函数.(1)求m 的值:(2)设a x g x -=+12)(.若函数错误!未找到引用源。
2014年山东省高考数学试卷真题及答案(理科)

2014年山东省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i2.(5分)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)3.(5分)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y36.(5分)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2 B.4 C.2 D.47.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.188.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)9.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b >0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.210.(5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图程序框图,若输入的x的值为1,则输出的n的值为.12.(5分)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.13.(5分)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE 的体积为V1,P﹣ABC的体积为V2,则=.14.(5分)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为.15.(5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.三、解答题(共6小题,满分75分)16.(12分)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.17.(12分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.18.(12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(12分)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.20.(13分)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.21.(14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2014年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i【分析】由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.【解答】解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.2.(5分)(2014•山东)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)【分析】求出集合A,B的元素,利用集合的基本运算即可得到结论.【解答】解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C【点评】本题主要考查集合的基本运算,利用条件求出集合A,B是解决本题的关键.3.(5分)(2014•山东)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)【分析】根据函数出来的条件,建立不等式即可求出函数的定义域.【解答】解:要使函数有意义,则,即log2x>1或log2x<﹣1,解得x>2或0<x<,即函数的定义域为(0,)∪(2,+∞),故选:C【点评】本题主要考查函数定义域的求法,根据对数函数的性质是解决本题的关键,比较基础.4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.【点评】本题考查反证法证明问题的步骤,基本知识的考查.5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y3【分析】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【解答】解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.若x=1,y=﹣1时,满足x>y,但==,故>不成立.B.若x=1,y=﹣1时,满足x>y,但ln(x2+1)=ln(y2+1)=ln2,故ln(x2+1)>ln(y2+1)不成立.C.当x=π,y=0时,满足x>y,此时sinx=sinπ=0,siny=sin0=0,有sinx>siny,但sinx>siny不成立.D.∵函数y=x3为增函数,故当x>y时,x3>y3,恒成立,故选:D.【点评】本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.6.(5分)(2014•山东)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2 B.4 C.2 D.4【分析】先根据题意画出区域,然后依据图形得到积分上限为2,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为2,积分下限为0,曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫(4x﹣x3)dx,而∫(4x﹣x3)dx=(2x2﹣x4)|=8﹣4=4,∴曲边梯形的面积是4,故选:D.【点评】考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.7.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.18【分析】由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.【点评】本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.8.(5分)(2014•山东)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.9.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by (a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2【分析】由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.【解答】解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.10.(5分)(2014•山东)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0【分析】求出椭圆与双曲线的离心率,然后推出ab关系,即可求解双曲线的渐近线方程.【解答】解:a>b>0,椭圆C1的方程为+=1,C1的离心率为:,双曲线C2的方程为﹣=1,C2的离心率为:,∵C1与C2的离心率之积为,∴,∴=,=,C2的渐近线方程为:y=,即x±y=0.故选:A.【点评】本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2014•山东)执行如图程序框图,若输入的x的值为1,则输出的n 的值为3.【分析】计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.12.(5分)(2014•山东)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.【分析】由条件利用两个向量的数量积的定义,求得AB•AC=,再根据△ABC 的面积为AB•AC•sinA,计算求得结果.【解答】解:△ABC中,∵•=AB•AC•cosA=tanA,∴当A=时,有AB•AC•=,解得AB•AC=,△ABC的面积为AB•AC•sinA=××=,故答案为:.【点评】本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题.13.(5分)(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.【分析】画出图形,通过底面面积的比求解棱锥的体积的比.【解答】解:如图,三棱锥P﹣ABC中,D,E分别为PB,PC的中点,三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,∴A到底面PBC的距离不变,底面BDE底面积是PBC面积的=,∴==.故答案为:.【点评】本题考查三棱锥的体积,着重考查了棱锥的底面面积与体积的关系,属于基础题.14.(5分)(2014•山东)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.【分析】利用二项式定理的展开式的通项公式,通过x幂指数为3,求出ab关系式,然后利用基本不等式求解表达式的最小值.【解答】解:(ax2+)6的展开式中x3项的系数为20,==,所以T r+1令12﹣3r=3,∴r=3,,∴ab=1,a2+b2≥2ab=2,当且仅当a=b=1时取等号.a2+b2的最小值为:2.故答案为:2.【点评】本题考查二项式定理的应用,基本不等式的应用,基本知识的考查.15.(5分)(2014•山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是(2,+∞).【分析】根据对称函数的定义,将不等式恒成立转化为直线和圆的位置关系,即可得到结论.【解答】解:根据“对称函数”的定义可知,,即h(x)=6x+2b﹣,若h(x)>g(x)恒成立,则等价为6x+2b﹣>,即3x+b>恒成立,设y1=3x+b,y2=,作出两个函数对应的图象如图,当直线和上半圆相切时,圆心到直线的距离d=,即|b|=2,∴b=2或﹣2,(舍去),即要使h(x)>g(x)恒成立,则b>2,即实数b的取值范围是(2,+∞),故答案为:(2,+∞)【点评】本题主要考查对称函数的定义的理解,以及不等式恒成立的证明,利用直线和圆的位置关系是解决本题的关键.三、解答题(共6小题,满分75分)16.(12分)(2014•山东)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.【分析】(Ⅰ)由题意可得函数f(x)=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),解方程组求得m、n的值.