水热与溶剂热合成介绍

合集下载

第三章-水热和溶剂热法

第三章-水热和溶剂热法

水热、溶剂热反应的基本类型
(1)合成反应
通过数种组分在水热或溶剂热条件下直接化 合或经中间态发生化合反应。 利用此类反应可合成各种多晶或单晶材料。
Nd2O3 + H3PO4 NdP5O14 CaO· nAl2O3 + H3PO4 Ca(PO4)3OH + AlPO4 La2O3 + Fe2O3 + SrCl2 (La, Sr)FeO3 FeTiO3 + KOH K2O· nTiO2 (n = 4, 6)
例如
Cr + H2O Cr2O3 + H2 Zr + H2O ZrO2 + H2 M + n L MeLn (L = 有机配体) 使溶胶、凝胶(so1、gel)等非晶 态物质晶化的反应
(11)晶化反应 例如
CeO2· xH2O CeO2 ZrO2· H2O M-ZrO2 + T-ZrO2 硅铝酸盐凝胶 沸石
四、有机溶剂的性质标度
有机溶剂种类多,性质差异大,需进行溶剂 选择。 溶剂会使反应物溶解或部分溶解,生成溶剂 合物,这会影响化学反应速率。 在合成体系中,反应物在液相中的浓度、解 离程度,及聚合态分布等都会影响反应过程。
§3.2 水热、溶剂热体系的成核与晶体生长
(6)脱水反应
一定温度、压力下物质脱水结晶的反应 例如
(7)分解反应
分解化合物得到结晶的反应
例如 FeTiO FeO + TiO 3 2 ZrSiO4 + NaOH Na2SiO3 + ZrO2 FeTiO3 + K2O FeO + K2O· nTiO2 (n = 4, 6)
(8)提取反应

第5章 水热与溶剂热合成

第5章 水热与溶剂热合成

阳极氧化铝-AAO模板制备

将高纯铝片线切割成30mm× 20 mm 片,于500℃ 退火4 h以消除残余内应力.经过无水乙醇除油、氢 氧化钠除氧化膜和蒸馏水清洗干净后,在无水乙醇 和HC1O4的混合液(体积比4:1)中进行电化学抛 光.然后以30 g/L H PO4为电解液,常温(23℃)下, 120 V直流电压恒压阳极氧化1 h.将一次氧化过的 铝片在1.8%H2CrO4和6.0%H PO4混合溶液(体积比 1:1)中浸泡16 h,去除表面第一次氧化形成的氧化 膜.除膜后的铝片进行第二次阳极氧化,氧化条件 与第一次的相同,只是氧化时间延长至2 h.最后在 30℃ 的5.0%H3PO4溶液中扩孔10 min,从而得到 AAO模板。
1.3 反应的基本类型
(7)分解反应 在水热与溶剂热条件下分解化合 物得到结晶的反应。例如
(8)提取反应 在水热与溶剂热条件下从化合物 (或矿物)中提取晶届的反应。例如:钾矿石中钾的水 热提取,重灰石中钨的水热提取。
1.3 反应的基本类型
(9)氧化反应 金属和高温高压的纯水、水溶液、有 机溶剂得到新氧化物、配合物、金属有机化合物的反应。 超临界有机物种的全氧化反应。例如:
(13)烧结反应 在水热与溶剂热条件下,实现烧结 的反应。例如:制备含有OH-、F-等挥发性物质的陶 瓷材料。 (14)反应烧结 在水热与溶剂热条件下同时进行 化学反应和烧结反应。例如:氧化铬、单斜氧化锆、 氧化铝—氧化锆复合体的制备。 (15)水热热压反应 在水热热压条件下,材料固 化与复合材料的生成反应。例如:放射性废料处理、 特殊材料的固化成型、特种复合材料的制备。
第五章水热与溶剂热合成
水热与溶剂热合成是无机合成化学的一个 重要分支。
水热合成研究最初从模拟地矿生成开始到 沸石分子筛和其它晶体材料的合成已经历了 一百多年的历史。

