第一章集合教案
高一数学第一章《集合》教案
高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。
那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。
高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
集合及基本运算教案
集合及基本运算教案第一章:集合的概念1.1 集合的定义引入集合的概念,讲解集合的定义和性质。
举例说明集合的表示方法,如列举法和描述法。
1.2 集合的元素讲解集合中元素的特征,强调元素的唯一性和不可度量性。
通过实例解释集合中元素的关系,如属于和不属于。
1.3 集合的类型介绍常用集合的类型,如自然数集、整数集、实数集等。
讲解集合的分类方法,如无限集和有限集。
第二章:集合的运算2.1 集合的并集讲解集合的并集概念,即两个集合中所有元素的集合。
举例说明并集的表示方法和运算规则。
2.2 集合的交集讲解集合的交集概念,即两个集合中共有元素的集合。
举例说明交集的表示方法和运算规则。
2.3 集合的差集讲解集合的差集概念,即属于第一个集合但不属于第二个集合的元素的集合。
举例说明差集的表示方法和运算规则。
2.4 集合的补集讲解集合的补集概念,即在全集之外不属于给定集合的元素的集合。
举例说明补集的表示方法和运算规则。
第三章:集合的性质和运算规律3.1 集合的子集讲解集合的子集概念,即一个集合的所有元素都是另一个集合的元素。
举例说明子集的表示方法和运算规则。
3.2 集合的幂集讲解集合的幂集概念,即一个集合的所有可能的子集的集合。
举例说明幂集的表示方法和运算规则。
3.3 集合的德摩根定律讲解德摩根定律,包括德摩根第一定律和德摩根第二定律。
通过实例解释德摩根定律的应用和运算规律。
第四章:集合的排列和组合4.1 排列的概念讲解排列的概念,即从一组不同元素中取出几个元素按照一定的顺序排成一列。
举例说明排列的表示方法和运算规则。
4.2 组合的概念讲解组合的概念,即从一组不同元素中取出几个元素组成一个集合,不考虑元素的顺序。
举例说明组合的表示方法和运算规则。
4.3 排列和组合的公式讲解排列和组合的公式,如排列数公式和组合数公式。
通过实例解释排列和组合公式的应用和运算规律。
第五章:集合的应用5.1 集合在数学中的应用讲解集合在数学中的应用,如在代数、几何和概率论中的使用。
集合的含义与表示教案
集合的含义与表示教案第一章:集合的基本概念1.1 集合的定义引导学生理解集合的概念,了解集合是由一些确定的、互不相同的对象组成的整体。
通过举例说明集合的表示方法,如用大括号{}括起来的一组元素。
1.2 集合的元素解释集合中的元素是指构成集合的各个对象。
强调元素的唯一性和确定性。
1.3 集合的表示方法介绍集合的表示方法,包括列举法和描述法。
举例说明如何用列举法表示集合,以及如何用描述法表示集合。
第二章:集合的运算2.1 集合的并集解释并集的定义,即两个集合中所有元素的集合。
引导学生了解并集的表示方法,如A∪B。
2.2 集合的交集解释交集的定义,即两个集合中共有元素的集合。
引导学生了解交集的表示方法,如A∩B。
2.3 集合的补集解释补集的定义,即在全集U中不属于集合A的元素的集合。
引导学生了解补集的表示方法,如A'。
第三章:集合的性质3.1 集合的互异性强调集合中元素的唯一性,即集合中的元素不重复。
通过举例说明如何判断集合中元素的互异性。
3.2 集合的确定性解释集合的确定性,即集合中的元素是明确指定的。
强调集合中的元素是确定的,不会有歧义。
3.3 集合的无序性解释集合的无序性,即集合中元素的顺序无关紧要。
强调集合中的元素无论顺序如何排列,其表示的集合是相同的。
第四章:集合的例子4.1 自然数集合介绍自然数集合N,包括0和所有正整数。
解释自然数集合的性质,如无限性和递增性。
4.2 整数集合介绍整数集合Z,包括所有正整数、0和所有负整数。
解释整数集合的性质,如无限性和对称性。
4.3 实数集合介绍实数集合R,包括所有有理数和无理数。
解释实数集合的性质,如无限性和连续性。
第五章:集合的应用5.1 集合在数学中的应用强调集合在数学中的基础作用,如解决方程、不等式等问题。
通过举例说明集合在数学中的应用。
5.2 集合在科学中的应用解释集合在科学中的作用,如分类和归纳。
举例说明集合在科学研究中的应用。
5.3 集合在生活中的应用强调集合在日常生活中的应用,如购物时的商品分类、旅行时的景点选择等。
