习题课讲义(4,24)
二年级数学奥数讲义练习第24讲位置趣谈(全国通用版,含答案)
6个5个二年级数学奥数讲义练习第24讲位置趣谈(全国通用版,含答案)【专题简析】同学们排队,以某一个人为标准来数人数,知道他左边、右边人数或从左、从右数他排第几,这类问题就是排队问题,排队问题的关键是要找出重复部分再解答。
在排队问题中,中间这一个人既不能漏掉,也不能重复,如;小玲从队伍的右边数起是第4个,从左边数起是第8个,这里小玲重复数了两次,所以在计算总人数时一定要把重复的人数去掉。
【例题1】小明排队唱歌,他站的这一排,从左向右数,他是第5个,从右向左数,他是第6个,问这一排共有多少人?思路导航;如图; 从左边数起,小明是第5个,他被数了一遍;从右边数起,小明是第6个,他又被数了一次,这样小明共被数了两次,多数了一次,所以算一共有多少人时,应从5+6=11(人)中去掉1人。
解;5+6=11(人) 11-1=10(人)答;这一排共有10人练习11,小朋友排队照相,小力坐在第一排。
从左往右数,他坐第4个,从右往左数,他坐第8个。
第一排一共坐了多少个小朋友?2,有一排不同颜色的彩灯,无论从左往右数,还是从右往左数,第9盏都是同一盏红灯,这一排共有多少盏彩灯?25人20人人5B A3,一群小动物排一排,从左往右数,第4只是兔子,从右往左数第3只是小鹿,小鹿在兔子前3个,这群小动物共有几只?【例题2】光明小学二(2)班参加课外活动,要求每人至少报1项,最多报2项,有20人报合唱组,有25人报数学兴趣小组,其中有5人报2项,二(2)班一共有多少学生?思路导航;图中A 圈表示参加合唱组的人数,B 圈表示参加数学兴趣组的人数。
两圈重叠的部分(即阴影部分),表示两项都参加的人数,从图中可以看出,两项都参加的5人被算了2次,重复了。
所以要从两组共有的人数中减去重复的5人。
解;20+25-5=40(名)答;二(2)班一共有40名学生。
练习21,二(2)班同学人人都订阅报纸,订《数学报》的有38人,订《中国儿童报》的有30人,其中8人这两种都订,问二(2)班共有多少人?2,张老师出了两道思考题给二(5)班同学做,做对第一题的有38人,做对第二题的有22人,两题都做对的有15人,没有全做错的同学,求二(5)班共有学生多少人?3,有两块木板,一块长24分米,另一块长18分米,把两块木板重叠一部分后钉成一块长36分米的木板,重叠部分长多少分米?【例题3】二(1)班同学排成6列做操,每列人数同样多,小明站在第一列,从前面数,从后面数他都是第5个。
谢惠民上册答案
7.3 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8 微分学的应用
136
8.1 函数极限的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
2.6 由迭代生成的数列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 一致连续性与 Cantor 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5 单调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.6 周期 3 蕴涵混沌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3 实数系的基础定理
37
3.1 确界的概念和确界的存在定理 . . . . . . . . . . . . . . . . . . . . . . . . . 37
习题课主题培训讲义公开课获奖课件省赛课一等奖课件
2、气动回路
压力与力控制回路、换向回路、速度控制回路、气 动逻辑回路、其他常用回路。
邵陽學院機械與能源工程系
二、例题讲解 1、选择题 a、图中各溢流阀旳调整压力为 p1 p2 p3 p4 ,那
么回路能实现( )调压 (A)一级 (B)二级 (C)三级 (D)四级
邵陽學院機械與能源工程系
b.在下 面几种调速回路中,( )中旳溢流阀是安全 阀,( )中旳溢流阀是稳压阀。 (A) 定量泵和调速阀旳进油节流调速回路 (B) 定量泵和旁通型调速阀旳节流调速回路 (C) 定量泵和节流阀旳旁路节流调速回路 (D) 定量泵和变量马达旳闭式调速回路 c.在下列调速回路中,( )为流量适应回路,( ) 为功率适应回路。 (A) 限压式变量泵和调速阀构成旳调速回路 (B) 差压式变量泵和节流阀构成旳调速回路 (C) 定量泵和旁通型调速阀(溢流节流阀)构成旳调速 回路 (D) 恒功率变量d.容积调速回路中,( )旳调速方式为恒转矩 调整;( )旳调整为恒功率调整。
(A)变量泵—变量马达 (B)变量泵—定量马 达 (C)定量泵—变量马达
e.用一样定量泵,节流阀,溢流阀和液压缸构成 下列几种节流调速回路,( )能够承受负值负 载,( )旳速度刚性最差,而回路效率最高。
9.有人设计一双手控制气缸往复运动回路如图所 示。问此回路能否工作?为何?如不能工作需要 更换哪个阀?
邵陽學院機械與能源工程系
解:此回路不能工作,因为二位二通阀不能反向排 气,即二位四通换向阀左侧加压后,不论二位二 通阀是否复位,其左侧控制压力都不能泄压,这 么弹簧就不能将它换至右位,气缸也就不能缩回; 将两个二位二通阀换为二位三通阀,在松开其按 钮时使二位四通换向阀左侧处于排气状态,回路 即可实现往复运动。
小学综合实践√-模块二样题及答案
小学综合实践√-模块二样题及答案模块二样题及答案一、填空:1、综合实践活动课程是在引导下,学生_____进行的_____学习活动,是基于学生的经验,密切联系_____和______体现对知识的综合应用的______课程。
2、经验性课程的基本规定之一是强调学生经验的_____。
3、综合实践活动课程的主题直接来源于学生的_____和_____。
4、综合实践活动中的“实践”具有_____、_____、_____、_____等特征。
5、课程整合的根本依据是_____和_____的需求,以及学生的“_____”的整体性。
6、综合实践活动不是_____的一种教学活动方式,而是_____的一种具有独立形态的课程。
7、综合实践活动课程的设计和实施,要符合其_____、_____、_____、_____和_____等基本特点。
8、综合实践活动不是以_____来设计,而应以_____为中心来组织。
9、综合实践活动是学生自主的活动,自主的实践,教师在学生活动过程中起着_____、_____、_____、_____、_____等方面的作用。
10、综合实践活动的内容应尊重每一个学生的_____、_____与_____。
二、选择1、综合实践活动课程是一种什么样的课程()A、经验性B、实践性C、综合性D、经验性、实践性、综合性、三级管理2、综合实践活动课程的主题直接来源于()A、学生的生活经验B、生活领域C学生的生活经验、生活领域3、作为一种三级管理的课程,它对那些部门提出了要求()A、地方、学校B、地方、学校、教师C、教师4、综合实践活动不是认知性的课程,而是什么样的课程()A、实践性B、综合性C、生成性D、开放性5、综合实践活动特别强调与其他类型课程的融合,以什么样的学习方式的整合()A、单一B、多样C、综合6、在综合实践活动中,学生的生活经验和生活背景往往来自于学生自身的哪几方面()A、学校生活、社会生活B、家庭生活和社会生活C、学校生活、家庭生活和社会生活7、综合实践活动课程的主题直接来源于学生的哪几方面()A、生活经验、生活领域B、生活领域、校园生活C、生活经验8、综合实践活动中,“实践”具有什么样的特征()A、尝试、经历B、尝试、经历、亲历、体验C、经历、亲历、体验D、亲历、经历、尝试9、综合实践活动课程应该()的作业为主,而并非以()的作业为主。
高等代数习题课指导讲义
高等代数习题课指导高等代数习题课是在各章小单元授课基础上,帮助学生疏理相应小单元基础知识而设立的以练为主、讲练结合的教学形式,使学生进一步理解已授知识的重点,帮助学生克服学习中的难点,因而是整个课程教学的基本环节之一。
教学中应明确目的,把握全局,突出练习,以提高习题课的教学质量。
习题课1 矩阵的运算与可逆矩阵(2学时)教学目的 通过2学时的习题课教学实践,使学生进一步理解、掌握矩阵运算及其可逆矩阵的基础知识与基本方法,把握矩阵证题的基本技巧。
基础提要 略述(结合课堂练习题的解释,点述主要概念、相关定理及其基本方法)。
课堂练习:1 计算AB ,BA ,AB -BA ,其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a c b b c a B a b c c b a A 111,111. 2 设A ,B ,C ∈)(F M n .证明,若AB =BA ,AC =CA ,则A (B + C ) = (B + C ) A ;A (BC ) = (BC ) A .3 设A = )()(F M a n nn ij ∈,A 的主对角元素nn a a a ,,,2211 的和∑=ni ii a 1叫做A 的迹,记作A Tr .设A ,B )(F M n ∈,证明:1);Tr Tr )(Tr B A B A +=+ 2);,Tr )(Tr F k A k kA ∈=3));(Tr )(Tr BA AB = 4)AB -BA n I ≠.4 设A n M ∈(R ),且A '= A .证明,若2A = 0,则A = 0.5 设A = B +C 机遇)(F M n ∈,其中C C B B -='=',.证明下列命题彼此等价:1) A A A A '='; 2)BC = CB ; 3)CB 是反对称矩阵.6 设)(F M A n ∈,且A 2+A +I n =0.证明,A 可逆;并求A -17 设)(F M A n ∈是对合矩阵, 即n I A =2,且n I A ±≠.证明:1)A 是可逆矩阵, 并求1-A . 2)A I n +与A I n -都是奇异矩阵.8 设A ,B ,C )(F M n ∈.证明:1)若A 非奇异,则AB = AC ⇒B = C ;2)若A 奇异,则1)的结论未必成立(举例说明).9 设)(F M A n ∈可逆,且1-A =nn ij b )(,求,)(1-A P ij ,))((1-A k D i )((k T ij 1)-A .10 设n M A ∈(R ).证明若以下三命题有两个成立,则其第三个也成立:1) A 是对称矩阵; 2) A 是对合矩阵; 3) A 是正交矩阵.课外建议 结合练习讲评提出相应补缺、复习建议。
谢惠民数学分析习题课讲义部分题目解答
数学分析习题课讲义问题解答第一章引论1.3.2练习题1.关于Bernoulli 不等式的推广:(1)证明:当12-≤≤-h 时Bernoulli 不等式nh h n+≥+1)1(仍成立;(2)证明:当0≥h 时成立不等式2)1()1(2h n n h n-≥+,并推广之;(3)证明:若),,2,1(1n i a i =->且同号,则成立不等式∑∏==+≥+ni in i iaa 111)1(.2.阶乘!n 在数学分析以及其他课程中经常出现,以下是几个有关的不等式,它们都可以从平均不等式得到:(1)证明:当1>n 时成立nn n )21(!+<;【证明】利用平均值不等式,有n nk nk kk n ∏∑==≥111所以nn n )21(!+≤因为1>n ,所以取等号的条件n === 21不满足,故nn n 21(!+<.(2)利用)1(]2)1)[(1()!(2n n n n ⋅⋅-⋅= 证明:当1>n 时成立nn n 62(!+<;【证明】利用平均值不等式,有n nk nk k n k k n k n ∏∑==-+≥-+11)1()1(1所以nn n n n n 62(]6)2)(1([!+<++≤(3)比较(1)和(2)中两个不等式的优劣,并说明原因;(4)证明:对任意实数r 成立nn k r n rk n n )(1)!(1∑=≤.【证明】利用平均值不等式,有n nk rn k rkk n ∏∑==≥111所以nn k r n rk n n )(1)!(1∑=≤3.证明几何平均值-调和平均值不等式:若0>k a ,n k ,,2,1 =,则有∑∏==≥nk knnk k a n a 1111)(【证明】利用平均值不等式,有n nk kn k ka a n ∏∑==≥11111所以∑∏==≥nk knnk k a n a 1111)(4.证明:当c b a ,,为非负数时成立333cb a ca bc ab abc ++≤++≤.【证明】由于cabc ab c b a a c c b b a ++≥++⇒≥-+-+-2222220)()()(所以33)(3)(2cabc ab cb a ca bc ab c b a ++≥++⇒++≥++利用平均值不等式,有323)(33abc ca bc ab ca bc ab =⋅⋅≥++所以33abc ca bc ab ≥++5.证明下列不等式:(1)b a b a -≥-和b a b a -≥-;【证明】利用三点不等式,有ab b a b b a =+-≥+-)(由对称性知ba b a ≥+-所以ba ab b a b a -=--≥-),max((2)∑∑∑===≤≤-n k k nk knk ka aaa 1121;有问:左边可否为∑=-nk k a a 21?【证明】利用(1)的结论,有∑∑∑====-≤-nk knk knk kaa aaa 21111反复利用三点不等式,有∑∑∑∑∑=====≤≤++≤+≤+=nk knk knk knk k nk ka aa a aa a a a132121211再利用这个结论,有∑∑∑===≤≤-nk knk knk ka aaa 2211(3)bb aa ba b a +++≤+++111;【证明】显然函数x x x x f +-=+=1111)(是单调增加的,所以有bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111(4)nnnna b a a b a -+≤-+)()(.【证明】利用三点不等式,有nnn n n n n n n b a b a b a a a b a a a b a )()()()(+≤+=+≤+-+=+-+第二章数列极限2.7.3参考题第一组参考题1.设}{12-k a ,}{2k a 和}{3k a 都收敛,证明:}{n a 收敛.【证明】设}{12-k a ,}{2k a 和}{3k a 分别收敛于数c b a ,,.取}{12-k a 的一个子列}{36-k a ,它收敛于数a ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c a =.取}{2k a 的一个子列}{6k a ,它收敛于数b ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c b =.于是有b a =.对任给的0>ε,存在正整数1N 与2N ,当1N n >时有εa a n <--12,当2N n >时有εa a n <-2.现取),max(221N N N =,当N n >时有εa a n <-,故}{n a 收敛于a .2.设}{n a 有界,且满足条件2+≤n n a a ,3+≤n n a a ,+∈N n ,证明:}{n a 收敛.【证明】由条件2+≤n n a a 知}{12-k a 与}{2k a 都是单调增加的数列,又有界,故都收敛.由条件3+≤n n a a 知}{3k a 单调增加,又有界,故收敛.利用1的结论知}{n a 收敛.3.设}{1++n n a a 和}{2++n n a a 都收敛,证明:}{n a 收敛.【证明】设}{1++n n a a 和}{2++n n a a 分别收敛于数b a ,.那么有ab a a a a a a n n n n n n n n -=+-+=-++∞→++∞→)]()[(lim )(lim 1212ba a a a a a a n n n n n n n n -=+-+=-+++∞→+∞→)]()[(lim )(lim 2211进而有)]()[(lim )(lim 1122=-+-=-+++∞→+∞→n n n n n n n n a a a a a a 故2)]()[(lim 21lim 22a a a a a a n n n n n n n =--+=++∞→∞→5.