第五章 水热和溶剂热合成

第五章 水热和溶剂热合成
5.1 水热与溶剂热合成基础 5.2 水热与溶剂热体系的成核与晶体生长 5.3 功能材料的水热与溶剂热合成 5.4 水热条件下的海底:生命的摇篮? 5.5 超临界水—新型的反应体系 5.6 水热与溶剂热合成技术
§ 5.1 水热与溶剂热合成基础
5.1.1 基本概念
水热法 (Hydrothermal Synthesis) ➢ 在特制的密闭反应器(高压釜)中, ➢ 采用水溶液作为反应体系, ➢ 通过对反应体系加热、加压(或自生蒸气
③ 能够生成低熔点化合物、高蒸气压且不能在 融体中生成的物质、高温分解相。
④ 有利于生长极少缺陷、取向好、完美的晶体, 且合成产物结晶度高以及易于控制晶体的粒度。
⑤ 有利于低价态、中间价态与特殊价态化台物 的生成,并能均匀地进行掺杂。
5.1.3 反应的基本类型(15类)
(1) 合成反应
通过数种组分直接化合或经中间态发生化合 反应,利用此类反应可合成各种多晶或单晶材料。 例如:
D、密度随温度升高而降低,压力升高而增加
1000℃ ,15~20GPa,d=1.7~1.9g/cm3 ,若完全离解 ,相当于熔融盐。
反应压强与反应容器中原始溶剂的填充度有 关。反应混合物占密闭反应釜空间的体积分 数称为填充度。
➢ 反应温度在 500 ℃以下,
➢ 通常填充度为 50%~80% ,
提交
单选题 1分
此题未设置答案,请点击右侧设置按钮
与教室授课相比,你认为雨课堂授课效果怎么样?
A 更好 B 相同 C 差一点 D 差很多
提交
主观题 10分 写下你对本课程雨课堂授课最满意和不满意的地方。
正常使用主观题需2.0以上版本雨课堂
作答
水热与溶剂热合成是无机合成化学的一个 重要分支。

水热与溶剂热

水热与溶剂热
(62.)5脱m水m反/d应。:
在一定温度一定压力下物质脱水结晶的反应。例如,
Mg (OH
)2
SiO2
350~370 oC 8 ~ 23MPa
温石棉
(7)分解反应
在水热与溶剂热条件下分解化合物得到结晶的反应。 例如,
FeTiO3→FeO+TiO2 ZrSiO4+NaOH→ZrO2+NaSi (O8)3提取反应
6
7
水热法:
最早采用水热法制备材料:1845年K.F.Eschafhautl以硅
酸为原料在水热条件下制备石英晶体 ;
一些地质学家采用水热法制备得到了许多矿物,到1900
年已制备出约80种矿物,其中经鉴定确定有石英,长石, 硅灰石等 ;
1900年以后,G.W. Morey和他的同事在华盛顿地球物理
✓ 在有机溶剂中进行的反应能够有效地抑制产物的氧
化过程或水中氧的污染;
✓ 非水溶剂的采用使得溶剂热法可选择原料的范围大
大扩大,比如氟化物,氮化物,硫化合物等均可作 为溶剂热反应的原材料;同时,非水溶剂在亚临界 或超临界状态下独特的物理化学性质极大地扩大了 所能制备的目标产物的范围;
✓ 由于有机溶剂的低沸点,在同样的条件下,它们
水热与溶剂热合成


2.1 水热与溶剂热的基本概念 2.1 水热与溶剂热合成方法的发展 2.2 水热与溶剂热合成方法原理 2.3 水热与溶剂热合成工艺
水热与溶剂热合成方法应用实例
2.4
2
基本概念
3
什么叫水热与溶剂热合成?
水热与溶剂热合成是指在一定温度(100-1000℃)和压强 (1-100MPa)条件下利用溶液中物质化学反应所进行的无 机合成与材料制备的一种有效方法。

第四章水热与溶剂热合成介绍

第四章水热与溶剂热合成介绍
第四章 水热与溶剂热合成
第一节 水热与溶剂热合成基础
1、合成化学与技术 水热与溶剂热合成是指在一定温度 (100~1000℃)和压强(1~100MPa) 条件下利用溶液中物质化学反应所进行 的合成。侧重于研究水热合成条件下物 质的反应性、合成规律以及产物的结构 和性质。可进行特殊化合物与材料的制 备、合成和组装。
容易控制反应的化学环境和操作 中间态、介稳态和特殊物相易于生成 例:1996年庞文琴教授用水热体系合成 JDF-L1(催化剂),目前是人工合成的 五配位钛化合物,具有良好的氧化催化 性能。美国学者合成金刚石。 钱逸泰教授在非水体系中合成了氮化镓、 金刚石、硫属化纳米晶。