集合的概念教案
案例 1.1.1集合的概念一、教学目标1.知识和技能(1)初步理解集合的含义,知道常用数集及其记法。
(2)初步了解“属于”关系的意义。
(3)初步了解有限集、无限集、空集的意义。
2.过程和方法(1)通过引入生活实例、回顾初中对“集合”的提法引出集合的概念。
(2)观察集合的几组实例,并通过自己动手举出几个集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义。
(3)学会借助实例分析、探究数学问题(如集合的确定性、互异性)。
3.情感态度与价值观了解集合的含义,体会元素与集合的“属于”关系。
增强学生认识事物的能力。
二、教学重难点1、重点:集合概念的形成2、难点:理解集合元素的确定性和互异性三、教学方法教师指导与学生合作交流相结合,通过提出问题、观察实例、引导学生理解集合的概念。
四、教学过程1、新课引入:(1)在幻灯片上放映一些生活中的图片,如(一群学生踢球、大雁南飞等),说明个体与整体存在着某种关系。
(2)引入初中对“集合”的提法:x2-4=0的解集为2,-2 ;不等式3x-2<4的解的集合;到定点的距离等于定长的点的集合(圆);到角的两边距离相等的点的集合(角的平分线).2、概念的形成第一组实例(幻灯片)(1)1—20以内的所有素数;(2)图书馆里所有的书;(3)参加上海世博会的所有中方官员;(4)我们班的全体学生;(5)北京所有的麦当劳餐厅;(6)方程x-1=0的解;(7)不等式2x-3>0的所有解;(8)函数y=x+1图像上的所有点;(9)线段AB的垂直平分线上的所有点.让学生讨论交流,分析以上各例的特点得出集合概念的要点,集合对象有什么特点?教师补充总结集合的概念和三要素。
集合的概念:1、首先,我们看到的、听到的、闻到的、触摸到的、或是一些抽象符号都可以叫做对象。
(比如毕业班的女学生、看象人、大雁、军训动员的学生)2、这些能够确定的、不同的对象可以看成是一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
示范教案(集合的基本运算并集、交集)
示范教案(集合的基本运算-并集、交集)第一章:集合的基本概念1.1 集合的定义与表示方法引入集合的概念,讲解集合的定义介绍集合的表示方法,如列举法、描述法等举例说明集合的表示方法及其应用1.2 集合的基本运算介绍集合的基本运算,包括并集、交集、补集等讲解并集的定义及其运算规则讲解交集的定义及其运算规则第二章:集合的并集运算2.1 并集的定义与性质讲解并集的定义及其表示方法介绍并集的性质,如交换律、结合律等举例说明并集的性质及其应用2.2 并集的运算规则讲解并集的运算规则,如两个集合的并集等于它们的交集的补集等举例说明并集的运算规则及其应用2.3 并集的计算方法介绍并集的计算方法,如列举法、Venn图法等讲解并集计算方法的步骤及其应用第三章:集合的交集运算3.1 交集的定义与性质讲解交集的定义及其表示方法介绍交集的性质,如交换律、结合律等举例说明交集的性质及其应用3.2 交集的运算规则讲解交集的运算规则,如两个集合的交集等于它们的并集的补集等举例说明交集的运算规则及其应用3.3 交集的计算方法介绍交集的计算方法,如列举法、Venn图法等讲解交集计算方法的步骤及其应用第四章:集合的混合运算4.1 混合运算的定义与性质讲解混合运算的定义及其表示方法介绍混合运算的性质,如分配律等举例说明混合运算的性质及其应用4.2 混合运算的运算规则讲解混合运算的运算规则,如并集与交集的运算规则等举例说明混合运算的运算规则及其应用4.3 混合运算的计算方法介绍混合运算的计算方法,如列举法、Venn图法等讲解混合运算计算方法的步骤及其应用第五章:集合的应用举例5.1 集合在实际问题中的应用举例说明集合在实际问题中的应用,如统计数据处理、网络管理等讲解集合运算在实际问题中的重要性5.2 集合运算的综合应用举例说明集合运算在实际问题中的综合应用,如数据挖掘、图论等讲解集合运算的综合应用的方法及其步骤5.3 集合运算的拓展与应用介绍集合运算的拓展与应用,如模糊集合、多集等讲解集合运算的拓展与应用的方法及其步骤第六章:集合运算的练习题与解答6.1 集合运算的基础练习提供一些基础的集合运算练习题,如并集、交集的计算等引导学生通过列举法、Venn图法等方法解答练习题6.2 集合运算的进阶练习提供一些进阶的集合运算练习题,如混合运算、集合的应用等引导学生通过列举法、Venn图法等方法解答练习题6.3 集合运算练习题的解答与解析对练习题进行解答,解释解题思路和方法分析练习题的难度和考察点,帮助学生掌握集合运算的知识点第七章:集合运算的常见错误与注意事项7.1 