设∑=-+=nk n nka 12)11(,+∈N n ,计算n n a ∞→lim .【解】由于∑∑∑∑====++≤++=-+≤++nk n k n k n k nknn k n k n k n k n n 122122121221111111)11(111而2121lim lim 12=+=∞→=∞→∑n n n k n nk n 211111lim2=++∞→n n ,21111lim 2=++∞→nnn 故41lim =∞→n n a 7.设p a a a ,,,10 是1+p 个给定的数,且满足条件010=+++p a a a .求)1(lim 10p n a n a n a p n +++++∞→ 【解】)1(lim 10p n a n a n a p n +++++∞→ 1)[(lim 121p n a n a n a a a p p n +++++----=∞→()1([lim 1n p n a n n a p n -+++-+=∞→ 01(lim 1=++++++=∞→np n pa n n a p n 8.证明:当10<<k 时,0])1[(lim =-+∞→kkn n n 【证明】(这里用到后面将要学习的等价无穷小知识)0lim ]1)11[(lim ])1[(lim 1==-+=-+-∞→∞→∞→k n k k n k k n n k nn n n 12.证明:nnn n n)2(e !)e(<<.【证明】利用数列})11{(nn+单调增加趋于e ,有!)e(!!)1()11()211()111(e 21n nn n n n n n n n n n<⇒>+=+++> 利用1.3.2中题2的结论:nn n )21(!+<,有nn n n n n n n n n n n n )2(e !!2)1()11(e <⇒>+=+>14.设n na n 2131211-++++= ,+∈N n ,证明:}{n a 收敛.【证明】一方面,有01211212111<++-+=++-+=-+nn n n n n a a n n 另一方面,有n n n a n 2124323221-++++++++> n n n 21(2)34(223(21--+++-+-+= 221212221->-++-=n n 根据单调有界定理知}{n a 收敛.15.设已知存在极限na a a n n +++∞→ 21lim ,证明:0lim =∞→n an n .【证明】设T T na a a n n→=+++ 21,∞→n ,于是1)1(---=n n n T n nT a ,2≥n ,由此得0])11([lim lim1=-=--=-∞→∞→T T T nT n a n n n n n 17.设对每个n 有1<n x 和41)1(1≥-+n n x x ,证明}{n a 收敛,并求其极限.【证明】显然有0>n x ,2≥n .所以有1211)21()1(41+++≤⇒+-≤-≤n n n n n n x x x x x x 根据单调有界定理知}{n a 收敛,且可设收敛于数10≤≤A ,于是有41)1(≥-A A ,解得21=A .18.设b a =1,c a =2,在3≥n 时,221--+=n n n a a a ,证明}{n a 收敛,并求其极限.【证明】由于)(21211-----=-n n n n a a a a ,所以)(21()()21(21221b c a a a a n n n n --=--=----,进而有b bc a b c a n n n n +-----=+-++-+--=---)()21(1)21(1]21()21()21)[((11032 ,于是32lim c b a n n +=∞→.第二组参考题1.设n a n +++= 21,+∈N n ,证明:}{n a 收敛.【证明】利用不等式1111211+-=+-+-≤+-n n n n n ,+∈N n 以及221-≤-n n ,3≥n 有2213411231+≤≤+-+-++≤+-+-++≤ n n n n a n 又因为}{n a 是单调增加的数列,利用单调有界定理知}{n a 收敛.2.证明:对每个正整数n ,成立不等式n k n nk n 2e!1)11(0->+∑=.【证明】利用1.3.2中题1的结论:∑∏==+≥+ni in i iaa 111)1(,),,2,1(1n i a i =->且同号,当2≥n 时有∑∑∑===---++=-==+nk n k k n k k k n n n k n k n k n n k n C n 200)11()11(!111)!(!!11)11(∑∑==--++=----++>nk nk n k k k n k n k 22)2)1(1(!111111(!111 n k k n k nk n k nk 2e !1)!2(121!1020->--=∑∑∑===当1=n 时,2e22->显然成立.3.求极限)e !π2sin(lim n n n ∞→.【解】利用命题2.5.4,有1(π21!!(π2e !π2)11!!(π211(π200n N n k n n n k n n N nk n k +=+<<++=++∑∑==所以nn n n n n π2sin e)!π2sin(1π2sin<<+,4≥n 利用夹逼准则知π2)e !π2sin(lim =∞→n n n 4.记n S n 1211+++= ,+∈N n .用n K 表示使得n S k ≥的最小下标,求极限nn n K K 1lim +∞→.【解】由条件知n K K n S n n 1+≤≤与01lim=∞→nn K 因为γn S n n =-∞→)ln (lim 而nn n K n K K n K S K n n 1ln ln ln +-≤-≤-所以)ln (lim )ln (lim n n n n K n γK n -≥≥-∞→∞→于是γK n n n =-∞→)ln (lim 所以11)]ln 1()ln [(lim lnlim 11=+-+--=+∞→+∞→n n n nn n K n K n K K 故elim 1=+∞→nn n K K 5.设∑==nk k n n Cnx 02ln 1,+∈N n ,求n n x ∞→lim .【解】利用Stolz 定理,有220112)1(ln ln lim ln 1limlim n n C CCn x nk kn n k k n n nk k nn n n -+-==∑∑∑=+=+∞→=∞→∞→1211ln lim 12)ln (ln lim 01+-++=+-=∑∑=∞→=+∞→n kn n n C Cnk n nk k nk n n )12()32(11ln 22ln lim 01+-+-++--++=∑∑=+=∞→n n k n n k n n nk n k n 11ln 12ln (lim 2110∑∑==∞→-++--++=n k n k n k n n k n n 2112ln lim 21)12ln 12(ln lim 211=++=+++++=∞→=∞→∑n n n n n n n n n k n 6.将二项式系数⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n ,,1,0 的算术平均值和几何平均值分别记为n A 和n G .证明:(1)2lim =∞→n n n A ;(2)e lim =∞→n n n G .【证明】由于n nnA n n n n =⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+ 10)11(,所以有22lim 2lim lim ===∞→∞→∞→n n n nn nn n nn A 因为)!(!!k n k n k n -=⎪⎪⎭⎫ ⎝⎛,所以21)!!1!0()!(n n G n nn ⨯⨯⨯=+ ,所以有)!!2!1ln(2!ln )1(exp(lim ])!!2!1()!([lim lim 21212n n n n n n G n n n n n n n ⨯⨯⨯-+=⨯⨯⨯=∞→+∞→∞→ 12!ln )1ln(exp(lim )12)!1ln(2!ln )1()!1ln()2(exp(lim +-+=++-+-++=∞→∞→n n n n n n n n n n n n )21exp(212ln)1(exp(lim =+++=∞→n n n n 7.设∑==nk kn aA 1,+∈N n ,数列}{n A 收敛.又有一个单调增加的正数数列}{n p ,且为正无穷大量.证明:lim2211=+++∞→nnn n p a p a p a p【证明】利用Stolz 定理,有nn n n n n n n n p A A p A A p A p p a p a p a p )()(lim lim 1122112211-∞→∞→-++-+=+++ nnn n n n n p A p A p p A p p A p p +-++-+-=--∞→11232121)()()(lim 0lim lim lim )(lim11=+-=+--=∞→∞→∞→++∞→n n n n n n nn nn n n A A A p p A p p 8.设}{n a 满足1)(lim 12=∑=∞→ni i n n aa ,证明:13lim 3=∞→n n a n .【证明】令∑==ni in aS 12.因为1)(lim 12=∑=∞→ni i nn aa ,所以}{n a 不会恒为零,故}{n S 当n 足够大时是单调增加的正数列.若+∞=∞→n n S lim ,则01limlim 12==∑=∞→∞→ni i n n n a a ;若}{n S 收敛,则0lim 0lim 2=⇒=∞→∞→n n n n a a ;即总有0lim =∞→n n a .所以1lim )(lim lim 11211111==-=++∞→++++∞→+∞→n n n n n n n n n n n S a a a S a S a 以及+∞=∞→n n S lim ,故31)(1lim )1(lim lim )(lim lim 2121213313333=++=--+==⋅=+++∞→+∞→∞→∞→∞→n n n n n n n n n n n n n n n nn S S S S a S S n n S n S S a n na 所以13lim 3=∞→n n a n 12.设10<<λ,}{n a 收敛于a .证明:λa a λa λa λa n n n n n -=++++--∞→1)(lim 0221 【证明】令a a b n n -=,那么)]()()[(lim )(lim 010221a b λa b λa b a λa λa λa n n n n n n n n n ++++++=++++-∞→--∞→ λa b λb λb λλa b λb λb n n n n n n n n n n -++++=+++++++=-∞→∞→-∞→1)(lim )1(lim )(lim 0101 故只需要证明)(lim 01=+++-∞→b λb λb n n n n 存在正数M 使得M b n <恒成立.对任给的0>ε,存在正整数N ,当N n >时有εb n <.所以当N n >时有估计11101b λb λb λb λb b λb λb n N N n N N n n n n n n ++++++≤+++-+---- M λλελλn N n N n )()1(1++++++≤--- M λN ελN n -++-≤)1(11因为0lim =-∞→Nn n λ,所以存在正整数N N >1,当1N n >时有εMN λN n )1(1+<-,此时有估计ελb λb λb n n n )111(01+-≤+++- 故)(lim 01=+++-∞→b λb λb n n n n 17.令20≥y ,221-=-n n y y ,+∈N n .设nn y y y y y y S 10100111+++=.证明:24lim 200--=∞→y y S n n 【证明】令10-+=a a y ,1≥a .可归纳得出nna ay n 22-+=,+∈N n ,即12211++=n na a y n .当1=a ,即20=y 时有2≡n y ,于是24121212120012--=→+++=+y y S n n ,∞→n ,命题成立;当1>a 时,有)1111(111)1()1)(1(121211211022222222222210+++++----=--=+++=n n n n n n aa a a a a a a a a a a a a y y y n 于是a a a a a a a a a S n k k n nk n n n 1)1111(lim 1)1111(lim 1lim 2212220222=----=----=+++∞→=∞→∞→∑而aa a a a y y 12)()(2411200=--+=----.第三章实数系的基本定理第四章函数极限4.5.2参考题7.对一般的正整数n 计算极限30sin sin limxxn nx x -→.【解】31030)sin )1sin((sin lim sin sin lim x x x k kx x x n nx nk x x ∑=→→---=-31031021sin 2sin 2sin 4lim ]2cos )21[cos(2sin 2lim x xk x k x x x x k x n k x n k x ∑∑=→=→--=--=6)1()1(2121--=--=∑=n n k k n k 11.设函数f 在),0(+∞上单调增加,且有1)()2(lim =+∞→x f x f x .证明:对每个0>a ,成立1)()(lim =+∞→x f ax f x .【证明】当1>a 时,存在正整数k 使得k k a 221≤≤-,于是)2()(lim )2()()2()2()()2(lim )()(lim 112x f ax f x f ax f x f x f x f x f x f ax f k x k x x -+∞→-+∞→+∞→==)2()(lim )2()()2()2(lim )2()(lim 11x f ax f x f ax f x f x f x f ax f k x k k k x k x +∞→-+∞→-+∞→==由于f 单调增加,所以1)2()(1≥-x f ax f k ,1)2()(≤x f ax f k,所以有)()(lim1)()(limx f ax f x f ax f x x +∞→+∞→≤≤故1)()(lim=+∞→x f ax f x 当10<<a 时,利用上述结果,有1)((1lim )()(1lim )()(lim ===+∞→=+∞→+∞→t f atf ax f x f x f ax f t t ax x x 当1=a 时显然,故对每个0>a ,成立1)()(lim =+∞→x f ax f x .第五章连续函数第六章导数与微分6.1.4练习题6.2.4练习题6.3.4练习题6.4.2参考题第一组参考题1.利用导数的定义计算极限xx x x sin )sin 1()tan 1(lim 10100--+→.【解】利用导数的定义,有xx x x sin )sin 1()tan 1(lim 10100--+→x x x x x x x x sin 1)sin 1(lim sin tan tan 1)tan 1(lim 100100---+-+=→→20))1((1))1((010010='++⨯'+===x x x x 2.设231)(2++=x x x f ,计算)0()100(f ,要求相对误差不超过1%.【解】由于2111)2)(1(1)(+-+=++=x x x x x f 所以101101)100()2(!100)1(!100)(+-+=x x x f 所以)211(!100)0(101)100(-=f 取!100)0()100(≈f,则相对误差为01.0121211(!100)211(!100!100101101101<-=---.3.设f 在点a 处可导,0)(≠a f .计算n n a f n a f ])()1([lim +∞→.