(Ⅱ)由(Ⅰ)可得f(x)=2sin(2x+),根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)=2sin(2x+2φ+)的图象,再由函数g(x)的一个最高点在y轴上,求得φ=,可得g(x)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得x 的范围,可得g(x)的增区间.【解答】解:(Ⅰ)由题意可得函数f(x)=•=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),可得.解得m=,n=1.(Ⅱ)由(Ⅰ)可得f(x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+).将y=f(x)的图象向左平移φ(0<φ<π)个单位后,得到函数g(x)=2sin[2(x+φ)+]=2sin(2x+2φ+)的图象,显然函数g(x)最高点的纵坐标为2.y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,故函数g(x)的一个最高点在y轴上,∴2φ+=2kπ+,k∈Z,结合0<φ<π,可得φ=,故g(x)=2sin(2x+)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得kπ﹣≤x≤kπ,故y=g(x)的单调递增区间是[kπ﹣,kπ],k∈Z.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题.17.(12分)(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【分析】(Ⅰ)连接AD1,易证AMC1D1为平行四边形,利用线面平行的判定定理即可证得C1M∥平面A1ADD1;(Ⅱ)作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,易求C1(﹣1,0,),D1,(0,0,),M(,,0),=(1,1,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),可求得=(0,2,1),而平面ABCD的法向量=(1,0,0),从而可求得平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【解答】解:(Ⅰ)连接AD1,∵ABCD﹣A1B1C1D1为四棱柱,∴CD C1D1,又M为AB的中点,∴AM=1.∴CD∥AM,CD=AM,∴AM C1D1,∴AMC1D1为平行四边形,∴AD1∥MC1,又MC1⊄平面A1ADD1,AD1⊂平面A1ADD1,∴C1M∥平面A1ADD1;(Ⅱ)解法一:∵AB∥A1B1,A1B1∥C1D1,∴面D1C1M与ABC1D1共面,作CN⊥AB,连接D1N,则∠D1NC即为所求二面角,在ABCD中,DC=1,AB=2,∠DAB=60°,∴CN=,在Rt△D1CN中,CD1=,CN=,∴D1N=∴cos∠D1CN===解法二:作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系则C1(﹣1,0,),D1,(0,0,),M(,,0),∴=(1,0,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),则,∴=(0,2,1).显然平面ABCD的法向量=(0,0,1),cos<,>|===,显然二面角为锐角,∴平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.【点评】本题考查用空间向量求平面间的夹角,主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,空间向量的坐标运算,推理论证能力和运算求解能力.18.(12分)(2014•山东)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D 上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.【分析】(Ⅰ)分别求出回球前落点在A上和B上时,回球落点在乙上的概率,进而根据分类分布原理,可得小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的取值有0,1,2,3,4,6六种情况,求出随机变量ξ的分布列,代入数学期望公式可得其数学期望Eξ.【解答】解:(Ⅰ)小明回球前落点在A上,回球落点在乙上的概率为+=,回球前落点在B上,回球落点在乙上的概率为+=,故小明两次回球的落点中恰有一次的落点在乙上的概率P=×(1﹣)+(1﹣)×=+=.(Ⅱ)ξ的可能取值为0,1,2,3,4,6其中P(ξ=0)=(1﹣)×(1﹣)=;P(ξ=1)=×(1﹣)+(1﹣)×=;P(ξ=2)=×=;P(ξ=3)=×(1﹣)+(1﹣)×=;P(ξ=4)=×+×=;P(ξ=6)=×=;故ξ的分布列为:ξ012346P故ξ的数学期望为E(ξ)=0×+1×+2×+3×+4×+6×=.【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.19.(12分)(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{a n}的公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.20.(13分)(2014•山东)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.【分析】(Ⅰ)求出导函数,根据导函数的正负性,求出函数的单调区间;(Ⅱ)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),∴f′(x)=﹣k(﹣)=(x>0),当k≤0时,kx≤0,∴e x﹣kx>0,令f′(x)=0,则x=2,∴当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增,∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=e x﹣kx,x∈(0,+∞).∵g′(x)=e x﹣k=e x﹣e lnk,当0<k≤1时,当x∈(0,2)时,g′(x)=e x﹣k>0,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,∴函数y=g(x)的最小值为g(lnk)=k(1﹣lnk)函数f(x)在(0,2)内存在两个极值点当且仅当解得:e综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,)【点评】本题考查了导数在求函数的单调区间,和极值,运用了等价转化思想.是一道导数的综合应用题.属于中档题.21.(14分)(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【分析】(1)根据抛物线的焦半径公式,结合等边三角形的性质,求出的p值;(2)(ⅰ)设出点A的坐标,求出直线AB的方程,利用直线l1∥l,且l1和C有且只有一个公共点E,求出点E的坐标,写出直线AE的方程,将方程化为点斜式,可求出定点;(ⅱ)利用弦长公式求出弦AB的长度,再求点E到直线AB的距离,得到关于面积的函数关系式,再利用基本不等式求最小值.【解答】解:(1)当点A的横坐标为3时,过点A作AG⊥x轴于G,A(3,),F(,0),,∴.∵△ADF为正三角形,∴.又∵,∴,∴p=2.∴C的方程为y2=4x.当D在焦点F的左侧时,.又|FD|=2|FG|=2(﹣3)=p﹣6,∵△ADF为正三角形,∴3+=p﹣6,解得p=18,∴C的方程为y2=36x.此时点D在x轴负半轴,不成立,舍.∴C的方程为y2=4x.(2)(ⅰ)设A(x1,y1),|FD|=|AF|=x1+1,∴D(x1+2,0),∴k AD=﹣.由直线l1∥l可设直线l1方程为,联立方程,消去x得①由l1和C有且只有一个公共点得△=64+32y1m=0,∴y1m=﹣2,这时方程①的解为,代入得x=m2,∴E(m2,2m).点A的坐标可化为,直线AE方程为y﹣2m=(x﹣m2),即,∴,∴,∴,∴直线AE过定点(1,0);(ⅱ)直线AB的方程为,即.联立方程,消去x得,∴,∴=,由(ⅰ)点E的坐标为,点E到直线AB的距离为:=,∴△ABE的面积=,当且仅当y1=±2时等号成立,∴△ABE的面积最小值为16.【点评】本题考查了抛物线的定义的应用、标准方程求法,切线方程的求法,定点问题与最值问题.。
山东省济南一中2014届高三物理12月月考试题新人教版

山东省济南一中2014届高三物理12月月考试题新人教版说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第6页。
请将第Ⅱ卷答案答在答题纸相应位置上,考试结束后将答题卡和答题纸一并上交。
满分100分,考试时间90分钟。
第Ⅰ卷(选择题,共48分)一、选择题:本题共12小题,每小题4分。
在每小题给出的四个选项中,第1-8题只有一项符合题目要求,第9-12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分。
1.北京奥运火炬成功登上珠峰,如图所示是火炬手攀登珠峰的线路图,据此图判断下列说法正确的是( )A.由起点到终点火炬手所走线路的总长度等于位移B.线路总长度与火炬手所走时间的比等于火炬手的平均速度C.在计算登山运动的速度时可以把火炬手当成质点D.珠峰顶的重力加速度要大于9.8m/s22.以下说法符合物理史实的是( )A.伽利略根据理想斜面实验,提出力是维持物体运动状态的原因B.牛顿发现了万有引力定律,卡文迪许通过实验较为准确地测定了万有引力常量C.库仑首先引入电场线来描述电场D.法拉第在前人的基础上,通过实验得到了真空中点电荷相互作用的规律3.在抗洪救灾中,一架直升机通过绳索,用恒力F竖直向上拉起一个漂在水面上的木箱,使其由水面开始加速上升到某一高度,若考虑空气阻力而不考虑空气浮力,则在此过程中,以下说法不正确...的有( )A.力F和阻力的合力所做的功等于木箱机械能的增量B.木箱克服重力所做的功等于重力势能的增量C.力F、重力、阻力,三者合力所做的功等于木箱动能的增量D.力F所做功减去克服阻力所做的功等于重力势能的增量4.2013年12月10日21时20分,嫦娥三号在环月轨道成功实施变轨控制,在太空飞行了九天的嫦娥三号飞船,再次成功变轨,从100千米的环月圆轨道,降低到近月点15千米、远月点100千米的椭圆轨道。
这也是嫦娥三号预定的月面着陆准备轨道。
山东省济钢高中2014届高三12月月考数学(理)试题(含答案)