集合运算的常见错误分析学生在集合运算中常见的错误,如概念混淆、运算规则错误等举例说明这些错误的产生原因和解题方法7.2 集合运算的注意事项提醒学生在进行集合运算时需要注意的事项,如符号使用、运算顺序等讲解注意事项的重要性及其在解题中的应用7.3 集合运算的解题技巧与策略介绍学生在解题时可以采用的集合运算技巧与策略,如化简、分解等讲解技巧与策略的运用方法和适用场景第八章:集合运算在实际问题中的应用案例分析8.1 集合运算在图论中的应用介绍集合运算在图论中的应用,如图的连通性、网络流等分析实际案例,讲解集合运算在图论问题中的作用和意义8.2 集合运算在数据挖掘中的应用介绍集合运算在数据挖掘中的应用,如数据预处理、特征选择等分析实际案例,讲解集合运算在数据挖掘问题中的作用和意义8.3 集合运算在其他领域的应用介绍集合运算在其他领域的应用,如计算机科学、经济学等分析实际案例,讲解集合运算在其他问题中的作用和意义第九章:集合运算的拓展与研究动态9.1 集合运算的拓展介绍集合运算的拓展方向,如模糊集合、多集、粗糙集等讲解拓展领域的研究动态和应用前景9.2 集合运算的研究方法与技术介绍集合运算的研究方法,如逻辑推理、数学建模等讲解研究技术在集合运算中的应用方法和实例9.3 集合运算的学术交流与资源共享介绍集合运算领域的学术交流与资源共享平台,如学术会议、期刊等鼓励学生积极参与学术交流,分享研究成果和经验第十章:总结与展望10.1 集合运算的教学总结总结本课程的教学内容和目标,强调集合运算的重要性和应用价值回顾学生在学习过程中的收获和不足,提出改进教学方法的建议10.2 集合运算的学习展望鼓励学生继续深入学习集合运算及相关领域知识,提高解决问题的能力展望集合运算在未来的发展趋势和应用前景,激发学生的学习兴趣和动力重点和难点解析1. 第一章至第五章的章节内容,主要涉及集合的基本概念、基本运算以及应用举例。
第一章集合复习教案
第一章集合复习教案1.1.1集合的概念1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉(2)不属于:如果a不是集合A的元素,就说a不属于A,记作A要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集{Φ,}0{,0等符号的含义注:应区分Φ,}5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N*或N+,1.1.2集合的表表示方法表示一个集合可用列举法、描述法或图示法;1.列举法:把集合中的元素一一列举出来,写在大括号内;2.描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
高一必修一数学集合教案
高一必修一数学集合教案高一必修一数学集合教案篇1教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的"属于"和"不属于"关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2021级新生;(6) 血压很高的人;(7) 的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA例如,我们A表示"1~20以内的所有质数"组成的集合,则有3∈A4A,等等。
高中数学第一章第2课教案
高中数学第一章第2课教案
教学内容:集合及其运算
教学目标:
1. 了解集合的定义和表示方式。
2. 掌握集合的基本运算:交集、并集、差集。
3. 能够运用集合的运算解决实际问题。
教学重点和难点:
重点:集合的定义、表示方式,集合的基本运算。
难点:理解集合运算的概念及运用。
教学准备:
1. 教材《数学》第一册。
2. 教学课件。
3. 练习题。
教学过程:
一、导入
教师引导学生回顾上节课所学内容,引出集合及其运算的主题。
二、讲解
1. 集合的定义和表示方式。
2. 集合的基本运算:交集、并集、差集。
三、讲解案例
教师通过案例演示集合的运算方法及应用,让学生深入理解集合运算的概念。
四、练习
教师布置练习题,让学生运用所学知识进行练习。
五、总结
教师对本节课所学内容进行总结,强调重要概念和运算方法。
六、作业
布置作业:完成《数学》第一册相关练习题。
七、课外拓展
学生可自行拓展集合运算的相关知识,加深对集合的理解。
教学反思:
教师应该结合学生实际情况,注重培养学生的逻辑思维能力和问题解决能力,引导学生自主学习和思考。
同时,注重实际运用,让学生掌握数学知识的应用技能。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念教学目标:理解集合的含义及集合中元素的特点。
掌握集合的表示方法,如列举法、描述法等。
教学内容:集合的定义与表示方法。
集合的性质与运算。
教学过程:1. 引入新课:通过生活中的实例引入集合的概念。
2. 讲解与演示:讲解集合的定义,展示不同类型的集合及其表示方法。
3. 练习与讨论:学生独立完成练习题,分组讨论集合的性质与运算。
1.2 集合的关系教学目标:理解集合之间的大小关系,包括子集、真子集、并集、交集等。
教学内容:集合之间的基本关系。
集合关系的表示方法。
教学过程:1. 引入新课:通过图形展示集合之间的关系。
2. 讲解与演示:讲解集合之间的子集、真子集、并集、交集等概念。
3. 练习与讨论:学生独立完成练习题,分组讨论集合关系的应用。
第二章:函数2.1 函数的概念教学目标:理解函数的定义及其表示方法。
掌握函数的性质,如单调性、奇偶性等。
教学内容:函数的定义与表示方法。
函数的性质。
教学过程:1. 引入新课:通过生活中的实例引入函数的概念。
2. 讲解与演示:讲解函数的定义,展示不同类型的函数及其表示方法。
3. 练习与讨论:学生独立完成练习题,分组讨论函数的性质。
2.2 函数的图像教学目标:理解函数图像的特点及绘制方法。
学会利用函数图像分析函数的性质。
教学内容:函数图像的特点。
绘制函数图像的方法。
教学过程:1. 引入新课:通过实例展示函数图像的特点。
2. 讲解与演示:讲解函数图像的绘制方法,展示不同类型函数的图像。
3. 练习与讨论:学生独立完成练习题,分组讨论函数图像的应用。
第三章:不等式与不等式组3.1 不等式的概念教学目标:理解不等式的定义及其性质。
学会解一元一次不等式。
教学内容:不等式的定义与性质。
一元一次不等式的解法。
教学过程:1. 引入新课:通过生活中的实例引入不等式的概念。
2. 讲解与演示:讲解不等式的定义,展示不等式的性质。
3. 练习与讨论:学生独立完成练习题,分组讨论一元一次不等式的解法。
第一章 集合论--教案(1)(1)[3页]
第一章集合论一、教学内容及要求授课学时:2教学内容1.1 集合的基本概念集合的概念及其表示;集合与集合之间的包含、真包含和相等关系的定义,数学描述及判定和证明方法;空集、全集和幂集三个特殊集合的定义、性质以及幂集的计算算法。
1.2 集合的运算集合运算的定义、性质及证明1.3 无限集可数集合和不可数集合的概念。
1.4 与集合相关的应用与集合相关的简单应用实例。
基本要求1)能正确地用枚举法或叙述法表示一个集合,会画文氏图。
2)能判定元素与集合的属于关系。
3)能利用集合与集合关系的判定与证明方法证明两个集合之间的包含、相等、和真包含的关系。
4)能熟练计算集合之间的并、交、差、补运算,掌握集合运算的定律;5)能熟练地计算P(A)。
6)理解集合的归纳法表示。
7)理解集合的对称差运算。
8)了解集合的递归指定法表示。
9)了解无限集的基本概念。
10)了解集合的简单应用。
能力培养通过课堂讲解和课后实践作业,培养学生的抽象思维和问题解决能力。
二、教学重点、难点及解决办法教学重点:集合的概念及集合间关系的证明;集合的表示方法:列举法、描述法和文氏图;集合运算及定律和幂集P(A)的计算。
教学难点:从集合与元素两个角度去分析集合;集合与集合关系的证明和无限集基数的理解。
解决办法:1)在教学过程中,为了加强学生对一个集合“双重身份”的理解,可以通过实例教学法,让学生具体体会一个集合的“双重身份”带来的问题及解决办法;2)对于新概念—幂集,让学生编程实现求一个集合的幂集,从而加深对幂集的理解。
初步建立学生的发散思维能力以及实际动手编写程序的能力。
三、教学设计从集合伦论的创始人康托尔到集合论的最终完备,让学生明白科学研究的道路是坎坷的,但为全人类做出自己的贡献是有价值和意义的,从而要树立为科学献身的精神和爱国主义情怀。
从集合的定义入手,结合高中阶段对集合的认识,指出当时定义存在的不足,提出新的定义方法;重点介绍大学阶段学习集合的主要意义和内容,关注重点概念的理解;介绍属于关系与包含关系之间的区别与联系,特别是一个集合“双重身份”的理解;强调集合的基本运算,特别是幂集的计算;集合与集合包含、真包含和相等关系的数学描述及相应的证明方法。
集合的基本运算教案
集合的基本运算教案第一章:集合的基本概念1.1 集合的定义引入集合的概念,解释集合是由明确的、相互区别的对象组成的整体。