【解】)()1(ln exp(lim ])()1([lim a f n a f n a f n a f n n n +=+∞→∞→由于)()(exp(1)()1()(1exp(lim ))()1(ln exp(lim a f a f xa f x a f a f a f x a f x x x '=-+=++∞→+∞→利用Heine 归结原则,有))()(exp()()1([lim a f a f a f n a f n n '=+∞→5.设0)0(=f ,)0(f '存在.定义数列)()2(1(222nn f n f n f x n +++= ,+∈N n ,试求n n x ∞→lim .【解】由于xx f x f x f f x x )(lim 0)0()(lim)0(00→→=--=',所以对任给的0>ε,存在0>δ,当δx <<0时有])0([)(])0([εf x x f εf x +'<<-'取11[+=δN ,当N n >时有δnn<<20,所以有])0()[21(])0(21(222222εf nnn n x εf n n n n n +'+++<<-'+++ 而n n n n n n 2121222+=+++ 所以εf x n nn <'-+)0(12故2)0(lim )0(lim 2)]0(12[lim 0f x f x f x n n n n n n n n '=⇒'-='-+=∞→∞→∞→6.求下列数列极限:(1))sin 2sin 1(sinlim 222n nn n n +++∞→ ;【解】运用上题的结论,考虑函数x x f sin )(=,即得21)0(21)sin 2sin 1(sinlim 222='=+++∞→f n n n n n (2))]1()21)(11[(lim 222n nn n n +++∞→ .【解】运用上题的结论,考虑函数)1ln()(x x f +=,即得e ))0(21exp(1(2111[(lim 222='=+++∞→f n n n n n 7.设xx y -+=11,计算)()(x y n ,+∈N n .【解】由于x xx x y ---=---=1121)1(2,通过求导找规律直接可得2122121)()1(2!)!32()1(2!)!12()(--+----+--=n nn n n x n x n x y ,2≥n 以及xx y -+-='-121)1(238.设f 在R 上有任意阶导数,证明:对每个正整数n 成立)(1)(1)]1([)1()1(1n n n n n xf x x f x -+-=【证明】用数学归纳法,当1=n 时,右式='='-=)1(1])1([2xf x xf 左式;假设当n k =时成立)(1)(1)]1([)1()1(1k k k k k xf x x f x -+-=;当1+=n k 时有)1(11)1(11([)1()]1([)1(+-+++⋅-=-n n n n n n x f x x x f x ∑+=-+-+⎪⎪⎭⎫ ⎝⎛+-=10)1(1)(11([1)1(n k k n n k n x f x x k n })]1()[1()]1([{)1()(1)1(11n n n n n x f x n x f x x -+-+++⋅-=)1(1])1(1[)(1)(1xf x n x f x x n n n n +++-'⋅-=)1(1)]1(1)1(1[)(1)1(3)(2xf x n x f x x f x n x n n n n n n +++++--+-⋅-=1(1)1(2xf x n n ++=由归纳原理知命题成立.10.证明组合恒等式:(1)112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k ,+∈N n ;【证明】考虑恒等式∑=⎪⎪⎭⎫ ⎝⎛=+nk k nx k n x 1)1(,对x 求导得∑=--⎪⎪⎭⎫ ⎝⎛=+nk k n x k n k x n 111)1(,再令1=x 即得112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k (2)2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k ,+∈N n .【证明】由(1)可知∑=-⎪⎪⎭⎫ ⎝⎛=+n k kn x k n k x nx 11)1(,对x 求导得∑=---⎪⎪⎭⎫ ⎝⎛=+-++nk k n n x k n k x x n x n 11221])1()1()1[(再令1=x 即得2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k 第二组参考题1.(1)求∑=n k kx 1sin 和∑=nk kx 1cos ;【解】利用积化和差公式)cos()cos(sin sin 2y x y x y x --+=-可知2cos)21cos(])21cos()21[cos(sin 2sin 211x x n x k x k kx x nk n k -+=--+=-∑∑==于是有2sin2)21cos(2cos sin 1x xn x kx nk +-=∑=,π2k x ≠,Z ∈k 当π2k x =时有0sin 1=∑=nk kx ;同样地,利用公式)sin()sin(cos sin 2x y y x y x --+=可知2sin)21sin(])21sin()21[sin(cos 2sin 211x x n x k x k kx x nk n k -+=--+=∑∑==于是有2sin22sin )21sin(cos 1x xx n kx nk -+=∑=,π2k x ≠,Z ∈k 当π2k x =时∑=nk kx 1cos 发散;(2)求∑=nk kx k 1sin 和∑=n k kx k 1cos .【解】利用(1)的结论,对结果求导即知4.证明:Legendre 多项式nnn n n x xn x P )1(d d !21)(2-=满足方程)()12()()(11x P n x P x P n n n +='-'-+【证明】直接计算可得])1()1(2[d d )!1(21)1(d d )!1(21)(2111122211nn n n n n n n n x x n xn x x n x P -++=-+='++++++++])1(2)1[(d d !21])1([d d !211222211-++-+-=-=n n n n n n n n n x nx x x n x x x n ])1)(11[(d d )!1(21)(1221---+--+=n nn n n x x x n x P ])1[(d d )!1(21)()12(121----++=n nn n n x x n x P n )()()12(1x P x P n n n -'++=5.证明:Legendre 多项式满足方程)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 【证明】考虑函数nx y )1(2-=,求导得12)1(2--='n x nx y ,即nxy y x 2)1(2='-,两边求1+n 次导数,利用Leibniz 公式,有∑∑+=-+++=-++='-1)1()(11)1()(21)()(2)()1(n k k n k k n n k k n k k n y x C n y x C即])1([2)1()1(2)1()()1()()1()2(2n n n n n y n xy n y n n xy n y x ++=++++-+++整理得)()1()2(2)1(2)1(n n n y n n xy y x +=+-++故0)1(2)1()()1()2(2=++--++n n n y n n xy y x 所以)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 第七章微分学的基本定理7.2.4练习题10.设f 在]1,1[-上有任意阶导数,0)0()(=n f,+∈∀N n ,且存在常数0≥C ,使得对所有+∈N n 和]1,1[-∈x 成立不等式n n C n x f !)()(≤.证明:0)(≡x f .【证明】写出nn n n n n x n ξf x n ξf x n f x f f x f !)(!)()!1()0()0()0()()()(1)1(=+-++'+=-- ,x ξ≤,所以有nn n Cxξf n x x f ≤=)(!)()(若10<≤C ,那么0)(→≤n C x f ,∞→n 此时有0)(≡x f ,]1,1[-∈x ;若1≥C ,那么当Cx C 2121<<-时有021)(→≤nx f ,∞→n 此时有0)(≡x f ,]21,21[CC x -∈,在这之上有0)0()(=n f ,+∈∀N n ,故以此类推可知分别在]22,21[C C ,]21,22[CC --,…等区间上都有0)(≡x f ,从而有0)(≡x f ,]1,1[-∈x .11.设f 在],[b a 上二阶可微,且0)()(='='b f a f .证明:存在),(b a ξ∈,使得成立)()()(4)(2a fb f a b ξf --≥''.【证明】写出2121))((21)())((21))(()()(a x ξf a f a x ξf a x a f a f x f -''+=-''+-'+=2222))((21)())((21))(()()(b x ξf b f b x ξf b x b f b f x f -''+=-''+-'+=其中b ξx ξa <<<<21.取2ba x +=,则分别有4)(2)()()2(21a b ξf a f b a f -''+=+,4)(2)()(2(22a b ξf b f b a f -''+=+以上两式相减可得4)()]()([21)()(0212a b ξf ξf a f b f -''-''+-=移项后,由三点不等式可得)(])()([21)()()(4122ξf ξf ξf a f b f a b ''≤''+''≤--其中))(,)(max()(21ξf ξf ξf ''''=''.13.设f 在),[+∞a 上二阶可微,且0)(≥x f ,0)(≤''x f ,证明:在a x ≥时0)(≥'x f .【证明】假设存在),[0+∞∈a x 使得0)(0<'x f ,那么当0x x ≥时)()(0x f x f '≤',进而有)()()()()()(0000x f x x ξf x x x f x f '-≤'-=-,x ξx ≤≤0,只需再令)()(000x f x f x x '->便得0)(<x f ,这与0)(≥x f 矛盾,所以在a x ≥时0)(≥'x f .14.设f 在)1,1(-上1+n 阶可微,0)0()1(≠+n f,+∈N n ,在10<<x 上有n n n n x n x θf x n f x f f x f !)()!1()0()0()0()()(1)1(+-++'+=-- ,其中10<<θ,证明:11lim 0+=→n θx .【证明】由导数定义可知xθf x θf fn n x n )0()(lim)0()()(0)1(-=→+1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--=n nn n n x x θx f n x n f x f f x f 而其中又有1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--n nn n n x x x f n x n f x f f x f 1)0()0()(lim 11)!1(!)0(!)(lim )1()()(0)()(0+=-+=+-=+→→n f x f x f n x n n f n x f n n n x n n x 所以11lim 1lim 1)0()0(00)1()1(+=⇒+=→→++n θθn f fx x n n 15.证明:在1≤x 时存在)1,0(∈θ,使得2)(1arcsin x θx x -=,且有31lim 0=→θx .【证明】利用Lagrange 中值定理知存在ξ介于0与x 之间使得210arcsin arcsin ξx x -=-当0=x 时任取)1,0(∈θ;当10≤<x 时有10<<x ξ,令xξθ=,故存在)1,0(∈θ使得2)(1arcsin x θx x -=所以31))(arcsin (arcsin lim arcsin arcsin lim arcsin 1lim lim 4022220222020=+-=-=-=→→→→x x x x x x x x x x x x θx x x x 故31lim 0=→θx 16.设f 在)(0x O δ上n 阶可微,且0)()(0)1(0===''-x fx f n ,0)(0)(≠x f n .证明:当δh <<0时,成立h h θx f x f h x f )()()(000+'=-+,10<<θ,且成立11lim -→=n h nθ.【证明】利用Lagrange 中值定理知存在ξ介于0x 与h x +0之间使得hξf x f h x f )()()(00'=-+因而有100<-<h x ξ,令hx ξθ0-=,则成立h h θx f x f h x f )()()(000+'=-+,10<<θ.所以有1100000)()()()()()(--⋅'-+'='--+n n n θh θx f h θx f h h x f x f h x f 而!)(!)(lim )()()(lim 0)(0)1(00000n x f h n h x f h h x f x f h x f n n h n h =+='--+-→→)!1()()!1()(lim )()(lim )()()(lim 0)(0)1(010001000-=-+='-+'='-+'-→-→-→n x f t n t x f t x f t x f h θx f h θx f n n t n t n h 故10101lim 1lim -→-→=⇒=n h n h nθn θ7.3.2参考题第一组参考题1.设有n 个实数n a a a ,,,21 满足12)1(31121=--++--n a a a n n 证明:方程0)12cos(3cos cos )(21=-+++=x n a x a x a x f n 在区间2π,0(中至少有一个根.【证明】构造辅助函数x n n a x a x a x F n )12sin(123sin 3sin )(21--+++= 则可见0)2π()0(==F F .对F 在区间]2π,0[上用Rolle 定理,就知道)()(x f x F ='在区间)2π,0(中有零点.2.设0≠c ,证明:方程0345=+++c bx ax x 至少有两个根不是实根.【证明】设c bx ax x x f +++=345)(,那么22234)345(345)(x b ax x bx ax x x f ++=++='若03452=++b ax x 有两个相同实根,那么0≥'f ,此时f 严格单调增加,故方程只有一个实根,还有四个根不是实根;若03452=++b ax x 无实根,那么f 严格单调增加,同上;若03452=++b ax x 有两不同实根21x x <,那么f 在),(1x -∞,),(2+∞x 上严格单调增加,在),(21x x 上严格单调减少,此时方程至多有3个实根,还有两个根不是实根.3.设0≠a ,证明:方程n n na x a x 222)(+=+只有一个实根0=x .【证明】设n n na x a xx f 222)()(+-+=,那么])([2)(1212--+-='n n a x x n x f 当0>a 时,0)(<'x f ;当0<a 时,0)(>'x f .总之f 是严格单调的,故至多有一个实根,而0=x 是它的一个实根,所以方程只有一个实根0=x .4.设f 在],[b a 上连续,在),(b a 内可微,且满足条件0)()(>b f a f ,0)2()(<+ba f a f 证明:对每个实数k ,在),(b a 内存在点ξ,使成立0)()(=-'ξkf ξf .