绝密★启用并使用完毕前山东济钢高中2011级高三 12月 摸底考试数学试题(理科)说明:本试卷满分150分,考试时间:120分钟 2013年12月22日第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,每道小题只有一项正确)1.集合{}{}|13,|4A x x B y y x =+≤==≤≤.则下列关系正确的是( )A .AB R = B .R A B ⊆餽C .R B A ⊆餽D .R R A B ⊆餽餽2.若a 、b 为实数,则“a b <1”是“0<a <b1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分条件 D.既不充分也不必要条件 3.设向量()()cos ,1,2,sin a b αα=-=,若a b ⊥,则tan 4πα⎛⎫-⎪⎝⎭等于( ) A.13-B.13C.3-D.3 4.对于平面α和直线m 、n ,下列命题是真命题的是( )A .若n m ,与α所成的角相等,则m//nB .若,//,//ααn m 则m//nC .若n m m ⊥⊥,α,则α//nD .若αα⊥⊥n m ,,则n m // 5. 给出如下四个命题: ①若向量b a ,满足0<⋅b a ,则a 与b 的夹角为钝角;②命题“若,21aba b a ->则>”的否命题为“若,21aba b a ≤≤-则”; ③“2,11x R x ∀∈+≥”的否定是“2,11x R x ∃∈+≤”;④向量共线,的充要条件:存在实数λλ=,使得.其中正确的命题的序号是( ) A .①②④ B .②④ C .②③ D .②6.角α的终边经过点A ()a ,且点A 在抛物线214y x =-的准线上,则sin α= ( )A .12-B .12C .D7.已知等比数列}{n a 公比为q ,其前n 项和为n S ,若396,,S S S 成等差数列,则3q 等于( ) A.12-B.1C.12-或1D.112-或 8.设函数()sin(2)6f x x π=+,则下列结论正确的是( )A .()f x 的图像关于直线3x π=对称 B .()f x 的图像关于点(,0)6π对称C .()f x 的最小正周期为π,且在[0,]12π上为增函数D .把()f x 的图像向右平移12π个单位,得到一个偶函数的图像9.已知21)4tan(-=+πα,且παπ<<2,则)4sin(cos 22sin 2πααα--等于( )A.552 B.1053- C.552- D.10103- 10. 函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象是( )11.设奇函数)(x f 在),0(+∞上是增函数,且0)1(=f ,则不等式0)]()([<--x f x f x 的解集为( ) A .}1,01|{><<-x x x 或 B .}10,1|{<<-<x x x 或 C .}1,1|{>-<x x x 或D .}10,01|{<<<<-x x x 或12.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时其导函数()f x '满足()2(),xf x f x ''>若24a <<则( )A .2(2)(3)(log )a f f f a <<B .2(3)(log )(2)a f f a f <<C .2(log )(3)(2)af a f f <<D .2(log )(2)(3)af a f f <<注意事项:1.第Ⅱ卷所有题目的答案考生须用黑色签字笔、钢笔或圆珠笔答在试题卷上答题,考试结束后将答题卡和第Ⅱ卷一并上交。
济南一中2014届高三地理12月月考试题新人教版

XX省XX一中2014届高三地理12月月考试题新人教版1.若发现一颗行星与最近恒星的距离非常适合生命的存在,可推断该行星A.自转周期与地球相同 B.可能存在液态的水C.大气成分以氮、氧为主 D.表面有肥沃的土壤太阳是太阳系的中心天体,对地球上的地理环境和人类活动有着深刻的影响。
据此回答2~3题。
2.下列属于人类对太阳能间接利用的是A.太阳灶 B.太阳能热水器 C.羊八井地热发电站 D.行进中的赛车3.太阳活动对地球的直接影响为A.维持着地表温度 B.促进高低纬度间热量交换C.产生潮汐或海啸 D. 导致指南针不能指示正确方向右图为局部区域日照图,虚线为日界线,阴影表示黑夜。
读图回答4~5题。
4.甲、乙两地相比A.日期相同,区时时刻乙早B.日期甲早,区时时刻两地相同C.日期甲早,区时时刻乙早D.日期甲晚,区时时刻乙早5.图示时刻,地球上分属两个日期的X围之比约为A.1∶11 B.1∶5 C.1∶7 D.7∶17下图为某日不同地点太阳高度日变化情况图,且甲地位于40°N。
读图回答6~7题。
6.太阳直射点的纬度是A.0° B.20°NC.20°S D.23°26′N7.当甲、乙两地正午太阳高度相等时A.北极地区出现极昼 B.甲、乙两地昼长相等C.市白昼逐渐变长 D.地球公转速度逐渐加快读到达地球的太阳辐射量分布图,图中曲线分别表示地表吸收太阳辐射量、地表反射太阳辐射量、大气上界太阳辐射量、云层反射太阳辐射量。
回答8~10题。
8.④曲线表示的辐射量在南极地区比北极地区量大的原因主要是南极地区A.地势高B.下垫面为冰川地面C.环境污染严重D.人口增加9.图中曲线①②③④依次表示A.大气上界太阳辐射量地表吸收太阳辐射量云层反射太阳辐射量地表反射太阳辐射量B.大气上界太阳辐射量云层反射太阳辐射量地表吸收太阳辐射量地表反射太阳辐射量C.大气上界太阳辐射量地表反射太阳辐射量云层反射太阳辐射量地表吸收太阳辐射量D.地表吸收太阳辐射量大气上界太阳辐射量云层反射太阳辐射量地表反射太阳辐射量10.对近地面气温高低影响最直接的是A.①B.②C.③D.④右图是由中央气象局发布的某城市2013年1月19日~22日的天气预报。
数学理卷·2014届山东省济钢高中高三12月月考(2013.12)

绝密★启用并使用完毕前济钢高中2011级高三 12月 摸底考试数学试题(理科)说明:本试卷满分150分,考试时间:120分钟 2013年12月22日第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,每道小题只有一项正确)1.集合{}{}|13,|4A x x B y y x =+≤==≤≤.则下列关系正确的是( )A .AB R = B .R A B ⊆餽C .R B A ⊆餽D .R R A B ⊆餽餽 2.若a 、b 为实数,则“a b <1”是“0<a <b1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分条件 D.既不充分也不必要条件3.设向量()()cos ,1,2,sin a b αα=-= ,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于( )A.13-B.13C.3-D.3 4.对于平面α和直线m 、n ,下列命题是真命题的是( )A .若n m ,与α所成的角相等,则m//nB .若,//,//ααn m 则m//nC .若n m m ⊥⊥,α,则α//nD .若αα⊥⊥n m ,,则n m // 5. 给出如下四个命题: ①若向量b a ,满足0<⋅b a ,则a 与b 的夹角为钝角;②命题“若,21aba b a ->则>”的否命题为“若,21aba b a ≤≤-则”; ③“2,11x R x ∀∈+≥”的否定是“2,11x R x ∃∈+≤”;④向量共线,的充要条件:存在实数λλ=,使得.其中正确的命题的序号是( ) A .①②④ B .②④ C .②③ D .②6.角α的终边经过点A ()a ,且点A 在抛物线214y x =-的准线上,则sin α=( )A .12-B .12C .D 7.已知等比数列}{n a 公比为q ,其前n 项和为n S ,若396,,S S S 成等差数列,则3q 等于( )A.12-B.1C.12-或1D.112-或 8.设函数()sin(2)6f x x π=+,则下列结论正确的是( )A .()f x 的图像关于直线3x π=对称B .()f x 的图像关于点(,0)6π对称C .()f x 的最小正周期为π,且在[0,]12π上为增函数D .把()f x 的图像向右平移12π个单位,得到一个偶函数的图像9.已知21)4tan(-=+πα,且παπ<<2,则)4sin(cos 22sin 2πααα--等于( )A.552 B.1053- C.552- D.10103- 10. 函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象是( )11.设奇函数)(x f 在),0(+∞上是增函数,且0)1(=f ,则不等式0)]()([<--x f x f x 的解集为( )A .}1,01|{><<-x x x 或B .}10,1|{<<-<x x x 或C .}1,1|{>-<x x x 或D .}10,01|{<<<<-x x x 或12.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时其导函数()f x '满足()2(),xf x f x ''>若24a <<则( )A .2(2)(3)(log )af f f a << B .2(3)(log )(2)af f a f << C .2(log )(3)(2)af a f f <<D .2(log )(2)(3)af a f f <<第Ⅱ卷(非选择题,共90分)注意事项:1.第Ⅱ卷所有题目的答案考生须用黑色签字笔、钢笔或圆珠笔答在试题卷上答题,考试结束后将答题卡和第Ⅱ卷一并上交。
山东省济南一中2013-2014学年高一12月月考 数学试题 Word版含答案.pdf

一、选择题(每题4分,共72分) log2的值为( ).A.- B. C.- D. ,集合,集合,则集合等于( ) A.{3,4,5} B.{3,5} C.{4,5} D. 函数f(x)=+lg(1+x)的定义域是( ). A.(-∞,-1) B. (1,+∞) C.(-1,1)(1,+∞) D.(-∞,+∞) 在幂函数的图象上,则的表达式是( ) A. B. C. D. 若函数则( ) A. B...是定义在R上的奇函数,当时,,则( ) A....已知a,b是异面直线,直线c平行于直线a,那么c与b( ). A.一定是异面直线 B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线cm)如图所示,则该三棱锥的体积是( ). A. B. C. D. 圆面积是( ). A.π B.π C.π D.π 一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( )A.a2 B.2a2 C.a2 D.a2 已知[1,3]是函数y=-x2+4ax的单调递减区间,则实数a的取值范围是( ) A. B. C. D. 一个正方体内接于一个球,过球心作一个截面,则截面可能图形为( ). 不查表、不使用计算器判断这三个数的大小关系是 A.. C.D.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是( ). A.若αβ,α∩β=n,mn,则mα B.若mα,nβ,mn,则nα C.若nα,nβ,mβ,则mα D.若mα,nβ,mn,则αβ 函数f(x)=log2(3x+1)的值域为( ). A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)f(x)=ax-b的图象如图所示,其中a,b 为常数,则下列结论正确的是 ( ) A.a>1,b1,b>0 D.0。