4、复合氧化物与复合氟化物的合成
生长体表面活性中心的吸引,穿过生长表面的扩散层沉降 到石英体表面
影响石英晶体生长的因素



温度 dlnv/dT=c/RT2 压强:是原始填充度、温度和温差的函 数。提高压强生长速率加快。 过饱和度 v=kvS
在高温条件下,相应地提高填充度和溶液 的碱度可提高晶体的完整度
水热合成石英的装置
3、特殊结构、凝聚态与聚集态



氧化反应 沉淀反应 晶化反应 水解反应 烧结反应 水热热压反应 反应烧结
4、反应介质的性质

4.1 溶剂水的性质 高温加压下水热反应的特征: 使重要的离子间的反应加速 水解反应加剧 氧化还原电势明显变化
高温高压水热体系水性质

蒸汽压变高 密度变低 表面张力变低 粘度变低 离子积变高
2、合成特点

由于在水热与溶剂条件下反应物反应性能的改变、活性的提高,水热与溶剂热合 成方法有可能替代固相反应及难于进行的合成反应,形成一系列新的合成方法。

水热与溶剂热合成法

水热与溶剂热合成法

强烈对流,在生长区(低温
区)形成过饱和溶液
成核
形核
9
5.2 纳米晶粒的形成过程 (p7) (1)生长基元与晶核的形成
满足线度和几何构型要求时,生成晶核 (2)生长基元在固-液生长界面上的吸附与运动
生长基元运动到固-液生长界面并被吸附, 在界面上迁移运动 (3)生长基元在界面上的结晶或脱附
10
5.3 水热反应的成核特征 1、成核速率随着过冷程度即亚稳性的增加而增加 2、存在一个诱导期,在此期间不能检测出成核 3、组成的微小变化可引起诱导期的显著变化 4、成核反应的发生与体系的早期状态有关
单晶培育: 从籽晶培养大单晶。
7
【例】水热法制备Ag纳米粒子
5ml 0.02M AgNO3 ag和5mL 0.02M NaCl ag,加入到30mL 蒸馏水中,搅拌生成AgCl胶体,然后将0.2mmol的葡萄糖 溶在上述胶体溶液中,移入内衬Teflon的50mL合成弹中, 在加热炉中180°C下保持一段时间,空气中冷却至室温, 蒸馏水和酒精冲洗银灰色沉淀,真空60 °C干燥2小时。
第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
(1)低温水热合成:100°C以下; 沸石的合成
(2)中温水热合成:100—300°C; 经济有效的合成区域
(3)高温高压水热合成:300°C以上; 单晶生长、特种结构的化合物

水热法与溶剂热法

水热法与溶剂热法
到目前为止,溶剂热合成法已得到很快的发展,并在纳米
材料制备中具有越来越重要的作用。
4
5
2.1水热与溶剂热合成方法的概念
水热法(Hydrothermal Synthesis),是指在特制的 密闭反应器(高压釜)中,采用水溶液作为反应 体系,通过对反应体系加热、加压(或自生蒸气 压),创造一个相对高温、高压的反应环境,使 得通常难溶或不溶的物质溶解,并且重结晶而进 行无机合成与材料处理的一种有效方法。
6
在水热条件下,水既作为溶剂又作为矿化剂,在 液态或气态还是传递压力的媒介,同时由于在高 压下绝大多数反应物均能部分溶解于水,从而促 使反应在液相或气相中进行。水热法近年来已广 泛应用于纳米材料的合成,与其它粉体制备方法 相比,水热合成纳米材料的纯度高、晶粒发育好, 避免了因高温煅烧或者球磨等后处理引起的杂质 和结构缺陷。
27
产物Pd/C的XRD图(左)和Raman光谱 (右)
28
产物Pd/C的XPS图谱(左) 和FT-IR图谱(右)
29
(a,b)为低倍数(c,d)为高分辨的TEM像,其中d的插图给出 了Pd的电子衍射图
30
Pd/C复合材料在不同温度 下的TEM像, (a)140,(b)160,(c)180 ℃
7
但是水热法也有严重的局限性,最明显的一个 缺点就是,该法往往只适用于氧化物或少数对 水不敏感的硫化物的制备,而对其他一些对水 敏感的化合物如III-V族半导体,新型磷(或砷) 酸盐分子筛骨架结构材料的制备就不适用了。 正是在这种背景下,溶剂热技术就应运而生。
8
溶剂热法(Solvothermal Synthesis),将水热法中 的水换成有机溶剂或非水溶媒(例如:有机胺、 醇、氨、四氯化碳或苯等),采用类似于水热法 的原理,以制备在水溶液中无法长成,易氧化、 易水解或对水敏感的材料。

