转化思想在立体几何中的运用

合集下载

转化与化归思想在高中数学解题教学中的应用研究

转化与化归思想在高中数学解题教学中的应用研究

转化与化归思想在高中数学解题教学中的应用研究【摘要】:随着科技、经济的迅速发展,数学在不同领域的应用日益广泛,数学教育成为世界各国关注的重点。

数学思想方法是数学学科的精髓,是分析与解决问题的理论基础,而转化与化归思想是数学中最重要的思想之一。

数学解题过程中处处渗透着转化与化归思想,学生解题能力的高低很大程度上也取决于其转化与化归能力的强弱。

笔者身处高中一线教学,结合教育教学实践经验以及调查分析,发现目前高中生数学解题中的转化与化归能力相对欠缺,影响学生解题能力的提升。

笔者希望本文的研究能够给一线教师提供一定的借鉴作用,对于提高学生的解题能力提供一定的帮助。

首先,笔者通过文献参考,了解转化与化归思想在国内外的研究现状,分析转化与化归思想的本质和内涵、转化与化归的原则、以及高中数学解题中转化与化归的常用方法。

简单来说,转化与化归思想就是通过观察、分析、类比、联想等思维过程把数学中需要解决的问题,遵循熟悉化、简单化、直观化等原则,选择合适的方法进行转化,然后归结到某些已经解决或比较容易解决的问题的一种思想方法。

其次,通过访谈和调查问卷,以我校部分教师和学生为研究对象,分别从教师和学生的角度研究转化与化归思想在高中数学中的应用现状。

研究表明,目前高中教师能够认识到转化和化归思想在高中数学解题中的重要作用。

但是,不少教师本身对于转化与化归思想缺乏系统深入的研究,教学过程渗透有限。

大部分学生的转化与化归能力仍然有待提高。

然后,结合教学实践经验,从高中数学中的数列、立体几何、函数、解析几何以及不等式几个方面,分析转化与化归思想的渗透策略。

这里重点选取近几年高考试题中一些具有代表性的问题,结合学生解题过程中存在的问题,具体分析老师在教学过程中的处理方式以及实践效果。

并提供《常见的递推数列通项公式的求法》解题教学案例,对课堂实践情况进行了详细分析。

最后,结合调查研究,笔者提出几点教学建议。

一要相信学生,给他们更多实践的机会;二要深入挖掘教材,感悟化归思想;三要注重概念、定理、公式等基础知识的教学,并注重知识之间的联系;四是通过变式训练引导学生应用化归思想;五是加强一题多解和多解归一的训练;六是引导学生及时归纳总结。

转化与化归思想在中学数学中的应用

转化与化归思想在中学数学中的应用

转化与化归思想在中学数学中的应用转化思想和化归思想是中学数学中非常重要的两个思想,它们在解决问题和证明定理过程中起着至关重要的作用。

本文将分别探讨转化思想和化归思想在中学数学中的应用。

一、转化思想在中学数学中的应用转化思想是指通过变换问题的形式或等效变形,使问题转化为熟悉的或易于处理的问题。

它就像是把难题中的棘手一面剥离,使问题变得简单易懂,进而更好地解决问题。

在中学数学中,转化思想主要体现在以下几个方面:1.利用等量代换简化方程式在代数运算中,我们会遇到很多组长方程式,而这些方程式中经常出现相同的项。

这时候,我们可以采用等量代换的方法,将其化简,使问题更容易解决。

例如,我们可以利用x+y=1这个式子,将x^3+y^3转化为(x+y)^3-3xy(x+y),从而简化计算过程。

2.利用等式变形证明定理在证明数学定理时,通过大量变量之间的等式变形,可以大大简化证明过程。

例如,在证明勾股定理中,我们可以把原方程式a^2+b^2=c^2转化为a^2+b^2-c^2=0,继续变形成(a+c)(a-c)+(b+c)(b-c)=0,再变形成其它等式,最终证明了定理。

3.利用变量的代数变换简化问题有些问题需要建立函数关系式,但是常见的函数关系式过于复杂,不容易解决。

这时候,我们可以尝试采用代数变换的方法,将其变成简单的函数关系式。

例如,在解决极值问题时,我们可以利用三角函数的性质进行变量的代数变换,将复杂的函数关系式变得简单清晰。

二、化归思想在中学数学中的应用化归思想是指将问题按一定规律,通过变形而归约成一个与原问题相关的子问题,然后逐步化简子问题,最终解决原问题。

通过化归,我们可以更容易地理解问题,从而更好地解决问题。

在中学数学中,化归思想主要体现在以下几个方面:1.将高阶次问题化归为低阶次问题有些问题是高阶次或高维的,很难直接解决。

这时候,我们可以采用化归的方法,将其化归为低阶次问题。

例如,在解决n阶递推数列时,我们可以将n阶递推数列化归为n-1阶递推数列,从而简化问题的处理。

转化与化归思想

转化与化归思想

转化与化归思想数学问题的解答离不开转化与化归,它既是一种数学思想,又是一种数学能力,是高考重点考查的最重要的思想方法.在高中数学的学习中,它无个不在,比如:处理立体几何问题时,将空间问题转化到一个平面上解决;在解析几何中,通过建立坐标系将几何问题化归为代数问题;复数问题化归为实数问题等.1.转化与化归的原则(1)目标简单化原则:将复杂的问题向简单的问题转化.(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当.(3)具体化原则:即化归言论自由应由抽象到具体.(4)低层次原则:即将高维空间问题化归成低维空间问题.(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.2.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.角度一 函数、方程、不等式之间的转化例1 设函数f (x )=c bx ax ++232,若a+b+c=0,f (0)f (1)>0,求证: (Ⅰ)方程f (x )=0有实数根; (Ⅱ)-2<ab <-1; (Ⅲ)设x 1,x 2是方程f (x )=0的两个实根,则33≤|x 1-x 2|<32.角度二 正面与反面的转化例2 在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有____个。

数学立体几何解题技巧必看

数学立体几何解题技巧必看

数学立体几何解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些数学立体几何解题技巧的学习资料,希望对大家有所帮助。

高考数学答题技巧:立体几何解答立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

转化思想在小学数学“图形与几何”教学中的运用

转化思想在小学数学“图形与几何”教学中的运用

转化思想在小学数学“图形与几何”教学中的运用图形与几何是小学数学教学中非常重要的内容之一,它涉及到学生对形状的认知和理解能力,同时也对学生的空间想象力和创造力提出了较高的要求。