山东省济南市2014届高三上学期期末考试 数学(理)试题 高清PDF版含答案

2014年1月高三教学质量调研考试数学(理科)试题答案一、选择题(共60分)BCDCA ADABA DC二、填空题(共16分)13. 1007 14. 1215.1(,1)4-16.2m n +≥+三、解答题(共74分)17. (本小题满分12分)解:(1)∵()f x m n =⋅ =(2sin ,sin cos ),sin cos )x x x x x -⋅+x=2cos sin cos 2x x x +-x ------------------------------------3分 2sin(26x π=- 故函数()f x 的解析式为()2sin(26f x x π=-------------------------------------6分 (2)∵(2sin()226Af A π=-= 即sin(16A π-= 所以 23A π= -------------------8分又1sin 22bc A =,可得: ------------------------------------10分 2c =所以,得2222cos 1427a b c bc A =+-=++=a =分18. (本小题满分12分) 解:(1)由函数()f x 是奇函数可知:(0)1+0f m ==, ------------------------------2分解得. ------------------------------------4分1m =-(2)函数()f x 与的图象至少有一个公共点()g x 即方程412x x -12x a +=-至少有一个实根 - -----------------------------------6分 即方程至少有一个实根 ------------------------------------8分 421x x a -⋅+=00令,则方程至少有一个正根2x t =>210t at -+=方法一:由于12a t t=+≥∴a 的取值范围为[2. ------------------------------------12分,)+∞方法二:令h t ,由于2()1t at =-+(0)10h >,所以只须002a ∆≥⎧⎪⎨>⎪⎩, =解得.2a ≥∴a 的取值范围为[2.,)+∞19. (本小题满分12分)解:(1)设在等比数列{}n a 中,公比为,q 因为成等差数列.2354,,a a a a +所以 ------------------------------2分352()a a +2a a =+43242()q q q q +=+解得 12q = ------------------------------4分 所以112n n a -⎛⎫= ⎪⎝⎭ ------------------------------6分(Ⅱ)11(21)2n n b n -⎛⎫=- ⎪⎝⎭.n n b b b b T ++++= 321211111135(21)222n n T n -⎛⎫⎛⎫=⋅+⋅+⋅++-⋅ ⎪ ⎪⎝⎭⎝⎭① 2311111135(21)22222n n T ⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n ② ------------------------------8分 ①—②,得21111112(21)2222n n n T n -⎡⎤⎛⎫⎛⎫⎛⎫=+⋅+++--⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦12 111212n -⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1(21)2n n ⎛⎫--⋅ ⎪⎝⎭ =2332n n +- ------------------------------10分 所以12362n n n T -+=- ------------------------------12分 20. (本小题满分12分) (1)证明:取1DD 的中点N ,连结MN 、AN 、ME , ------------------------------1分MN ∥CD 21,AE ∥CD 21, ------------------------------3分 ∴ 四边形MNAE 为平行四边形,可知 ME ∥AN ------------------------------4分11AN ADD A ⊂平面11ME ADD ⊄平面A∴ME ∥平面. ------------------------------6分1AD (2)解:设 AE m =,如图建立空间直角坐标系---------------------------7分1(1,0,0),(1,,0),(0,2,0),(0,0,2)A E m C D ,11(1,0,2),(0,,0),(0,2,2),(1,2,0),AD AE m D C EC m =-==-=--1AD E 1111(,,)n x y z = 1n 平面的法向量为,由⋅ 10AD =1n ⋅ 0AE = 1(2,0,1)=及得n ------------------------------9分 平面的法向量为,由1D EC 2(,,)n x y z = 2n ⋅ 10D C = 及2n ⋅ 0EC =得 ------------------------------11分2n(2,1,1m =-)1212cos 15n n n n θ=== ,即2201161290m m +=,解得343(210m m ==或舍-) 所以32AE =------------------------------12分 21.(本小题满分12分)解:(1)()f x 的定义域为. ------------------------------1分(0,)+∞2'11(1)(()a x ax a x x f x x a x x x--+--+-=-+==1)a ------------------------------3分 (i )若a 即,则11-=2a =2'(1)()x f x x-=故()f x 在(0,)+∞单调增加. ------------------------------4分(ii)若,而,故12,则当11a -<1a >a <<(1,1x a )∈-时,'()0f x <; 当或时,;(0,1)x a ∈-(1,)x ∈+∞'()0f x >故()f x 在单调减少,在单调增加. -----------------------------5分 (1,1a -)(0,1),(1,)a -+∞ (iii)若,即,11a ->2a >同理可得()f x 在单调减少,在(1,1)a -(0,1),(1,)a -+∞单调递增. ------------------------------6分(2) 由题意得21()()ln 202f xg x x a x x -=+-≥恒成立. 设21F()()()ln 22x f x g x x a x x =-=+-, ------------------------------8分则'F ()220ax x x=+-≥> 所以F()x 在区间上是增函数, - -----------------------------10分 +∞[e,)只需21F(e)202e a e =+-≥即2122a e e ≥- ------------------------------12分 22.(本小题满分14分)解:(1) 由已知可得2222212c a b a a -==,所以 ① -----------------------------1分 22a b =2又点M 在椭圆上,所以C 22211a b += ② -----------------------------2分 由①②解之,得.224,2a b == 故椭圆C 的方程为12422=+y x . -----------------------------4分(2)【解法一】①当直线的斜率为0时,则l 12k k ⋅=33424243⨯=-+; ----------------5分 ②当直线的斜率不为0时,设,l 11(,)A x y 22(,)B x y ,直线l 的方程为1x my =+,将1x my =+代入22142x y +=,整理得22(2)23m y my 0++-=.------------------------7分 则12222m y y m -+=+,12232y y m -=+ -----------------------------9分 又,, 111x my =+221x my =+所以,112134y k k x -⋅=-2234y x -⋅-1212(3)(3)(3)(3)y y my my --=-- 1212212193()93()2y y y y m y y m y y -++=-++22222239322=239322m m m m m m m m ---⨯+++---+++2232546m m m ++=+23414812m m +=++ -----------------------------11分 令,则4t m =+11223242tk k t t ⋅=+-+25 当时即0t =14m =-时,1234k k ⋅=;当t 时,0≠1224232tk k t t ⋅=+-+2532254()t t=+2+-1273124k k ≤⋅< 或12314k k <⋅≤ 当且仅当,即时, 取得最大值. -----------------------------13分 5=t 1=m 12k k ⋅由①②得,直线的方程为.-----------------------------14分l 10x y --=【解法二】①当直线垂直于x 轴时,则l 12k k ⋅=33+522=41416--- ; ②当直线与x 轴不垂直时,设,l 11(,)A x y 22(,)B x y ,直线l 的方程为(1y k x )=-,将代入(1y k x =-)22142x y +=,整理得2222(12)4240k x k x k +-+-=.则2212122242,1212k k x x x x k k -+==++4) 又,,11(1y k x =-)22(1y k x =-所以,112134y k k x -⋅=-2234y x -⋅- 222121212129(3)164()k k k x x k x x x x x x +-++=-++22325,46k k k ++=+ 令22325(),46k k h k k++=+由得()0h k '=1k =或23k =- 所以当且仅当时最大,所以直线的方程为1k =12k k ⋅l 10x y --=.。
数学(理)卷·2014届山东省济南一中高三12月月考试题(2013.12)

第2页共9页
r r rr
rr
14. 已知| a |= 3,| b |= 2,| a − b |= 7, 则 < a, b > 为
.