通过实例讲解集合的表示方法,如列举法、描述法等。
1.2 集合的元素介绍集合中元素的性质,如确定性、互异性、无序性。
解释元素与集合之间的关系,明确元素属于或不属于一个集合。
1.3 集合的类型分类介绍集合的常见类型,如自然数集、整数集、实数集等。
讲解集合的子集概念,即一个集合的所有元素都是另一个集合的元素。
第二章:集合的运算2.1 集合的并集介绍并集的定义,即两个集合中所有元素的集合。
讲解并集的表示方法,如用符号“∪”表示。
举例说明并集的运算规则和性质。
2.2 集合的交集解释交集的定义,即两个集合共有的元素的集合。
展示交集的表示方法,如用符号“∩”表示。
分析交集的运算规则和性质。
2.3 集合的补集引入补集的概念,即在全集范围内不属于某个集合的元素的集合。
讲解补集的表示方法,如用符号“∁”表示。
探讨补集的运算规则和性质。
第三章:集合的运算规则3.1 集合的德摩根定理讲解德摩根定理的内容,包括德摩根律的两种形式。
分析德摩根定理在集合运算中的应用。
3.2 集合分配律介绍分配律的概念,即集合的并集和交集的运算规律。
解释分配律在集合运算中的重要性。
3.3 集合恒等律讲解集合恒等律,即集合的并集和交集与集合本身的关系。
探讨集合恒等律在集合运算中的应用。
第四章:集合的应用4.1 集合的划分介绍集合的划分概念,即把一个集合分成几个子集。
讲解集合划分的表示方法,如用符号“÷”表示。
举例说明集合划分的应用。
4.2 集合的包含关系解释集合的包含关系,即一个集合是否包含另一个集合的所有元素。
探讨集合包含关系的性质和运算规则。
4.3 集合在数学中的应用分析集合在数学领域中的应用,如几何、代数等。
通过实例讲解集合在其他学科领域的应用。
第五章:集合的练习题及解答5.1 集合的基本概念练习题及解答设计关于集合定义、元素、类型等基本概念的练习题。
集合的概念教案5篇
集合的概念教案5篇集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,3)}6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。
集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。
把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。
从知识结构上来说是为了引入函数的定义。
因此在高中数学的模块中,集合就显得格外的举足轻重了。
(2)说教学目标根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:1.知识与技能:掌握集合的基本概念及表示方法。
《集合的概念》教案
《的概念》教案《集合的概念》教案在教学工作者开展教学活动前,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。
写教案需要注意哪些格式呢?以下是小编整理的《集合的概念》教案,仅供参考,欢迎大家阅读。
《的概念》教案1一、教材1、教材的地位和作用《集合的概念》是人教版第一章的内容(中职数学)。
本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。
初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。
通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、教学目标(1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
二、学情分析(说学情)对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、教法针对学生的实际情况,采用探究式教学法进行教学。
首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。
在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。
集合间的基本关系示范教案
集合间的基本关系示范教案第一章:集合的概念与表示方法1.1 集合的定义与表示方法介绍集合的定义:一个无序的、不重复元素的集合。
讲解集合的表示方法:列举法、描述法、图示法。
1.2 集合的元素与集合的关系讲解元素与集合的关系:属于(∈)、不属于(∉)。