在教学中,如何让学生更好地理解和掌握这一知识点,一直是老师们关注的焦点。

近年来,转化思想对于数学教学的影响越来越受到重视,它提出了“由易到难”,“由表象到本质”等原则,与图形与几何的教学内容相结合,可以有效地提高学生的学习成绩和兴趣。

本文将探讨转化思想在小学数学“图形与几何”教学中的运用。

一、引入活动导入概念在教学《图形与几何》的课程中,老师可以通过一些生动有趣的活动引入,帮助学生建立对图形的初步认知。

通过环保袋里面摸东西,引入平面几何图形。

从中学生可以感受到圆的特征;将质地坚硬的物体放在一个素描纸上滚动,触摸感与纸的压印特征可以引出立体几何图形中圆柱、圆锥的特征。

这样的引入活动可以让学生在愉快的氛围中学习,提高学生对图形的兴趣和好奇心,为后续的学习打下基础。

二、联系生活,引导学生深入理解小学生的思维能力和抽象概念的理解能力有限,所以在教学图形与几何内容时,老师应该注重联系学生的生活实际,引导学生从生活中寻找图形,激发学生的好奇心和求知欲。

在教学正方形时,可以引导学生找到身边的一些例子,如手机屏幕、书桌等等,让学生在生活中身临其境地感受正方形,这样有助于学生更加深入地理解图形的特征和性质。

三、以易到难,由浅入深地展开教学在教学之初,老师应该根据学生的实际情况,以易到难的原则展开教学。

要从学生熟悉的图形开始,如圆、三角形、正方形等,渐进地展开。

要从图形的表象特征入手,逐步引导学生深入思考图形的本质特征。

当老师教学三角形时,先让学生观察三角形的外观特征:三条边、三个顶点等,然后根据转化思想的原则,逐步引导学生理解三角形的本质特征:三边连接成的封闭图形,三个内角相加等于180度等。

这样一步步由易到难地展开教学,可以帮助学生更好地掌握图形与几何知识。

转换与化归思想

转换与化归思想

浅谈转换与化归思想转化思想就是数学中的一种基本却很重要的思想。

深究起来,转化两字中包含着截然不同的两种思想,即转换与化归。

这两者其实表达了不同的思想方法,可以说就是思维方式与操作方法的区别。

一、 转换思想(1)转换思想的内涵转换思想就是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。

要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。

(2)转换思想在同一学科中的应用转换思想可以就是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。

象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。

比如,函数、方程、不等式就是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其她模块的各类问题。

不等式恒成立问题可以转换到用函数图象解决,或者就是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。

再比如,数列问题用函数观点来解释,那更就是我们数学课堂中一再强调的问题了。

瞧这样一个问题:已知:11122=-+-a b b a ,求证:122=+b a 。

[分析] 这就是一个纯粹的代数证明问题,条件的变形就是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。

再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。

[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了就是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设与结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还就是比较棘手的。

立体几何中的翻折问题(教案)

立体几何中的翻折问题(教案)

立体几何中的翻折问题教学目标: ◆知识与技能目标:1.使学生掌握翻折问题的解题方法, 并会初步应用。

2.通过立体几何中翻折问题的学习, 进一步掌握立体几何中求距离与求角的求法。

◆能力与方法目标:1.培养学生的动手实践能力。

2.在实践过程中, 使学生提高对立体图形的分析能力, 进一步理解“转化”的数学思想,并在设疑的同时培养学生的发散思维。

◆情感态度与价值观目标:通过平面图形与翻折后的立体图形的对比, 向学生渗透事物间的变化与联系观点。

教学重点: 了解平面图形与翻折后的立体图形之间的关系, 找到变化过程中的不变量。

教学难点: 转化思想的运用及发散思维的培养。

关键:层层设计铺垫, 给学生充分的探讨、研究的时间。

学法指导: 渗透指导、点拨指导、示范指导教学方法: 探究法, 演示法、例1(2012广州调研试题)已知正方形的边长为2, . 将正方形沿对角线折起, 使, 得到三棱锥, 如图所示.(1)当时, 求证: ;(2)当二面角的大小为时, 求二面角的正切值.变式训练: 1.(2013年广州二模)等边三角形ABC的边长为3, 点D.E分别是边AB.AC上的点, 且满足(如图3).将ΔADE沿DE折起到ΔA1DE的位置, 使二面角成直二面角, 连结 (如图4).(1) 求证: A1D丄平面BCED;(2) 在线段BC上是否存在点P, 使直线PA1与平面A1BD所成的角为600?若存在, 求出PB的长;若不存在, 请说明理由2(2013年广东高考)、如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.. C O BD E AC D O B E 'A 图1 图2作业: 【2012高考湖北理19】如图1, , , 过动点A 作 , 垂足D 在线段BC 上且异于点B, 连接AB, 沿 将△ 折起, 使 (如图2所示).(Ⅰ)当 的长为多少时, 三棱锥 的体积最大;(Ⅱ)当三棱锥 的体积最大时, 设点 , 分别为棱 , 的中点, 试在棱 上确定一点 , 使得 , 并求 与平面 所成角的大小.【2012高考北京理16】如图1, 在Rt △ABC 中, ∠C=90°, BC=3, AC=6, D, E 分别是AC, AB 上的点, 且DE ∥BC, DE=2, 将△ADE 沿DE 折起到△A1DE 的位置, 使A1C ⊥CD,如图2.(I)求证: A1C ⊥平面BCDE ;(II)若M 是A1D 的中点, 求CM 与平面A1BE 所成角的大小;(III)线段BC 上是否存在点P, 使平面A1DP 与平面A1BE 垂直? 说明理由D A B C A CD B 图2 图1 ME . ·。