15. 设直线 x − my −1 = 0 与圆 (x −1)2 + ( y − 2)2 = 4 相交于 A , B 两点,且弦 AB 的
20. (本小题满分 12 分)
已知函数
f
(x)
=
ax x2 + b
在x
=
−1处取得极值 −2 .
(Ⅰ)求函数 f (x) 的表达式;
第3页共9页
(Ⅱ)求函数 f (x) 单调区间.
21. (本小题满分 13 分)
已 知 AC = (cos x + sin x , − sin x ) , BC = (cos x − sin x , 2 cos x ) , 设
rr 且 OA⋅OD = 0 , Q 为线段 OD 的中点,曲线 C 过 Q 点,动点
G 在曲线 C 上运动且保持 GA + GB 的值不变 (Ⅰ)求曲线 C 的方程;
(Ⅱ)过点 D 的直线 l 与曲线 C 相交于不同的两点 M、N ,且 M 在 D、N 之间,设
DM = λ , 求 λ 的 取 值 范 DN
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。 【来源:全,品…中&高*考*网】
1. 若全集为实数集 R ,集合 A ={x | log1 (2x −1) > 0},则CR A =
2
()
A. ( 1 , +∞) B. (1, +∞) 【来源:全,品…中&高*考*网】 2
2014年山东省济南市高考数学一模试卷(理科)

2014年山东省济南市高考数学一模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.已知复数z满足z(1+i)=1(其中i为虚数单位),则z的共轭复数是()A.+iB.-iC.-+iD.--i【答案】A【解析】解:由z(1+i)=1,得,∴=.故选:A.把等式z(1+i)=1两边同时乘以,然后利用复数的除法运算化简复数z,求出z后可得z的共轭复数.本题考查了复数的除法运算,考查了共轭复数的概念,是基础题.2.已知集合A={x丨丨x-1丨<2},B={x丨y=lg(x2+x)},设U=R,则A∩(∁U B)等于()A.[3,+∞)B.(-1,0]C.(3,+∞)D.[-1,0]【答案】B【解析】解:∵集合A={x丨丨x-1丨<2}={x|-1<x<3},B={x丨y=lg(x2+x)}={x|x2+x>0}={x|x<-1或x>0},U=R,∴A∩(∁U B)={x|-1<x<3}∩{x|-1≤x≤0}={x|-1<x≤0}=(-1,0].故选:B.利用绝对值不等式的性质和对数函数的定义域,分别求出集合A和B,由此能求出A∩(∁U B).本题考查集合的交、并、补集的混合运算,是基础题,解题时要注意绝对值不等式和对数函数的性质的灵活运用.3.某几何体三视图如图所示,则该几何几的体积等于()A.2B.4C.8D.12【答案】B【解析】解:由三视图知几何体为四棱锥,且四棱锥的一个侧面垂直于底面,高为4,四棱锥的底面为矩形,矩形的边长分别为3、2,∴几何体的体积V=×3×2×2=4.故选:B.根据三视图判断几何体为四棱锥,且四棱锥的一个侧面垂直于底面,高为4,四棱锥的底面为矩形,矩形的边长分别为3、2,把数据代入棱锥的体积公式计算.本题考查了由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及判断数据所对应的几何量.4.函数y=ln的图象大致是()A. B. C. D.【答案】A【解析】解:∵函数y=ln,∴x+sinx≠0,x≠0,故函数的定义域为{x|x≠0}.再根据y=f(x)的解析式可得f(-x)=ln()=ln()=f(x),故函数f(x)为偶函数,故函数的图象关于y轴对称,故排除B、D.当x∈(0,1)时,∵0<sinx<x<1,∴0<<1,∴函数y=ln<0,故排除C,只有A满足条件,故选:A.由函数的解析式可得函数的定义域关于原点对称,根据f(-x)=f(x),可得函数的图象关于y轴对称,故排除B、D,再根据当x∈(0,1)时,ln<0,从而排除C,从而得到答案.本题主要考查正弦函数的图象特征,函数的奇偶性的判断,属于中档题.5.执行如图所示的程序框图,输出的S的值为()A.1B.2C.3D.4【答案】C【解析】解:由判断框的条件是k<27,∴退出循环体的k值为27,∴输出的S=1••…==log327=3.故选:C.根据判断框的条件是k<27确定退出循环体的k值为27,再根据框图的流程确定算法的功能,利用约分消项法求解.本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.6.在△ABC中,若=3,b2-a2=ac,则cos B的值为()A. B. C. D.【答案】D【解析】解:将=3利用正弦定理化简得:=3,即c=3a,把c=3a代入b2-a2=ac,得:b2-a2=ac=a2,即b2=a2,则cos B===.故选:D.已知第一个等式利用正弦定理化简,得到c =3a ,代入第二个等式变形出b ,利用余弦定理表示出cos B ,将表示出的b 与c 代入即可求出值.此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.7.如图,设抛物线y =-x 2+1的顶点为A ,与x 轴正半轴的交点为B ,设抛物线与两坐标轴正半轴围成的区域为M ,随机往M 内投一点P ,则点P 落在△AOB 内的概率是( ) A. B. C. D.【答案】 C【解析】 解:由题意可知抛物线y =-x 2+1的顶点为A (0,1),与x 轴正半轴的交点为B (1,0), ∴△AOB 的面积为: =. 抛物线与两坐标轴正半轴围成的区域为M , 面积为:S= = =.随机往M 内投一点P ,则点P 落在△AOB 内的概率满足几何概型; ∴随机往M 内投一点P ,则点P 落在△AOB 内的概率是:=.故选:C .求出直线与坐标轴围成三角形的面积,及抛物线与坐标轴围成的面积,再将它们代入几何概型计算公式计算出概率.本题考查几何概型在求解概率中的应用,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量”N (A ),再求出总的基本事件对应的“几何度量”N ,最后根据P=求解.8.已知g (x )=ax +1,f (x )= , , < ,对∀x 1∈[-2,2],∃x 2∈[-2,2],使g (x 1)=f (x 2)成立,则a 的取值范围是( )A.[-1,+∞)B.[-1,1]C.(0,1]D.(-∞,1] 【答案】 B【解析】解:作出函数f (x )= , , < 的图象如图:则当x ∈[-2,2],f (x )的最大值为f (2)=3,最小值f (-2)=-4,即函数f (x )在[-2,2]上的值域为[-4,3].若a =0,g (x )=1,此时满足∀x 1∈[-2,2],∃x 2∈[0,2],使g (x 1)=f (x 2)成立,若a ≠0,则g (x )=ax +1,则直线g (x )过定点B (0,1), 若a >0,函数在[-2,2]上单调递增,则当x =2时,g (2)=2a+1,当x=-2时,g(-2)=-2a+1,此时函数的值域为[-2a+1,2a+1],要使对∀x1∈[-2,2],∃x2∈[0,2],使g(x1)=f(x2)成立,则[-2a+1,2a+1]⊆[-4,3],即>,即>,解得0<a≤1,若a<0,则函数在[-2,2]上单调递减,则当x=2时,g(2)=2a+1,当x=-2时,g(-2)=-2a+1,此时函数的值域为[2a+1,-2a+1],要使对∀x1∈[-2,2],∃x2∈[0,2],使g(x1)=f(x2)成立,则[2a+1,-2a+1]⊆[-4,3],即<,即<,解得-1≤a<0,综上-1≤a≤1,故选:B.作出函数f(x)的图象,根据数形结合即可得到结论.本题主要考查函数与方程之间的关系,利用数形结合是解决本题的关键,本题综合性较强,有一定的难度.9.