新丰县三中2018-2019学年上学期高二数学12月月考试题含解析
咸丰县三中2018-2019学年上学期高二数学12月月考试题含解析
咸丰县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.2.设a是函数x的零点,若x0>a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)<0C.f(x0)>0 D.f(x0)的符号不确定3.函数y=2|x|的图象是()A.B.C.D.4.已知f(x)为偶函数,且f(x+2)=﹣f(x),当﹣2≤x≤0时,f(x)=2x;若n∈N*,a n=f(n),则a2017等于()A.2017 B.﹣8 C.D.5.已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是()A.(﹣2,﹣1)∪(1,2)B.(﹣2,﹣1)∪(0,1)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)6.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37 121新设备22 202根据以上数据,则()A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关C.设备是否改造决定含杂质的高低D.以上答案都不对7.为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位8.在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形9.抛物线y2=2x的焦点到直线x﹣y=0的距离是()A.B.C.D.10.全称命题:∀x∈R,x2>0的否定是()A.∀x∈R,x2≤0 B.∃x∈R,x2>0 C.∃x∈R,x2<0 D.∃x∈R,x2≤011.若命题p:∀x∈R,2x2﹣1>0,则该命题的否定是()A.∀x∈R,2x2﹣1<0 B.∀x∈R,2x2﹣1≤0C.∃x∈R,2x2﹣1≤0 D.∃x∈R,2x2﹣1>012.在△ABC中,C=60°,AB=,AB边上的高为,则AC+BC等于()A. B.5 C.3 D.二、填空题13.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .14.设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.15.设所有方程可以写成(x﹣1)sinα﹣(y﹣2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是;①直线l的倾斜角为α;②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;③存在定圆C,使得对任意l∈L都有直线l与圆C相交;④任意l1∈L,必存在唯一l2∈L,使得l1∥l2;⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2.16.直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,则实数a的值为.17.设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM,其中正确的是(把所有正确的序号都填上).18.已知曲线y=(a﹣3)x3+lnx存在垂直于y轴的切线,函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则a的范围为.三、解答题19.某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t 0 3 6 9 12 15 18 21 24y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?20.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.21.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.22.设集合A={x|0<x ﹣m <3},B={x|x ≤0或x ≥3},分别求满足下列条件的实数m 的取值范围. (1)A ∩B=∅; (2)A ∪B=B .23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=ρ,曲线2C 的参数方程是θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x 是参数).(Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程;(Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.24.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的 最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.咸丰县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.2.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.3.【答案】B【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.4.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.5.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf(x)<0的解为:或解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D.6.【答案】A【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37 121 158新设备22 202 224合计59 323 382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.7.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.8.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.9.【答案】C【解析】解:抛物线y2=2x的焦点F(,0),由点到直线的距离公式可知:F到直线x﹣y=0的距离d==,故答案选:C.10.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.11.【答案】C【解析】解:命题p:∀x∈R,2x2﹣1>0,则其否命题为:∃x∈R,2x2﹣1≤0,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;12.【答案】D【解析】解:由题意可知三角形的面积为S===AC•BCsin60°,∴AC•BC=.由余弦定理AB2=AC2+BC2﹣2AC•BCcos60°=(AC+BC)2﹣3AC•BC,∴(AC+BC)2﹣3AC•BC=3,∴(AC+BC)2=11.∴AC+BC=故选:D【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.二、填空题13.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
丰县高中2018-2019学年上学期高二数学12月月考试题含解析
丰县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为()A.13 B.15 C.12 D.112.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件3.已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.﹣2 B.2 C.﹣98 D.984.在等差数列{a n}中,a1=2,a3+a5=8,则a7=()A.3 B.6 C.7 D.85.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,,A=60°,则满足条件的三角形个数为()A.0 B.1 C.2 D.以上都不对6.有以下四个命题:①若=,则x=y.②若lgx有意义,则x>0.③若x=y,则=.④若x>y,则x2<y2.则是真命题的序号为()A.①②B.①③C.②③D.③④7.设x∈R,则x>2的一个必要不充分条件是()A.x>1 B.x<1 C.x>3 D.x<38.若某算法框图如图所示,则输出的结果为()A .7B .15C .31D .639. sin (﹣510°)=( )A .B .C .﹣D .﹣10.在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .011.函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A .B .C .D .12.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题二、填空题13.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 . 14.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________.【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.15.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 . 16.已知tan()3αβ+=,tan()24πα+=,那么tan β= .17.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足 AB =∅,{}|52A B x x =-<≤,求实数a =__________.18.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 三、解答题19.如图,椭圆C 1:的离心率为,x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长.C 2与y 轴的交点为M ,过点M 的两条互相垂直的直线l 1,l 2分别交抛物线于A 、B 两点,交椭圆于D 、E 两点, (Ⅰ)求C 1、C 2的方程;(Ⅱ)记△MAB ,△MDE 的面积分别为S 1、S 2,若,求直线AB 的方程.20.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.21.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.22.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i,求实数a,b的值.23.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.24.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.丰县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.2.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.3.【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(﹣1),又f(x)在R上是奇函数,所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,故选A.【点评】本题考查函数的奇偶性与周期性.4.【答案】B【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,∴2a4=a3+a5=8,解得a4=4,∴公差d==,∴a7=a1+6d=2+4=6故选:B.5.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.6.【答案】A【解析】解:①若=,则,则x=y,即①对;②若lgx有意义,则x>0,即②对;③若x=y>0,则=,若x=y<0,则不成立,即③错;④若x>y>0,则x2>y2,即④错.故真命题的序号为①②故选:A.7.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.8.【答案】D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4 满足条件A ≤5,B=31,A=5 满足条件A ≤5,B=63,A=6不满足条件A ≤5,退出循环,输出B 的值为63. 故选:D .【点评】本题主要考查了程序框图和算法,正确得到每次循环A ,B 的值是解题的关键,属于基础题.9. 【答案】C【解析】解:sin (﹣510°)=sin (﹣150°)=﹣sin150°=﹣sin30°=﹣, 故选:C .10.【答案】 C【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),且sin 2θ+cos 2θ=1,∴=(1﹣cos 2θ)+(cos 2θ)=+cos 2θ•(﹣),即﹣=cos 2θ•(﹣),可得=cos 2θ•,又∵cos 2θ∈[0,1],∴P 在线段OC 上,由于AB 边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C .【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.11.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A ,B当|a|<1时且a ≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C .故选:D .12.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.二、填空题13.【答案】[4,16].【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.14.【答案】62(1,)+ 【解析】15.【答案】②④⑤【解析】解析:构造函数()()x g x e f x =,()[()()]0x g x e f x f x ''=+>,()g x 在R 上递增, ∴()x f x e -<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;构造函数()()x f x g x e =,()()()0xf x f xg x e '-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;由()()x e xf x f x x '+=得2()()x e xf x f x x-'=,设()()x g x e xf x =-,则()()()xg x e f x xf x ''=--(1)x x x e e e x x x=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.16.【答案】43【解析】试题分析:由1tan tan()241tan πααα++==-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβααβα+-=++134313133-==+⨯. 考点:两角和与差的正切公式. 17.【答案】7,32a b =-= 【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键. 18.【答案】 【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒=a b +=考点:指对数式运算三、解答题19.【答案】【解析】解:(Ⅰ)∵椭圆C 1:的离心率为,∴a 2=2b 2,令x 2﹣b=0可得x=±,∵x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长,∴2=2b ,∴b=1,∴C1、C2的方程分别为,y=x2﹣1;…(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0∴x=0或x=k1,∴A(k1,k12﹣1)同理可得B(k2,k22﹣1)…∴S1=|MA||MB|=•|k1||k2|…y=k1x﹣1与椭圆方程联立,可得D(),同理可得E()…∴S2=|MD||ME|=••…∴若则解得或∴直线AB的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.20.【答案】【解析】解:(1)如图(2)它可以看成一个长方体截去一个小三棱锥,设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96cm3,V2=••2•2•2=cm3,∴V=v1﹣v2=cm3(3)证明:如图,在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,又EG⊂平面EFG,所以BC′∥平面EFG;2016年4月26日21.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t 2+4t=0,解得t=﹣或t=0(舍去),∴E (﹣,﹣),A (﹣,﹣), ∴直线AB 的方程为:x+2y+2=0;(Ⅱ)证明:设P (x 0,y 0),则,直线AP 方程为:y+=(x+),联立直线AP 与直线y=x 的方程,解得:x M =,直线BP 的方程为:y+1=,联立直线BP 与直线y=x 的方程,解得:x N =,∴OM •ON=|x M ||x N |=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.22.【答案】【解析】解:(1).∴=1﹣i .(2)a(1+i)+b=1﹣i,即a+b+ai=1﹣i,∴,解得a=﹣1,b=2.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.23.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y﹣2=0经过椭圆的右顶点,∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.24.【答案】【解析】解:(1)y =g (x )=e x 关于直线y =x 对称的曲线h (x )=ln x , 设曲线y =h (x )与切线mx -y -1=0的切点为(x 0,ln x 0), 由h (x )=ln x 得h ′(x )=1x ,(x >0),则有⎩⎪⎨⎪⎧1x 0=m mx 0-ln x 0-1=0,解得x 0=m =1. ∴m 的值为1.(2)φ(x )=12x 2+x +a -e x ,φ′(x )=x +1-e x , 令t (x )=x +1-e x , ∴t ′(x )=1-e x ,当x <0时,t ′(x )>0,x >0时,t ′(x )<0, x =0时,t ′(x )=0.∴φ′(x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴φ′(x )max =φ′(0)=0, 即φ′(x )≤0在(-∞,+∞)恒成立, 即φ(x )在(-∞,+∞)单调递减, 且当a =1有φ(0)=0.∴不论a 为何值时,φ(x )=f (x )-g (x )有唯一零点x 0, 当x 0∈(0,1)时,则φ(0)φ(1)<0, 即(a -1)(a -2e -32)<0,∴1<a <2e -32,即a 的取值范围为(1,2e -32).。
丰县三中2018-2019学年上学期高二数学12月月考试题含解析
丰县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设D为△ABC所在平面内一点,,则()A.B.C.D.2.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()A.b<a<c B.a<c<b C.a<b<c D.b<c<a3.在复平面内,复数(﹣4+5i)i(i为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若椭圆+=1的离心率e=,则m的值为()A.1 B.或C.D.3或5.已知平面向量=(1,2),=(﹣2,m),且∥,则=()A.(﹣5,﹣10)B.(﹣4,﹣8) C.(﹣3,﹣6) D.(﹣2,﹣4)6.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.167.用反证法证明命题:“已知a、b∈N*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为()A.a、b都能被5整除B.a、b都不能被5整除C.a、b不都能被5整除D.a不能被5整除8.已知x>1,则函数的最小值为()A.4 B.3 C.2 D.19.已知偶函数f(x)满足当x>0时,3f(x)﹣2f()=,则f(﹣2)等于()A.B.C.D.10.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.11.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A .1B .C .e ﹣1D .e+112.如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .0二、填空题13.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.(x ﹣)6的展开式的常数项是 (应用数字作答).16.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.17.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.18.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)三、解答题19.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.20.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.21.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.22.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.(1)求f(x)的解析式;(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.23.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)24.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.丰县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.2.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.3.