【证明】因为0)2()(<+b a f a f ,0)2()(<+b a f b f ,所以f 在)2,(b a a +和),2(b ba +上分别存在一个零点1x 与2x .构造辅助函数)(e )(x f x g kx-=,那么0)()(21==x g x g ,于是存在),(21x x ξ∈使得有0)(='ξg ,0)]()([e =-'-ξkf ξf ξk ,故0)()(=-'ξkf ξf .5.设∑==nk xλkk c x f 1e)(,其中n λλ,,1 为互异实数,n c c ,,1 不同时为0.证明:f 的零点个数小于n .【证明】用数学归纳法.当1=n 时xλc x f 1e )(1=,而01≠c ,此时f 没有零点;假设当n 时命题成立;当1+n 时,不妨令01≠+n c ,那么e )(0eee)(11)(11)(11111==⇒===∑∑∑+=-+=-+=n k x λλk n k xλλk xλn k xλk k k k c x g c c x f 而∑+=--='12)(11e )()(n k x λλk kk c λλx g 的零点个数至多有1-n 个,所以g 的零点个数至多有n 个,即f 的零点个数至多有n 个.根据归纳原理知命题成立.7.设f 在],[b a 上连续,在),(b a 内可微,但不是线性函数,证明:存在),(,b a ηξ∈,使成立)()()()(ηf ab a f b f ξf '>-->'【证明】构造辅助函数)()()()()()(a f a x ab a f b f x f x g -----=因为f 不是线性函数,所以g 不恒为零,而0)()(==b g a g ,所以存在),(b a c ∈使得0)(≠c g ,不妨设为0)(>c g .于是存在),(,b a ηξ∈,使成立0)()()(>'=--ξg a c a g c g ,0)()()(<'=--ηg bc b g c g 即有)()()()(ηf ab a f b f ξf '>-->'8.设f 在],[b a 上二阶可微,0)()(==b f a f ,且在某点),(b a c ∈处有0)(>c f ,证明:存在),(b a ξ∈,使0)(<''ξf .【证明】利用Lagrange 中值定理,存在),(1c a ξ∈与),(2b c ξ∈使得0)()()(1>'=--ξf a c a f c f ,0)()()(2<'=--ξf cb c f b f 再次利用此定理,存在),(21ξξξ∈使得)()()(1212<''=-'-'ξf ξξξf ξf 9.利用例题7.1.3的方法(或其他方法)解决以下问题:(1)设f 在],[b a 上三阶可微,且0)()()(=='=b f a f a f ,证明:对每个],[b a x ∈,存在),(b a ξ∈,使成立)()(!3)()(2b x a x ξf x f --'''=【证明】当),(b a x ∈时构造辅助函数)()()()()()()(22t f b t a t b x a x x f t g -----=那么有0)()()(===x g b g a g ,于是存在b ξx ξa <<<<21使得0)()(21='='ξg ξg ,又)())](()(2[)()()()(2t f a t a t b t b x a x x f t g '---+---='所以0)(='a g ,于是存在2211ξηξηa <<<<使得0)()(21=''=''ηg ηg ,最后存在21ηξη<<使得)()(3)()(0)()()()(60)(22b x a x ξf x f ξf b x a x x f ξg --'''=⇒='''---⇒='''当a x =或b x =时任取),(b a ξ∈等式都成立.(2)设f 在]1,0[上五阶可微,且0)1()1()1()32(31(=''='===f f f f f ,证明:对每个]1,0[∈x ,存在)1,0(∈ξ,使成立3)5()1)(32)(31(!5)()(---=x x x ξf x f 【证明】当}32,31{\)1,0[∈x 时构造辅助函数)()1)(3231()132)(31()()(33t f t t t x x x x f t g -------=重复(1)中的操作,最终存在)1,0(∈ξ使等式成立.当31=x 或32=x 或1=x 时任取),(b a ξ∈等式都成立.(3)设f 在],[b a 上三阶可微,证明:存在),(b a ξ∈,使成立)()(121)]()()[(21)()(3ξf a b b f a f a b a f b f '''--'+'-+=【证明】【法一】设2a b c +=,2a b h -=,待证等式化为)(32)]()([)()(3ξf x h c f h c f h h c f h c f '''-+'+-'+-=+令K x h c f h c f h h c f h c f 332)]()([)()(-+'+-'+-=+构造辅助函数K x x c f x c f x x c f x c f x g 332)]()([)()()(++'+-'---+=那么0)()0(==h g g ,利用Rolle 中值定理,存在),0(1h x ∈使得0)(1='x g ,而)(]2)()([)(x xh xK x c f x c f x x g =++''--''='所以0)()0(1==x h h ,于是存在),0(12x x ∈使得0)(2='x h ,而Kx c f x c f x h 2)()()(++'''--'''-='所以有)()(2)()(222ξf K ξf x c f x c f K '''=⇒'''=+'''+-'''=【法二】考虑函数)]()()[(21)()()(a f x f a x a f x f x F '+'---=,3)()(a x x G -=那么0)()()()(='=='=a G a G a F a F ,连续运用Cauchy 中值定理,知)(121)()()()()()()()()()()()()()(ξf ξG ξF a G c G a F c F c G c F a G b G a F b F b G b F '''-=''''='-''-'=''=--=其中b c ξa <<<.(4)设f 在],[b a 上二阶可微,证明:对每个),(b a c ∈,有),(b a ξ∈,使成立))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''【证明】构造辅助函数)())(())()(())(())()(())(())()(()(x f b c a c b x a x c f a b c b a x c x b f c a b a c x b x a f x g -----+----+----=那么有0)()()(===c g b g a g ,于是存在c ξb ξa <<<<21使得0)()(21='='ξg ξg ,进而知存在),(21ξξξ∈使得0)(=''ξg ,即))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''10.设b a <<0,f 在],[b a 上可微,证明:存在),(b a ξ∈,使成立)()()()(1ξf ξξf b f a f b a b a '-=-【证明】利用Cauchy 中值定理,知存在),(b a ξ∈,使成立)()(1)()(11)()()()()()(122ξf ξξf ξξξf ξf ξa b a a f b b f b a a bf b af b f a f b a b a '-=--'=--=--=-16.设f 在]2,0[上二阶可微,且1)(≤x f ,1)(≤''x f ,证明:2)(≤'x f .【证明】写出21))((21))(()()0(x ξf x x f x f f -''+-'+=22)2)((21)2)(()()2(x ξf x x f x f f -''+-'+=其中2021≤≤≤≤ξx ξ.两式相减得])()2)(([21)(2)0()2(2122x ξf x ξf x f f f ''--''+'=-所以2122)()2)((21)0()2()(2x ξf x ξf f f x f ''--''+-≤'])2[(21)0()2(22x x f f +-++≤44212=⨯+≤故2)(≤'x f 18.设当],0[a x ∈时有M x f ≤'')(.又已知f 在),0(a 中取到最大值.证明:Ma a f f ≤'+')()0(.【证明】设f 在点),0(a b ∈处取得最大值,由Fermat 定理知0)(='b f .写出))(()()(1a b ξf a f b f -''+'='bξf f b f )()0()(2''+'='其中),(1a b ξ∈,),0(2b ξ∈.由此有估计Mab ξf b a ξf a f f ≤''+-''='+')()()()()0(21第二组参考题5.设f 在],[b a 上可微,)()(b f a f '=',证明:存在),(b a ξ∈,使成立aξa f ξf ξf --=')()()(【证明】考虑函数x a f x f x g )()()('-=,那么0)()(='='b g a g ,待证式为aξa g ξg ξg --=')()()(.考虑辅助函数⎪⎩⎪⎨⎧=≤<--=ax b x a ax a g x g x G ,0,)()()(若)()(a g b g =,那么有0)()(==a G b G ,于是存在),(b a ξ∈使得0)(='ξG ,即aξa g ξg ξg a ξa g ξg a ξξg --='⇒=-+--')()()(0)()()())((2若)()(a g b g >,那么0)()()()()()())(()(22<--=-+--'='a b b g a g a b a g b g a b b g b G 以及0)(>b G ,所以在b x =的某个左邻域],[b δb -内有点c 使得0)()(>>b G c G ,从而)(x G 在),(b a 内取到最大值,故存在),(b a ξ∈使得0)(='ξG .若)()(a g b g <,同理.6.设f 在],[b a 上连续,在),(b a 内可微,又有),(b a c ∈使成立0)(='c f ,证明:存在),(b a ξ∈,满足ab a f ξf ξf --=')()()(【证明】构造辅助函数ab x a f x f x g ---=e)]()([)(那么ab xa b a f x f x f x g -----'='e ])()()([)(.如果0)(='c g ,那么取c ξ=即可.如果0)(>'c g ,那么)()(a f c f <,于是0)(<c g ,所以存在),(0c a x ∈使得0)()()(0<--='ac a g c g x g ,由达布定理知存在),(0c x ξ∈使得0)(='ξg .如果0)(<'c g ,同理.7.设f 在],[b a 上连续,在),(b a 上可微,0)(=a f ,0)(>x f ,],(b a x ∈∀,证明:对每个0>α,存在),(,21b a x x ∈,使成立)()()()(2211x f x f αx f x f '='【证明】只需考虑1>α的情形.构造辅助函数)(ln )(x f x F =,],(b a x ∈,则-∞=+→)(lim x F ax .记λb F =)(,可取),(b a c ∈使得1)(-=λc F ,由Lagrange 中值定理知)()()(11ξF cb c F b F c b '=--=-,),(1b c ξ∈再取),(c a d ∈使得cb ab αλd F ---=)(,由Lagrange 中值定理知)(1)()()(12ξF αcb αc b a b a b αd b d F b F ξF '>-=--->--=',),(2d a ξ∈由达布定理可知存在),(3b a ξ∈使得)()(13ξF αξF '='.8.设f 在),(+∞-∞上二阶连续可微,1)(≤x f ,且有4)]0([)]0([22='+f f ,证明:存在ξ,使成立0)()(=''+ξf ξf .【证明】在]2,0[上利用Lagrange 中值定理,知存在)2,0(1∈x 使得1)(2)0()2()(11≤'⇒-='x f f f x f 同理存在)0,2(2-∈x 使得1)(2)0()2()(22≤'⇒---='x f f f x f 构造辅助函数22)]([)]([)(x f x f x h '+=,]2,2[-∈x ,于是2)(1≤x h ,2)(2≤x h ,4)0(=h ,所以h 在)2,2(-∈ξ处取到最大值,于是0)(='ξh ,即有)()]()([2='''+ξf ξf ξf 由于3)]([4)]([22≥-≥'ξf ξf ,所以0)(≠'ξf ,故0)()(=''+ξf ξf .9.设f 在),(+∞-∞上二阶连续可微,且对所有R ,∈h x 成立。
习题课讲义(级数)
第九讲:无穷级数一、 常数项级数 1、 概念与性质:(1) 数列{}n u 中的各项用加号连接的形式:∑∞==++++121n nn uu u u 称为无穷项数项级数,第n 项称为一般项(通项)。
数列∑==ni nn uS 1称为级数∑∞=1n nu的前n 项之和(部分和),若S S n n =∞→lim ,则称级数∑∞=1n nu的和为S ,级数∑∞=1n nu收敛;若n n S ∞→lim 不存在,则称级数∑∞=1n nu发散。
若级数∑∞=1n nu收敛,n n S S r -=称为级数∑∞=1n nu的余项,0lim =∞→n n r 。
例1:判定下列级数的敛散性: ①∑∞=⎪⎭⎫⎝⎛+111ln n n : 解:()n n n u n ln 1ln 11ln -+=⎪⎭⎫⎝⎛+=, ()()∞→+=-+++-+-=n n n S n 1ln ln 1ln 2ln 3ln 1ln 2ln ()∞→n ,故∑∞=⎪⎭⎫ ⎝⎛+111ln n n 发散; ②()∑∞=+1!1n n n: 解:()!11!1+-=n n u n ,()()1!111!11!1!31!21!211→+-=+-++-+-=n n n S n ()∞→n ,故()∑∞=+1!1n n n收敛; ③调和级数:∑∞=11n n ; 解:由()n n n n ln 1ln 11ln 1-+=⎪⎭⎫⎝⎛+>,()()∞→+=-+++-+->+++=1ln ln 1ln 2ln 3ln 1ln 2ln 1211n n n nS n ()∞→n ,故级数∑∞=11n n发散。
④几何级数:⎪⎩⎪⎨⎧≥<-⇒∑∞=-1,,1,111q q q aaqn n 发散⑤-p 级数:∑∞=11n pn ()0>p ⎩⎨⎧≤>⇒11p ,p ,发散收敛 (2) 性质:ⅰ、设α、β为常数,若∑∞=1n nu、∑∞=1n nv收敛,则()∑∞=+1n n nv uβα也收敛,且()∑∞=+1n n nv uβα∑∑∞=∞=+=11n n n n v u βα;推论:常数0≠k ,∑∞=1n nku与∑∞=1n nu同敛散;比如:证明级数∑∞=12n n 发散:因为∑∞=12n n 与∑∞=11n n 同敛散,又∑∞=11n n 发散,故级数∑∞=12n n 发散;注意:∑∞=12n n ∑∞=≠112n n,≠⎪⎭⎫⎝⎛+∑∞=1211n n n ∑∑∞=∞=+11211n n nn ; ⅱ、改变级数的有限项,不会改变级数的敛散性; 推论:∑∞=1n nu与∑∞+=1N n nu同敛散;ⅲ、收敛级数“加括号”后所得的级数仍收敛于原来的和;(“加括号”后所得的级数发散,则原级数必发散) 比如:已知()8π121212=-∑∞=k k ,求∑∞=121n n: 解:()()()∑∑∑∑∞=∞=∞=∞=+-=⎥⎦⎤⎢⎣⎡+-=121212212141121211211k k k n k k k k n , 故()6834121341221212ππ=⨯=-=∑∑∞=∞=k n k n;ⅳ、若级数∑∞=1n nu收敛,则0lim =∞→n n u (若0lim ≠∞→n n u ,则∑∞=1n nu发散)比如:由01lim ≠=∞→nn n ,则∑∞=11n nn发散。
人教版五年级上册数学7.4练习二十四课件
13 * 围棋盘的最外层每边能放19枚棋子。最外层一 共可以摆放多少枚棋子?