材料合成与制备 第2章 水热与溶剂合成

材料合成与制备 第2章 水热与溶剂合成
的晶核稳定条件下,通过晶核生长、发育才能长成比较完整的晶体。 在晶体生长初期,溶液中形成许多大小不等,与结晶结构类似的基 元团,这种基元团并不稳定,成为晶胚;晶胚不断吸收溶液中的溶质 原子而长大,形成具有一定临界大小的晶核,继而发育成完整的晶 体,这就是成核过程,是系统Gibbs自由能降低的过程。
晶核的形成包含了液-固相的转变及形成新的固-液界面,晶体 形成总的自由能变化为:G Gs Gv
常用的溶剂有:乙二胺、甲醇、乙醇、二乙胺、三乙胺、吡啶、 苯、甲苯、二甲苯、二甲基乙烷、苯酚、氨水、四氯化碳、甲酸等。
与水热反应相比,溶剂热法具有以下优点: (1)在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水 中氧的污染。 (2) 溶剂热法扩大了原料的选择范围,如氟化物、氮化物及硫属化 合物等均可作为溶剂热反应的原材料,同时,非水溶剂在亚临界或超 临界状态下独特的物理化学性质极大地扩大了所能制备的目标产物的 范围。 (3)由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水 热合成更高的气压,从而有利于产物的结晶。
晶核临界半径: r 2
Gv
2)晶体生长理论 晶体生长理论主要研究晶体结构内部、晶体生长条件、晶体
生长状态以及晶体性能四者之间的关系。从微观讲,晶体生长是一 个基元过程,包括以下步骤:
(1)基元的形成 (2)基元在生长界面吸附 (3)基元在界面运动 (4)基元在界面上结晶或脱附
从宏观讲,晶体生长是晶体与环 体界面向流体的推动的过程。驱 动力所做的功为:
(4)由于较低的反应温度,反应物中结构单元可以保留到产物 中,且不受破坏,同时,有机溶剂官能团和反应物或产物作用,生 成某些新型在催化和储能方面有潜在作用的材料。
(5)非水溶剂的种类繁多,其本身的一些特性,如极性与非极 性、配位络合作用、热稳定性等,为人们认识化学反应的实质和晶 体生长的特征,提供了许多值得研究和探索的线索。

高等无机合成第5章 水热与溶剂热合成

高等无机合成第5章 水热与溶剂热合成
基, HCN合成了 2. 随后有的学者用HCN合成了5种碱基,用甲醛合成 了多种糖和氨基酸, 了多种糖和氨基酸,还进行了核昔酸的无酶聚合 实验。 实验。
◆温暖的池塘-水热海底 温暖的池塘-
温暖的池塘” 3. “温暖的池塘”——水热海底的化学进化 水热海底的化学进化 模型应运而生,即生命起源于地表, 模型应运而生,即生命起源于地表,光和闪电 供能.使无机水分子反应,得到有机小分子, 供能.使无机水分子反应,得到有机小分子, 有机小分子在地表水中富集,随着水的蒸发, 有机小分子在地表水中富集,随着水的蒸发, 有机小分子浓度升高,进一步反应生成大分子, 有机小分子浓度升高,进一步反应生成大分子, 大分子自组织,最后演变为有复制功能,有膜 大分子自组织,最后演变为有复制功能, 的细胞形式。 第一种观点) 的细胞形式。 (第一种观点)
1.2 合成的特点
水热与溶剂热合成化学有如下特点: 水热与溶剂热合成化学有如下特点:
①由于在水热与溶剂热条件下反应物反应性能 的改变、活性的提高,水热与溶剂热合成方法有可 能代替固相反应以及难于进行的合成反应.并产生 一系列新的合成方法。 ②由于在水热与溶剂热条件下中间态、介稳态 以及特殊物相易于生成,因此能合成与开发一系列 特种介稳结构、特种凝聚态的新合成产物。 ③能够使低熔点化合物、高蒸气压且不能在融 体中生成的物质、高温分解相在水热与溶剂热低温 条件下晶化生成。
水热条件下生命起源的问题受到 广泛关注,目前的研究提供了微生 物学、地质学、分子系统树、海洋 考察等人面的证据.
◆温暖的池塘-水热海底 温暖的池塘1. 1952年,芝加哥大学的米勒(Stanley Miller) 1952年 芝加哥大学的米勒( 根据奥巴林的早期地球还原性大气圈假设, 根据奥巴林的早期地球还原性大气圈假设,由 CH4,NH3,H2,H20,在放电情况下合成了多种氰 基酸等有机物。 基酸等有机物。