【答案】B【解析】解:∵(﹣4+5i)i=﹣5﹣4i,∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B.4.【答案】D【解析】解:当椭圆+=1的焦点在x轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y轴上时,a=,b=,c=由e=,得=,即m=.故选D【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x轴和y轴进行分类讨论.5.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.6.【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16.故选:D.7.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.8.【答案】B【解析】解:∵x>1∴x﹣1>0由基本不等式可得,当且仅当即x﹣1=1时,x=2时取等号“=”故选B9.【答案】D【解析】解:∵当x>0时,3f(x)﹣2f()=…①,∴3f()﹣2f(x)==…②,①×3+③×2得:5f(x)=,故f(x)=,又∵函数f(x)为偶函数,故f(﹣2)=f(2)=,故选:D.【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.10.【答案】C【解析】解:由于q=2,∴∴;故选:C.11.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.12.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.二、填空题13.【答案】4.【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】﹣160【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.16.【答案】±.【解析】分析题意得,问题等价于264x ax++≤只有一解,即220x ax++≤只有一解,∴280a a∆=-=⇒=±,故填:±.17.【答案】64 9π【解析】111]考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.18.【答案】 3.3【解析】解:如图BC 为竿的高度,ED 为墙上的影子,BE 为地面上的影子.设BC=x ,则根据题意=,AB=x ,在AE=AB ﹣BE=x ﹣1.4,则=,即=,求得 x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.三、解答题19.【答案】(1)证明见解析;(2)【解析】试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.20.【答案】【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是21.【答案】【解析】解:(Ⅰ)由f (x )=x ﹣1+,得f ′(x )=1﹣,又曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,∴f ′(1)=0,即1﹣=0,解得a=e .(Ⅱ)f ′(x )=1﹣,①当a ≤0时,f ′(x )>0,f (x )为(﹣∞,+∞)上的增函数,所以f (x )无极值; ②当a >0时,令f ′(x )=0,得e x =a ,x=lna ,x ∈(﹣∞,lna ),f ′(x )<0;x ∈(lna ,+∞),f ′(x )>0;∴f (x )在∈(﹣∞,lna )上单调递减,在(lna ,+∞)上单调递增,故f (x )在x=lna 处取到极小值,且极小值为f (lna )=lna ,无极大值.综上,当a ≤0时,f (x )无极值;当a >0时,f (x )在x=lna 处取到极小值lna ,无极大值.(Ⅲ)当a=1时,f (x )=x ﹣1+,令g (x )=f (x )﹣(kx ﹣1)=(1﹣k )x+, 则直线l :y=kx ﹣1与曲线y=f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0,g ()=﹣1+<0,又函数g (x )的图象连续不断,由零点存在定理可知g (x )=0在R 上至少有一解, 与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.又k=1时,g (x )=>0,知方程g (x )=0在R 上没有实数解,所以k 的最大值为1.22.【答案】【解析】解:(1)二次函数f (x )图象经过点(0,4),任意x 满足f (3﹣x )=f (x )则对称轴x=,f (x )存在最小值,则二次项系数a >0设f (x )=a (x ﹣)2+. 将点(0,4)代入得:f (0)=,解得:a=1∴f(x)=(x﹣)2+=x2﹣3x+4.(2)h(x)=f(x)﹣(2t﹣3)x=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:当t≤0时,最小值4;当0<t<1时,最小值4﹣t2;当t≥1时,最小值﹣2t+5.∴.(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,∴m<x2﹣5x+4对x∈[﹣1,3]恒成立,∵g(x)=x2﹣5x+4在x∈[﹣1,3]上的最小值为,∴m<.23.【答案】【解析】(1)解:不等式f(x)+f(x+1)≤2,即|x﹣1|+|x﹣2|≤2.|x﹣1|+|x﹣2|表示数轴上的点x到1、2对应点的距离之和,而2.5 和0.5对应点到1、2对应点的距离之和正好等于2,∴不等式的解集为[0.5,2.5].(2)证明:∵a<0,f(ax)﹣af(x)=|ax﹣2|﹣a|x﹣2|=|ax﹣2|+|2﹣ax| ≥|ax﹣2+2a﹣ax|=|2a﹣2|=f(2a﹣2),∴f(ax)﹣af(x)≥f(2a)成立.24.【答案】【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,所以x2+y2=4x+4y﹣6,所以x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…所以所求的圆C的参数方程为(θ为参数).…(Ⅱ)由(Ⅰ)可得,…当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…。
2018-2019学年上学期高二数学12月月考试题含解析(1722)
图木舒克市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .B .C .D .2. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部3. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定4. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->”C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥ 5. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .96. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( ) A .{﹣1,0,1,2,4} B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}7. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M的变化而变化8. 复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( ) A .2017 B .﹣8 C .D .10.已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x11.在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .12.设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.二、填空题13.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .14.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.15.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60︒角;④DM 与BN 是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).16.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .17.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .18.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,3cos()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题19.已知m ∈R ,函数f (x )=(x 2+mx+m )e x . (1)若函数f (x )没有零点,求实数m 的取值范围;(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;(3)当m=0时,求证:f (x )≥x 2+x 3.20.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;111](2)求该几何体的表面积S.21.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.22.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.23.若函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,求a的值.24.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.图木舒克市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键2.【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部.读结构图的顺序是按照从上到下,从左到右的顺序.故选C.【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.3.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f (x2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x 0>a ,又∵x >x 0,又∵x >x 0时,f ''(x )递减,∴.故选:A .【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.4. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 5. 【答案】B【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2; ②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1; ③x=2时,y=0,1,2,∴x ﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共5个元素.故选:B .6. 【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4}, ∴A ∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}. 故选:A .【点评】本题考查并集及其运算,是基础的会考题型.7. 【答案】B 【解析】考点:棱柱、棱锥、棱台的体积.8.【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.9.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.10.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C 的焦距为12,∴12=2,即a 2+b 2=36,②联立①、②,可得a 2=16,b 2=20,∴渐近线方程为:y=±x=±x ,故选:A .【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.11.【答案】B【解析】解:在等差数列{a n }中,由a 4+a 8=22,得2a 6=22,a 6=11.又a 3=5,得d=,∴a 1=a 3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B .12.【答案】B. 【解析】232()4()()44a b abab a b a-=⇒+=+,故11a ba b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B. 二、填空题13.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P 1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P 2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P 2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.14.【答案】 【解析】当n =1时,a 1=S 1=k 1+2k 2,当n ≥2时,a n =S n -S n -1=(k 1+k 2·2n )-(k 1+k 2·2n -1)=k 2·2n -1,∴k 1+2k 2=k 2·20,即k 1+k 2=0,① 又a 2,a 3,a 4-2成等差数列. ∴2a 3=a 2+a 4-2, 即8k 2=2k 2+8k 2-2.② 由①②联立得k 1=-1,k 2=1, ∴a n =2n -1. 答案:2n -1 15.【答案】③④ 【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①BM 与ED 是异面直线,所以是错误的;②DN 与BE 是平行直线,所以是错误的;③从图中连接,AN AC ,由于几何体是正方体,所以三角形ANC 为等边三角形,所以,AN AC 所成的角为60 ,所以是正确的;④DM 与BN 是异面直线,所以是正确的.考点:空间中直线与直线的位置关系.16.【答案】 25【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km ,由正弦定理可得AC==25km,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.17.【答案】2016.【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.18.【答案】【解析】三、解答题19.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,所以当x=0时,φ(x)取得最小值0.所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,因此x2e x≥x2+x3,即f(x)≥x2+x3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键..20.【答案】(1)3;(2)623【解析】(2)由三视图可知,该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD C 均为矩形,2(11112)6S =⨯++⨯=+.1考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 21.【答案】【解析】解:∴z 1=2﹣i 设z 2=a+2i (a ∈R ) ∴z 1z 2=(2﹣i )(a+2i )=(2a+2)+(4﹣a )i∵z 1z 2是实数 ∴4﹣a=0解得a=4 所以z 2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.22.【答案】【解析】解:设双曲线方程为(a >0,b >0)由椭圆+=1,求得两焦点为(﹣2,0),(2,0),∴对于双曲线C :c=2. 又y=x 为双曲线C 的一条渐近线,∴=解得a=1,b=,∴双曲线C的方程为.23.【答案】【解析】解:由题意可得:∵当a>1时,函数f(x)在区间[1,2]上单调递增,∴f(2)﹣f(1)=a2﹣a=a,解得a=0(舍去),或a=.∵当0<a<1时,函数f(x)在区间[1,2]上单调递减,∴f(1)﹣f(2)=a﹣a2=,解得a=0(舍去),或a=.故a的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.24.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.。
新丰县三中2018-2019学年高二上学期第二次月考试卷数学
新丰县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .22. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .3. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.4. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .5. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .6. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:x 3 4 5 6 y 2.5 3 4 4.50.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.457. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .8. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .319. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞) C .(﹣∞,﹣1) D .(﹣∞,﹣2)10.已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .5611.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A .123B .163C .203D .32312.将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( )(A )43π ( B ) 83π (C ) 4π (D ) 8π 二、填空题13.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .14.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号). ①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.15.已知α为钝角,sin (+α)=,则sin (﹣α)= .16.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .17.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.18.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .三、解答题19.如图所示,已知+=1(a >>0)点A (1,)是离心率为的椭圆C :上的一点,斜率为的直线BD 交椭圆C 于B 、D 两点,且A 、B 、D 三点不重合.(Ⅰ)求椭圆C 的方程; (Ⅱ)求△ABD 面积的最大值;(Ⅲ)设直线AB 、AD 的斜率分别为k 1,k 2,试问:是否存在实数λ,使得k 1+λk 2=0成立?若存在,求出λ的值;否则说明理由.20.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.21.2()sin 22f x x x =+. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12A f =,ABC ∆的面积为.22.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为等腰梯形,AD ∥BC ,PA=AB=BC=CD=2,PD=2,PA ⊥PD ,Q 为PD 的中点. (Ⅰ)证明:CQ ∥平面PAB ;(Ⅱ)若平面PAD ⊥底面ABCD ,求直线PD 与平面AQC 所成角的正弦值.23.已知函数f(x)=lnx﹣ax+(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数y=f(x)在定义域内存在两个极值点,求a的取值范围.24.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.新丰县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x|=2,P∴S△POF=|0F|•|x P|=.故选:C.2.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.3.【答案】A4.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题5.【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin2α+cos2α=1,解得sinα=,cosα=(负值舍去).则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.故选B.【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.6.【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得,=4.5,=3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a,解得a=0.35.故选A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.7.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.8.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.9.【答案】D【解析】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.10.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.11.【答案】C 【解析】考点:三视图. 12.