八年级数学几何题解题技巧

八年级数学几何题解题技巧

一、熟练掌握基本概念解决几何问题时,首先要对几何概念有深入的理解。

对于每一个概念,都要明白它的定义、性质和定理。

例如,在三角形中,要理解三角形的边、角、高的概念,以及三角形的基本性质,如三角形的稳定性、两边之和大于第三边等。

二、演绎推理几何证明题是数学几何题中的一类重要题型,对于这种题目,需要使用演绎推理的方法。

演绎推理是一种严格的逻辑推理方法,它从已知的事实出发,通过逻辑推理得出结论。

在演绎推理中,需要注意使用定理、公理等已知事实,以及推理规则的正确性。

三、辅助线在解决一些较难的几何问题时,通常需要添加辅助线。

辅助线可以帮助我们更好地理解问题的本质,以及找到解决问题的方法。

例如,在证明勾股定理时,可以通过添加辅助线将直角三角形转化为矩形。

四、转化思想转化思想是数学中的一种重要思想方法,它通过将复杂问题转化为简单问题,或者将不规则图形转化为规则图形,从而解决问题。

例如,在求多边形的面积时,可以将多边形转化为三角形或矩形来计算。

五、举一反三在学习数学时,要学会举一反三。

对于一个题目,不仅要会做,还要理解其背后的原理和思路,这样才能在遇到类似问题时游刃有余。

例如,在解决几何问题时,可以通过举一反三的方法,将类似的题目进行归纳和总结,从而更好地掌握解题技巧。

六、细心计算在做数学题时,一定要细心计算。

几何问题通常涉及到大量的计算和证明过程,如果粗心大意,很容易出现错误。

因此,在做几何题时,需要耐心细致地进行计算和证明。

七、系统归纳学习数学需要系统归纳的方法。

可以将所学的知识点进行分类和整理,形成系统的知识结构。

例如,对于几何知识点,可以按照平面几何、立体几何等分类进行整理归纳,方便后续学习和复习。

同时也可以将一些难题或者错题进行归纳整理,以便于及时发现自己薄弱环节并加以改进提高。

总之要想提高八年级数学几何题的解题技巧首先要熟练掌握基本概念并理解每一个概念的性质与定理;其次要学会运用演绎推理方法解决证明题;第三要学会添加辅助线以帮助解决难题;第四要学会转化思想将复杂问题转化为简单问题来解决;第五要学会举一反三总结归纳以掌握解题技巧;第六要细心计算以避免出现错误;最后要将所学的知识点进行系统归纳以便于更好地复习提高学习效率.。