把棋子看作树,就是 是封闭图形的植树问 题:总棋子数=间隔数。
(19−1)×4= 18×4= 72(枚) 答:一共可以摆 72 枚棋子。
这道题还有其他解题思路吗?
…… ……
19枚
……
上下两边各有19枚棋子,
左右两边各有17枚棋子。
答:一共可以摆 72 枚棋子。
变式训练
1. 有一条长1800m的公路,在公路的一侧从头到尾每 隔6m栽一棵树,一共需要准备多少棵树苗?
棵数 = 间隔数+ 1 1800÷6=300(个) 300+1=301(棵)
答:一共需要准备301棵树苗。
变式训练
2. 一根木料锯成3段要8分钟。如果每锯一段所用 的时间相同,那么锯成7段需要花多少分钟?
两头种 棵数=间隔数+1 两头不种 棵数=间隔数-1 一头种 棵数=间隔数 封闭图形 棵数=间隔数
4 园林工人沿一条笔直的公路一侧植树,每隔6 m 种一棵,一共种了36棵。从第一棵到最后一棵的 距离有多远? 间隔数=植数棵树-1, 总路长=植株间距×间隔数。
间隔数:36-1 = 35(个)
总路长:35×6 = 210(米)
答:从第一棵到最后一棵的距离有210米远。
5 一条走廊长 32 m,每隔 4 m 摆放一盆植物(两端 不放)。一共要放多少盆植物?
两端都栽的植树问题。先要求出 跑道的长,再求改动后的间距。
跑道的长度:2×(51 − 1 )= 100(米 )
间距: 100÷(26 − 1 )= 4(米 ) 答:间隔应改为 4米。
9 解下列方程。
16+x = 71 解:16+x-16 = 71-16
理论力学课第一次习题课讲义北航
第一次习题课讲义第一次习题课分为两部份内容,第一部份是两个作业题,用意通过它们讲述作业中所发觉和需要解决的问题,第二部份是六个习题,用意通过它们介绍解题的思路、方式和解题步骤。
而整个习题课围绕“关联”的概念,讲述已知运动信息与待求运动信息间的关联,并有次形成解题的契机,稳扎稳打,直至取得最终结果。
下面即是本次习题课的要紧内容。
不管是在理论力学仍是数学,抑或是物理等其它学科中,碰着一个问题,第一步是分析问题,分析问题性质,找出待求量与已知信息间的关联,然后依照不同的问题性质,用相应的方式予以解决。
在而事实上任何问题的分析方式也都大同小异,重要的在于总结,对不同类的问题进行归纳整理,使相应问题的基础和方式系统化、层次化。
第一个题是第一次作业的1-15,从作业能够看出它的困难在于计算的繁复,利用解析法,在极坐标系下,最后速度大小的计算是两个两项和的平方和,而加速度却是两个四项和的平方和。
1-15杆AB长为L,M在AB杆上,AM长为b。
A端以均速v A沿直线导轨CD运动,杆AB始终穿过套筒O,套筒与导轨相距为a。
取O为极点,试用极坐标 ,r表示M点的速度和加速度。
分析:此题要求解的是M点的运动信息,罢了知的是点A的运动信息,那咱们的目的确实是要设法成立这两点之间的关联,而且利用这一关联求解出M的速度及其加速度。
而且此题明确了解题方式,那确实是极坐标法,因此问题确实是一个在极坐标方式中怎么描述点的运动的问题。
解:如下图,对A 点:()()()A A t t t ρρ=r e ……………A 点的极坐标表达式,概念式罢了对M 点:()()()M M t t t ρρ=r e ………….M 点的极坐标表达式,概念式罢了同时A 点和M 点在空间位置上的关系为:M A b ρρ=-……………………………点M 与点A 之间的关联从而有 ()()()M A t t b t ρ=-r r e 于是点M 的速度为()()sin (cos )M A A A t t b v v b ϕρϕϕϕϕϕ=-=+-v v e e e 这其实确实是第二章所讲的基点法于是点M 的加速度为22()()-()-()0M A M A t t b b t b b t ρϕρϕϕϕϕϕ⎫=+⇒=⎬=⎭a a e e a e e a…….…大小只是两项的平方和再求ϕϕ, 由几何关系可知:()cos A at ρϕ=ϕϕϕϕρsin cos sin )(2A A v a t =-=⇒av A ϕϕ2cos =再对ϕ求一次导: 232cos sin 2sin cos 2a v a v A A ϕϕϕϕϕϕ-=-=代入,M M v a 经运算可得:2224sin cos A M v a r a ϕϕ=+v 2322cos 13sin A Mbv aϕϕ=+a第二个题是第二次作业中的补充题2,重点在于分析定点运动中瞬时转动轴的确信及其角加速度的计算。
讲义教案(带练习题)
-讲义教案(带练习题)1.认识本课的生字、生词,并学会运用。
2.有感情地朗读课文,理解燕子的活泼可爱和春天生气勃勃的景象。
3.在反复朗读中,理解课文内容,通过多种学习活动,让学生学会交流合作。
4.培养热爱大自然、热爱春天的思想感情。
谜题:小小姑娘穿花衣,带着剪刀天上飞。
(打一动物)谜题:白衬衣,黑外套,尾巴尖尖像剪刀,从早到忙不停,捉来虫子喂宝宝。
(打一动物)谜题:有位小姐黑又黑,来时天公放春雷,故居就在屋檐下,为增春色满天飞。
(打一动物)一、文学知识 1.作者简介郑振铎,1898 年 12 月 19 日生于浙江温州,原籍福建长乐。
中国现代杰出的爱国主义者和社会活动家、作家、诗人、学者、文学评论家、文学史家、翻译家、艺术史家,也是著名的家,训诂家。
1952 年加入中国作家协会。
1957 年,他编集出版了《中国文学研究》三册。
1958 年 10 月 17 日,因飞机突然失事遇难殉职,年仅60 岁。
2.背景介绍燕子是雀形目燕科 74 种鸟类的统称。
主要以蚊、蝇等昆虫为主食,几个月就能吃掉 25万只害虫,是众所周知的益鸟。
在树洞或缝中营巢,或在沙岸上钻穴,或在城乡把泥黏在楼道、房顶、屋檐等的墙上或突出部上为巢。
二、重点字词读音与意思第 1 讲:燕子燕 yàn(燕子)聚 jù(聚拢)增zēng(增加)掠 lüè(掠夺)稻 dào(稻田)尖jiān(尖锐)偶ǒu (偶像)沾zhān(沾水)圈qūan(圆圈)漾 yàng(荡漾)倦 juàn(厌倦)符 fú(符号)演yǎn(表演)赞 zàn(赞美)【俊俏】俏:样子好看。
俊俏就是相貌好看的意思。
往往指清秀灵巧的相貌。
本课指燕子的翅膀灵巧、好看,给人一种美感。
【凑成】聚集成,许多事物合在一起。
数学分析习题课讲义
The author holds the copyright of this lecture notes. Any person(s) intending to copy a part or whole of the materials in the notes in a proposed publication must seek copyright release from the author.