水热与溶剂热合成研究

水热与溶剂热合成研究

水热与溶剂热合成研究水热与溶剂热合成研究主要内容一、水热-溶剂热合成反应简介二、水热-溶剂热合成反应的基本特点和类型三、水热-溶剂热反应介质(经典的水热合成法和非水体系的溶剂热合成法)四、水热-溶剂热合成反应釜及一般程序五、水热-溶剂热合成在无机微孔晶体的合成中的应用一、水热-溶剂热合成反应简介水热与溶剂热化学是研究物质在高温和密闭高压溶液条件下的化学行为与规律的化学分支。

水热与溶剂热合成是指在一定温度(100~1 000 ℃) 和压强(1~100 MPa) 条件下利用溶液中物质化学反应所进行的合成。

水热与溶剂热合成与固相合成研究的差别在于“反应性”不同。

这种“反应性”不同主要反映在反应机理上,固相反应的机理主要以界面扩散为其特点,而水热与溶剂热反应主要以液相反应为其特点。

显然,不同的反应机理首先可能导致不同结构的生成,在高温高压的水热条件下,物质在溶剂中的物理性质与化学反应性能均发生很大变化,因此通过水热与溶剂热反应可以制得固相反应无法制得的物相或物种。

水热与溶剂热反应按反应温度进行分类,则可分为亚临界与超临界合成反应。

如多数沸石分子筛晶体的水热-溶剂热合成即为典型的亚临界合成反应。

这类亚临界反应温度范围是在100~240 ℃之间,适于工业或实验室操作。

高温高压水热-溶剂热合成实验温度已高达1 000 ℃,压强高达0. 3 GPa。

它利用作为反应介质的水或溶剂在超临界状态下的性质和反应物质在高温高压水热或溶剂热条件下的特殊性质进行合成反应。

二、水热-溶剂热合成反应的基本特点和类型在高温高压的水热条件下,物质在溶剂中的物理性质与化学反应性能均发生很大的变化。

与其它合成方法相比,水热与溶剂热合成具有以下特点:①反应在密闭体系中进行,易于调节环境气氛,有利于特殊价态化合物和均匀掺杂化合物的合成;②在水热和溶剂热条件下,溶液粘度下降,扩散和传质过程加快,而反应温度大大低于高温反应,水热和溶剂热合成可以代替某些高温固相反应;③水热和溶剂热合成适于在常压常温下不溶于各种溶剂或溶解后易分解,熔融前后易分解的化合物的合成,也有利于合成低熔点、高蒸汽压的材料;④由于等温、等压和溶液条件特殊,在水热反应中,容易出现一些中间态、介稳态和特殊物相。

第四章 水热与溶剂热合成

第四章  水热与溶剂热合成

4.1 水热与溶剂热合成基础 水热、溶剂热合成化学的特点 1. 水热与溶剂热条件下反应物反应性能的改变、活 性的提高,水热与溶剂热合成方法有可能代替固 相反应以及难于进行的合成反应,并产生一系列 新的合成方法。 2. 水热与溶剂热条件下中间态、介稳态及特殊物相 易于生成,因此能合成与开发一系列特种介稳结 构、特种凝聚态的新合成产物。
4.1 水热与溶剂热合成基础 3. 能够使低熔点化合物、高蒸气压且不能在融 体中生成的物质、高温分解相在水热与溶剂 热低温条件下晶化生成。 4. 水热与溶剂热的低温、等压、溶液条件,有 利于生长极少缺陷、取向好、完美的晶体, 且合成产物结晶度高以及易于控制产物晶体 的粒度。 5. 由于易于调节水热与溶剂热条件下的环境气 氛,因而有利于低价态、中间价态与特殊价 态化合物的生成,并能均匀地进行掺杂。
第四章 水热与溶剂热合成
4.1 水热与溶剂热合成基础
水热法一直主要用于地球科学研究,二战以后才逐渐用于 单晶生长等材料的制备领域,此后,随着材料科学技术的 发展,水热法在制备超细颗粒,无机薄膜,微孔材料等方 面都得到了广泛应用。
4.1 水热与溶剂热合成基础