化归与转化思想在高考数学解题中的运用

化归与转化思想在高考数学解题中的运用

GUAN GDONG JIAO YU GAO ZHONG2021年第2化归与转化思想在高考数学解题中的运用■甘肃省秦安县第二中学罗文军yxo化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.1.化归与转化的思想方法:解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.2.化归与转化应遵循的基本原则:(1)熟悉化原则;(2)简单化原则;(3)和谐化原则;(4)直观化原则;(5)正难则反原则3.化归与转化的途径:(1)从问题的反面思考;(2)局部向整体的转化;(3)未知向已知转化;(4)固定向重组的转化;(5)抽象向具体转化;(6)个别向一般的转化;(7)数向形的转化;(8)定量向定性的转化;(9)主元向辅元的转化.以下结合一些经典试题,谈谈化归与转化思想在高三解题中的运用.题型一:化归与转化思想简单化原则的体现化归与转化思想简单化原则在解题中的体现主要有:(1)将比较代数式的大小的问题,运用同构法,通过构造函数,化归为利用函数的单调性根据自变量的大小比较函数值的大小或者根据函数值的大小比较自变量的大小;(2)将概率与统计问题化归为集合间的基本关系与基本运算问题.例1.若2a +log 2a =4b +2log 4b ,则()A.a >2b B.a <2b C.a >b 2 D.a <b 2【解析】由指数幂的运算性质和对数的运算性质可得,2a +log 2a =4b +2log 4b =22b +log 2b ,又因为22b +log 2b <22b +log 22b =22b +1+log 2b ,所以2a +log 2a <22b +log 22b .令f(x)=2x +log 2x,由指数函数和对数函数性质以及函数单调性的性质可得f(x)在(0,+∞)上单调递增,由f(a )<f(2a ),可得a <2b .【评析】本题考查了指数幂和对数的运算,函数的单调性的性质,构造函数后,把问题化归与转化为根据函数单调性,由函数值的大小比较自变量的大小,体现了化归与转化思想的简单化原则.例2.设命题p ∶4x-3≤1,命题q ∶x 2-(2a+1)x +a (a +1)≤0.若劭p 是劭q 的必要不充分条件,则实数a 的取值范围是__________.【解析】由4x-3≤1,得12≤x ≤1,记A ={x │12≤x ≤1};由x 2-(2a+1)x+a (a+1)≤0,可得a ≤x ≤a +1,记B ={x │a ≤x ≤a +1}.因为劭p 是劭q 的必要不充分条件,所以q 是p 的必要不充分条件,所以p 是q 的充分不必要条件,所以A 芴B ,所以a ≤12,a+1≥11,解得0≤a ≤12,所以实数a 的取值范围是[0,12].【评注】本题的解答中,先把两个命题中的不等式的解集分别用集合A 和集合B 表示,再由劭p 是劭q 是的必要不充分条件转化为p 是q 的充分不必要条件,再转化为集合A 为集合B 的真子集,解得a 的范围.题型二:化归与转化思想直观化原则的体现化归与转化思想直观化原则在解题中的体现主要有:(1)画出函数图像后,利用函数图像研究函数的性质,进而直观的解决与函数有关的问题;(2)立体几何问题中,将立体问题平面化,画出轴截面或者中截面,利用平面几何问题破解题目.例3.设a ,b ∈R ,则|“a >b ”是“a a >b b ”的()A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件【解析】构造函数f(x)=x x =x2,x≥0-x 2,x<1函数图像如图1,由图像可知f(x)=x x 在R 上单调递增.当a >b 时,f(a )>f(b ),即a a >b b ,a >b 圯a a >b b .当f(a )>f(b ),即a a >b b 时,a >b ,a a >b b 圯a >b ,所以a >b 圳a a >b b ,“a >b ”是“a a >b b ”的充要条件,故选C.【评注】本题是一道比较复杂的充分必要条件问题,通过观察题目,通过类比和联想,运用化归与转化思想,构造函数f(x)=x x 后,画出这个函数的图像,运用图像法判断这个函数在其定义域R 上为单调递增函数,把a 和b 看成这个函数的两个自变量,a a 和b b 分别看成这个函数的函数值f(a )29数学有数和f(b),由增函数的性质可以得出,a>b圳a a>b b,所以a>b是a a>b b的充分必要条件,体现了化归与转化思想的简单化和直观化原则.例4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.【答案】22姨.【解析】由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+BC.由基本不等式可得AB×BC=AB+BC≥2AB×BC姨,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为22姨.【评注】本题的解答运用了化归与转化的思想,通过研究组合体和其内切球的轴截面,把空间立体几何问题化归为平面几何问题,做到了把问题直观化的原则.题型三:化归与转化思想熟悉化原则的体现化归与转化思想熟悉化原则在解题中的体现主要有:(1)不等式题目中,把含一个参数的不等式恒成立问题,通过分离变量,化归为求函数在给定区间上的最值问题;(2)立体几何题目中,利用长方体或者正方体模型,把一些三棱锥、四棱锥和三棱柱的外接球问题化归为熟悉的长方体或者正方体的外接球问题.例5.若对任意的x∈(0,+∞),ax-ln(2x)≥1恒成立,则实数a的最小值是_______【解析】由已知可得,对任意的x∈(0,+∞),a≥ln(2x)+1x恒成立,令g(x)=ln(2x)+1x,g′(x)=1x·x-ln(2x)x2=1-ln(2x)x2,令g′(x)=0,则1-ln(2x)=0,则x=e2,当0<x<e2时,g′(x)>0,g(x)单调递增;当x>e2时,g′(x)<0,g(x)单调递减,所以当x=e2时,g(x)取得最大值g(x)max=g(e2)=ln e+1e2=4e,所以a≥4e,所以a的最小值为4e.【评注】本题的解答运用了分离变量法,分离变量后,构造函数后,把a≥g(x)在(0,+∞)上恒成立等价转化为a≥[g(x)]max(x∈(0,+∞)),转化为求函数g(x)在(0,+∞)上的最大值问题,g(x)的最大值即为a的最小值,本题体现了化归与转化思想的熟悉化原则.例6.设数列{a n}的前n项为S n,a1=1,当n≥2时,a n=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1姨对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.解:(1)因为当n≥2时,a n=2a n S n-2S2n,所以a n=2S2n2S n-1,n≥2,所以(S n-S n-1)(2S n-1)=2S2n,所以S n-S n-1=-2S n S n-1,所以1S n-1S n-1=2,n≥2,所以数列{1S n}是以1S1=1为首项,以2为公差的等差数列,所以1S n=1+2(n-1)=2n-1,所以S n=12n-1,所以,当n≥2时,a n=S n-S n-1=12n-1-12n-3=-2(2n-1)(2n-3),因为a1=S1=1,所以a n=1,n=1-2(2n-1)(2n-3).n≥≥2(2)设f(n)=(1+S1)(1+S2)…(1+S n)2n+1姨,则f(n+1)f(n)=2n+22n+1姨2n+3姨=4n2+8n+44n2+8n+3姨>1,所以f(n)在n∈N鄢上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,因为f(n)min=f(1)=23姨3,所以0<k≤23姨3.【评注】第(1)问运用了数列的前n项和S n与通项a n之间的关系a n=S n-S n-1(n≥2),把a n转化为S n-S n-1,再合并同类项后运用取倒数法,再根据等差数列的定义得出数列{1S n}的通项公式,再得出数列{a n}的通项公式;第(2)问分离变量后构造函数f(n),用作商法判断f(n)的单调性,把不等式f(n)≥k在n∈N鄢上恒成立等价转化为f(n)min≥k(n∈N鄢),两问都运用到了化归与转化思想.AEBFHDGOC302021年第2GUAN GDONG JIAO YU GAO ZHONG2021年第2题型四:化归与转化思想和谐化原则的体现化归与转化思想和谐化原则在解题中的体现主要有:(1)解三角形问题中利用正弦定理实现边角的互化;(2)在三角函数问题中,将形如y=a sin x+b cos x 的函数问题利用辅助角公式化归为形如y=A sin (棕x+渍)的函数问题;(3)解析几何中,将两直线垂直化归为斜率乘积为-1或者方向向量的数量积为0;(4)将形如滋=y -b x -a形式的最值问题,转化为动直线斜率的最值问题.例7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c =a ·cos C -c ·cos A .(1)求角A ;(2)若a =3,求b +2c 的最大值.【解析】(1)因为b -c =a ·cos C -c ·cos A ,由正弦定理可得,sin B -sin C =sin A cos C -sin C cos A ,所以sin B -sin C =sin (A -C )所以sin (A +C )-sin C =sin (A -C ),所以sin A cos C +cos A sin C -sin C =sin A cos C -cos A sin C ,所以cos A =12,因为0<A <仔,所以A =仔3.(2)由(1)可得,C =2仔3-B ,由正弦定理得,a sin A =b sin B =c sin C=2R ,所以3sin 仔3=b sin B =c sin (2仔3-B ),所以b =23姨sin B ,c =23姨sin (2仔3-B ),所以b +2c =23姨sin B +43姨sin (2仔3-B )=23姨(2sin B +3姨cos B )=221姨sin (B +渍),其中tan 渍=3姨2,渍∈(0,仔2),由B ∈(0,2仔3),存在B 使得B +渍=仔2,所以sin (B +渍)的最大值为1,所以b+2c 的最大值为221姨.【评注】第(1)问运用正弦定理实现边转化为角,再逆用两角差的正弦公式,运用内角和定理以及诱导公式,再运用两角和的正弦公式和两角差的正弦公式,得出cos A 的值,得出角A 的值;第(2)问运用了正弦定理将关于边的最值问题化为角的最值问题,运用三角形内角和定理以及诱导公式,再运用辅助角公式,化为三角函数在给定范围上的最值问题;两问都运用了化归与转化思想,体现了和谐化原则.例8.已知函数f (x)=x2x-1,则f (12019)+f (22019)+f (32019)+…+f (20182019)的值为_____.【解析】由于直接计算有困难,先探求一般的规律,因为f (x)=x2x-1,所以f (1-x)=1-x2(1-x)-1=1-x1-2x=x-12x-1,所以f (x)+f (1-x)=1,倒叙相加可得f (12019)+f (22019)+f (32019)+…+f (20182019)=1009.【评注】本题的解答中体现了特殊问题转化为一般化,运用了化归与转化思想,先通过探究在宏观上把握问题的一般规律,再将特殊问题破解.题型五:化归与转化思想的正难则反原则在解题中的体现化归与转化思想的正难则反原则在高中数学解题中的体现主要有:(1)间接证明方法中的反证法在解题中的运用;(2)概率问题中对立事件和互斥事件的概率公式的运用.例9.等差数列{a n }的前n 项和为S n ,a 1=1+2姨,S 3=9+32姨.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N 鄢),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解析】(1)设公差为d ,由已知得a1=2姨+1,3a1+3d =9+32姨姨,所以d =2,故a n =2n -1+2姨,S n =n (n +2姨).(2)证明:由(1)得b n =S n n=n +2姨.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2姨)2=(p +2姨)(r +2姨),所以(q 2-pr )+(2q -p-r )2姨=0.因为p ,q ,r ∈N 鄢,所以q 2-pr =0,2q-p-r =0姨,所以(p+r 2)2=pr ,(p-r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.【评注】本题的解答的第(2)问中运用了反证法,先反设假定要证的结论不成立,而设出结论的反面成立,将这个反设作为条件,运用等比数列的定义和通项公式,通过推理,得出p =r 与已知条件相矛盾,所以反设错误,所以要证明的结论成立,反证法归属于间接证明方法,第(2)问运用了化归与转化的思想.例10.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为____.【答案】23.【解析】掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,显然A 与B 互斥,从而P (A+B )=P (A )+P (B )=13+13=23.【评注】先由古典概型概率公式求出事件A 和事件B 的概率,再由对立事件概率公式求出事件B 的对立事件B 的概率,再由互斥事件概率公式,把事件A+B 的概率化归为求P (A )和P (B )的和,运用了化归与转化思想.责任编辑徐国坚31。