2
Lecture Notes at Fudan
Hint. a) f (0) ∈ {0, 1}, and f (0) = 0 ⇒ f ≡ 0. b) Now, we assume f (0) = 1. Then, f (−n) = f (n)∀n ∈ Z, and f (2m) = 2f (m)2 − 1, ∀m ∈ Z. If there is an integer k such that |f (k )| > 1, then |f (2k )| = |2f (k )2 − 1| = (f (k )2 − 1) + f (k )2 > |f (k )| > 1, and so we have an increasing sequence of integer |f (k )| < |f (2k )| < |f (4k )| < · · · < |f (2l k )| < · · · . But it contradict that f is a bounded function with all values in Z. Therefore f (Z) ⊂ {−1, 0, 1}. c) Let f (1) = cos θ with θ ∈ {π, by induction and the formula 2 cos α cos β = cos(α + β ) + cos(α − β ). Example 1.4. Define the function G : N ∪ {0} → Z by G(0) = 0 ; G(n) = n − G(G(n − 1)), n ∈ N. To show that G(n) = [ Proof. 1. Actually, we have 1 ≤ G(n) ≤ n and G(n − 1) ≤ G(n) ∀n ≥ 1. At first G(1) = 1, G(2) = 1.By induction, we assume 1 ≤ G(k ) ≤ k and G(k − 1) ≤ G(k ) ∀1 ≤ k ≤ n − 1. Then, we have 1 ≤ G(n − 1) ≤ n − 1, and so G(G(n − 1)) ≤ G(n − 1) ≤ n − 1, 1 = n − (n − 1) ≤ G(n) = n − G(G(n)) ≤ n − 1 < n, G(n) − G(n − 1) = 1 − [G(G(n − 1)) − G(G(n − 2))] ≥ 0 since 1 ≤ G(n − 2) ≤ G(n − 1) ≤ n − 1. 2. By induction, we can show G(n + 1) − G(n) = 1 or 0 ∀n. 3. Define F (n) = [α(n + 1)] where α =
初等概率论习题课讲义
初等概率论习题课讲义专题一. 一些组合计数模式在古典概率问题中的应用.1.多组组合模式 有n 个不同元素,要把它们分为k 个不同的组,使得各组依次有121,,...,()kk i i n n n n n ==∑个元素,则一共有12!!!...!k n n n n 种不同分法.2.不尽相异元素的排列模式 有n 个元素,属于k 个不同的类,同类元素之间不可辨认,各类元素分别有121,,...,()kk i i n n n n n ==∑个,要把它们排成一列,则一共有12!!!...!k n n n n 种不同排法.3.分球入盒问题第一类 有n 个不同的小球,要把它们分入k 个不同的盒子,使得各盒依次有121,,...,()kk i i n n n n n ==∑个小球,则一共有多少种不同分法?(注意此问题的两个特征:小球不同,盒子也不同)(12!!!...!k n n n n )第二类 有n 个相同的小球,要把它们分入k 个不同的盒子,一共有多少种不同分法?(1) 允许空盒出现;(1nn k C +-) (2) 不允许空盒出现.(11k n C --)第三类 有n 个不同的小球,要把它们分入k 个相同的盒子,使得第i k 个盒子有i n 个小球,11,mmii i i i kk n k n ====∑∑,则一共有多少种不同分法?(11!(!)(!)imk ii mii n n k ==∏∏)4.大间距组合问题 设从数集{}1,2,...,n 中选出k 个不同的数11...k j j n ≤≤≤≤, 使之满足条件1(2,3,...,)i i j j m i k -->=,m 为正整数,且(1)k m n -<,求出不同的取法数目.((1)kn k m C --)5.相异元素的圆排列和项链数 将n 个不同元素不分首尾排成一圈,称为n 个相异元素的圆排列,则其排列总数为多少?((1)!n -)项链数:将n 粒不同珠子用线串成一副项链,则得到的不同项链数为多少? (n=1或2时为1,n>2时为(1)!n -/2)6.有限集合计数的容斥原理: 1111...(1)nnnnk ki j k k k k i j nA AA A A ===≤<≤⋃=-⋂++-⋂∑∑.(注意和概率论中加法公式进行类比和区分) 习题:1.设有 10只猫和4头猪随机地站成一行,求每两头猪之间都至少间隔两只猫的概率.2.将n 条手杖都截成一长一短两部分,然后将所得的2n 个小段随机分成n 对,每对连接成一条新的手杖,求以下事件的概率:(1)这2n 个小段全部被重新组成原来的手杖; (2)均为长的部分和短的部分连接.3.找零钱问题:设有一台自动售票机销售地铁车票,票价为5元。
高等代数(1)课程教学大纲
高等代数(1)课程教学大纲第一部分前言一、课程基本信息1.课程类别:专业基础课2.开课单位:数学与财经系3.适用专业:数学与应用数学专业4.备选教材:《高等代数(第三版)》,北京大学数学系几何与代数教研室前代数组编.高等教育出版社,2003.二、课程性质和目标高等代数是数学与应用数学专业的一门重要基础课程。
本课程的主要内容是多项式理论和线性代数理论。
通过本课程的教学,使学生掌握代数基本理论和基本方法,培养学生代数方面的科学的思维、抽象的思维,逻辑推理、提高运算以及解决实际应用的能力,为进一步学习专业后续课程奠定坚实的代数基础。
本课程的教学目的是使学生获得一元多项式,行列式,线性方程组,矩阵等方面的系统知识,为进一步学习近世代数,复变函数、等后续课程打下坚实的基础,也为深入理解初等数学、指导中学数学教学提供了高等的专业知识与重要的方法论。
通过本门课程系统的学习与严格的训练,全面掌握高等代数的基本理论知识;培养抽象的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用代数学的理论知识解决实际应用问题的能力。
三、课程学时与学分教学时数:96学时,其中理论教学81学时,实践教学15学时学分数: 6 学分教学时数具体分配:第二部分教学内容及其要求第一章多项式1.教学目标:要求学生理解数域的概念;掌握一元多项式的概念、运算及基本性质;掌握带余除法与整除性的关系,会进行相关运算;会求多项式的最大公因式;理解不可约多项式的概念,掌握求重因式的方法;理解多项式在不同的数域的因式分解形式;掌握Eisenstein判别法,会求有理系数多项式的根。
2.教学重点:整除概念,带余除法及整除的性质,最大公因式、互素、辗转相除法、不可约多项式概念、性质,k重因式与k重根的关系。
3.教学难点:因式分解及唯一性定理,多项式根的理论,复(实)系数多项式分解定理,本原多项式,Eisenstein 判别法。
4.教学时数5.教学内容纲要:第一节数域一、代数研究的基本问题。
谢惠民数学分析习题课讲义部分题目解答
数学分析习题课讲义问题解答第一章引论1.3.2练习题1.关于Bernoulli 不等式的推广:(1)证明:当12-≤≤-h 时Bernoulli 不等式nh h n+≥+1)1(仍成立;(2)证明:当0≥h 时成立不等式2)1()1(2h n n h n-≥+,并推广之;(3)证明:若),,2,1(1n i a i =->且同号,则成立不等式∑∏==+≥+ni in i iaa 111)1(.2.阶乘!n 在数学分析以及其他课程中经常出现,以下是几个有关的不等式,它们都可以从平均不等式得到:(1)证明:当1>n 时成立nn n )21(!+<;【证明】利用平均值不等式,有n nk nk kk n ∏∑==≥111所以nn n )21(!+≤因为1>n ,所以取等号的条件n === 21不满足,故nn n 21(!+<.(2)利用)1(]2)1)[(1()!(2n n n n ⋅⋅-⋅= 证明:当1>n 时成立nn n 62(!+<;【证明】利用平均值不等式,有n nk nk k n k k n k n ∏∑==-+≥-+11)1()1(1所以nn n n n n 62(]6)2)(1([!+<++≤(3)比较(1)和(2)中两个不等式的优劣,并说明原因;(4)证明:对任意实数r 成立nn k r n rk n n )(1)!(1∑=≤.【证明】利用平均值不等式,有n nk rn k rkk n ∏∑==≥111所以nn k r n rk n n )(1)!(1∑=≤3.证明几何平均值-调和平均值不等式:若0>k a ,n k ,,2,1 =,则有∑∏==≥nk knnk k a n a 1111)(【证明】利用平均值不等式,有n nk kn k ka a n ∏∑==≥11111所以∑∏==≥nk knnk k a n a 1111)(4.证明:当c b a ,,为非负数时成立333cb a ca bc ab abc ++≤++≤.【证明】由于cabc ab c b a a c c b b a ++≥++⇒≥-+-+-2222220)()()(所以33)(3)(2cabc ab cb a ca bc ab c b a ++≥++⇒++≥++利用平均值不等式,有323)(33abc ca bc ab ca bc ab =⋅⋅≥++所以33abc ca bc ab ≥++5.证明下列不等式:(1)b a b a -≥-和b a b a -≥-;【证明】利用三点不等式,有ab b a b b a =+-≥+-)(由对称性知ba b a ≥+-所以ba ab b a b a -=--≥-),max((2)∑∑∑===≤≤-n k k nk knk ka aaa 1121;有问:左边可否为∑=-nk k a a 21?【证明】利用(1)的结论,有∑∑∑====-≤-nk knk knk kaa aaa 21111反复利用三点不等式,有∑∑∑∑∑=====≤≤++≤+≤+=nk knk knk knk k nk ka aa a aa a a a132121211再利用这个结论,有∑∑∑===≤≤-nk knk knk ka aaa 2211(3)bb aa ba b a +++≤+++111;【证明】显然函数x x x x f +-=+=1111)(是单调增加的,所以有bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111(4)nnnna b a a b a -+≤-+)()(.【证明】利用三点不等式,有nnn n n n n n n b a b a b a a a b a a a b a )()()()(+≤+=+≤+-+=+-+第二章数列极限2.7.3参考题第一组参考题1.设}{12-k a ,}{2k a 和}{3k a 都收敛,证明:}{n a 收敛.【证明】设}{12-k a ,}{2k a 和}{3k a 分别收敛于数c b a ,,.取}{12-k a 的一个子列}{36-k a ,它收敛于数a ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c a =.取}{2k a 的一个子列}{6k a ,它收敛于数b ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c b =.于是有b a =.对任给的0>ε,存在正整数1N 与2N ,当1N n >时有εa a n <--12,当2N n >时有εa a n <-2.现取),max(221N N N =,当N n >时有εa a n <-,故}{n a 收敛于a .2.设}{n a 有界,且满足条件2+≤n n a a ,3+≤n n a a ,+∈N n ,证明:}{n a 收敛.【证明】由条件2+≤n n a a 知}{12-k a 与}{2k a 都是单调增加的数列,又有界,故都收敛.由条件3+≤n n a a 知}{3k a 单调增加,又有界,故收敛.利用1的结论知}{n a 收敛.3.设}{1++n n a a 和}{2++n n a a 都收敛,证明:}{n a 收敛.【证明】设}{1++n n a a 和}{2++n n a a 分别收敛于数b a ,.那么有ab a a a a a a n n n n n n n n -=+-+=-++∞→++∞→)]()[(lim )(lim 1212ba a a a a a a n n n n n n n n -=+-+=-+++∞→+∞→)]()[(lim )(lim 2211进而有)]()[(lim )(lim 1122=-+-=-+++∞→+∞→n n n n n n n n a a a a a a 故2)]()[(lim 21lim 22a a a a a a n n n n n n n =--+=++∞→∞→5.设∑=-+=nk n nka 12)11(,+∈N n ,计算n n a ∞→lim .【解】由于∑∑∑∑====++≤++=-+≤++nk n k n k n k nknn k n k n k n k n n 122122121221111111)11(111而2121lim lim 12=+=∞→=∞→∑n n n k n nk n 211111lim2=++∞→n n ,21111lim 2=++∞→nnn 故41lim =∞→n n a 7.设p a a a ,,,10 是1+p 个给定的数,且满足条件010=+++p a a a .求)1(lim 10p n a n a n a p n +++++∞→ 【解】)1(lim 10p n a n a n a p n +++++∞→ 1)[(lim 121p n a n a n a a a p p n +++++----=∞→()1([lim 1n p n a n n a p n -+++-+=∞→ 01(lim 1=++++++=∞→np n pa n n a p n 8.证明:当10<<k 时,0])1[(lim =-+∞→kkn n n 【证明】(这里用到后面将要学习的等价无穷小知识)0lim ]1)11[(lim ])1[(lim 1==-+=-+-∞→∞→∞→k n k k n k k n n k nn n n 12.证明:nnn n n)2(e !)e(<<.【证明】利用数列})11{(nn+单调增加趋于e ,有!)e(!!)1()11()211()111(e 21n nn n n n n n n n n n<⇒>+=+++> 利用1.3.2中题2的结论:nn n )21(!+<,有nn n n n n n n n n n n n )2(e !!2)1()11(e <⇒>+=+>14.设n na n 2131211-++++= ,+∈N n ,证明:}{n a 收敛.【证明】一方面,有01211212111<++-+=++-+=-+nn n n n n a a n n 另一方面,有n n n a n 2124323221-++++++++> n n n 21(2)34(223(21--+++-+-+= 221212221->-++-=n n 根据单调有界定理知}{n a 收敛.15.设已知存在极限na a a n n +++∞→ 21lim ,证明:0lim =∞→n an n .【证明】设T T na a a n n→=+++ 21,∞→n ,于是1)1(---=n n n T n nT a ,2≥n ,由此得0])11([lim lim1=-=--=-∞→∞→T T T nT n a n n n n n 17.设对每个n 有1<n x 和41)1(1≥-+n n x x ,证明}{n a 收敛,并求其极限.【证明】显然有0>n x ,2≥n .所以有1211)21()1(41+++≤⇒+-≤-≤n n n n n n x x x x x x 根据单调有界定理知}{n a 收敛,且可设收敛于数10≤≤A ,于是有41)1(≥-A A ,解得21=A .18.设b a =1,c a =2,在3≥n 时,221--+=n n n a a a ,证明}{n a 收敛,并求其极限.