水热与溶剂热合成方法的概念 水热法 (Hydrothermal Synthesis) ,是指在特制的密闭反 应器(高压釜)中,采用水溶液作为反应体系,通过对 反应体系加热、加压(或自生蒸气压),创造一个相对高 温、高压的反应环境,使得通常难溶或不溶的物质溶 解,并且重结晶而进行无机合成与材料处理的一种有效 方法。
4.1 水热与溶剂热合成基础 由于有机溶剂的低沸点,在同样的条件下,它们可以达到 比水热合成更高的气压,从而有利于产物的结晶;
由于较低的反应温度,反应物中结构单元可以保留到产物 中,且不受破坏,同时,有机溶剂官能团和反应物或产物 作用,生成某些新型在催化和储能方面有潜在应用的材料;

水热和溶剂热法

水热和溶剂热法
机化合物以及特种凝聚态材料,如超微粒、溶胶与凝胶、非晶态、无机膜、单晶等合成的越来越重要的途径。
水热合成与其它合成法的差别:
• 利用水热法合成出来的粉末一般结晶度非常高,并且通过优化 合成条件可以不含有任何结晶水。
• 它同其他的溶液法粉末合成技术相比,例如溶胶一凝胶(sol- gel)法以及化学沉淀法,具有明显的区别:从合成条件来说, 主要区别在于它们的合成温度和压力明显不同。水热法的温度 范围一般在100~374℃(水的临界温度)之间,压力从环境压 力到 21.7 Mpa(水的临界压力)。不需煅烧可直接获得粉体, 相比之下,溶胶一凝胶和化学沉淀法一般都需要600℃以上煅 烧才能得到陶瓷粉末。
• 这一类合成方法有时也被称为水热反应合成,以区别普通的仅 仅是溶质再结晶过程的水热合成。不过它们的界限经常非常模 糊。
水热法合成的主要驱动力
• 水热法合成陶瓷粉末的主要驱动力是氧化物在不同状态下溶解 度的不同。
例如普通的氧化物粉末(有较高的晶体缺陷密度)、无 定型氧化物粉末、氢氧化物粉末、溶胶-凝胶粉末等在溶剂中 的溶解度一般比高结晶度、低缺陷密度的粉末溶解度大。在水 热反应的升温升压过程中,前者的溶解度不断增加,当达到一 定的浓度时,就会沉淀出后者。
• 因此水热法粉末合成的过程实质上就是一个溶解/再结晶的过 程。
分类
研究表明这些沸石的生成是通过硅酸盐物种围绕有机阳离子聚合并生成三维结构的。
,且2反00应2,后14需(2等1按)高, 1温压53釜度7完-1划5全4冷0分. 却:后才可打开,以防压力突然释放,热液外溅造成危险。 人但工这水 并晶不、是刚说• 玉在如、中方性按解或水石酸、性热红溶与锌液矿中溶、就剂蓝无石法热棉进反等行应上水百热进种合行以成上。的晶温体的度生来长都划已分经发,展可到分工业为化亚的规临模界。 和 超 临 界 合 成 反 应 。 图水3热-1法7的所温得度同• 范心在围纳一米较般电低在缆1的的0S0温E~M3度和74T℃范E(M围照水片的( 1临0界0温~度)2之4 0间℃,压) 力属从于环亚境压临力界到 2合1. 成 高水含量的沸• 石如一般果要是求低在温高合成温,高而低压水条含件量的下沸,石一作般为要求反高应温合介成质。的 水 在超 临 界 状 态 下, 利 用 水 和 反应 物 在 高 温 高压 ( 1 00 0 ℃ , 0 .3 G Pa) 1p4H0升-1高80会ºC缩下短2成4水小核时时热间条,件加快下晶的化速特度殊,但性同质时会进降行低产的率合。成 为 超 临 界 合 成 反 应 。