举例说明元素与集合的关系。
第二章:集合的运算2.1 集合的并集讲解集合的并集概念:包含两个或多个集合中所有元素的集合。
举例说明并集的运算方法。
2.2 集合的交集讲解集合的交集概念:属于两个或多个集合的元素组成的集合。
举例说明交集的运算方法。
2.3 集合的补集讲解集合的补集概念:在全集之外,不属于某个集合的元素组成的集合。
举例说明补集的运算方法。
第三章:集合间的基本关系3.1 集合相等讲解集合相等的概念:两个集合包含的元素完全相同。
举例说明集合相等的判断方法。
3.2 集合包含关系讲解集合包含关系:一个集合包含另一个集合的所有元素。
举例说明集合包含关系的判断方法。
3.3 集合的互异性讲解集合的互异性:集合中的元素都不相同。
举例说明集合互异性的判断方法。
第四章:集合的应用4.1 集合在数学中的应用讲解集合在数学中的基本应用:解不等式、判断逻辑关系等。
举例说明集合在数学中的应用。
4.2 集合在生活中的应用讲解集合在生活中的应用:分类、归档、统计等。
举例说明集合在生活中的应用。
第五章:集合的综合练习5.1 集合的混合运算讲解集合的混合运算:并集、交集、补集的组合运算。
举例说明集合混合运算的方法。
5.2 集合的应用题讲解集合应用题的解题方法:分析题意、列出集合关系、运算求解。
举例说明集合应用题的解题过程。
5.3 集合的拓展思考讲解集合的拓展思考:集合的无限性、集合的势等。
举例说明集合拓展思考的方法。
第六章:集合的性质与公理系统6.1 集合的性质讲解集合的性质:确定性、互异性、无序性。
举例说明集合性质的应用。
6.2 集合的公理系统讲解集合的公理系统:罗素公理、集合论的公理化。
集合复习教案正式版
集合复习教案正式版第一章:集合的基本概念1.1 集合的定义与表示方法集合的定义:一个无序的、不重复元素的全体。
集合的表示方法:列举法、描述法、区间表示法。
1.2 集合之间的关系子集:如果一个集合的所有元素都是另一个集合的元素,这个集合是另一个集合的子集。
真子集:如果一个集合是另一个集合的子集,并且两个集合不相等,这个集合是另一个集合的真子集。
并集、交集、补集的概念与运算。
第二章:集合的运算2.1 集合的并集并集的定义:两个集合中所有元素的全体。
并集的运算规则:A ∪B = {x | x ∈A 或x ∈B}。
2.2 集合的交集交集的定义:两个集合中共有元素的全体。
交集的运算规则:A ∩B = {x | x ∈A 且x ∈B}。
2.3 集合的补集补集的定义:一个集合在另一个集合中的补集是指不属于另一个集合的元素全体。
补集的运算规则:A 的补集= U A,其中U 是全集。
第三章:集合的属性3.1 集合的无限性无限集合的定义:包含无限多个元素的集合。
无穷集合的例子:自然数集合、实数集合等。
3.2 集合的序性序集合的定义:具有顺序关系的集合。
线性序集合与树状序集合的概念。
3.3 集合的分类集合的分类:有限集合、无限集合、可数集合、不可数集合等。
第四章:集合的应用4.1 集合在数学中的应用集合在几何、代数、概率等数学分支中的应用。
4.2 集合在日常生活中的应用集合在数据分析、逻辑推理、垃圾分类等方面的应用。
4.3 集合在其他学科中的应用集合在计算机科学、生物学、化学等学科中的应用。
第五章:集合的练习与拓展5.1 集合的基本概念练习判断题、选择题、填空题等形式的练习题。
5.2 集合的运算练习给出具体的集合,进行并集、交集、补集的运算练习。
5.3 集合的应用练习结合实际例子,运用集合的知识解决问题。
集合复习教案正式版第六章:集合的属性(续)6.1 集合的基数与势集合的基数:集合中元素的个数。
集合的势:集合中元素的多少。
集合间的基本关系示范教案
集合间的基本关系示范教案第一章:集合的概念与表示方法1.1 集合的定义与表示理解集合的概念,即集合是由确定的、互异的元素构成的整体。
学习使用列举法、描述法等表示集合的方法。
1.2 集合间的元素关系掌握集合间的包含关系(子集)、相等关系、不相交关系等。
学习如何表示集合间的这些基本关系。
第二章:集合的运算2.1 集合的并集理解并集的定义,即包含两个或多个集合中所有元素的集合。
学习并集的运算方法及如何表示并集。
2.2 集合的交集理解交集的定义,即属于两个或多个集合的元素构成的集合。
学习交集的运算方法及如何表示交集。
2.3 集合的补集理解补集的定义,即在全集之外不属于某个集合的元素构成的集合。
学习补集的运算方法及如何表示补集。
第三章:集合的性质与运算规律3.1 集合的性质掌握集合的确定性、互异性、无序性等基本性质。