【证明】由于)(21211-----=-n n n n a a a a ,所以)(21()()21(21221b c a a a a n n n n --=--=----,进而有b bc a b c a n n n n +-----=+-++-+--=---)()21(1)21(1]21()21()21)[((11032 ,于是32lim c b a n n +=∞→.第二组参考题1.设n a n +++= 21,+∈N n ,证明:}{n a 收敛.【证明】利用不等式1111211+-=+-+-≤+-n n n n n ,+∈N n 以及221-≤-n n ,3≥n 有2213411231+≤≤+-+-++≤+-+-++≤ n n n n a n 又因为}{n a 是单调增加的数列,利用单调有界定理知}{n a 收敛.2.证明:对每个正整数n ,成立不等式n k n nk n 2e!1)11(0->+∑=.【证明】利用1.3.2中题1的结论:∑∏==+≥+ni in i iaa 111)1(,),,2,1(1n i a i =->且同号,当2≥n 时有∑∑∑===---++=-==+nk n k k n k k k n n n k n k n k n n k n C n 200)11()11(!111)!(!!11)11(∑∑==--++=----++>nk nk n k k k n k n k 22)2)1(1(!111111(!111 n k k n k nk n k nk 2e !1)!2(121!1020->--=∑∑∑===当1=n 时,2e22->显然成立.3.求极限)e !π2sin(lim n n n ∞→.【解】利用命题2.5.4,有1(π21!!(π2e !π2)11!!(π211(π200n N n k n n n k n n N nk n k +=+<<++=++∑∑==所以nn n n n n π2sin e)!π2sin(1π2sin<<+,4≥n 利用夹逼准则知π2)e !π2sin(lim =∞→n n n 4.记n S n 1211+++= ,+∈N n .用n K 表示使得n S k ≥的最小下标,求极限nn n K K 1lim +∞→.【解】由条件知n K K n S n n 1+≤≤与01lim=∞→nn K 因为γn S n n =-∞→)ln (lim 而nn n K n K K n K S K n n 1ln ln ln +-≤-≤-所以)ln (lim )ln (lim n n n n K n γK n -≥≥-∞→∞→于是γK n n n =-∞→)ln (lim 所以11)]ln 1()ln [(lim lnlim 11=+-+--=+∞→+∞→n n n nn n K n K n K K 故elim 1=+∞→nn n K K 5.设∑==nk k n n Cnx 02ln 1,+∈N n ,求n n x ∞→lim .【解】利用Stolz 定理,有220112)1(ln ln lim ln 1limlim n n C CCn x nk kn n k k n n nk k nn n n -+-==∑∑∑=+=+∞→=∞→∞→1211ln lim 12)ln (ln lim 01+-++=+-=∑∑=∞→=+∞→n kn n n C Cnk n nk k nk n n )12()32(11ln 22ln lim 01+-+-++--++=∑∑=+=∞→n n k n n k n n nk n k n 11ln 12ln (lim 2110∑∑==∞→-++--++=n k n k n k n n k n n 2112ln lim 21)12ln 12(ln lim 211=++=+++++=∞→=∞→∑n n n n n n n n n k n 6.将二项式系数⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n ,,1,0 的算术平均值和几何平均值分别记为n A 和n G .证明:(1)2lim =∞→n n n A ;(2)e lim =∞→n n n G .【证明】由于n nnA n n n n =⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+ 10)11(,所以有22lim 2lim lim ===∞→∞→∞→n n n nn nn n nn A 因为)!(!!k n k n k n -=⎪⎪⎭⎫ ⎝⎛,所以21)!!1!0()!(n n G n nn ⨯⨯⨯=+ ,所以有)!!2!1ln(2!ln )1(exp(lim ])!!2!1()!([lim lim 21212n n n n n n G n n n n n n n ⨯⨯⨯-+=⨯⨯⨯=∞→+∞→∞→ 12!ln )1ln(exp(lim )12)!1ln(2!ln )1()!1ln()2(exp(lim +-+=++-+-++=∞→∞→n n n n n n n n n n n n )21exp(212ln)1(exp(lim =+++=∞→n n n n 7.设∑==nk kn aA 1,+∈N n ,数列}{n A 收敛.又有一个单调增加的正数数列}{n p ,且为正无穷大量.证明:lim2211=+++∞→nnn n p a p a p a p【证明】利用Stolz 定理,有nn n n n n n n n p A A p A A p A p p a p a p a p )()(lim lim 1122112211-∞→∞→-++-+=+++ nnn n n n n p A p A p p A p p A p p +-++-+-=--∞→11232121)()()(lim 0lim lim lim )(lim11=+-=+--=∞→∞→∞→++∞→n n n n n n nn nn n n A A A p p A p p 8.设}{n a 满足1)(lim 12=∑=∞→ni i n n aa ,证明:13lim 3=∞→n n a n .【证明】令∑==ni in aS 12.因为1)(lim 12=∑=∞→ni i nn aa ,所以}{n a 不会恒为零,故}{n S 当n 足够大时是单调增加的正数列.若+∞=∞→n n S lim ,则01limlim 12==∑=∞→∞→ni i n n n a a ;若}{n S 收敛,则0lim 0lim 2=⇒=∞→∞→n n n n a a ;即总有0lim =∞→n n a .所以1lim )(lim lim 11211111==-=++∞→++++∞→+∞→n n n n n n n n n n n S a a a S a S a 以及+∞=∞→n n S lim ,故31)(1lim )1(lim lim )(lim lim 2121213313333=++=--+==⋅=+++∞→+∞→∞→∞→∞→n n n n n n n n n n n n n n n nn S S S S a S S n n S n S S a n na 所以13lim 3=∞→n n a n 12.设10<<λ,}{n a 收敛于a .证明:λa a λa λa λa n n n n n -=++++--∞→1)(lim 0221 【证明】令a a b n n -=,那么)]()()[(lim )(lim 010221a b λa b λa b a λa λa λa n n n n n n n n n ++++++=++++-∞→--∞→ λa b λb λb λλa b λb λb n n n n n n n n n n -++++=+++++++=-∞→∞→-∞→1)(lim )1(lim )(lim 0101 故只需要证明)(lim 01=+++-∞→b λb λb n n n n 存在正数M 使得M b n <恒成立.对任给的0>ε,存在正整数N ,当N n >时有εb n <.所以当N n >时有估计11101b λb λb λb λb b λb λb n N N n N N n n n n n n ++++++≤+++-+---- M λλελλn N n N n )()1(1++++++≤--- M λN ελN n -++-≤)1(11因为0lim =-∞→Nn n λ,所以存在正整数N N >1,当1N n >时有εMN λN n )1(1+<-,此时有估计ελb λb λb n n n )111(01+-≤+++- 故)(lim 01=+++-∞→b λb λb n n n n 17.令20≥y ,221-=-n n y y ,+∈N n .设nn y y y y y y S 10100111+++=.证明:24lim 200--=∞→y y S n n 【证明】令10-+=a a y ,1≥a .可归纳得出nna ay n 22-+=,+∈N n ,即12211++=n na a y n .当1=a ,即20=y 时有2≡n y ,于是24121212120012--=→+++=+y y S n n ,∞→n ,命题成立;当1>a 时,有)1111(111)1()1)(1(121211211022222222222210+++++----=--=+++=n n n n n n aa a a a a a a a a a a a a y y y n 于是a a a a a a a a a S n k k n nk n n n 1)1111(lim 1)1111(lim 1lim 2212220222=----=----=+++∞→=∞→∞→∑而aa a a a y y 12)()(2411200=--+=----.第三章实数系的基本定理第四章函数极限4.5.2参考题7.对一般的正整数n 计算极限30sin sin limxxn nx x -→.【解】31030)sin )1sin((sin lim sin sin lim x x x k kx x x n nx nk x x ∑=→→---=-31031021sin 2sin 2sin 4lim ]2cos )21[cos(2sin 2lim x xk x k x x x x k x n k x n k x ∑∑=→=→--=--=6)1()1(2121--=--=∑=n n k k n k 11.设函数f 在),0(+∞上单调增加,且有1)()2(lim =+∞→x f x f x .证明:对每个0>a ,成立1)()(lim =+∞→x f ax f x .【证明】当1>a 时,存在正整数k 使得k k a 221≤≤-,于是)2()(lim )2()()2()2()()2(lim )()(lim 112x f ax f x f ax f x f x f x f x f x f ax f k x k x x -+∞→-+∞→+∞→==)2()(lim )2()()2()2(lim )2()(lim 11x f ax f x f ax f x f x f x f ax f k x k k k x k x +∞→-+∞→-+∞→==由于f 单调增加,所以1)2()(1≥-x f ax f k ,1)2()(≤x f ax f k,所以有)()(lim1)()(limx f ax f x f ax f x x +∞→+∞→≤≤故1)()(lim=+∞→x f ax f x 当10<<a 时,利用上述结果,有1)((1lim )()(1lim )()(lim ===+∞→=+∞→+∞→t f atf ax f x f x f ax f t t ax x x 当1=a 时显然,故对每个0>a ,成立1)()(lim =+∞→x f ax f x .第五章连续函数第六章导数与微分6.1.4练习题6.2.4练习题6.3.4练习题6.4.2参考题第一组参考题1.利用导数的定义计算极限xx x x sin )sin 1()tan 1(lim 10100--+→.【解】利用导数的定义,有xx x x sin )sin 1()tan 1(lim 10100--+→x x x x x x x x sin 1)sin 1(lim sin tan tan 1)tan 1(lim 100100---+-+=→→20))1((1))1((010010='++⨯'+===x x x x 2.设231)(2++=x x x f ,计算)0()100(f ,要求相对误差不超过1%.【解】由于2111)2)(1(1)(+-+=++=x x x x x f 所以101101)100()2(!100)1(!100)(+-+=x x x f 所以)211(!100)0(101)100(-=f 取!100)0()100(≈f,则相对误差为01.0121211(!100)211(!100!100101101101<-=---.3.设f 在点a 处可导,0)(≠a f .计算n n a f n a f ])()1([lim +∞→.【解】)()1(ln exp(lim ])()1([lim a f n a f n a f n a f n n n +=+∞→∞→由于)()(exp(1)()1()(1exp(lim ))()1(ln exp(lim a f a f xa f x a f a f a f x a f x x x '=-+=++∞→+∞→利用Heine 归结原则,有))()(exp()()1([lim a f a f a f n a f n n '=+∞→5.设0)0(=f ,)0(f '存在.定义数列)()2(1(222nn f n f n f x n +++= ,+∈N n ,试求n n x ∞→lim .【解】由于xx f x f x f f x x )(lim 0)0()(lim)0(00→→=--=',所以对任给的0>ε,存在0>δ,当δx <<0时有])0([)(])0([εf x x f εf x +'<<-'取11[+=δN ,当N n >时有δnn<<20,所以有])0()[21(])0(21(222222εf nnn n x εf n n n n n +'+++<<-'+++ 而n n n n n n 2121222+=+++ 所以εf x n nn <'-+)0(12故2)0(lim )0(lim 2)]0(12[lim 0f x f x f x n n n n n n n n '=⇒'-='-+=∞→∞→∞→6.求下列数列极限:(1))sin 2sin 1(sinlim 222n nn n n +++∞→ ;【解】运用上题的结论,考虑函数x x f sin )(=,即得21)0(21)sin 2sin 1(sinlim 222='=+++∞→f n n n n n (2))]1()21)(11[(lim 222n nn n n +++∞→ .【解】运用上题的结论,考虑函数)1ln()(x x f +=,即得e ))0(21exp(1(2111[(lim 222='=+++∞→f n n n n n 7.设xx y -+=11,计算)()(x y n ,+∈N n .【解】由于x xx x y ---=---=1121)1(2,通过求导找规律直接可得2122121)()1(2!)!32()1(2!)!12()(--+----+--=n nn n n x n x n x y ,2≥n 以及xx y -+-='-121)1(238.设f 在R 上有任意阶导数,证明:对每个正整数n 成立)(1)(1)]1([)1()1(1n n n n n xf x x f x -+-=【证明】用数学归纳法,当1=n 时,右式='='-=)1(1])1([2xf x xf 左式;假设当n k =时成立)(1)(1)]1([)1()1(1k k k k k xf x x f x -+-=;当1+=n k 时有)1(11)1(11([)1()]1([)1(+-+++⋅-=-n n n n n n x f x x x f x ∑+=-+-+⎪⎪⎭⎫ ⎝⎛+-=10)1(1)(11([1)1(n k k n n k n x f x x k n })]1()[1()]1([{)1()(1)1(11n n n n n x f x n x f x x -+-+++⋅-=)1(1])1(1[)(1)(1xf x n x f x x n n n n +++-'⋅-=)1(1)]1(1)1(1[)(1)1(3)(2xf x n x f x x f x n x n n n n n n +++++--+-⋅-=1(1)1(2xf x n n ++=由归纳原理知命题成立.10.证明组合恒等式:(1)112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k ,+∈N n ;【证明】考虑恒等式∑=⎪⎪⎭⎫ ⎝⎛=+nk k nx k n x 1)1(,对x 求导得∑=--⎪⎪⎭⎫ ⎝⎛=+nk k n x k n k x n 111)1(,再令1=x 即得112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k (2)2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k ,+∈N n .