已知点M(x,y)是平面区域内的动点,则(x+1)2+(y+1)2的最大值是()A.10B.C.D.13【答案】D【解析】解:作出不等式组对应的平面区域,设z=(x+1)2+(y+1)2,则z的几何意义为区域内的动点P(x,y)到定点C(-1,-1)的距离的平方,则有图象可知,当P位于点A时,|AC|最大,由,解得,即A(1,2),∴z max=(x+1)2+(y+1)2=4+9=13,故选:D.作出不等式组对应的平面区域,设z=(x+1)2+(y+1)2,利用z的几何意义即可得到结论.本题主要考查线性规划的应用,利用z的几何意义是解决本题的关键.10.已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,△PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1•e2的取值范围是()A.(,+∞)B.(,+∞)C.(,+∞)D.(0,+∞)【答案】C解:∵中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,△PF1F2是以PF1为底边的等腰三角形,∴设椭圆和双曲线的长轴长分别为2a1,2a2,焦距为2c,设|PF1|=x,|PF2|=|F1F2|=y,由题意得,∵椭圆与双曲线的离心率分别为e1,e2,∴e1•e2===,由三角形三边关系得|F1F2|+|PF2|>|PF1|>|PF2|,即2y>x>y,得到1<<2,∴1<()2<4,∴0<()2-1<3,根据复合函数单调性得到e1•e2=>.故选:C.设椭圆和双曲线的长轴长分别为2a1,2a2,焦距为2c,设|PF1|=x,|PF2|=|F1F2|=y,由题意得,则e1•e2===,由此利用三角形三边关系和复合函数单调性能求出结果.本题考查双曲线和椭圆的离心率的乘积的取值范围的求法,是中档题,解题时要认真审题,注意三角形三边关系的合理运用.二、填空题(本大题共5小题,共25.0分)11.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70km/h以下的汽车有______ 辆.【答案】20【解析】解:根据频率分布直方图,得时速在70km/h以下的汽车有:(0.01+0.03)×10×50=20(辆);故答案为:20由频率分布直方图,求出时速在70km/h以下的汽车的频率,由频率×样本容量即可求出答案.本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图,找出解答问题的条件是什么,从而得出答案.12.设圆C:(x-3)2+(y-5)2=5,过圆心C作直线l交圆于A,B两点,与y轴交于点P,若A恰好为线段BP的中点,则直线l的方程为______ .y=2x-1或y=-2x+11【解析】解:由题意可得,C(3,5),直线L的斜率存在可设直线L的方程为y-5=k(x-3)令x=0可得y=5-3k即P(0,5-3k),设A(x1,y1),B(x2,y2)联立消去y可得(1+k2)x2-6(1+k2)x+9k2+4=0由方程的根与系数关系可得,x1+x2=6,x1x2=①∵A为PB的中点∴即x2=2x1②把②代入①可得x2=4,x1=2,x1x2==8∴k=±2∴直线l的方程为y-5=±2(x-3)即y=2x-1或y=-2x+11故答案为:y=2x-1或y=-2x+11由题意可设直线L的方程为y-5=k(x-3),P(0,5-3k),设A(x1,y1),B(x2,y2),联立,然后由方程的根与系数关系可得,x1+x2,x1x2,由A为PB的中点可得x2=2x1,联立可求x1,x2,进而可求k,即可求解直线方程本题主要考查直线和圆的位置关系,方程的根与系数关系的应用,体现了方程的数学思想,属于中档题.13.航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为______ (用数字作答).【答案】300【解析】解:0不能排第一,共有:5x5x4x3x2x1=600种.在以上600种编排方法中,最后一项的标号小于前面相邻一项与大于前面相邻一项种数相等.所以,实验顺序的编排方法种数为:600÷2=300种.故答案为:300.0不能排第一,共有600种,最后一项的标号小于前面相邻一项与大于前面相邻一项种数相等,由此能求出实验顺序的编排方法种数.本题考查实验顺序编排种数的求法,是中档题,解题时要认真审题,注意统筹分析,全面考虑.14.在△ABC中,E为AC上一点,且=4,P为BE上一点,且满足=m+n(m>0,n>0),则取最小值时,向量=(m,n)的模为______ .【答案】【解析】解:∵=4,∴=m+n=m+4n又∵P为BE上一点,∴不妨设=λ(0<λ<1)∴=+=+λ=+λ(-)=(1-λ)+λ∴m+4n=(1-λ)+λ∵,不共线∴m+4n=1-λ+λ=1∴+=(+)×1=(+)×(m+4n)=5+4+≥5+2=9(m>0,n>0)当且仅当=即m=2n时等号成立又∵m+4n=1∴m=,n=∴||==故答案为根据平面向量基本定理求出m,n关系,进而确定+取最小值时m,n的值,代入求的模本题考查平面向量基本定理和基本不等式求最值,难点在于利用向量求m,n的关系和求+的最值15.已知下列命题:①设m为直线,α,β为平面,且m⊥β,则“m∥α”是“α⊥β”的充要条件;②(x3+)5的展开式中含x3的项的系数为60;③设随机变量ξ~N(0,1),若P(ξ≥2)=p,则P(-2<ξ<0)=-p;④若不等式|x+3|+|x-2|≥2m+1恒成立,则m的取值范围是(-∞,2);⑤已知奇函数f(x)满足f(x+π)=-f(x),且0<x<时f(x)=x,则函数g(x)=f(x)-sinx在[-2π,2π]上有5个零点.其中真命题的序号是______ (写出全部真命题的序号).【答案】③【解析】解:①设m为直线,α,β为平面,且m⊥β,则“m∥α”可得“α⊥β”,反过来,“α⊥β”可得“m∥α”或“m⊂α”,故不正确;②(x3+)5的展开式的通项为T r+1=C5r x15-4r,∴含x3的项的系数为C53=10,故不正确;③设随机变量ξ~N(0,1),曲线关于x=0对称,若P(ξ≥2)=p,则P(-2<ξ<0)=-p,正确;④|x+3|+|x-2|表示数轴上的x对应点到-3和2对应点的距离之和,它的最小值等于5,由|x+3|+|x-2|≥2m+1恒成立,知2m+1≤5,则m的取值范围是(-∞,2],不正确;⑤奇函数f(x)满足f(x+π)=-f(x),可得函数f(x)图象关于x=对称,周期为2π,由0<x<时,f(x)=x,则函数g(x)=f(x)-sinx,因为x取不到0,,所以共有0个零点,不正确.故答案为:③.①由m⊥β,则“m∥α”可得“α⊥β”,反过来,“α⊥β”可得“m∥α”或“m⊂α”,;②利用二项展开式的通项公式写出展开式的通项,令x的指数为3,写出展开式中x3的系数,得到结果;③设随机变量ξ~N(0,1),曲线关于x=0对称,若P(ξ≥2)=p,则P(-2<ξ<0)=-p;④|x+3|+|x-2|表示数轴上的x对应点到-3和2对应点的距离之和,它的最小值等于5,由|x+3|+|x-2|≥2m+1恒成立,可求m的取值范围;⑤奇函数f(x)满足f(x+π)=-f(x),可得函数f(x)图象关于x=对称,由0<x <时,f(x)=x,则函数g(x)=f(x)-sinx,因为x取不到0,,所以共有0个零点.本题考查命题的真假判断,考查函数的性质,考查不等式知识,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共6小题,共65.0分)16.已知函数f(x)=4cosωx•sin(ωx-)+1(ω>0)的最小正周期是π.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)求f(x)在[,]上的最大值和最小值.