探析空间向量转化思想在立体几何中的妙用

探析空间向量转化思想在立体几何中的妙用

y , z 轴的正方 向, 则c ( 0 , 0 , 0 ) ,
A( 2 , 0 , 0 ) , B ( O , 2 , 0 ) , C 1 ( O , 0 , 2 ) ,
化 的思想方法可 以使直接解决 比较 困难 的立体几何 问题 变得很简单 ,空间 向量 的转化思想在高考 中占有重要 的 地位 , 在处理立体 几何 问题 时 , 可 以利用 动态思维 , 寻找
适 当的空间直角坐标 , 在不必添加繁杂辅助线的情况下 ,
c 分别 为 , , 轴 的正方 向建立空 间直角坐标 系 ,将第

问的线线角和第 二问的线面角转 化为空间向量 的夹角
来求解 ; 第 三问 中由于晡 的位 置可变 , 可 以考虑将 向量 夹角为锐角转 化为数量 积为正数且两 个 向量 不 同向 , 其 中对于P 点坐标可 以用共线 向量 的等式求解 ; 第 四问 中将 直线E G 与平 面A D B 所 成的角 的正弦值 转化为反 与平面 A D B 法 向量夹角 的余 弦值 的绝对 【 规范解析】 ( 1 ) 由题 意
知C C l J - C B , C C l 上C A,正方形
将立体几何 中难理解 的理论推理问题通过坐标 向量 的形 式, 等价 的转化成代数运算 的问题 , 这样可 以有效降低思 维难度 ,这也正是在立体几何中引进空间 向量的独到之 处. 本文笔者根据 自身多 年高中数学 的教学经验 , 结合一 道典型试题 的解析 ,探讨空间 向量转化思想在处理立体 几何 问题 中的方便 、 快捷 、 简化之处 , 以供读者欣赏 , 相信
鋈 蓄
中。 ? 擞’ ? 高 中 版
2 0 1 3年 6月
解 法 探 究
学 谋

浅谈转换与化归思想(精)

浅谈转换与化归思想(精)