【答案】B【解析】将函数()()sin 20y x ϕϕ=+>的图象沿x 轴向左平移8π个单位后,得到一个偶函数sin 2sin 284[()]()y x x ππϕϕ=++=++的图象,可得42ππϕ+=,求得ϕ的最小值为 4π,故选B .二、填空题13.【答案】 A .【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A .故答案为:A .【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.14.【答案】 ②③ .【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P 不一定是双曲线,这与AB 的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P 的轨迹为以A ,B 为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x 2﹣5x+2=0的两个根为x=2或x=,所以方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x 轴上,而椭圆的焦点在y 轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③. 故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.15.【答案】 ﹣ .【解析】解:∵sin (+α)=,∴cos (﹣α)=cos[﹣(+α)]=sin (+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin (﹣α)<0,∴sin (﹣α)=﹣=﹣=﹣, 故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.16.【答案】5 【解析】试题分析:'2'()323,(3)0,5f x x ax f a =++∴-=∴=. 考点:导数与极值.17.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m =12时,直线y =2mx −1与y =ln x 的图象相切, 由图可知,当0<m <12时,y =ln x 与y =2mx −1的图象有两个交点,则实数m 的取值范围是(0,12),故答案为:(0,12).18.【答案】 [0,2] .【解析】解:∵|x ﹣m|﹣|x ﹣1|≤|(x ﹣m )﹣(x ﹣1)|=|m ﹣1|, 故由不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,可得|m ﹣1|≤1,∴﹣1≤m ﹣1≤1, 求得0≤m ≤2, 故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x,y1),B(x2,y2),1与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b2+64>0,∴﹣2<b<2x1+x2=﹣b,x1x2=∴|BD|==,设d为点A到直线y=x+b的距离,∴d=∴△ABD面积S=≤=当且仅当b=±2时,△ABD的面积最大,最大值为…(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k==2﹣,k2==﹣21此时k1+k2=0,猜想λ=1时成立.证明如下:k+k2=+=2+m=2﹣2=01当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.20.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD ﹣A 1B 1C 1D 1是长方体,∴D 1D ⊥平面ABCD , 又AC ⊂平面ABCD ,∴D 1D ⊥AC …1分 在长方形ABCD 中,AB=BC ,∴BD ⊥AC …2分 又BD ∩D 1D=D ,∴AC ⊥平面BB 1D 1D ,…3分 而D 1E ⊂平面BB 1D 1D ,∴AC ⊥D 1E …4分(Ⅱ)解:如图建立空间直角坐标系Dxyz ,则A (1,0,0),D 1(0,0,2),E (1,1,1),B (1,1,0),∴…5分设平面AD 1E 的法向量为,则,即令z=1,则…7分∴…8分∴DE 与平面AD 1E 所成角的正弦值为…9分 (Ⅲ)解:假设在棱AD 上存在一点P ,使得BP ∥平面AD 1E .设P 的坐标为(t ,0,0)(0≤t ≤1),则∵BP ∥平面AD 1E∴,即,∴2(t ﹣1)+1=0,解得,…12分∴在棱AD 上存在一点P ,使得BP ∥平面AD 1E ,此时DP 的长.…13分.21.【答案】(1)5,36k k ππππ⎡⎤++⎢⎥⎣⎦(k ∈Z );(2)【解析】试题分析:(1)根据3222262k x k πππππ+≤-≤+可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫= ⎪⎝⎭可得3A π=,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1)1131()cos 2sin 2sin(2)2262f x x x x π=-+=-+, 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+,k Z ∈,∴()f x 的单调递减区间为5[,]36k k ππππ++(k Z ∈).考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用. 22.【答案】【解析】(Ⅰ)证明:取PA 的中点N ,连接QN ,BN . ∵Q ,N 是PD ,PA 的中点,∴QN ∥AD ,且QN=AD . ∵PA=2,PD=2,PA ⊥PD ,∴AD=4,∴BC=AD .又BC ∥AD , ∴QN ∥BC ,且QN=BC , ∴四边形BCQN 为平行四边形,∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,∴CQ∥平面PAB.(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.由(Ⅰ)知PA=AM=PM=2,∴△APM为等边三角形,∴PO⊥AM.同理:BO⊥AM.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,﹣1,0),P(0,0,),C(,2,0),Q(0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC的法向量为=(x,y,z),∴,令y=﹣得=(3,﹣,5).∴cos<,>==﹣.∴直线PD与平面AQC所成角正弦值为.23.【答案】【解析】解:(Ⅰ)当a=1时,f(x)=lnx﹣x+,∴f(1)=1,∴切点为(1,1)∵f′(x)=﹣1﹣=,∴f′(1)=﹣2,∴切线方程为y﹣1=﹣2(x﹣1),即2x+y﹣3=0;(Ⅱ)f(x)的定义域是(0,+∞),f′(x)=,若函数y=f(x)在定义域内存在两个极值点,则g(x)=ax2﹣x+2在(0,+∞)2个解,故,解得:0<a<.24.【答案】【解析】解:(Ⅰ)该连锁分店一年的利润L(万元)与售价x的函数关系式为:L(x)=(x﹣7)(x﹣10)2,x∈[7,9],(Ⅱ)L′(x)=(x﹣10)2+2(x﹣7)(x﹣10)=3(x﹣10)(x﹣8),令L′(x)=0,得x=8或x=10(舍去),∵x∈[7,8],L′(x)>0,x∈[8,9],L′(x)<0,∴L(x)在x∈[7,8]上单调递增,在x∈[8,9]上单调递减,∴L(x)max=L(8)=4;答:每件纪念品的售价为8元,该连锁分店一年的利润L最大,最大值为4万元.【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题.。
新丰县高中2018-2019学年高二上学期第二次月考试卷数学
新丰县高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为()A.1372 B.2024 C.3136 D.44952.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)3.已知A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},则a的值是()A.a=3 B.a=﹣3 C.a=±3 D.a=5或a=±34.下列函数中哪个与函数y=x相等()A.y=()2B.y=C.y=D.y=5.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则等于()A.(2,4) B.(3,5) C.(﹣3,﹣5) D.(﹣2,﹣4)6.设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.7.设函数,则有()A.f(x)是奇函数,B.f(x)是奇函数,y=b xC.f(x)是偶函数D.f(x)是偶函数,8.已知集合A={0,m,m2﹣3m+2},且2∈A,则实数m为()A.2 B.3 C.0或3 D.0,2,3均可9.10y-+=的倾斜角为()A.150B.120C.60D.3010.设a>0,b>0,若是5a与5b的等比中项,则+的最小值为()A.8 B.4 C.1 D.11.已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()A.2对B.3对C.4对D.5对12.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()A.b<a<c B.a<c<b C.a<b<c D.b<c<a二、填空题13.已知正四棱锥O ABCD -的体积为2则该正四棱锥的外接球的半径为_________14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .15.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.16.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .17.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .18.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .三、解答题19.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边72c =,且tan tan tan 3A B A B +=-ABC ∆的面积为ABC S ∆=a b +的值.20.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个”(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.24.(本小题满分10分)选修4-5:不等式选讲.已知函数f(x)=|x+1|+2|x-a2|(a∈R).(1)若函数f(x)的最小值为3,求a的值;(2)在(1)的条件下,若直线y=m与函数y=f(x)的图象围成一个三角形,求m的范围,并求围成的三角形面积的最大值.22.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.23.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.24.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.新丰县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.2.【答案】D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.3.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.4.【答案】B【解析】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.C.函数的定义域为R,y=|x|,对应关系不一致.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选B.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.5.【答案】C【解析】解:∵,∴==(﹣3,﹣5).故选:C.【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.6.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题7. 【答案】C【解析】解:函数f (x )的定义域为R ,关于原点对称.又f (﹣x )===f (x ),所以f (x )为偶函数.而f ()===﹣=﹣f (x ),故选C .【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.8. 【答案】B【解析】解:∵A={0,m ,m 2﹣3m+2},且2∈A ,∴m=2或m 2﹣3m+2=2,解得m=2或m=0或m=3.当m=0时,集合A={0,0,2}不成立. 当m=2时,集合A={0,0,2}不成立. 当m=3时,集合A={0,3,2}成立.故m=3. 故选:B .【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.9. 【答案】C 【解析】10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 10.【答案】B 【解析】解:∵是5a 与5b的等比中项, ∴5a •5b=()2=5,即5a+b =5, 则a+b=1,则+=(+)(a+b )=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.11.【答案】D【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,∴面PDA⊥面ABCD,面PDC⊥面ABCD,又∵四边形ABCD为矩形∴BC⊥CD,CD⊥AD∵PD⊥矩形ABCD所在的平面∴PD⊥BC,PD⊥CD∵PD∩AD=D,PD∩CD=D∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD综上相互垂直的平面有5对故答案选D12.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.二、填空题13.【答案】11 8【解析】因为正四棱锥O ABCD的体积为22,设外接球的半径为R,依轴截面的图形可知:22211(2)8R R R =-+∴=14.【答案】 4 .【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,∴sin 2B=sinAsinC ,由正弦定理可得:b 2=ac ,∵c=2a ,可得:b=a ,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC =acsinB==4.故答案为:4.15.【答案】-3e 【解析】f ′(x )=1x +2m x =2x m x +,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3(-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-m e ,令1-me=4,得m =-3e ,符合题意.综上所述,m=-3e.16.【答案】 [0,2] .【解析】解:∵|x ﹣m|﹣|x ﹣1|≤|(x ﹣m )﹣(x ﹣1)|=|m ﹣1|, 故由不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,可得|m ﹣1|≤1,∴﹣1≤m ﹣1≤1, 求得0≤m ≤2, 故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.17.【答案】20【解析】考点:棱台的表面积的求解. 18.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.三、解答题19.【答案】112. 【解析】试题解析:由tan tan tan 3A B A B +=-可得tan tan 1tan tan A BA B+=-tan()A B +=∴tan()C π-=tan C -=tan C =∵(0,)C π∈,∴3C π=.又ABC ∆的面积为ABC S ∆=1sin 2ab C =,即12ab =6ab =. 又由余弦定理可得2222cos c a b ab C =+-,∴2227()2cos 23a b ab π=+-,∴22227()()32a b ab a b ab =+-=+-,∴2121()4a b +=,∵0a b +>,∴112a b +=.1 考点:解三角形问题.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题. 20.【答案】【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,再结合频率分布直方图可知n=,∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,;(Ⅱ)因为第2,3,4组回答正确的人数共有54人,∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;第4组:人(Ⅲ)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1.则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)共15个基本事件, 其中恰好没有第3组人共3个基本事件,∴所抽取的人中恰好没有第3组人的概率是:.【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.21.【答案】【解析】解:(1)f (x )=|x +1|+2|x -a 2|=⎩⎪⎨⎪⎧-3x +2a 2-1,x ≤-1,-x +2a 2+1,-1<x <a 2,3x -2a 2+1,x ≥a 2,当x ≤-1时,f (x )≥f (-1)=2a 2+2, -1<x <a 2,f (a 2)<f (x )<f (-1), 即a 2+1<f (x )<2a 2+2, 当x ≥a 2,f (x )≥f (a 2)=a 2+1,所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2. (2)当a =±2时,由(1)知f (x )= ⎩⎪⎨⎪⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积最大,此时面积为12×|3-(-1)|×|6-3|=6.22.【答案】【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcos θ,y=ρsin θ,x2+y2=ρ2,即可得到曲线C 1的直角坐标方程,再由代入法,即可化简曲线C 2的参数方程为普通方程; (Ⅱ)可经过圆心(1,﹣2)作直线3x+4y ﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,可化为直角坐标方程x 2+y 2﹣2x+4y+4=0, 即圆(x ﹣1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.23.【答案】【解析】解:(1)由导数的几何意义f′(a+1)=12∴3(a+1)2﹣3a(a+1)=12∴3a=9∴a=3(2)∵f′(x)=3x2﹣3ax,f(0)=b∴由f′(x)=3x(x﹣a)=0得x1=0,x2=a∵x∈[﹣1,1],1<a<2∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)∵f(0)=b,∴b=1∵,∴f(﹣1)<f(1)∴f(﹣1)是函数f(x)的最小值,∴∴∴f(x)=x3﹣2x2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.24.【答案】【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.。
新丰县第三中学校2018-2019学年高二上学期第二次月考试卷数学
新丰县第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A .B .C .D .2. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为( )A .B .C .﹣D .﹣3. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,24. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .5. 若,,且,则λ与μ的值分别为( )A .B .5,2C .D .﹣5,﹣26. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C. D.或7.复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如果点P在平面区域220,210,20x yx yx y-+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q在曲线22(2)1x y++=上,那么||PQ的最小值为()A1B1-C. 1D19.已知f(x)是R上的偶函数,且在(﹣∞,0)上是增函数,设,b=f(log43),c=f(0.4﹣1.2)则a,b,c的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.c<b<a10.若函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g(x)=log a(x+k)的是()A.B.C.D.11.如图框内的输出结果是()A.2401 B.2500 C.2601 D.270412.方程1x-=)A.一个圆B.两个半圆C.两个圆D.半圆二、填空题13.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .14.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________. 15.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .16.设,则17.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.18.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .三、解答题19.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()16t ay -=(a 为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。
新丰县二中2018-2019学年上学期高二数学12月月考试题含解析