【答案】解:(Ⅰ)f(x)=4cosωxsin(ωx-)+1=2sinωxcosωx-2cos2ωx+1=sin2ωx-cos2ωx =2sin(2ωx-),∵函数f(x)的最小正周期是π,∴T=,∴ω=1,∴f(x)=2sin(2x-),令-+2kπ≤2x-≤+2kπ,∴-+kπ≤x≤+kπ,∴f(x)的单调递增区间[-+kπ,+kπ],(k∈z);(Ⅱ)∵x∈[,],∴(2x-)∈[,],∴f(x)=2sin(2x-)∈[,2],∴f(x)在[,]上的最大值2,最小值.【解析】(Ⅰ)首先,利用两角差的正弦公式,将sin(ωx-)化简,然后,结合三角恒等变换公式,进行化简,最后,结合周期公式,进一步确定ω的值,从而得到函数的单调区间;(Ⅱ)直接利用三角函数的图象与性质进行求解即可.本题重点考查了两角和与差的三角函数,三角函数的图象与性质等知识,属于中档题.17.如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=2,PD=,M为棱PB的中点.(Ⅰ)证明:DM⊥平面PBC;(Ⅱ)求二面角A-DM-C的余弦值.【答案】(Ⅰ)证明:连结BD,取DC的中点G,连结BG,由题意知DG=GC=BG=1,即△DBC是直角三角形,∴BC⊥BD,又PD⊥平面ABCD,∴BC⊥PD,∴BC⊥平面BDP,BC⊥DM,又PD=BD=,PD⊥BD,M为PB的中点,∴DM⊥PB,∵PB∩BC=B,∴DM⊥平面PDC.(Ⅱ)以D为原点,DA为x轴,建立如图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,),M(,,),设平面ADM的法向量,,,则,取y=,得,,,同理,设平面ADM的法向量,,,则,取,得=(,,),cos<,>=-,∵二面角A-DM-C的平面角是钝角,∴二面角A-DM-C的余弦值为-.【解析】(Ⅰ)连结BD,取DC的中点G,连结BG,由已知条件推导出BC⊥DM,DM⊥PB,由此能证明DM⊥平面SDC.(Ⅱ)以D为原点,DA为x轴,建立空间直角坐标系,利用向量法能求出二面角A-DM-C 的余弦值.本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.18.一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.(Ⅰ)从袋中不放回地取球,求恰好取4次停止的概率P1;(Ⅱ)从袋中有放回地取球.①求恰好取5次停止的概率P2;②记5次之内(含5次)取到红球的个数为ξ,求随机变量ξ的分布列及数学期望.【答案】解:(Ⅰ)恰好取4次停止的概率:P1=(+)×=.(Ⅱ)①恰好取5次停止的概率P2==.②由题意知随机变量ξ的取值为0,1,2,3,由n次独立重复试验概率公式P n(k)=,得P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,ξ=3这个事件包括了三种情况,第一种取三次取到全是红球,第二种取四次取到三次红球,此时,第四次一定取到红球,前三次两次取到红球,第三种取五次取到三个红球,第五次取到的是红球,前四次取到两次红球,故有P(ξ=3)=++=,∴ξ的分布列为:∴Eξ==.【解析】(Ⅰ)利用古典概型的概率计算公式能求出恰好取4次停止的概率P1.(Ⅱ)①利用n次独立重复试验概率公式能求出恰好取5次停止的概率P2.②由题意知随机变量ξ的取值为0,1,2,3,分别求出相对应的概率,由此能求出随机变量ξ的分布列及数学期望.本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意n次独立重复试验概率公式的灵活运用.19.已知等差数列{a n}的前n项和为S n,S7=49,a4和a8的等差中项为11.(Ⅰ)求a n及S n;(Ⅱ)证明:当n≥2时,有++…+<.【答案】(Ⅰ)解:设等差数列{a n}的公差为d,∵S7=49,a4和a8的等差中项为11,∴,解得a1=1,d=2,∴a n=2n-1,S n=n2.(Ⅱ)证明:由(Ⅰ)知S n=n2,n∈N*,①n=2时,<,∴原不等式也成立.②当n≥3时,∵n2>(n-1)n,∴<,∴+=<1++=1++[()+…+()+()]=1++()=<.【解析】(Ⅰ)由已知条件利用等差数列的通项公式和前n项和公式列出方程组求出a1=1,d=2,由此能求出a n及S n.(Ⅱ)由S n=n2知当n=2时,不等式成立;当n≥3时,<,由此利用裂项法能证明+<.本题考查数列的通项公式和前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.20.已知椭圆+=1(a>b>0)经过点M(,1),离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知点P(,0),若A,B为已知椭圆上两动点,且满足•=-2,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.【答案】解:(Ⅰ)∵椭圆+=1(a>b>0)离心率为,∴,①∵椭圆经过点M(,1),∴,②又a2=b2+c2,③∴由①②③联立方程组解得a2=8,b2=c2=4,∴椭圆方程为.(Ⅱ)①当直线AB与x轴不垂直时,设直线AB方程为y=kx+m,代入,消去y整理,得(2k2+1)x2+4kmx+2m2-8=0,由△>0,得8k2+4-m2>0,(*)设A(x1,y1),B(x2,y2),则,,∵点P(,0),A,B为已知椭圆上两动点,且满足•=-2,∴====-2,∴++8+m2=0,整理,得()2=0,解得m=-,满足(*)∴直线AB的方程为y=k(x-),∴直线AB经过定点(,0).②当直线AB与x轴垂直时,直线方程为x=,此时A(,),B(,-),也有=-2,综上,直线AB一定过定点(,0).【解析】(Ⅰ)由已知条件推导出,,又a2=b2+c2,由此能求出椭圆方程.(Ⅱ)当直线AB与x轴不垂直时,设直线AB方程为y=kx+m,代入,消去y整理,得(2k2+1)x2+4kmx+2m2-8=0,由根的判别式和韦达定理结合已知条件求出直线AB的方程为y=k(x-),从而得到直线AB经过定点(,0).当直线AB与x 轴垂直时,直线方程为x=,也有=-2.由此证明直线AB一定过定点(,0).本题考查椭圆方程的求法,考查直线是否过定点的判断与证明,综合性强,难度大,解题时要认真审题,注意函数与方程思想的合理运用.21.已知函数f(x)=k(x-1)e x+x2.(Ⅰ)当时k=-,求函数f(x)在点(1,1)处的切线方程;(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;(Ⅲ)当k≤-l时,求函数f(x)在[k,1]上的最小值m.【答案】解:(Ⅰ)k=-时,f(x)=-(x-1)e x+x2,∴f′(x)=x(2-e x-1),∴f′(1)=1,f(1)=1,∴函数f(x)在(1,1)处的切线方程为y=x,(Ⅱ)f′(x)=kx(e x+)<x2+(k+2)x,即:kxe x-x2-kx<0,∵x<0,∴ke x-x-k>0,令h(x)=ke x-x-k,∴h′(x)=ke x-1,当k≤0时,h(x)在x<0时递减,h(x)>h(0)=0,符合题意,当0<k≤1时,h(x)在x<0时递减,h(x)>h(0)=0,符合题意,当k>1时,h(x)在(-∞,-lnk)递减,在(-lnk,0)递增,∴h(-lnk)<h(0)=0,不合题意,综上:k≤1.(Ⅲ)f′(x)=kx(e x+),令f′(x)=0,解得:x1=0,x2=ln(-),令g(k)=ln(-)-k,则g′(k)=--1≤0,g(k)在k=-1时取最小值g(-1)=1+ln2>0,∴x2=ln(-)>k,当-2<k≤-1时,x2=ln(-)>0,f(x)的最小值为m=min{f(0),f(1)}=min{-k,1}=1,当k=-2时,函数f(x)在区间[k,1]上递减,m=f(10=1,当k<-2时,f(x)的最小值为m=min{f(x2),f(1)},f(x2)=-2[ln(-)-1]+[ln(-)]2=-2x2+2>1,f(1)=1,此时m=1,综上:m=1.【解析】(Ⅰ)k=-时,f(x)=-(x-1)e x+x2,得f′(x)=x(2-e x-1),从而求出函数f(x)在(1,1)处的切线方程;(Ⅱ)f′(x)=kx(e x+)<x2+(k+2)x,即:kxe x-x2-kx<0,令h(x)=ke x-x-k,讨论当k≤0时,当0<k≤1时,当k>1时,从而综合得出k的范围;(Ⅲ)f′(x)=kx(e x+),令f′(x)=0,得:x1=0,x2=ln(-),令g(k)=ln(-)-k,则g′(k)=--1≤0,得g(k)在k=-1时取最小值g(-1)=1+ln2>0,讨论当-2<k≤-1时,当k=-2时,当k<-2时的情况,从而求出m的值.本题考查了函数的单调性,函数的最值问题,考查参数的取值,导数的应用,是一道综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共12小题,每小题5分,共60分。