浅谈转换与化归思想转化思想是数学中的一种基本却很重要的思想。

深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。

这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。

一、 转换思想(1)转换思想的内涵转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。

要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。

(2)转换思想在同一学科中的应用转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。

象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。

比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。

不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。

再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。

看这样一个问题: 已知:11122=-+-a b b a ,求证:122=+b a 。

[分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。

再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。

[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。

例谈立体几何最值问题的几种解法

例谈立体几何最值问题的几种解法

思路探寻立体几何最值问题侧重于考查同学们的空间想象、逻辑推理和数学运算等能力.常见的立体几何最值问题是求立体几何图形中某条线段、某个角、体积、表面积的最值,那么如何求解呢?一、利用函数思想在大多数情况下,我们可以把与动点有关的立体几何问题看作函数问题来求解.以其中某一个量,如动点的坐标、线段的长、角的大小为变量,建立关于该变量的关系式,并将其视为函数式,即可利用一次函数、二次函数、三角函数的性质和图象求得最值.例1.如图1,正方体ABCD-A1B1C1D1的棱长为1,P为AA1的中点,M在侧面AA1B1B上,若D1M⊥CP,则ΔBCM).C.5D.2图1图2解:过M作MG⊥平面ABCD,垂足为G,作GH⊥BC于点H,连接MH,以D为坐标原点,建立如图2所示的空间直角坐标系,可得D()0,0,0,C()0,1,0,A()1,0,0,P()1,0,12,D1(0,0,1),B()1,1,0.设M()1,a,b,则D1M=()1,a,b-1,CP=()1,-1,12,∵D1M⊥CP,∴ D1M⋅ CP=12b-a+12=0,∴b=2a-1,∴CH=1-a,MG=2a-1,∴MH=()1-a2+()2a-12=5a2-6a+2,∴SΔBCM=12BC⋅MH=1=可知当a=35时,ΔBCM面积取最小值,为SΔBCM=12×=故选B.在建立空间直角坐标系后,设出点M的坐标,以a、b为变量,构建关于a的函数式SΔBCM=然后将5a2-6a+2看作二次函数式,对其配方,根据二次函数的性质即可知函数在a=35时取最小值.二、运用基本不等式在解答立体几何最值问题时,我们往往可以先根据立体几何中的性质、定义、定理求得目标式;然后将其进行合理的变形,采用拆项、凑系数、补一次项,去掉常数项等方式,配凑出两式的和或积,就可以直接运用基本不等式来求得最值.在运用基本不等式求最值时,要把握三个条件:一正、二定、三相等.例2.已知三棱锥P-ABC的4个顶点均在球心为O、直径为23的球面上,PA=2,且PA,PB,PC两两垂直.当PC+AB取最大值时,三棱锥O-PAB的体积为().A. C.6解:∵PA,PB,PC两两互相垂直,∴三棱锥P-ABC可补全为如图3所示的长方体.则长方体的外接球即为三棱锥P-ABC的外接球,∴PA2+PB2+PC2=()232=12,又PA=2,∴PB2+PC2=10,∵AB2=PA2+PB2=2+PB2,∴PC2+AB2=2+PB2+PC2=12,∴()PC+AB2-2PC⋅AB=12,又PC⋅AB≤()PC+AB22,∴12=()PC+AB2-2PC⋅AB≥()PC+AB2-2()PC+AB22=12()PC+AB2,当且仅当PC=AB时取等号,∴()PC+AB max=26,此时PC=AB=6,PB=图347思路探寻AB 2-PA 2=2,∴V O -PAB =12V C -PAB =16S △PAB ⋅PC =112PA ⋅PB⋅PC =112×2×2×6故选B.根据长方体的性质得到()PC +AB 2-2PC ⋅AB =10后,可发现该式中含有PC 、AB 的和与积,根据基本不等式a +b ≥2ab 求解,即可得到三棱锥O -PAB 的体积.三、转化法运用转化法求解立体几何最值问题有两种思路.一是将问题转化为平面几何问题.先将几何体的表面展开,或将几何体内部满足条件的某些面展开成平面;再在平面内利用平面几何知识,如正余弦定理、两点间的距离最短、三角形的两边之和大于第三边等求解,这样问题就变得十分直观,容易求解了.另一种思路是根据题意和几何图形中的点、线、面的位置关系,明确其中改变的量和不变的量及其关系,根据简单几何体的性质、表面积公式、体积公式,将问题转化为求某些线段或角的最值.再结合简单几何体的性质,几何图形中点、线、面的位置关系求得最值例3.如图4,在正三棱柱ABC -A 1B 1C 1中,AA 1=AB =2,D 在A 1C 上,E 是A 1B 的中点,则()AD +DE 2的最小值是().A.6-7 B.27 C.3+7 D.5+7图4图5解:将平面A 1BC 与平面A 1AC 翻折到同一平面上,连接AE ,如图5所示,设AE ⋂A 1C =F .由题意可知A 1A =AC =BC =2,A 1C =A 1B =22,所以AA 21+AC 2=A 1C 2,所以AA 1⊥AC ,则∠AA 1C =45°,由余弦定理可得cos∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ⋅A 1C=8+8-42×22×22=34,则sin∠BA 1C =1-cos 2∠BA 1C =故cos∠AA 1B =cos ()∠AA 1C +∠BA 1C =cos ∠AA 1C cos ∠BA 1C -sin ∠AA 1C sin ∠BA 1C =32-148.因为E 是A 1B 的中点,所以A 1E =2,由余弦定理可得AE 2=AA 21+A 1E 2-2AA 1⋅A 1E cos∠BA 1A=4+2-2×2×2×32-148=3+7.因为D 在A 1C 上,所以AD +DE ≥AE ,当A 、E 、D 三点共线时,等号成立,则()AD +DE 2≥3+7.故选C .将平面A 1BC 与平面A 1AC 翻折到同一平面上,就可以把立体几何问题转化为平面几何问题,即可根据勾股定理和余弦定理求得A 1E 以及AE 的值.分析图形可知当A 、E 、D 三点共线时,AD +DE 取得最大值,再结合余弦定理求解即可.例4.已知球O 的表面积为60π,四面体P -ABC 内接于球O ,ΔABC 是边长为6的正三角形,平面PBC ⊥平面ABC ,则四面体P -ABC 体积的最大值为().A.18B.27C.32D.81解:因为球O 的表面积为60π,所以球的半径R ==15,由题意知四面体P -ABC 底面三角形的面积为定值,要使四面体的体积最大,只须使顶点P 到底面的距离最大,又因为平面PBC ⊥平面ABC ,所以当PB =PC 时,点P 到底面的距离最大,而ΔABC 外接圆的半径r =62sin60°=23,则O 到面ABC 的距离为d =R 2-r 2=3,且O 到面PBC 的距离为h =12r =3,设点P 到平面ABC 的距离为H ,则R 2=()H -d 2+h 2,解得H =33,此时体积最大值为V max =13×12×6×6×sin60°×33=27.故选B.解答本题,首先根据球的表面积求得球的半径;再根据题意和几何体的特征明确当PB =PC 时,点P 到底面的距离最大;最后根据外接圆的性质、勾股定理求出点P 到底面的距离,即可求出最大值.除了上述三种方法外,有时还可采用定义法、构造法来求立体几何最值问题的答案.总之,同学们在解题时,要先根据题意和几何体的结构特征寻找取得最值的情形,求得目标式;然后根据目标式的特征,选用合适的方法求最值.(作者单位:贵州省江口中学)48。

转化思想在立体几何中的运用

转化思想在立体几何中的运用

转化思想在立体几何中的运用在立体几何中,转化思想是一种十分重要的思维方式和方法。

它可以帮助我们从不同的角度和视角来观察、分析和解决问题,拓宽我们的思维边界,提高我们的解题能力和创新思维。

一、平面与空间的转化立体几何研究的是物体的三维结构和空间关系,而平面几何则是研究图形的二维结构和平面上的关系。

转化思想可以帮助我们将平面的概念、原理和方法应用到立体几何中。

在求解一个立体几何问题时,我们可以将其投影到一个平面上,然后利用平面几何的知识来解决问题。

通过这种转化,我们可以简化问题,提供更加直观和易于理解的解决方案。

二、图形的转化转化思想在立体几何中还可以通过图形的转化来运用。

当我们面对一个复杂的几何体时,我们可以通过将其分解成更简单的几何体来进行分析和求解。

这种分解可以是将几何体切割成更小的几何体,也可以是将几何体展开成平面图形进行计算。

通过图形的转化,我们可以简化问题,减少计算量,提高求解的效率。

三、参照物的转化在立体几何中,选择合适的参照物是解决问题的关键。

转化思想可以帮助我们在选择参照物时灵活应用。

在求解一个空间角度的问题时,我们可以选择一个合适的直线作为参照线,然后通过转化思想将问题转化为平面角度的求解问题。

通过这种转化,我们可以将复杂的空间问题转化为简单的平面问题,提高问题的可解性。

四、线段的转化转化思想在立体几何中的运用可以帮助我们从不同的角度和视角来观察、分析和解决问题,拓宽我们的思维边界,提高我们的解题能力和创新思维。

通过平面与空间的转化、图形的转化、参照物的转化、线段的转化和空间的转化等方式,我们可以将复杂的立体几何问题转化为简单的平面几何问题,简化问题,提高解决问题的效率。