水热和溶剂热法

水热和溶剂热法

水热和溶剂热法是两种常用的制备化学材料的方法。

水热法是一种在密封高压釜中,以水为溶剂、在高温高压下进行化学反应的合成方法。

这种方法具有操作简单、反应条件易于控制等优点,可用于制备碳化聚合物点等材料。

溶剂热法也是一种在密封高压釜中,以有机溶剂为溶剂、在高温高压下进行化学反应的合成方法。

与水热法不同的是,溶剂热法使用的溶剂是有机溶剂,而不是水。

以上信息仅供参考,如有需要,建议查阅化学专业书籍或咨询专业化学人员。

mof水热溶剂热

mof水热溶剂热

MOF水热溶剂热
MOF(金属有机框架)是一类由金属离子或金属团簇和有机配体构成的晶体材料,具有高度可控的孔径和表面积,因此在气体储存、分离、催化等领域具有广泛的应用前景。

水热/溶剂热是两种常用的合成MOF材料的方法。

水热法是指在高压釜中,以水或其他水溶液为溶剂,在一定温度和压力下进行化学反应,制备MOF材料。

这种方法可以控制材料的结晶度、孔径、表面性质等,制备出高质量、高可控性的MOF材料。

溶剂热法是指在高压釜中,以有机溶剂为溶剂,在一定温度和压力下进行化学反应,制备MOF材料。

这种方法可以控制材料的孔径、表面性质等,制备出具有特定功能的MOF材料。

在水热/溶剂热法中,常用的溶剂包括甲醇、乙醇、二甲基甲酰胺(DMF)、氯仿等,常用的金属离子和有机配体也有很多选择。

通过选择不同的溶剂、金属离子和有机配体,可以制备出具有不同性质和功能的MOF材料。

同时,水热/溶剂热法还可以与其他合成方法结合使用,如微波辅助合成、离子液体辅助合成等,以制备出具有更好性能的MOF材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)单晶培育 在高温高压水热与溶剂热条件下。从籽晶培养大单晶。 例如SiO2单晶的生长。
(6)脱水反应 在一定温度一定压力下物质脱水结晶的反应。例如
第四章 水热与溶剂热合成
4.1.3 反应的基本类型
(7)分解反应 在水热与溶剂热条件下分解化合物得到结晶的反应。 例如
(8)提取反应 在水热与溶剂热条件下从化合物(或矿物)中提取金属 的反应。例如:钾矿石中钾的水热提取,重灰石中钨的水热提取。
第四章 水热与溶剂热合成
4. 水热与溶剂热合成
水热合成研究最初从模拟地矿生成开始到沸石分子筛和其它晶体材 料的合成已经历了100多年的历史。无机晶体材料的溶剂热合成 研究最近30年发展起来的,主要指在非水有机溶剂热条件下的合 成,用于区别水热合成。水热与溶剂热合成研究工作近百年经久 不哀并逐步演化出新的研究课题,如水热条件下的生命起源问题 以及与环境友好的超临界氧化过程。在基础理论研究方面,从整 个领域来看其研究重点仍然是新化合物的合成,新合成方法的开 拓和新合成理论的建立。人们开始注意到水热与溶剂热非平衡条 件下的机理问题以及对于高温高压条件下合成反应机理的研究。 由于水热与溶剂热合成化学对技术材料领域的广泛应用,特别是 高温高压水热与溶剂热合成化学的重要性,世界各国都越来越重 视这一领域的研究。
4.1.3 反应的基本类型
(2)热处理反应 利用水热与溶剂热条件处理一般晶体而得到具有特 定性能晶体的反应。例如:人工氟石棉→人工氟云母。
(3)转晶反应 利用水热与溶剂热条件下物质热力学和动力学稳定性 差异进行的反应。例如:长石→高岭石;橄榄石→蛇纹石。
(4)离子交换反应 沸石阳离子交换;硬水的软化、长石中的离子交 换;石棉的OH-交换为F-。
(11)晶化反应 在水热与溶剂热条件下,使溶胶、凝胶(sol、gel)等 非晶态物质晶化的反应。例如:
(12)水解反应 在水热与溶剂热条件下,进行加水分解的反应。例 如:醇盐水解等。
第四章 水热与溶剂热合成
4.1.3 反应的基本类型
(13)烧结反应 在水热与溶剂热条件下,实现烧结的反应。例如: 制备含有OH-、F-等挥发性物质的陶瓷材料。