新丰县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( ) A .0<a <1 B.﹣≤a≤ C .﹣1≤a ≤1 D .﹣2≤a ≤22. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 3. 若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0C .1D .﹣1或14. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2 B.C.D .135. 已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±= 6. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数7. 在△ABC中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形8. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅9. 对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g(x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2﹣3x+4与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A .[3,4]B .[2,4]C .[1,4]D .[2,3]10.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A .(ln y x =B .2y x =C .tan y x =D .xy e = 11.若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .512.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.08二、填空题13.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示). 14.在复平面内,复数与对应的点关于虚轴对称,且,则____.15.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________. 16.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.17.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .18.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.三、解答题19.已知函数f (x )=alnx+x 2+bx+1在点(1,f (1))处的切线方程为4x ﹣y ﹣12=0. (1)求函数f (x )的解析式;(2)求f(x)的单调区间和极值.20.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)21.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.22.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形ABEFMN,其设计创意如下:在长4cm 、宽1c m 的长方形ABCD 中,将四边形DFEC 沿直线EF 翻折到MFEN (点F 是线段AD 上异于D 的一点、点E 是线段BC 上的一点),使得点N 落在线段AD 上. (1)当点N 与点A 重合时,求NMF ∆面积;(2)经观察测量,发现当2NF MF -最小时,LOGO 最美观,试求此时LOGO 图案的面积.23.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.24.已知函数f (x )=aln (x+1)+x 2﹣x ,其中a 为非零实数. (Ⅰ)讨论f (x )的单调性;(Ⅱ)若y=f (x )有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)新丰县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.2.【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]3.【答案】A【解析】解:∵(m2﹣1)+(m+1)i为实数,∴m+1=0,解得m=﹣1,故选A.4.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.5.【答案】A【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|=x0+p2,得5=x0+2.∴x0=3,则y20=24,所以M3,26,又点M在双曲线上,∴32a2-24=1,则a 2=925,a=35,因此渐近线方程为5x±3y=0. 6.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.7.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.8.【答案】B【解析】解:∵A={1,2,3,4},B={3,4,5,6},∴A∩B={3,4},∵全集I={1,2,3,4,5,6},∴∁I(A∩B)={1,2,5,6},故选B.【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.9.【答案】D【解析】解:∵m(x)=x2﹣3x+4与n(x)=2x﹣3,∴m(x)﹣n(x)=(x2﹣3x+4)﹣(2x﹣3)=x2﹣5x+7.令﹣1≤x2﹣5x+7≤1,则有,∴2≤x≤3.故答案为D.【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题.10.【答案】A 【解析】试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.考点:函数的单调性与奇偶性. 11.【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]12.【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D .【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.二、填空题13.【答案】 180【解析】解:由二项式定理的通项公式T r+1=C n r an ﹣r b r可设含x 2项的项是T r+1=C 7r (2x )r可知r=2,所以系数为C 102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.14.【答案】-2【解析】【知识点】复数乘除和乘方 【试题解析】由题知:所以故答案为:-2 15.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 16.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线 【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C 的渐近线方程是:故答案为:, 17.【答案】 ③④ .【解析】解:函数f (x )=cosxsinx=sin2x ,对于①,当f (x 1)=﹣f (x 2)时,sin2x 1=﹣sin2x 2=sin (﹣2x 2) ∴2x 1=﹣2x 2+2k π,即x 1+x 2=k π,k ∈Z ,故①错误;对于②,由函数f (x )=sin2x 知最小正周期T=π,故②错误;对于③,令﹣+2π≤2x ≤+2k π,k ∈Z 得﹣+k π≤x ≤+k π,k ∈Z当k=0时,x ∈[﹣,],f (x )是增函数,故③正确;对于④,将x=代入函数f (x )得,f ()=﹣为最小值,故f (x )的图象关于直线x=对称,④正确.综上,正确的命题是③④. 故答案为:③④.18.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.三、解答题19.【答案】【解析】解:(1)求导f ′(x )=+2x+b ,由题意得: f ′(1)=4,f (1)=﹣8,则,解得,所以f (x )=12lnx+x 2﹣10x+1;(2)f (x )定义域为(0,+∞),f ′(x )=,令f ′(x )>0,解得:x <2或x >3,所以f (x )在(0,2)递增,在(2,3)递减,在(3,+∞)递增, 故f (x )极大值=f (2)=12ln2﹣15, f (x )极小值=f (3)=12ln3﹣20.20.【答案】【解析】解:(I)a=﹣2时,f(x)=xlnx﹣2x,则f′(x)=lnx﹣1.令f′(x)=0得x=e,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,∴f(x)的单调递减区间是(0,e),单调递增区间为(e,+∞).(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,则xlnx+ax>k(x﹣1)+ax﹣x恒成立,即k(x﹣1)<xlnx+ax﹣ax+x恒成立,又x﹣1>0,则k<对任意x∈(1,+∞)恒成立,设h(x)=,则h′(x)=.设m(x)=x﹣lnx﹣2,则m′(x)=1﹣,∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,∴存在x0∈(3,4),使得m(x0)=0,当x∈(1,x0)时,m(x)<0,即h′(x)<0,当x∈(x0,+∞)时,m(x)>0,h′(x)>0,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,∴h(x)的最小值h min(x)=h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.∴k<h min(x)=x0.∵3<x0<4,∴k≤3.∴k的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.21.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l 过点P (2,﹣1),且倾斜角为45°.∴l的参数方程为(t 为参数).…代入 y 2=4x 得t 2﹣6t ﹣14=0…设点A ,B 对应的参数分别t 1,t 2 ∴t 1t 2=﹣14… ∴|PA|•|PB|=14.…22.【答案】(1)215cm 16;(2)24cm 3-. 【解析】试题分析:(1)设MF x =4x =,则158x =, 据此可得NMF ∆的面积是2115151cm 2816⨯⨯=; 试题解析:(1)设MF x =,则FD MF x ==,NF =∵4NF MF +=,4x =,解之得158x =,∴NMF ∆的面积是2115151cm 2816⨯⨯=;(2)设NEC θ∠=,则2NEF θ∠=,NEB FNE πθ∠=∠=-,∴()22MNF πππθθ∠=--=-,∴112MN NF cos MNF sin cos πθθ===∠⎛⎫- ⎪⎝⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛⎫-=-⎪⎝⎭, ∴22cos NF MF sin θθ+-=.∵14NF FD <+≤,∴114cos sin θθ-<≤,即142tan θ<≤,∴42πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), 设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23πθ=, 列表得∴当23πθ=时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3FNE NFE NFM π=∠=∠=∠=,6MNF π∠=,在Rt MNF ∆中,1MN =,3MF =,3NF =,在正NFE ∆中,NF EF NE ===,在梯形ANEB 中,1AB =,4AN =43BE =-,∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛⨯-⨯= ⎝⎭.答:当2NF MF -最小时,LOGO 图案面积为24. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点. 23.【答案】【解析】解:(1)∵函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数∴x=≤1 ∴m ≤2∴实数m的取值范围为(﹣∞,2];(2)由(1)知,函数f(x)=x2﹣mx在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.24.【答案】【解析】解:(Ⅰ).当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;当0<a<1时,由f'(x)=0得,,故f(x)在上单调递增,在上单调递减,在上单调递增;当a<0时,由f'(x)=0得,,f(x)在上单调递减,在上单调递增.证明:(Ⅱ)由(I)知,0<a<1,且,所以α+β=0,αβ=a﹣1..由0<a<1得,0<β<1.构造函数.,设h(x)=2(x2+1)ln(x+1)﹣2x+x2,x∈(0,1),则,因为0<x<1,所以,h'(x)>0,故h(x)在(0,1)上单调递增,所以h(x)>h(0)=0,即g'(x)>0,所以g(x)在(0,1)上单调递增,所以,故.。
新丰县高中2018-2019学年高二上学期第一次月考试卷数学
新丰县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 2. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直 3. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形4. 长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是( )A .30°B .45°C .60°D .120°5. 将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A .B .﹣C .﹣D .6. 设a ,b ∈R ,i 为虚数单位,若2+a i 1+i =3+b i ,则a -b 为( )A .3B .2C .1D .07. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.8. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N9. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部10.函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .() B .(,]C .() D .(]11.已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是( ) A .y=﹣x+4 B .y=x C .y=x+4D .y=﹣x12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题13.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.14.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.15.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=.16.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.17.函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是.18.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a=.三、解答题19.已知数列{a n}的首项为1,前n项和S n满足=+1(n≥2).(Ⅰ)求S n与数列{a n}的通项公式;(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.20.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i,求实数a,b的值.21.设函数f(x)=x3﹣6x+5,x∈R(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.22.若{a n}的前n项和为S n,点(n,S n)均在函数y=的图象上.(1)求数列{a n}的通项公式;(2)设,T n是数列{b n}的前n项和,求:使得对所有n∈N*都成立的最大正整数m.23.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.24.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.新丰县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。
大丰区三中2018-2019学年上学期高二数学12月月考试题含解析
大丰区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .02. 函数f (x )=2x ﹣的零点个数为( ) A .0B .1C .2D .33. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .4. 已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm )对工期延误天数Y PA .0.1B .0.3C .0.42D .0.55. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件6. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .37. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 28. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3 B.C.D.9.若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A.B.C.D .210.函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )A .[1,6]B .[﹣3,1]C .[﹣3,6]D .[﹣3,+∞)11.若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( ) A .117⎡⎤⎢⎥⎣⎦, B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞,12.已知a >0,实数x ,y满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C.D.二、填空题13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.14.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.已知x 、y 之间的一组数据如下:x 0 1 23 y 8 2 64则线性回归方程所表示的直线必经过点 .17.已知角α终边上一点为P (﹣1,2),则值等于 .18.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.三、解答题19.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.20.已知椭圆C1:+=1(a>b>0)的离心率为e=,直线l:y=x+2与以原点为圆心,以椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)抛物线C2:y2=2px(p>0)与椭圆C1有公共焦点,设C2与x轴交于点Q,不同的两点R,S在C2上(R,S与Q不重合),且满足•=0,求||的取值范围.21.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.22.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R(1)当a=1,求f(x)的单调区间;(4分)(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.23.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1)在下面的坐标系中,描出散点图,并判断变量x 与y 的相关性;(2)若用解析式y =cx 2+d 作为蔬菜农药残量与用水量的回归方程,求其解析式;(c ,a 精确到0.01);附:设ωi =x 2i ,有下列数据处理信息:ω=11,y =38,(ωi -ω)(y i -y )=-811, (ωi -ω)2=374,对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线方程y =bx +a 的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)24.在ABC ∆中已知2a b c =+,2sin sin sin A B C =,试判断ABC ∆的形状.大丰区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b ,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 2. 【答案】C【解析】解:易知函数的定义域为{x|x ≠1}, ∵>0,∴函数在(﹣∞,1)和(1,+∞)上都是增函数,又<0,f (0)=1﹣(﹣2)=3>0,故函数在区间(﹣4,0)上有一零点; 又f (2)=4﹣4=0,∴函数在(1,+∞)上有一零点0, 综上可得函数有两个零点. 故选:C .【点评】本题考查函数零点的判断.解题关键是掌握函数零点的判断方法.利用函数单调性确定在相应区间的零点的唯一性.属于中档题.3. 【答案】D【解析】解:A :y=的定义域[0,+∞),与y=x 的定义域R 不同,故A 错误B :与y=x 的对应法则不一样,故B 错误C :=x ,(x ≠0)与y=x 的定义域R 不同,故C 错误D :,与y=x 是同一个函数,则函数的图象相同,故D 正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题4. 【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)==0.5,故答案选:D.5.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A6.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.7.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B8.【答案】B【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.9.【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x﹣2)2+y2=2的圆心(2,0),半径为,双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,可得:,可得a2=b2,c=a,e==.