理解集合性质在集合运算中的应用。
3.2 集合运算的规律学习集合运算中的分配律、结合律、吸收律等基本规律。
掌握运用这些规律简化集合运算的方法。
第四章:集合与逻辑推理4.1 集合与集合的关系推理学习利用集合的基本关系进行逻辑推理的方法。
掌握集合的包含关系、相等关系等在逻辑推理中的应用。
4.2 集合与属性推理理解利用集合的属性进行逻辑推理的方法。
学会运用集合的确定性、互异性等属性进行逻辑推理。
第五章:集合的应用5.1 集合在数学中的应用了解集合在数学领域中的应用,如在代数、几何等分支中的运用。
学习集合在解决数学问题中的重要性。
5.2 集合在其他领域的应用探索集合在其他学科领域,如计算机科学、自然科学等中的应用。
认识集合作为一种基本概念在不同领域的重要性。
第六章:集合的排列与组合6.1 排列的概念与计算理解排列的定义,即从n个不同元素中取出m(m≤n)个元素的所有可能的顺序。
学习排列的计算公式及如何表示排列。
6.2 组合的概念与计算理解组合的定义,即从n个不同元素中取出m(m≤n)个元素的所有可能组合。
集合与集合的表示方法教案
集合与集合的表示方法教案第一章:集合的概念1.1 集合的定义介绍集合的概念,举例说明集合的构成要素。
通过实际例子,让学生理解集合的抽象性质。
1.2 集合的元素解释集合中元素的特征,强调元素的唯一性和不可分割性。
讨论集合中元素的性质,如确定性、互异性等。
第二章:集合的表示方法2.1 列举法介绍列举法表示集合的方法,解释如何用花括号{}括起来所有元素。
示例:用列举法表示集合A={1, 2, 3, 4, 5}。
2.2 描述法解释描述法表示集合的方法,强调使用描述性语言来表示集合。
示例:用描述法表示集合B={x | x是偶数}。
第三章:集合的关系3.1 子集的概念解释子集的定义,即一个集合的所有元素都是另一个集合的元素。
示例:集合C={2, 4, 6}是集合B={x | x是偶数}的子集。
3.2 真子集与非真子集区分真子集与非真子集的概念,即真子集不等于原集合。
示例:集合D={1, 2, 3}不是集合A={1, 2, 3, 4, 5}的子集,但集合E={1, 3}是集合A的真子集。
第四章:集合的运算4.1 并集介绍并集的定义,即将两个集合中的所有元素合并在一起。
示例:集合F={1, 2}与集合G={3, 4}的并集是{1, 2, 3, 4}。
4.2 交集解释交集的定义,即两个集合共有的元素组成的集合。
示例:集合H={1, 2, 3}与集合I={3, 4, 5}的交集是{3}。
第五章:集合的性质与运算规律5.1 集合的德摩根定律介绍德摩根定律的内容,解释其对集合运算的重要性。
示例:证明德摩根定律(A∪B)' = A'∩B' 和(A∩B)' = A'∪B'。
5.2 集合的分配律解释分配律的概念,即集合的并集和交集满足分配性质。
示例:证明分配律A∪(B∩C) = (A∪B)∩(A∪C) 和A∩(B∪C) = (A∩B)∪(A∩C)。
第六章:集合的补集6.1 补集的概念解释补集的定义,即一个集合在某个集合中的补集是指不属于原集合的所有元素。
集合概念教案
集合概念教案1.1集合的概念教案第1篇【教学目标】1.了解集合、元素的概念,体会集合中元素的三个特征;2.理解集合的作用,会根据已知条件构造集合;3.理解元素与集合的“属于”和“不属于”关系,并会正确表达;4.掌握常用数集及其记法;5.了解数合的含义,记忆基本数集的符号;6.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.【导入新课】一、实例引入:军训前学校通知:8月21日上午8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.二、问题情境引入:我们高一(3)班一共45人,其中班长易雪芳,现有以下问题:⑴45人组成的班集体能否组成一个整体?⑵班长易雪芳和45人所组成的班集体是什么关系?⑶假设张三是相邻班的学生,问他与高一(3)班是什么关系?三、课前学习1.学法指导:(1)阅读教材的内容感受集合的含义,理解集合与元素的关系,理解数集、空集的概念;(2)本学时的重点是集合的含义、元素与集合之间的关系以及常用数集的符号表示、空集的意义及符号;(3)对于一个整体是否是集合的判断的关键是对“确定”两字的理解,学习时结合实例及教材上的例题进行理解。
记忆常用数集、空集的符号表示。