转化思想是在立体几何中运用的一种十分重要和有效的思维方式和方法。

转化思想在立体几何中的运用

转化思想在立体几何中的运用

转化思想在立体几何中的运用立体几何学是数学中的一个重要分支,它研究空间中的几何图形和其性质。

在立体几何中,转化思想是一种非常重要的思维方式,它可以帮助我们更好地理解和解决立体几何问题。

本文将围绕转化思想在立体几何中的运用展开讨论。

我们来介绍一下转化思想在立体几何中的基本概念。

转化思想是指通过一系列变换,将原来的问题转化为另一个形式更简单或更容易解决的问题的方法。

在立体几何中,我们可以通过平移、旋转、镜像等几何变换,来转化问题,从而得到更简单的问题,方便我们进行推理和解决。

我们来看一下转化思想在立体几何中的具体运用。

在研究几何体的性质时,我们经常需要利用各种旋转、平移和镜像来转化几何体,以便更好地理解它们的性质。

要研究一个立方体的性质,我们可以通过旋转和镜像,将它转化为一个更简单的立方体或长方体,从而更容易得到其性质。

这种转化思想的运用可以帮助我们更好地理解各种几何体的性质,并为我们解决问题提供了有力的工具。

转化思想在解决立体几何问题时也有着很重要的作用。

在解决一个立体几何问题时,如果我们能够通过一系列变换将原问题转化为一个更简单的问题,那么我们就可以更容易地解决这个问题。

要计算一个不规则立体的体积,我们可以通过一系列镜像和平移,将它转化为一个更简单的几何体,比如一个长方体或者正方体,然后再计算其体积,最后再反过来通过相同的几何变换将其还原为原来的不规则立体,就可以得到其体积。

这种转化思想的运用可以帮助我们更容易地解决复杂的立体几何问题。

转化思想还可以帮助我们发现立体几何中的一些隐藏规律。

有时候,一个几何问题本身比较复杂,很难得出结论,但是如果我们能够通过一系列几何变换将它转化为一个更简单的问题,我们就有可能通过推理得出结论。

这种转化思想的运用可以帮助我们更好地理解立体几何中一些深层次的规律,为我们的研究提供了新的途径。

关于数学中最重要的思想--转化思想

关于数学中最重要的思想--转化思想

关于数学中最重要的思想--转化思想发表时间:2013-03-21T15:09:37.310Z 来源:《中国科技教育·理论版》2012年第12期供稿作者:刘艳萍[导读] 在中学数学教学中,转化思想既是一种解题方法,也是一种思维策略。

刘艳萍成都市工业职业技术学校 610000摘要在中学数学教学中,转化思想既是一种解题方法,也是一种思维策略。

转化就是把不常见的问题转化为常见的、熟悉的问题来考虑,通过转化,化一般为特殊,化非典型为典型,化复杂为简单,化未知为已知等。

本文通过分析数学转化思想的重要性以及理论基础,对其常见的基本形式和培养方法进行了探讨。

关键词中学数学教学转化思想理论依据运用策略所谓转化思想就是将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择恰当的数学方法进行变换,转化为在已知知识范围内已经解决或容易解决的问题的思想。

布卢姆在《教育目标分类学》中指出:数学转化思想是“把问题元素从一种形式向另一种形式转化的能力”,它可以从语言描述向图形表示转化,或从语言表达向符号形式的转化,或是每一种情况反过的转化。

这种数学转化包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。

简而言之,数学转化思想就是通过数学内部的联系和矛盾运动,在转变中实现问题的规范化,将待解问题转化为规范问题从而使原问题得到解决的方法。

(一)数学转化思想的重要性转化思想贯穿在数学解题的始终,在解题过程中,常常需要把抽象的概念直观化、隐蔽的条件明显化、复杂的关系简单化,善用转化思想往往能使我们更深刻地领会问题的实质,有助于理解各知识体系间的相互联系,也更有利于各知识体系间的融合。