故选:B.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.10.【答案】C【解析】解:y=x2﹣4x+1=(x﹣2)2﹣3∴当x=2时,函数取最小值﹣3当x=5时,函数取最大值6∴函数y=x2﹣4x+1,x∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答11.【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式.12.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.二、填空题13.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:114.【答案】.【解析】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.15.【答案】(﹣4,).【解析】解:∵抛物线方程为y2=﹣8x,可得2p=8,=2.∴抛物线的焦点为F(﹣2,0),准线为x=2.设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n2=8m=32,可得n=±4,因此,点P的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.16.【答案】(,5).【解析】解:∵,=5∴线性回归方程y=a+bx所表示的直线必经过点(1.5,5)故选C【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.17.【答案】.【解析】解:角α终边上一点为P(﹣1,2),所以tanα=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.18.【答案】①②④.【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.三、解答题19.【答案】【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,∴,解得a2=4,b2=3,∴椭圆C的方程为=1.(Ⅱ)设直线MN的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.20.【答案】【解析】解:(1)由直线l:y=x+2与圆x2+y2=b2相切,∴=b,解得b=.联立解得a=,c=1.∴椭圆的方程是C1:.(2)由椭圆的右焦点(1,0),抛物线y2=2px的焦点,∵有公共的焦点,∴,解得p=2,故抛物线C2的方程为:y2=4x.易知Q(0,0),设R(,y1),S(,y2),∴=(,y1),=,由•=0,得,∵y1≠y2,∴,∴=64,当且仅当,即y1=±4时等号成立.又||===,当=64,即y=±8时,||min=8,2故||的取值范围是[8,+∞).【点评】本题考查了椭圆与抛物线的标准方程及其性质、向量的数量积运算和基本不等式的性质、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.21.【答案】【解析】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f(x)=cosx(sinx+cosx)﹣.=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),∴T==π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.22.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分),解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a<e时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a 的取值范围为…(14分)23.【答案】 【解析】解:(1)根据散点图可知,x 与y 是负相关. (2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线方程,y =cω+d ,=-811374≈-2.17, a ^=y -c ^ω=38-(-2.17)×11=61.87.∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87, 又ωi =x 2i ,∴y 关于x 的回归方程为y =-2.17x 2+61.87.(3)当y =0时,x =61.872.17=6187217≈5.3.估计最多用5.3千克水.24.【答案】ABC ∆为等边三角形. 【解析】试题分析:由2sin sin sin A B C =,根据正弦定理得出2a bc =,在结合2abc =+,可推理得到a b c ==,即可可判定三角形的形状.考点:正弦定理;三角形形状的判定.。
新丰县高级中学2018-2019学年高二上学期第二次月考试卷数学
新丰县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D102. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 3. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 4. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .65. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假6. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <07. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.8. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( )A .①④B .①⑤C .②⑤D .③⑤9. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假10.与向量=(1,﹣3,2)平行的一个向量的坐标是( )A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)11.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2=16x12.若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]二、填空题13.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.14.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)15.已知数列的前项和是, 则数列的通项__________16.S n =++…+= .17. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-; ③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .三、解答题19.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB ﹣ccosB . (Ⅰ)求cosB 的值; (Ⅱ)若,且,求a 和c 的值.21.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.22.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).(Ⅰ)判断f(x)奇偶性,并证明;(Ⅱ)当0<a<1时,解不等式f(x)>0.23.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).(Ⅰ)求点A的坐标;(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.24.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*∈N n ),11=a ,该数列的 前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .新丰县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】本题考查了对数的计算、列举思想a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合;a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个2.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=310.3.【答案】A【解析】考点:斜二测画法.4.【答案】C.【解析】解:∵2a=3b=m,∴a=log2m,b=log3m,∵a,ab,b成等差数列,∴2ab=a+b,∵ab≠0,∴+=2,∴=log m2,=log m3,∴log m2+log m3=log m6=2,解得m=.故选C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.5. 【答案】C【解析】解:函数y=sin (2x+)的图象向左平移个单位长度得到y=sin (2x+)的图象,当x=0时,y=sin =,不是最值,故函数图象不关于y 轴对称,故命题p 为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q 为假命题; 则¬q 为真命题; p ∨q 为假命题; p ∧q 为假命题, 故只有C 判断错误, 故选:C6. 【答案】B【解析】解:∵函数是R 上的增函数设g (x )=﹣x 2﹣ax ﹣5(x ≤1),h (x )=(x >1)由分段函数的性质可知,函数g (x )=﹣x 2﹣ax ﹣5在(﹣∞,1]单调递增,函数h (x )=在(1,+∞)单调递增,且g (1)≤h (1)∴∴解可得,﹣3≤a ≤﹣2 故选B7. 【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。
新丰县一中2018-2019学年上学期高二数学12月月考试题含解析
新丰县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}2. 已知11xyi i=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -3. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8 D .104. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .05. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β 6. 下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α7. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .18. 双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .39. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .610.如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2D .34-11.设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .12.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能二、填空题13.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
2018-2019学年上学期高二数学12月月考试题含解析(171)
新丰县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.底面为矩形的四棱锥P-ABCD的顶点都在球O的表面上,且O在底面ABCD内,PO ⊥平面ABCD,当四棱锥P-ABCD的体积的最大值为18时,球O的表面积为()A.36πB.48πC.60πD.72π2.已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是()A.B.C. D.03.在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0<B.0 C.0D.04.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为()A.4πB.C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.5.已知f(x)是R上的偶函数,且在(﹣∞,0)上是增函数,设,b=f(log43),c=f(0.4﹣1.2)则a,b,c的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.c<b<a6.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A .96B .48C .24D .07. 函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )A .向左平移个单位得到B .向右平移个单位得到C .向左平移个单位得到 D .向左右平移个单位得到8. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .49. △ABC 的外接圆圆心为O ,半径为2, ++=,且||=||,在方向上的投影为( )A .﹣3B .﹣C .D .310.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日B .5日和6日C .6日和11日D .2日和11日11.设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( ) A .∅ B .NC .[1,+∞)D .M12.在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( )A .等腰直角B .等腰或直角C .等腰D .直角二、填空题13.(sinx+1)dx 的值为 .14.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .15.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下:①若()()0f x f x '+>,且(0)1f =,则不等式()xf x e -<的解集为(0,)+∞;②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .17.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .18.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .三、解答题19.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.20.已知椭圆C 的中心在坐标原点O ,长轴在x 轴上,离心率为,且椭圆C 上一点到两个焦点的距离之和为4. (Ⅰ)椭圆C 的标准方程.(Ⅱ)已知P 、Q 是椭圆C 上的两点,若OP ⊥OQ ,求证:为定值.(Ⅲ)当为(Ⅱ)所求定值时,试探究OP ⊥OQ 是否成立?并说明理由.21.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值;22.(本小题满分12分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直.(1)求sin A 的值;(2)若a =ABC ∆的面积S 的最大值.23.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).24.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.新丰县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 2. 【答案】A【解析】解:取AB 的中点C ,连接OC ,,则AC=,OA=1∴sin=sin ∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A .3. 【答案】D【解析】解:∵A 1B ∥D 1C ,∴CP 与A 1B 成角可化为CP 与D 1C 成角.∵△AD 1C 是正三角形可知当P 与A 重合时成角为,∵P 不能与D 1重合因为此时D 1C 与A 1B 平行而不是异面直线,∴0<θ≤.故选:D.4.【答案】B5.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C6.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.7.【答案】C【解析】解:y=sin2x+cos2x=sin(2x+),y=sin2x﹣cos2x=sin(2x﹣)=sin[2(x﹣)+)],∴由函数y=sin2x﹣cos2x的图象向左平移个单位得到y=sin(2x+),故选:C.【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.8.【答案】B【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.9.【答案】C【解析】解:由题意,++=,得到,又||=||=||,△OAB是等边三角形,所以四边形OCAB是边长为2的菱形,所以在方向上的投影为ACcos30°=2×=;故选C.【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC 的形状,利用向量解答.10.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.11.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N中的函数y=x2≥0,∴集合N={y|y≥0},则M∩N={y|y≥0}=N.故选B12.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B二、填空题13.【答案】 2 .【解析】解:所求的值为(x ﹣cosx )|﹣11=(1﹣cos1)﹣(﹣1﹣cos (﹣1)) =2﹣cos1+cos1 =2.故答案为:2.14.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.15.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B , ∴B ⊆A ,则有a+1≤1或a ≥3, 解得:a ≤0或a ≥3, 故答案为:a ≤0或a ≥3.16.【答案】②④⑤【解析】解析:构造函数()()xg x e f x =,()[()()]0xg x e f x f x ''=+>,()g x 在R 上递增, ∴()xf x e-<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;构造函数()()x f x g x e =,()()()0xf x f xg x e'-'=>,()g x 在R 上递增,∴(2015)(2014)g g >,∴(2015)(2014)f ef >∴②正确;构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;由()()x e xf x f x x '+=得2()()x e xf x f x x-'=,设()()xg x e xf x =-,则()()()xg x e f x xf x ''=--(1)x x x e e e x x x=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.17.【答案】9+4 .【解析】解:∵函数f (x )=x 2+x ﹣b+只有一个零点,∴△=a ﹣4(﹣b+)=0,∴a+4b=1, ∵a ,b 为正实数,∴+=(+)(a+4b )=9++≥9+2=9+4当且仅当=,即a=b 时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.18.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i)()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键.三、解答题19.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.20.【答案】【解析】(I )解:由题意可设椭圆的坐标方程为(a >b >0).∵离心率为,且椭圆C 上一点到两个焦点的距离之和为4. ∴,2a=4,解得a=2,c=1.∴b 2=a 2﹣c 2=3.∴椭圆C 的标准方程为.(II )证明:当OP 与OQ 的斜率都存在时,设直线OP 的方程为y=kx (k ≠0),则直线OQ 的方程为y=﹣x (k ≠0),P (x ,y ).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=为定值.当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.因此=为定值.(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.OP⊥OQ不一定成立.下面给出证明.证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件.当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=.化为(kk′)2=1,∴kk′=±1.∴OP⊥OQ或kk′=1.因此OP⊥OQ不一定成立.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.21.【答案】(1)证明见解析;(2.【解析】试题解析:(2)在三角形AMC 中,由22,3,cos 3AM AC MAC ==∠=,得 2222cos 5CM AC AM AC AN MAC =+-∠=,222AM MC AC +=,则AM MC ⊥, ∵PA ⊥底面,ABCD PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD平面PAD AD =,∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。
新丰县三中2018-2019学年高二上学期数学期末模拟试卷含解析