1. 若全集为实数集R ,集合A =12
{|log (21)0},R x x C A ->则= ( )
A .1
(,)2+∞ B .(1,)+∞
C .1[0,][1,)2+∞
D .1
(,][1,)2
-∞+∞
2. 若O 为平行四边形ABCD 的中心,14AB e = , 2216,32BC e e e =-
等于 ( )
A .AO
B .BO
C .CO
D .DO
3. 下列命题中,真命题是( )
A .0,00≤∈∃x e R x
B .22,x R x x >∈∀
C .0=+b a 的充要条件是
1-=b
a
D .1,1>>b a 是1>ab 的充分条件 4. 已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a = ( )
A. 3
1- B .31
C .3-
D .3
5. 若,2παπ⎛⎫∈ ⎪⎝⎭,1tan ,sin 47παα⎛
⎫+== ⎪⎝⎭则
( )
A.35 B .45 C .35- D .4
5
- 6. 函数x
x x f 2
)1ln()(-+=的零点所在的大致区间是 ( )
A. )1,0( B .)2,1( C .),2(e D .)4,3( 7. 在等比数列{n a }中,若232a a +=,12133a a +=,则2223a a +的值是 ( )
A .
94 B .49 C .92 D . 29
8. 已知实数,x y 满足y x z m y x x y y -=⎪⎩
⎪
⎨⎧≤+-≤≥如果目标函数,121
的最小值为-1,则实数m 等于( )
A .7
B .5
C .4
D .3
9. 已知0a b <<,且1a b +=,则下列不等式中,正确的是 ( )
A .2log 0a >
B .1
22a b -<
C .12
a b b a
a
+<
D .22log log 2a b +<-
10. 已知12F F 、是双曲线)0,0(122
22>>=-b a b
y a x 的两焦点,以线段12F F 为边作正三角形,若双曲线
恰好平分正三角形的另两边,则双曲线的离心率是 ( ) A .324+
B .
2
1
3+ C .13- D .13+
11. 函数()sin()f x A x ωϕ=+(其中0,||2
A π
ϕ><
)的图象如图所示,为了得到()cos 2g x x =的图像,
则只要将()f x 的图像 ( )
A.向右平移
6π
个单位长度 B .向右平移12π
个单位长度
C .向左平移6π
个单位长度
D .向左平移12π
个单位长度
12. 已知函数()f x 对任意x R ∈都有(6)()2(3)f x f x f ++=,(1)y f x =-的图象关于点(1,0)对称,则
=)2013(f ( )
A .0
B .4-
C .8-
D .16-
第Ⅱ卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题4分,共16分。
13. 由曲线x y =
,直线2-=x y 及y 轴所围成的图形的面积为________________.
14.
已知||3,||2,||==-= a b a b 则,a b <>
为 .
15. 设直线10x my --=与圆22(1)(2)4x y -+-=相交于A ,B 两点,且弦AB
的长为则实数m
的值是 .
16. 若抛物线24y x =上一点P 到其焦点F 的距离为3,延长PF 交抛物线于Q ,若O 为坐标原点,
则OPQ S ∆= .
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)
已知定义域为R 的函数12()2x x b
f x a
+-+=+是奇函数.
(Ⅰ)求,a b 的值;
(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围。
18. (本小题满分12分)
在ABC ∆中,a b c 、、分别是角A B C 、、的对边,且27
4sin cos 222
B C A +-=, (Ⅰ)求A ∠的度数;
(Ⅱ)若3a b c =+=,求b 和c 的值.
19. (本小题满分12分)
已知数列).2(353,2,}{111≥+-==--n S a a S a S n a n n n n n n 且有项和为的前 (Ⅰ)求数列n a 的通项公式;
(Ⅱ)若,)12(n n a n b -=求数列}{n b 的前n 项和.n T
20. (本小题满分12分)
已知函数b x ax
x f +=2)(在1-=x 处取得极值2-.
(Ⅰ)求函数)(x f 的表达式; (Ⅱ)求函数)(x f 单调区间.
21. (本小题满分13分)
已知AC =2sin 2(cos x x +,)2sin x -,BC =2sin 2(cos x
x -,)2cos 2x ,设BC AC x f ⋅=)(.
(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的单调递减区间;
(Ⅲ)设有不相等的两个实数12,,22x x ππ⎡⎤
∈-⎢⎥⎣⎦
,且1)()(21==x f x f ,求21x x +的值.
22. (本小题满分13分)
如图,AB 为圆O 直径,已知(2,0)(2,0)A B -、,D 为圆O 上的一点,
且0OA OD ⋅=
,Q 为线段OD 的中点,曲线C 过Q 点,动点
G 在曲线C 上运动且保持GA GB +的值不变
(Ⅰ)求曲线C 的方程;
(Ⅱ)过点D 的直线l 与曲线C 相交于不同的两点M N 、,且M 在D N 、之间,设DM
DN
λ=,求λ的取值范
………………… 2分
= x x sin cos -=)2
2sin 22(cos 2⋅-⋅x x =)4
cos(2π
+
x ………………2分
所以)(x f 的最小正周期π2=T ……………4分 (Ⅱ) 又由 πππ
πk x k 24
2+≤+≤,k ∈Z ,
得 ππ
ππ
k x k 24
324+≤
≤+-
,k ∈Z .
故)(x f 的单调递减区间是]24
3,24[ππ
ππk k ++- (k ∈Z )
. ………….8分
(Ⅲ)由1)(=x f )14
x π
+
=,故cos()42x π+=
. ………….9分 又,22x ππ⎡⎤
∈-
⎢⎥⎣⎦
,于是有3,444x πππ⎡⎤+∈-⎢⎥⎣⎦,得120,2x x π==- ………11分
所以122
x x π
+=-
. ……………13分
23,5k > 280164133(5)k ∴<<+ ……………………………………10分
2
(1)164,3λλ
+∴<
<
0,DM DN
λ=> 1
33
λ∴<<解得① ……………………………………12分
又 M 在D N 、之间1DM
DN
λ∴=<
② 综上可得
1
13
λ≤< ……………………………………13分。