有意识地运用数学变换方法,将有利于提高数学解题的应变能力和技巧。

一方面,通过转化能优化解题方法。

有些数学问题通过转化,不只是获得了解决,更重要是获得了解法的优化。

另一方面,通过转化能揭露问题的本质。

有不少数学问题,在原来提出这一问题的领域内很难解决,甚至无法解决,如果把问题转化到另一领域中,就可以迎刃而解了。

转化思想在立体几何中的运用

转化思想在立体几何中的运用

转化思想在立体几何中的运用随着数学的不断发展,数学中各种思想相互结合,形成了一种新的学科交叉——转化几何。

转化几何是几何学的一种分支,它研究的是空间中的几何变换及其性质,强调在几何问题中利用转化、投影等方法来解决问题。

在转化几何中,转化思想是十分重要的,通过对转化思想的运用可以为立体几何中的问题提供新的解决思路。

转化思想是一种将几何问题通过变形、映射等方式进行转化的思维方式。

在立体几何中,转化思想可以分为三种:射影转化、相似转化和仿射转化。

下面将分别介绍它们在立体几何中的运用。

射影转化是一种以投影变换为基础的转换方法,在立体几何中使用射影转化可以解决平面与立体图形的相互转化问题。

例如,需要将立体空间中的一个正方体投影到平面上,我们可以使用射影转化将其投影为平面上的一个正方形,这样就可以更好地观察并解决问题。

相似转化则是一种基于相似性的转换方法,其运用到立体几何中可以将由相似体变换而来的立体体积进行对比,并对其进行分类。

例如,当我们需要求解两个棱锥体的体积比时,我们可以将其转化为相似的两个棱锥体,计算相似变换中的比值即可得出体积比。

而仿射转化则是一种将几何体进行放缩、旋转和切割等操作后形成新的几何体的转换方法。

在立体几何中,仿射转化可以用于比较不同形状的几何体的大小,计算出它们的体积。

例如,需要比较两个不同材质的锥型容器的容积,我们可以通过仿射转化将其转化为一样的锥型,再比较其中心轴与底面的面积以及高度等参数,从而得出容积比。

总之,在立体几何中运用转化思想可以有效地解决各种几何问题,而不同的转化思想可以服务于不同的几何问题。

对立体几何的研究和应用带来了现代数学学科的发展,提高了人们对三维世界的认识和理解,是一项重要的研究和应用工作。

转化思想在立体几何中的运用

转化思想在立体几何中的运用

转化思想在立体几何中的运用
立体几何是指研究空间中的图形、空间关系和空间尺寸的一门数学学科。

转化思想是
一种数学思想,它通过将问题转化为其他形式来寻找解决问题的方法。

在立体几何中,转
化思想可以应用于求解空间图形的性质、推导空间关系和计算空间尺寸等方面。

第一步,问题转化。

将待求解的问题抽象为几何图形的性质或关系。

给定一个立方体,要求其对角线的长度,可以将问题转化为求解一个直角三角形的斜边长。

通过这样的转化,问题得以简化,可以利用已知的几何定理进行求解。

第二步,图形转化。

将问题中的几何图形进行转化,以便使用已知的几何定理和方法
进行推导。

已知一个平面与一个立方体的一个棱相交,要求该平面与立方体的截面形状和
面积。

可以将问题转化为一个平行四边形的截面,通过计算平行四边形的边长和高,进而
求得截面的形状和面积。

在立体几何中,转化思想的运用可以帮助我们更好地理解空间图形的性质和关系,推
导出更为简洁和直观的几何定理,同时也可以提高问题的求解效率和准确性。

转化思想的
运用不仅可以应用于一般的几何问题,还可以通过对几何图形的转化,进行几何空间的数
值计算和模拟实验,从而更深入地认识和探索立体几何的奥秘。

转化思想在立体几何中的运用可以帮助我们解决复杂的几何问题,推导出几何定理和
性质,同时也可以拓展几何学的应用领域,提高数学问题的求解能力。

在今后的学习和研
究中,我们应该加强对转化思想的理解和应用,不断探索和创新,在立体几何的学习中不
断提高自己的数学思维能力和解决问题的能力。

转化思想在立体几何中的运用

转化思想在立体几何中的运用

转化思想在立体几何中的运用
在立体几何中,转化思想是一种重要的运用方式,它可以帮助我们理解和解决与形状、位置和运动相关的问题。

转化思想主要包括旋转、平移、镜像和放缩四种基本的变换方
法。

旋转是指将一个物体或一个图形按照一定角度绕着中心点旋转一定角度。

在立体几何中,旋转被广泛运用于理解和描述立体图形的性质和特征。

我们可以通过旋转一个三角形
来研究它的对称性和等边性。

同样,我们也可以通过旋转一个立方体来研究它的对称面和
对角线的性质。

放缩是指将一个图形按照一定比例进行扩大或缩小。

在立体几何中,放缩常常被用来
表示物体的大小和比例关系。

我们可以通过放缩一个球体来研究它的体积和表面积的变化。

同样,我们也可以通过放缩一个多面体来研究它的形状和空间关系的变化。

转化思想在立体几何中的运用是十分重要的。

通过旋转、平移、镜像和放缩等变换方法,我们可以更好地理解和解决与形状、位置和运动相关的问题。

转化思想不仅可以帮助
我们提高解题的思维能力,还可以培养我们的几何直观和空间想象能力。

在学习和教学立
体几何的过程中,我们应该注重培养学生的转化思维能力,并通过实践和例题的训练来提
高他们的几何素养和解题能力。

怎样提高立体几何空间想象力

怎样提高立体几何空间想象力

怎样提高立体几何空间想象力立体几何空间想象力对于高中生来说,其重要性是不言而喻的,提高立体几何空间想象力才能学好空间立体几何。

下面是店铺整理的怎样提高立体几何空间想象力相关资料,一起来看看吧!怎样提高立体几何空间想象力第一天:1。

弄一个正的物体(实物!),用白纸包好,然后在一个面上画一个黑点(只要一个)。

看不到时就想象一下,不难。

2。

翻转物体,观察黑点的位置。

3。

练习5分钟。

第二天:1。

在头脑中想象一个正方体(回忆昨天看到的物体),其中有一个面上有一个黑点。

2。

想象翻转物体,并想象黑点位置(回忆昨天看到的黑点的位置)。

3。

练习5分钟。

4。

重复联系3天。

(第二天、第三天、第四天)第五天:1。

想象一个正三棱锥,其中一个面上有一个黑点。

2。

想象翻转物体,并想象黑点位置。

3。

练习5分钟。

4。

重复联系3天。

(第五天、第六天、第七天)之后就是球体、复杂多面体,熟练之后再把黑点换成直线。

基本三周你的空间想象能力就非常好了!切记,练习必须专心绝对不能中断一但中断就前功尽弃,要重头再来!这个方法简单易行,费时也少,每天5分钟,就看你自己有没有诚心毅力了!高中数学立体几何如何学一、逐渐提高逻辑论证能力立体几何的证明是数学学科中任一分之也替代不了的。

因此,历年高考中都有立体几何论证的考察。

论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。

符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。

切忌条件不全就下结论。

其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。

二、立足课本,夯实基础学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。

定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。

但定理的证明在初学的时候一般都很复杂,甚至很抽象。

深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C
F
A
B
E
【例1】 已知球O的半径为1,A,B,C三点都在球面上,且每两点 间的球面距离均为,求球心O到平面ABC的距离。
转化思想在立体几何中的运用
立体几何是高中数学的重要内容。培养 学生空间想象力,突破空间思维上的障 碍,是学好立体几何的关键。立体几何 中所蕴含的数学思想方法非常丰富,其 中最重要的就是转化与化归的思想方法 。它贯穿立体几何教学的始终,在立体 几何教学中占有很重要的地位。下面就 在立体几何教学中如何启发学生应用转 化与化归的思想方法分析和解决有关问 题,做初步的探究。
例1 在正三棱柱ABC—A'B'C' 中,若AB=BB',求BA'与CB' 所成的角的大小
练习1 如图,在四棱锥P-ABCD中,E为CD上的动点,四边形ABCD满足 时,体积VP-AEB恒为定值(写上你认为正确的一个答案即可).
P
D E C A
B
例2.一个四面体的所有棱长都是2,四个顶点在同一个球面上,求此Βιβλιοθήκη 的表面积 。DC A
B
练习2. 已知三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3. D为AB的中点,E为AC的中点,则四棱锥S-BCDE的体积为( ).
S
C D A E
B
例3(2005福建高考理20)如图,直二面角D—AB—E中,四边形ABCD是边长为2 的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE. (Ⅰ)求证AE⊥平面BCE; (Ⅱ)求二面角B—AC—E的大小; (Ⅲ)求点D到平面ACE的距离
相关文档
最新文档