新丰县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知等差数列的前项和为,且,在区间内任取一个实数作为数列{}n a n S 120a =-()3,5{}n a 的公差,则的最小值仅为的概率为( )n S 6S A .B .C .D .1516314132. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为()A .4B .4C .2D .23. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)4. 如图可能是下列哪个函数的图象()A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=5. 已知,若存在,使得,则的()(2)(0)x b g x ax a e a x =-->0(1,)x ∈+∞00()'()0g x g x +=b a取值范围是()A .B .C.D .(1,)-+∞(1,0)-(2,)-+∞(2,0)-6. 在复平面内,复数所对应的点为,是虚数单位,则( )1zi+(2,1)-i z =A .B .C .D .3i --3i -+3i -3i +7. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()A.i>4?B.i>5?C.i>6?D.i>7?8.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)9.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,则满足的x的范围为()A.(﹣∞,)∪(2,+∞)B.(,1)∪(1,2)C.(,1)∪(2,+∞)D.(0,)∪(2,+∞)10.已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是()A.(﹣2,﹣1)∪(1,2)B.(﹣2,﹣1)∪(0,1)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)11.已知集合M={0,1,2},则下列关系式正确的是()∉⊆A.{0}∈M B.{0}M C.0∈M D.0M12.已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是()A.1B.C.D.二、填空题13.已知f (x )=x (e x +a e -x )为偶函数,则a =________.14.已知过双曲线的右焦点的直线交双曲线于两点,连结,若22221(0,0)x y a b a b-=>>2F ,A B 11,AF BF ,且,则双曲线的离心率为( )1||||AB BF =190ABF ∠=︒A .BC .D5-6-【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.15.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.16.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n 个等式为 . 17.已知,则不等式的解集为________.,0()1,0x e x f x x ì³ï=í<ïî2(2)()f x f x ->【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.18.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 . 三、解答题19.(本小题满分12分)已知函数()23cos cos 2f x x x x =++.(1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+ ⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.20.(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,P 14:221=+y x C P )1(14:22222>=+t ty t x C A 两点.B(1)求证:;PB PA =(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.OAB ∆【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.21.(本题满分15分)如图是圆的直径,是弧上一点,垂直圆所在平面,,分别为,的中点.AB O C AB VC O D E VA VC (1)求证:平面;DE ⊥VBC (2)若,圆的半径为,求与平面所成角的正弦值.6VC CA ==O 5BE BCD【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.22.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD .23.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;12(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x)为f 1(x),f 2(x)的“活动函数”.已知函数.。
新丰县高级中学2018-2019学年高二上学期第一次月考试卷数学
新丰县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 一个几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .2. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+13. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a4. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.5. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2B .8C .﹣2或8D .2或86. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个7. 已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( )A. B. C .4 D.8. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个9. 下列命题中正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”10.已知函数f (x )满足f (x )=f (π﹣x ),且当x∈(﹣,)时,f (x )=e x+sinx ,则( )A. B.C.D.11.有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④12.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4二、填空题13.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .14.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .15.S n =++…+= .16.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 17.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .18.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .三、解答题19.已知z 是复数,若z+2i 为实数(i 为虚数单位),且z ﹣4为纯虚数. (1)求复数z ;(2)若复数(z+mi )2在复平面上对应的点在第四象限,求实数m 的取值范围.20.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.21.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是棱DD 1的中点. (Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值;(Ⅱ)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.22.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.ABCDP23.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列;(Ⅱ)设b n =a n sin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.24.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的 最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.新丰县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,它们的底面直径均为2,故底面半径为1,圆柱的高为1,半圆锥的高为2,故圆柱的体积为:π×12×1=π,半圆锥的体积为:×=,故该几何体的体积V=π+=,故选:B2.【答案】D【解析】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D3.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.4.【答案】B5. 【答案】D【解析】解:由题意可得3∈A ,|a ﹣5|=3, ∴a=2,或a=8, 故选 D .6. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
丰县高级中学2018-2019学年上学期高二数学12月月考试题含解析
丰县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.“”是“A=30°”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也必要条件2.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,m⊥α,则l⊥α;②若m∥l,m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.其中正确命题的个数是()A.1 B.2 C.3 D.43.设向量,满足:||=3,||=4,=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.64.已知a∈R,复数z=(a﹣2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知偶函数f(x)=log a|x﹣b|在(﹣∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是()A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C.f(a+1)≤f(b+2)D.f(a+1)<f(b+2)6.为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232 B.252 C.472 D.4848. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .49. 命题“若a >b ,则a ﹣8>b ﹣8”的逆否命题是( )A .若a <b ,则a ﹣8<b ﹣8B .若a ﹣8>b ﹣8,则a >bC .若a ≤b ,则a ﹣8≤b ﹣8D .若a ﹣8≤b ﹣8,则a ≤b10.已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)11.已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心12.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=5二、填空题13.在(x 2﹣)9的二项展开式中,常数项的值为 .14.当时,4x<log a x ,则a 的取值范围 .15.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 16.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 17.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .18.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.三、解答题19.已知a>0,a≠1,命题p:“函数f(x)=a x在(0,+∞)上单调递减”,命题q:“关于x的不等式x2﹣2ax+≥0对一切的x∈R恒成立”,若p∧q为假命题,p∨q为真命题,求实数a的取值范围.20.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.21.已知函数f(x)=4x﹣a•2x+1+a+1,a∈R.(1)当a=1时,解方程f(x)﹣1=0;(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;(3)若函数f(x)有零点,求实数a的取值范围.22.设函数f(x)=lnx﹣ax+﹣1.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)当a=时,求函数f(x)的单调区间;(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣,若对于∀x1∈[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.23.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.(1)求B;(2)若b=2,求△ABC面积的最大值.24.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论;(Ⅲ)当时,证明:存在,使得.丰县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.2.【答案】B【解析】解:∵①若m∥l,m⊥α,则由直线与平面垂直的判定定理,得l⊥α,故①正确;②若m∥l,m∥α,则l∥α或l⊂α,故②错误;③如图,在正方体ABCD﹣A1B1C1D1中,平面ABB1A1∩平面ABCD=AB,平面ABB1A1∩平面BCC1B1=BB1,平面ABCD∩平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,得n∥m,同理n∥l,故m∥l,故命题④正确.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.3.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.4.【答案】A【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;故选:A.【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.5.【答案】B【解析】解:∵y=log a|x﹣b|是偶函数∴log a|x﹣b|=log a|﹣x﹣b|∴|x﹣b|=|﹣x﹣b|∴x2﹣2bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=log a|x|当x∈(﹣∞,0)时,由于内层函数是一个减函数,又偶函数y=log a|x﹣b|在区间(﹣∞,0)上递增故外层函数是减函数,故可得0<a<1综上得0<a<1,b=0∴a+1<b+2,而函数f(x)=log a|x﹣b|在(0,+∞)上单调递减∴f(a+1)>f(b+2)故选B.6.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.7.【答案】C【解析】【专题】排列组合.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C.【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.8.【答案】C【解析】解:双曲线4x2+ty2﹣4t=0可化为:∴∴双曲线4x2+ty2﹣4t=0的虚轴长等于故选C.9.【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若a>b,则a﹣8>b﹣8”的逆否命题是:若a﹣8≤b ﹣8,则a≤b.故选D.【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系.比较基础.10.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.11.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C12.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.二、填空题13.【答案】84.【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.14.【答案】.【解析】解:当时,函数y=4x的图象如下图所示若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=log a x的图象对应的底数a应满足<a<1故答案为:(,1)15.【答案】201616.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-117.【答案】33.【解析】解:∵1=++++++++++++,∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9,90=9×10,110=10×11,132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=,∴m=20,n=13,∴m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.18.【答案】D【解析】三、解答题19.【答案】【解析】解:若p为真,则0<a<1;若q为真,则△=4a2﹣1≤0,得,又a>0,a≠1,∴.因为p∧q为假命题,p∨q为真命题,所以p,q中必有一个为真,且另一个为假.①当p为真,q为假时,由;②当p为假,q为真时,无解.综上,a的取值范围是.【点评】1.求解本题时,应注意大前提“a>0,a≠1”,a的取值范围是在此条件下进行的.20.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k2+1,②将②代入①得2m>m2,解得0<m<2,由②得,解得,故所求的m的取值范围是(,2).…(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,解得﹣1<m<1.…综上,当k≠0时,m的取值范围是(,2),当k=0时,m的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.21.【答案】【解析】解:(1)a=1时,f(x)=4x﹣22x+2,f(x)﹣1=(2x)2﹣2•(2x)+1=(2x﹣1)2=0,∴2x=1,解得:x=0;(2)4x﹣a•(2x+1﹣1)+1>0在(0,1)恒成立,a•(2•2x﹣1)<4x+1,∵2x+1>1,∴a>,令2x=t∈(1,2),g(t)=,则g′(t)===0,t=t0,∴g(t)在(1,t0)递减,在(t0,2)递增,而g(1)=2,g(2)=,∴a≥2;(3)若函数f(x)有零点,则a=有交点,由(2)令g(t)=0,解得:t=,故a≥.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题.22.【答案】【解析】解:函数f(x)的定义域为(0,+∞),(2分)(Ⅰ)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,,∴f′(1)=0,∴f(x)在x=1处的切线方程为y=﹣2(5分)(Ⅱ)=(6分)令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,∴函数f(x)在[1,2]上的最小值为f(1)=(9分)若对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值(*)(10分)又,x∈[0,1]①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾②当0≤b≤1时,,由及0≤b≤1得,③当b>1时,g(x)在[0,1]上为减函数,,此时b>1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.23.【答案】【解析】(本小题满分12分)解:(1)∵bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,∴B=…(2)△ABC的面积.由已知及余弦定理,得.又a2+c2≥2ac,故ac≤4,当且仅当a=c时,等号成立.因此△ABC面积的最大值为…24.【答案】【解析】【知识点】数列综合应用【试题解析】(Ⅰ),,.(Ⅱ)成等差数列,,即,,即.,.将,代入上式,解得.经检验,此时的公差不为0.存在,使构成公差不为0的等差数列.(Ⅲ),又,令.由,,……,将上述不等式相加,得,即.取正整数,就有。
新丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
新丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53D .22. 在平行四边形ABCD 中,AC 为一条对角线,=(2,4),=(1,3),则等于( )A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4)3. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )A .1B .1-C .2D .2- 4. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形5. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.91526. 在复平面内,复数Z=+i 2015对应的点位于( )A .第四象限B .第三象限C .第二象限D .第一象限7. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ8. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 9. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q10.设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f11.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 12.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种二、填空题13.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .14.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .15.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.16.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .17.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .18.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .三、解答题19.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点;(2)求直线被圆C截得的弦长最小时L的方程.20.已知函数f(x)=lnx的反函数为g(x).(Ⅰ)若直线l:y=k1x是函数y=f(﹣x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:l⊥m;(Ⅱ)设a,b∈R,且a≠b,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由.21.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.22.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.(1)若以AB为直径的圆经过原点O,求直线l的方程;(2)若线段AB 的中垂线交x 轴于点Q ,求△POQ 面积的取值范围.23.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;(2)若a =5c =,求.24.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,S 2=4,且a 2,a 5,a 14成等比数列. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)从数列{a n }中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{b n },记该数列的前n 项和为T n ,求T n 的表达式.新丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.2. 【答案】C【解析】解:∵,∴==(﹣3,﹣5).故选:C .【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.3. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 4. 【答案】 B【解析】解:对于A ,设圆柱的底面半径为r ,高为h ,设圆柱的过母线的截面四边形在圆柱底面的边长为a ,则截面面积S=ah ≤2rh .∴当a=2r 时截面面积最大,即轴截面面积最大,故A 正确.对于B ,设圆锥SO 的底面半径为r ,高为h ,过圆锥定点的截面在底面的边长为AB=a ,则O 到AB 的距离为,∴截面三角形SAB 的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.5.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.6.【答案】A【解析】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.7.【答案】D【解析】考点:球的表面积和体积.8.【答案】A【解析】9.【答案】D【解析】解:p:根据指数函数的性质可知,对任意x∈R,总有3x>0成立,即p为真命题,q :“x >2”是“x >4”的必要不充分条件,即q 为假命题, 则p ∧¬q 为真命题, 故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础10.【答案】B【解析】解:∵F (x )=,∴函数的导数F ′(x )==,∵f ′(x )<f (x ), ∴F ′(x )<0,即函数F (x )是减函数,则F (0)>F (2),F (0)>F <e 2f (0),f ,故选:B11.【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.12.【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种. 故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题二、填空题13.【答案】6,12,2,nna nn nn*=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312na a a a n n=++⋅⋅⋅⋅⋅⋅⋅11:6n a==;()()()123112312:121n nnn a a a a a n na a a a n n--≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:nnn an+≥=14.【答案】12【解析】考点:分层抽样15.【答案】.【解析】由题意,y′=ln x+1−2mx令f′(x)=ln x−2mx+1=0得ln x=2mx−1,函数()()lnf x x x mx=-有两个极值点,等价于f′(x)=ln x−2mx+1有两个零点,等价于函数y=ln x与y=2mx−1的图象有两个交点,,当m =12时,直线y =2mx −1与y =ln x 的图象相切, 由图可知,当0<m <12时,y =ln x 与y =2mx −1的图象有两个交点,则实数m 的取值范围是(0,12),故答案为:(0,12).16.【答案】.【解析】解:∵直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1), ∴a+b ﹣1=0,即a+b=1,∴ab ≤=当且仅当a=b=时取等号,故ab 的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.17.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力. 由(1,4)λμ+=-a b 得124λμλμ-+=-⎧⎨+=⎩,∴21λμ=⎧⎨=⎩,①错误;a 与b 不共线,由平面向量基本定理可得,②正确;记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确;由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴12λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,∴④正确; 设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一条线段且线段的两个端点分别为(2,4)、(2,2)-,其长度为18.【答案】.【解析】解:设大小正方形的边长分别为x ,y ,(x ,y >0).则+x+y+=3+, 化为:x+y=3.则x 2+y 2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.三、解答题19.【答案】(1)证明见解析;(2)250x y --=.【解析】试题分析:(1)L 的方程整理为()()4270x y m x y +-++-=,列出方程组,得出直线过圆内一点,即可证明;(2)由圆心()1,2M ,当截得弦长最小时, 则L AM ⊥,利用直线的点斜式方程,即可求解直线的方程.1111] (2)圆心()1,2M ,当截得弦长最小时, 则L AM ⊥, 由12AM k =-得L 的方程()123y x -=-即250x y --=. 考点:直线方程;直线与圆的位置关系.20.【答案】【解析】解:(Ⅰ)∵函数f (x )=lnx 的反函数为g (x ).∴g (x )=e x .,f (﹣x )=ln (﹣x ),则函数的导数g ′(x )=e x,f ′(x )=,(x <0),设直线m 与g (x )相切与点(x 1,),则切线斜率k 2==,则x 1=1,k 2=e ,设直线l 与f (x )相切与点(x 2,ln (﹣x 2)),则切线斜率k 1==,则x 2=﹣e ,k 1=﹣,故k 2k 1=﹣×e=﹣1,则l ⊥m .(Ⅱ)不妨设a >b ,∵P ﹣R=g ()﹣=﹣=﹣<0,∴P <R ,∵P ﹣Q=g ()﹣=﹣==,令φ(x )=2x ﹣e x +e ﹣x ,则φ′(x )=2﹣e x ﹣e ﹣x <0,则φ(x )在(0,+∞)上为减函数,故φ(x )<φ(0)=0,取x=,则a﹣b﹣+<0,∴P<Q,⇔==1﹣令t(x)=﹣1+,则t′(x)=﹣=≥0,则t(x)在(0,+∞)上单调递增,故t(x)>t(0)=0,取x=a﹣b,则﹣1+>0,∴R>Q,综上,P<Q<R,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.21.【答案】【解析】解:(1)∵f(x)=x3+3ax2+bx,∴f'(x)=3x2+6ax+b,又∵f(x)在x=﹣1时有极值0,∴f'(﹣1)=0且f(﹣1)=0,即3﹣6a+b=0且﹣1+3a﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x)=3x2+4x+1,令f'(x)=0得x=﹣或x=﹣1,又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,∴f(x)max=0,f(x)min=﹣2.22.【答案】【解析】解:(1)设直线AB的方程为y=kx+2(k≠0),设A(x1,y1),B(x2,y2),由,得k 2x 2+(4k ﹣4)x+4=0,则由△=(4k ﹣4)2﹣16k 2=﹣32k+16>0,得k <,=,, 所以y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4=, 因为以AB 为直径的圆经过原点O ,所以∠AOB=90°,即, 所以,解得k=﹣, 即所求直线l 的方程为y=﹣. (2)设线段AB 的中点坐标为(x 0,y 0),则由(1)得,, 所以线段AB 的中垂线方程为,令y=0,得==, 又由(1)知k <,且k ≠0,得或, 所以, 所以=,所以△POQ 面积的取值范围为(2,+∞).【点评】本题考查直线l 的方程的求法和求△POQ 面积的取值范围.考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.23.【答案】(1)6B π=;(2)7b =【解析】1111](2)根据余弦定理,得2222cos2725457=+-=+-=,b ac ac B所以b=考点:正弦定理与余弦定理.24.【答案】【解析】解:(Ⅰ)依题意得:,解得.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.即a n=2n﹣1;(Ⅱ)由已知得,.∴T n=b1+b2+…+b n=(22﹣1)+(23﹣1)+…+(2n+1﹣1)=(22+23+…+2n+1)﹣n=.【点评】本题主要考查等比数列和等差数列的性质,考查了等比数列的前n项和的求法,考查了化归与转化思想方法,是中档题.。
丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.2. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A.1+ B.4- C.5- D.3+3. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个4. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20485. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .6. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D . 7. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .48. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B(x 2,x 22),记圆(x+1)2+y 2=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )A .[0,2]B .[0,3]C .[0,)D .[0,)9. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定10.已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)11.若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,201712.设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f ()=( )A .B .C .0D .﹣二、填空题13.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .14.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.15.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .16.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .17.已知f (x )=,则f[f (0)]= .18.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .三、解答题19.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.20.已知函数f (x )=log a (1+x )﹣log a (1﹣x )(a >0,a ≠1).(Ⅰ)判断f (x )奇偶性,并证明;(Ⅱ)当0<a <1时,解不等式f (x )>0.21.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .(Ⅰ)求线段AD 的长;(Ⅱ)比较∠ADC 和∠ABC 的大小.22.已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.23.根据下列条件求方程.(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.24.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】2. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方]3. 【答案】C【解析】解:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”,①正确; ②若“¬p 或q ”是假命题,则¬p 、q 均为假命题,∴p 、¬q 均为真命题,“p 且¬q ”是真命题,②正确; ③由p :x (x ﹣2)≤0,得0≤x ≤2,由q :log 2x ≤1,得0<x ≤2,则p 是q 的必要不充分条件,③错误;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2,④正确.∴正确的命题有3个. 故选:C .4. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 5. 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m ,n ),有36种可能,而使⊥的m ,n 满足m=2n ,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A .【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.6. 【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 7. 【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y 2=2px 的焦点为(2,0), ∴=2, ∴p=4. 故选D .【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.8. 【答案】C【解析】解:函数f (x )=x 3+mx 2+(2m+3)x 的导数为f ′(x )=x 2+2mx+2m+3,由题意可得,判别式△>0,即有4m2﹣4(2m+3)>0,解得m>3或m<﹣1,又x1+x2=﹣2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k==x1+x2=﹣2m,则有直线AB:y﹣x12=﹣2m(x﹣x1),即为2mx+y﹣2mx1﹣x12=0,圆(x+1)2+y2=的圆心为(﹣1,0),半径r为.则g(m)=d﹣r=﹣,由于f′(x1)=x12+2mx1+2m+3=0,则g(m)=﹣,又m>3或m<﹣1,即有m2>1.则g(m)<﹣=,则有0≤g(m)<.故选C.【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.9.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.10.【答案】B【解析】解:由f(x)图象单调性可得f′(x)在(﹣∞,﹣1)∪(0,+∞)大于0,在(﹣1,0)上小于0,∴f(x)f′(x)<0的解集为(﹣∞,﹣2)∪(﹣1,0).故选B .11.【答案】B【解析】12.【答案】D【解析】解:∵函数f (x )(x ∈R )满足f (x+π)=f (x )+cosx , 当0≤x <π时,f (x )=1,∴f ()=f ()=f ()+cos =f ()+cos +cos =f ()+cos +cos =f()+cos+cos=f ()+cos+cos+cos=0+cos﹣cos+cos=﹣.故选:D .【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.二、填空题13.【答案】 [5,+∞) .【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得 f (x )=x 3,再由条件可得m ≥x 2在区间[,]上恒成立,求得x 2在区间[,]上的最大值,可得m 的范围.【解答】解:由题意可得 f (x )=x 6=x 3.由f (x )≤mx 在区间[,]上恒成立,可得m ≥x 2在区间[,]上恒成立,由于x 2在区间[,]上的最大值为 5,故m ≥5,即m 的范围为[5,+∞), 故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.14.【答案】 18.2【解析】解:∵某城市近10年居民的年收入x 和支出y 之间的关系大致是=0.9x+0.2,∵x=20, ∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2. 【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.15.【答案】 .【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.16.【答案】 .【解析】解:由题意f 1(x )=f (x )=.f 2(x )=f (f 1(x ))=,f 3(x )=f (f 2(x ))==,…f n+1(x )=f (f n (x ))=,故f 2015(x )=故答案为:.17.【答案】 1 .【解析】解:f (0)=0﹣1=﹣1, f[f (0)]=f (﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.18.【答案】 .【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣),∵∠F 1PF 2=60°,∴=, 即2ac=b 2=(a 2﹣c 2).∴e 2+2e ﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.三、解答题19.【答案】(1){}11x x x ><-或;(2)(,2]-∞-. 【解析】试题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;当112x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当12x <时,1211x x -+-<-,∴1x <-,从而1x <-;综上,不等式的解集为{}11x x x ><-或.(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.考点:1.含绝对值的不等式;2.分类讨论. 20.【答案】【解析】解:(Ⅰ)由,得,即﹣1<x <1,即定义域为(﹣1,1),则f (﹣x )=log a (1﹣x )﹣log a (1+x )=﹣[log a (1+x )﹣log a (1﹣x )]=﹣f (x ),则f (x )为奇函数.(Ⅱ)当0<a <1时,由f (x )>0, 即log a (1+x )﹣log a (1﹣x )>0, 即log a (1+x )>log a (1﹣x ), 则1+x <1﹣x , 解得﹣1<x <0,则不等式解集为:(﹣1,0). 【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.21.【答案】 【解析】解:(Ⅰ)在Rt △BEC 中,CE=1,∠EBC=30°,∴BE=,在△ADE 中,AE=BE=,DE=CE=1,∠AED=150°,由余弦定理可得AD==;(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,∴问题转化为比较∠ADE与∠EBC的大小.在△ADE中,由正弦定理可得,∴sin∠ADE=<=sin30°,∴∠ADE<30°∴∠ADC<∠ABC.【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.22.【答案】【解析】解:函数f(x)的定义域为(0,+∞),.(1)当a=2时,f(x)=x﹣2lnx,,因而f(1)=1,f′(1)=﹣1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),即x+y﹣2=0(2)由,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.23.【答案】【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=﹣2.(2)椭圆+=1的焦点为(﹣4,0)和(4,0),可设双曲线的方程为﹣=1(a,b>0),由题意可得c=4,即a2+b2=16,又e==2,解得a=2,b=2,则双曲线的标准方程为﹣=1.【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.24.【答案】【解析】解:(1)∵y=+,∴,解得x≥﹣2且x≠﹣2且x≠3,∴函数y的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x≤4且x≠1且x≠3,∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].。
丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知数列{a n }是等比数列前n 项和是S n ,若a 2=2,a 3=﹣4,则S 5等于( ) A .8B .﹣8C .11D .﹣112. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .313. 下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题 4. 下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 5. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .3 6. 有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A .0B .1C .2D .37. 已知实数x ,y满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .78. 抛物线y 2=8x的焦点到双曲线的渐近线的距离为( )A .1B.C.D.9. 已知变量x 与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( ) A. =﹣0.2x+3.3B. =0.4x+1.5 C. =2x ﹣3.2D. =﹣2x+8.610.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 11.已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 12.等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )二、填空题13.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .14.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .15.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.16.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .17.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.18.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .三、解答题19.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)20.已知函数f (x0=.(1)画出y=f (x )的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f (x ﹣1)≤﹣.21.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为222x t y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.22.已知等边三角形PAB 的边长为2,四边形ABCD 为矩形,AD=4,平面PAB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.(1)如图1,若G 为线段PD 的中点,BE=DF=,证明:PB ∥平面EFG ;(2)如图2,若E ,F 分别是线段AB ,CD 的中点,DG=2GP ,试问:矩形ABCD 内(包括边界)能否找到点H ,使之同时满足下面两个条件,并说明理由.①点H 到点F 的距离与点H 到直线AB 的距离之差大于4; ②GH ⊥PD .23.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.24.由四个不同的数字1,2,4,x组成无重复数字的三位数.(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x.丰县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:设{a n}是等比数列的公比为q,因为a2=2,a3=﹣4,所以q===﹣2,所以a1=﹣1,根据S5==﹣11.故选:D.【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题.2.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A、P n D作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.3.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,因此不正确;B.命题“∃x0∈R,x+x0﹣1<0”的否定是“∀x∈R,x2+x﹣1≥0”,因此不正确;C.命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D.命题“p或q”为真命题,则p,q中至少有一个为真命题,正确.故选:D.4.【答案】D111]【解析】考点:相等函数的概念.5.【答案】D【解析】解:设等差数列{a n}的公差为d,则S4=4a1+d=﹣2,S5=5a1+d=0,联立解得,∴S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.6.【答案】C【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故选:C.【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.7.【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.8.【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A.【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.9.【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3,=2.7,代入A成立,代入D不成立.故选:A.10.【答案】B【解析】11.【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.12.【答案】C 【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.二、填空题13.【答案】﹣2≤a ≤2【解析】解:原命题的否定为“∀x ∈R ,2x 2﹣3ax+9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立, 只需△=9a 2﹣4×2×9≤0,解得:﹣2≤a ≤2.故答案为:﹣2≤a ≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.14.【答案】 (﹣∞,3] .【解析】解:f ′(x )=3x 2﹣2ax+3, ∵f (x )在[1,+∞)上是增函数,∴f ′(x )在[1,+∞)上恒有f ′(x )≥0,即3x 2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f′(1)=﹣2a+6≥0,∴a≤3;实数a的取值范围是(﹣∞,3].15.【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和.【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及1,,,,n na a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而1,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法.16.【答案】4π【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出现.17.【答案】()(),10,1-∞-⋃【解析】18.【答案】 ﹣2 .【解析】解:∵曲线y=x n+1(n ∈N *),∴y ′=(n+1)x n,∴f ′(1)=n+1,∴曲线y=xn+1(n ∈N *)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),该切线与x 轴的交点的横坐标为x n =,∵a n =lgx n ,∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2. 故答案为:﹣2.三、解答题19.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.20.【答案】【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(﹣∞,0),(1,+∞),丹迪减区间是(0,1)(2)由已知可得或,解得x≤﹣1或≤x≤,故不等式的解集为(﹣∞,﹣1]∪[,].【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.21.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2)22. 【解析】试题分析:(1)由公式cos sin xy ρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.22.【答案】【解析】(1)证明:依题意,E,F分别为线段BA、DC的三等分点,取CF的中点为K,连结PK,BK,则GF为△DPK的中位线,∴PK∥GF,∵PK⊄平面EFG,∴PK∥平面EFG,∴四边形EBKF为平行四边形,∴BK∥EF,∵BK⊄平面EFG,∴BK∥平面EFG,∵PK∩BK=K,∴平面EFG∥平面PKB,又∵PB⊂平面PKB,∴PB∥平面EFG.(2)解:连结PE,则PE⊥AB,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE⊂平面PAB,PE⊥平面ABCD,分别以EB,EF,EP为x轴,y轴,z轴,建立空间直角坐标系,∴P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵==(﹣,,﹣),∴G(﹣,,),设点H(x,y,0),且﹣1≤x≤1,0≤y≤4,依题意得:,∴x2>16y,(﹣1≤x≤1),(i)又=(x+,y﹣,﹣),∵GH⊥PD,∴,∴﹣x﹣+4y﹣,即y=,(ii)把(ii)代入(i),得:3x2﹣12x﹣44>0,解得x>2+或x<2﹣,∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH⊥PD.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.23.【答案】【解析】(本题满分为12分)解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°…(2)∵AD⊥CD,∴∠BDC=30°…在△ABC中,由正弦定理得,…∴.…24.【答案】【解析】【专题】计算题;排列组合.【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x),解可得x的值.【解答】解:(1)若x=5,则四个数字为1,2,4,5;又由要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,即能被5整除的三位数共有6个;(2)若x=9,则四个数字为1,2,4,9;又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,取出的三个数字为1、2、9时,有A33=6种情况,取出的三个数字为2、4、9时,有A33=6种情况,则此时一共有6+6=12个能被3整除的三位数;(3)若x=0,则四个数字为1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,当末位是2或4时,有A21×A21×A21=8种情况,此时三位偶数一共有6+8=14个,(4)若x=0,可以组成C31×C31×C21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,故x=0不成立;当x≠0时,可以组成无重复三位数共有C41×C31×C21=4×3×2=24种,共用了24×3=72个数字,则每个数字用了=18次,则有252=18×(1+2+4+x),解可得x=7.【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x为0与否两种情况讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新丰县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知向量||=, •=10,|+|=5,则||=( )A .B .C .5D .252. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .3. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB D4. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)5. 在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形6. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 7. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+48. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件9. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个 10.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能11.已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.12.设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .80二、填空题13.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值. 14.函数f (x )=x 3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是 . 15.已知函数,则__________;的最小值为__________.16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)17.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力. 18.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .三、解答题19.(选做题)已知f (x )=|x+1|+|x ﹣1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a+b|<|4+ab|.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .21.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.22.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S.0.0050.02频率组距O千克23.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.24.计算:(1)8+(﹣)0﹣;(2)lg25+lg2﹣log29×log32.新丰县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵;∴由得,=;∴;∴.故选:C.2.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).3.【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫=+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()121133f x x ππ⎛⎫+=-+= ⎪⎝⎭.4. 【答案】A【解析】解:函数f (x )=的图象如下图所示:由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点, 即方程f (x )=k 有两个不同的实根, 故选:A5.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.6.【答案】C【解析】考点:茎叶图,频率分布直方图.7.【答案】A【解析】∵f(x+1)=3x+2=3(x+1)﹣1∴f(x)=3x﹣1故答案是:A【点评】考察复合函数的转化,属于基础题.8.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.9. 【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 10.【答案】A【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得, 消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x 1,x 12),=(x 2,x 22),得到=x 1x 2+(x 1x 2)2=﹣1+1=0,则⊥,∴△AOB 为直角三角形. 故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.11.【答案】B12.【答案】 C【解析】 二项式定理. 【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k 的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k 的系数为C 5k 25﹣k当k ﹣1时,C 5k 25﹣k =C 5124=80,当k=2时,C 5k 25﹣k =C 5223=80, 当k=3时,C 5k 25﹣k =C 5322=40, 当k=4时,C 5k 25﹣k =C 54×2=10, 当k=5时,C 5k 25﹣k =C 55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.二、填空题13.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).① 将①与拋物线x 2=2py 联立得, x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )=-2t ,即直线PQ 的斜率为-2t .(2)由y =x 22p 得y ′=xp,∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2ptp =2t .其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0, -p2). ∴-p2-2pt 2=2t (-2pt ).解得t =±12,即t 的值为±12.14.【答案】 3,﹣17 .【解析】解:由f ′(x )=3x 2﹣3=0,得x=±1, 当x <﹣1时,f ′(x )>0, 当﹣1<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,故f(x)的极小值、极大值分别为f(﹣1)=3,f(1)=﹣1,而f(﹣3)=﹣17,f(0)=1,故函数f(x)=x3﹣3x+1在[﹣3,0]上的最大值、最小值分别是3、﹣17.15.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:16.【答案】①③⑤【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.±.17.【答案】22【解析】分析题意得,问题等价于264++≤只有一解,x axx ax++≤只有一解,即220∴28022∆=-=⇒=±,故填:22a a±.18.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.三、解答题19.【答案】【解析】(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x >1时,由2x <4,得1<x <2. 所以M=(﹣2,2).…(Ⅱ)证明:当a ,b ∈M ,即﹣2<a ,b <2,∵4(a+b )2﹣(4+ab )2=4(a 2+2ab+b 2)﹣(16+8ab+a 2b 2)=(a 2﹣4)(4﹣b 2)<0, ∴4(a+b )2<(4+ab )2,∴2|a+b|<|4+ab|.…【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.20.【答案】【解析】证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF 不在平面PCD 中,PD ⊂平面PCD 所以直线EF ∥平面PCD .(2)连接BD .因为AB=AD ,∠BAD=60°.所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD . 因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD=AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面EBF ,所以平面BEF ⊥平面PAD .【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.21.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元;若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)22.【答案】(1)102n a n =-;(2)229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.【解析】试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .当5n ≤时,12||||||n n S a a a =++2129n a a a n n =+++=-∴229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1考点:等差数列的通项公式;数列的求和. 23.【答案】【解析】解:(方法一)设动圆圆心为M (x ,y ),半径为R ,设已知圆的圆心分别为O 1、O 2,将圆的方程分别配方得:(x+3)2+y 2=4,(x ﹣3)2+y 2=100, 当动圆与圆O 1相外切时,有|O 1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.24.【答案】【解析】解:(1)8+(﹣)0﹣=2﹣1+1﹣(3﹣e)=e﹣.(2)lg25+lg2﹣log29×log32===1﹣2=﹣1.…(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.。