2.尝试练习:见《数学学案》P1四、课堂探究:见《数学学案》P11.探究问题:探究1探究22.知识链接:3.拓展提升:例1、下列各组对象能否组成集合?(1)所有小于10的自然数;(2)某班个子高的同学;(3)方程的所有解;(4)不等式的所有解;(5)中国的直辖市;(6)不等式的所有解;(7)大于4的自然数;(8)我国的小河流。
例2、下列集合哪些是数集?再试着举两个数集,并使它们分别是有限集与无限集。
人教版高一数学必修一《集合》教案及教学反思
人教版高一数学必修一《集合》教案及教学反思一、教学目标1.知道集合的基本概念,掌握集合的特征和表示方法。
2.掌握集合的基本运算,会用运算符号表示集合的交、并、补、差等。
3.理解集合的包含关系和相关定理,掌握证明方法。
4.能够运用集合的基本知识解决实际问题,提高数学思维能力。
二、教学重难点教学重点:集合的基本概念、包含关系和相关定理。
教学难点:集合的证明方法、集合的运算和运算符号。
三、教学内容和方法1. 教学内容1.集合的概念和特征:元素、空集、全集、子集等概念。
2.集合的表示方法:文氏图、列举法、描述法等。
3.集合的运算:交、并、补、差等运算及其记号。
4.集合的包含关系和相关定理:包含关系、真子集、幂集等定理。
5.集合的证明方法:包含证明、反证法等。
2. 教学方法本节课采用“讲授-练习-板书”相结合的教学方法。
首先讲解集合的概念和基本特征,通过一些实例说明集合的元素和特征的含义。
之后介绍集合的表示方法和运算,通过练习巩固学生对集合运算的认识。
讲解集合的包含关系和相关定理,重点讲解真子集和幂集的概念和性质,并给出证明示例作为练习。
最后根据学生掌握情况综合演练习题,温故知新。
针对难点,采用举例讲解和反复练习的方法来加深学生的理解,带领学生进行试验,一步一步掌握证明方法。
四、教学过程1. 预习在上课前,老师要求学生预习本节课目的和基本内容,预习必修一中的集合部分,对基本概念进行认识。
2. 讲授1、引入通过类比生活中的集合来引导学生对概念和特征的整体认识。
2、概念讲授介绍集合、元素、空集、全集、子集等概念,并通过实例分别掌握其含义。
3、表示方法介绍文氏图、列举法、描述法等表示方法的使用和注意事项。
4、集合运算介绍集合的交、并、补、差等运算及其运算符号,引导学生理解和掌握。
5、包含关系和相关定理介绍集合的包含关系、真子集、幂集等概念和性质,并给出证明示例进行练习。
带领学生理解集合的学习目的和实际应用。
6、归纳总结通过练习和讨论,引导学生从总结入手,形成正确的集合概念,打下学习的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时教案
备
课时间全学期总课时序
课时教案
同吗?相同。
我们就说集合A 等于集合B ;两集合相等应满足: 2、集合相等
一般地,对于两相集合A 与集合B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作:A=B
用式子表示:如果A ⊆B ,同时B ⊆A ,那么A=B .
例如:A={x|x=2m+1,m ∈Z},B={x|x=2n-1,n ∈Z},有A=B.
存在包含关系的两个集合,也可能是相等的情况。
3、真子集
对于两个集合A 和B ,如果A ⊆B ,并且A ≠B ,则集合A 是集合B 的真子集。
记作A B 或B A
读作A 真包含于B 或B 真包含A 。
由此 是任何非空集合的真子集. 填ø. 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示。
由A={正四棱柱},B={正棱柱},C={棱柱},则从中可看出什
么规律。
由上可知应有:A ⊆ B ,B ⊆C ,即可得出A ⊆C.
这就是说,包含关系具有“传递性”,对A B ,B C 同样有A C 二、性质
(1)空集是任何集合的子集。
Φ⊆A
(2)空集是任何非空集合的真子集。
Φ ⊆ A ,若A ≠Φ,则
Φ A
(3)任何一个集合是它本身的子集.
A A ⊆
如A={9,11,13},B={20,30,40},有A ⊆A ,B ⊆B. 注意: (1)子集与真子集符号的方向:
不同与同义;与如B A B A A B B A ⊇⊆⊇⊆
(2)易混淆的符号:①“∈”与“⊆”:
元素与集合之间是属于关系;集合与集合之间是包含关系。
如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}
课时教案
备
课时间全学期总课时序
课时教案
课时间全学期总课时序
课时教案
课时间全学期总课时序
课时教案
课时间全学期总课时序
课时教案
课时教案
备
课时间全学期总课时序。