水热与溶剂热合成已成为无机合成化学的一个重要分支。
4. 水热与溶剂热合成
4.1 水热与溶剂热合成基础 4.2 反应介质的性质 4.3 水热与溶剂热体系的成核与晶体生长 4.4 水热与溶剂热合成技术 4.5 功能材料的水热与溶剂热合成 4.6 超临界水—新型的反应体系
ቤተ መጻሕፍቲ ባይዱ
第四章 水热与溶剂热合成
第四章 水热与溶剂热合成
物的结构与性质。反应需耐高温高压与化学腐蚀的设备。体系处 于非平衡状态,需用非平衡热力学理论研究合成化学问题。 水热与溶剂热合成与固相合成研究的差别在于“反应性”不同。这 种“反应性”不同主要反映在反应机理上,固相反应的机理主要 以界面扩散为其特点,而水热与溶剂热反应主要以液相反应为其 特点。通过水热与溶剂热反应可以制得固相反应无法制得的物相 或物种,或者使反应在相对温和的溶剂热条件下进行。
4.1 水热与溶剂热合成基础
4.1.3 反应的基本类型 与高温高压水溶液或其它有机溶剂有关的反应称为水热反应或溶剂
热反应。水热与溶剂热反应的基本类型总结如下: (1)合成反应 通过数种组分在水热或溶剂热条件下直接化合或经中
间态发生化合反应。利用此类反应可合成各种多晶或单晶材料。
第四章 水热与溶剂热合成
第四章 水热与溶剂热合成
4.1.3 反应的基本类型
(9)氧化反应 金属和高温高压的纯水、水溶液、有机溶剂得到新氧 化物、配合物、金属有机化合物的反应。超临界有机物种的全氧 化反应。例如:
(10)沉淀反应 水热与溶剂热条件下生成沉淀得到新化合物的反应。 例如:
第四章 水热与溶剂热合成
4.1.3 反应的基本类型
水热合成法的分类
第四章 水热与溶剂热合成
按研究对象和目的的不同,水热法可分为水热晶 体生长、水热合成、水热反应、水热处理和水热烧结 等,分别用来生长各种单晶、制各种功能陶瓷粉体、 完成某些有机反应或对一些危害人类生存环境的有机 废弃物进行处理,以及在相对低的温度下完成对某些 陶瓷材料的烧结等。
按设备的差异,水热法又可分为“普通水热法” 和“特殊水热法”。所谓“特殊水热法”是指在水热 反应条件体系上 再加上其他作用力,如直流电场、磁场、微波场等。
4.1 水热与溶剂热合成基础
4.1.1 合成化学与技术 水热与溶剂热合成化学与溶液化学不同,它是研究物质在高温和密
闭或高压条件下溶液中的化学行为与规律的化学分支。 水热与溶剂热合成是指在一定温度(100~1000℃)和压强(1~100MPa)条
件下利用溶液中物质化学反应所进行的合成。 水热合成化学侧重于研究水热条件下物质的反应性、合成规律及产
第四章 水热与溶剂热合成
4.1 水热与溶剂热合成基础
4.1.2 合成的特点 水热与溶剂热合成化学有如下特点: ①由于在水热与溶剂热条件下反应物反应性能的改变、活性的提高,
水热与溶剂热合成方法有可能代替固相反应以及难于进行的合成 反应,并产生一系列新的合成方法。 ②由于在水热与溶剂热条件下中间态、介稳态以及特殊物相易于生 成,因此能合成与开发一系列特种介稳结构、特种凝聚态的新合 成产物。 ③能够使低熔点化合物、高蒸气压且不能在融体中生成的物质、高 温分解相在水热与溶剂热低温条件下晶化生成。
(14)反应烧结 在水热与溶剂热条件下同时进行化学反应和烧结反 应。例如:氧化铬、单斜氧化锆、氧化铝—氧化锆复合体的制备。
(15)水热热压反应 在水热热压条件下,材料固化与复合材料的生 成反应。例如:放射性废料处理、特殊材料的固化成型、特种复 合材料的制备。
水热合成法的分类
第四章 水热与溶剂热合成
第四章 水热与溶剂热合成
4.1.2 合成的特点
④水热与溶剂热的低温、等压、溶液条件,有利于生长极少缺陷、 取向好、完美的晶体,且合成产物结晶度高以及易于控制产物晶 体的粒度。
⑤由于易于调节水热与溶剂热条件下的体系环境,因而有利于低价 态、中间价态与特殊价态化台物的合成,并能均匀地进行掺杂。
第四章 水热与溶剂热合成
相关文档
最新文档