【证明】由(1)可知∑=-⎪⎪⎭⎫ ⎝⎛=+n k kn x k n k x nx 11)1(,对x 求导得∑=---⎪⎪⎭⎫ ⎝⎛=+-++nk k n n x k n k x x n x n 11221])1()1()1[(再令1=x 即得2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k 第二组参考题1.(1)求∑=n k kx 1sin 和∑=nk kx 1cos ;【解】利用积化和差公式)cos()cos(sin sin 2y x y x y x --+=-可知2cos)21cos(])21cos()21[cos(sin 2sin 211x x n x k x k kx x nk n k -+=--+=-∑∑==于是有2sin2)21cos(2cos sin 1x xn x kx nk +-=∑=,π2k x ≠,Z ∈k 当π2k x =时有0sin 1=∑=nk kx ;同样地,利用公式)sin()sin(cos sin 2x y y x y x --+=可知2sin)21sin(])21sin()21[sin(cos 2sin 211x x n x k x k kx x nk n k -+=--+=∑∑==于是有2sin22sin )21sin(cos 1x xx n kx nk -+=∑=,π2k x ≠,Z ∈k 当π2k x =时∑=nk kx 1cos 发散;(2)求∑=nk kx k 1sin 和∑=n k kx k 1cos .【解】利用(1)的结论,对结果求导即知4.证明:Legendre 多项式nnn n n x xn x P )1(d d !21)(2-=满足方程)()12()()(11x P n x P x P n n n +='-'-+【证明】直接计算可得])1()1(2[d d )!1(21)1(d d )!1(21)(2111122211nn n n n n n n n x x n xn x x n x P -++=-+='++++++++])1(2)1[(d d !21])1([d d !211222211-++-+-=-=n n n n n n n n n x nx x x n x x x n ])1)(11[(d d )!1(21)(1221---+--+=n nn n n x x x n x P ])1[(d d )!1(21)()12(121----++=n nn n n x x n x P n )()()12(1x P x P n n n -'++=5.证明:Legendre 多项式满足方程)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 【证明】考虑函数nx y )1(2-=,求导得12)1(2--='n x nx y ,即nxy y x 2)1(2='-,两边求1+n 次导数,利用Leibniz 公式,有∑∑+=-+++=-++='-1)1()(11)1()(21)()(2)()1(n k k n k k n n k k n k k n y x C n y x C即])1([2)1()1(2)1()()1()()1()2(2n n n n n y n xy n y n n xy n y x ++=++++-+++整理得)()1()2(2)1(2)1(n n n y n n xy y x +=+-++故0)1(2)1()()1()2(2=++--++n n n y n n xy y x 所以)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 第七章微分学的基本定理7.2.4练习题10.设f 在]1,1[-上有任意阶导数,0)0()(=n f,+∈∀N n ,且存在常数0≥C ,使得对所有+∈N n 和]1,1[-∈x 成立不等式n n C n x f !)()(≤.证明:0)(≡x f .【证明】写出nn n n n n x n ξf x n ξf x n f x f f x f !)(!)()!1()0()0()0()()()(1)1(=+-++'+=-- ,x ξ≤,所以有nn n Cxξf n x x f ≤=)(!)()(若10<≤C ,那么0)(→≤n C x f ,∞→n 此时有0)(≡x f ,]1,1[-∈x ;若1≥C ,那么当Cx C 2121<<-时有021)(→≤nx f ,∞→n 此时有0)(≡x f ,]21,21[CC x -∈,在这之上有0)0()(=n f ,+∈∀N n ,故以此类推可知分别在]22,21[C C ,]21,22[CC --,…等区间上都有0)(≡x f ,从而有0)(≡x f ,]1,1[-∈x .11.设f 在],[b a 上二阶可微,且0)()(='='b f a f .证明:存在),(b a ξ∈,使得成立)()()(4)(2a fb f a b ξf --≥''.【证明】写出2121))((21)())((21))(()()(a x ξf a f a x ξf a x a f a f x f -''+=-''+-'+=2222))((21)())((21))(()()(b x ξf b f b x ξf b x b f b f x f -''+=-''+-'+=其中b ξx ξa <<<<21.取2ba x +=,则分别有4)(2)()()2(21a b ξf a f b a f -''+=+,4)(2)()(2(22a b ξf b f b a f -''+=+以上两式相减可得4)()]()([21)()(0212a b ξf ξf a f b f -''-''+-=移项后,由三点不等式可得)(])()([21)()()(4122ξf ξf ξf a f b f a b ''≤''+''≤--其中))(,)(max()(21ξf ξf ξf ''''=''.13.设f 在),[+∞a 上二阶可微,且0)(≥x f ,0)(≤''x f ,证明:在a x ≥时0)(≥'x f .【证明】假设存在),[0+∞∈a x 使得0)(0<'x f ,那么当0x x ≥时)()(0x f x f '≤',进而有)()()()()()(0000x f x x ξf x x x f x f '-≤'-=-,x ξx ≤≤0,只需再令)()(000x f x f x x '->便得0)(<x f ,这与0)(≥x f 矛盾,所以在a x ≥时0)(≥'x f .14.设f 在)1,1(-上1+n 阶可微,0)0()1(≠+n f,+∈N n ,在10<<x 上有n n n n x n x θf x n f x f f x f !)()!1()0()0()0()()(1)1(+-++'+=-- ,其中10<<θ,证明:11lim 0+=→n θx .【证明】由导数定义可知xθf x θf fn n x n )0()(lim)0()()(0)1(-=→+1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--=n nn n n x x θx f n x n f x f f x f 而其中又有1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--n nn n n x x x f n x n f x f f x f 1)0()0()(lim 11)!1(!)0(!)(lim )1()()(0)()(0+=-+=+-=+→→n f x f x f n x n n f n x f n n n x n n x 所以11lim 1lim 1)0()0(00)1()1(+=⇒+=→→++n θθn f fx x n n 15.证明:在1≤x 时存在)1,0(∈θ,使得2)(1arcsin x θx x -=,且有31lim 0=→θx .【证明】利用Lagrange 中值定理知存在ξ介于0与x 之间使得210arcsin arcsin ξx x -=-当0=x 时任取)1,0(∈θ;当10≤<x 时有10<<x ξ,令xξθ=,故存在)1,0(∈θ使得2)(1arcsin x θx x -=所以31))(arcsin (arcsin lim arcsin arcsin lim arcsin 1lim lim 4022220222020=+-=-=-=→→→→x x x x x x x x x x x x θx x x x 故31lim 0=→θx 16.设f 在)(0x O δ上n 阶可微,且0)()(0)1(0===''-x fx f n ,0)(0)(≠x f n .证明:当δh <<0时,成立h h θx f x f h x f )()()(000+'=-+,10<<θ,且成立11lim -→=n h nθ.【证明】利用Lagrange 中值定理知存在ξ介于0x 与h x +0之间使得hξf x f h x f )()()(00'=-+因而有100<-<h x ξ,令hx ξθ0-=,则成立h h θx f x f h x f )()()(000+'=-+,10<<θ.所以有1100000)()()()()()(--⋅'-+'='--+n n n θh θx f h θx f h h x f x f h x f 而!)(!)(lim )()()(lim 0)(0)1(00000n x f h n h x f h h x f x f h x f n n h n h =+='--+-→→)!1()()!1()(lim )()(lim )()()(lim 0)(0)1(010001000-=-+='-+'='-+'-→-→-→n x f t n t x f t x f t x f h θx f h θx f n n t n t n h 故10101lim 1lim -→-→=⇒=n h n h nθn θ7.3.2参考题第一组参考题1.设有n 个实数n a a a ,,,21 满足12)1(31121=--++--n a a a n n 证明:方程0)12cos(3cos cos )(21=-+++=x n a x a x a x f n 在区间2π,0(中至少有一个根.【证明】构造辅助函数x n n a x a x a x F n )12sin(123sin 3sin )(21--+++= 则可见0)2π()0(==F F .对F 在区间]2π,0[上用Rolle 定理,就知道)()(x f x F ='在区间)2π,0(中有零点.2.设0≠c ,证明:方程0345=+++c bx ax x 至少有两个根不是实根.【证明】设c bx ax x x f +++=345)(,那么22234)345(345)(x b ax x bx ax x x f ++=++='若03452=++b ax x 有两个相同实根,那么0≥'f ,此时f 严格单调增加,故方程只有一个实根,还有四个根不是实根;若03452=++b ax x 无实根,那么f 严格单调增加,同上;若03452=++b ax x 有两不同实根21x x <,那么f 在),(1x -∞,),(2+∞x 上严格单调增加,在),(21x x 上严格单调减少,此时方程至多有3个实根,还有两个根不是实根.3.设0≠a ,证明:方程n n na x a x 222)(+=+只有一个实根0=x .【证明】设n n na x a xx f 222)()(+-+=,那么])([2)(1212--+-='n n a x x n x f 当0>a 时,0)(<'x f ;当0<a 时,0)(>'x f .总之f 是严格单调的,故至多有一个实根,而0=x 是它的一个实根,所以方程只有一个实根0=x .4.设f 在],[b a 上连续,在),(b a 内可微,且满足条件0)()(>b f a f ,0)2()(<+ba f a f 证明:对每个实数k ,在),(b a 内存在点ξ,使成立0)()(=-'ξkf ξf .【证明】因为0)2()(<+b a f a f ,0)2()(<+b a f b f ,所以f 在)2,(b a a +和),2(b ba +上分别存在一个零点1x 与2x .构造辅助函数)(e )(x f x g kx-=,那么0)()(21==x g x g ,于是存在),(21x x ξ∈使得有0)(='ξg ,0)]()([e =-'-ξkf ξf ξk ,故0)()(=-'ξkf ξf .5.设∑==nk xλkk c x f 1e)(,其中n λλ,,1 为互异实数,n c c ,,1 不同时为0.证明:f 的零点个数小于n .【证明】用数学归纳法.当1=n 时xλc x f 1e )(1=,而01≠c ,此时f 没有零点;假设当n 时命题成立;当1+n 时,不妨令01≠+n c ,那么e )(0eee)(11)(11)(11111==⇒===∑∑∑+=-+=-+=n k x λλk n k xλλk xλn k xλk k k k c x g c c x f 而∑+=--='12)(11e )()(n k x λλk kk c λλx g 的零点个数至多有1-n 个,所以g 的零点个数至多有n 个,即f 的零点个数至多有n 个.根据归纳原理知命题成立.7.设f 在],[b a 上连续,在),(b a 内可微,但不是线性函数,证明:存在),(,b a ηξ∈,使成立)()()()(ηf ab a f b f ξf '>-->'【证明】构造辅助函数)()()()()()(a f a x ab a f b f x f x g -----=因为f 不是线性函数,所以g 不恒为零,而0)()(==b g a g ,所以存在),(b a c ∈使得0)(≠c g ,不妨设为0)(>c g .于是存在),(,b a ηξ∈,使成立0)()()(>'=--ξg a c a g c g ,0)()()(<'=--ηg bc b g c g 即有)()()()(ηf ab a f b f ξf '>-->'8.设f 在],[b a 上二阶可微,0)()(==b f a f ,且在某点),(b a c ∈处有0)(>c f ,证明:存在),(b a ξ∈,使0)(<''ξf .【证明】利用Lagrange 中值定理,存在),(1c a ξ∈与),(2b c ξ∈使得0)()()(1>'=--ξf a c a f c f ,0)()()(2<'=--ξf cb c f b f 再次利用此定理,存在),(21ξξξ∈使得)()()(1212<''=-'-'ξf ξξξf ξf 9.利用例题7.1.3的方法(或其他方法)解决以下问题:(1)设f 在],[b a 上三阶可微,且0)()()(=='=b f a f a f ,证明:对每个],[b a x ∈,存在),(b a ξ∈,使成立)()(!3)()(2b x a x ξf x f --'''=【证明】当),(b a x ∈时构造辅助函数)()()()()()()(22t f b t a t b x a x x f t g -----=那么有0)()()(===x g b g a g ,于是存在b ξx ξa <<<<21使得0)()(21='='ξg ξg ,又)())](()(2[)()()()(2t f a t a t b t b x a x x f t g '---+---='所以0)(='a g ,于是存在2211ξηξηa <<<<使得0)()(21=''=''ηg ηg ,最后存在21ηξη<<使得)()(3)()(0)()()()(60)(22b x a x ξf x f ξf b x a x x f ξg --'''=⇒='''---⇒='''当a x =或b x =时任取),(b a ξ∈等式都成立.(2)设f 在]1,0[上五阶可微,且0)1()1()1()32(31(=''='===f f f f f ,证明:对每个]1,0[∈x ,存在)1,0(∈ξ,使成立3)5()1)(32)(31(!5)()(---=x x x ξf x f 【证明】当}32,31{\)1,0[∈x 时构造辅助函数)()1)(3231()132)(31()()(33t f t t t x x x x f t g -------=重复(1)中的操作,最终存在)1,0(∈ξ使等式成立.当31=x 或32=x 或1=x 时任取),(b a ξ∈等式都成立.(3)设f 在],[b a 上三阶可微,证明:存在),(b a ξ∈,使成立)()(121)]()()[(21)()(3ξf a b b f a f a b a f b f '''--'+'-+=【证明】【法一】设2a b c +=,2a b h -=,待证等式化为)(32)]()([)()(3ξf x h c f h c f h h c f h c f '''-+'+-'+-=+令K x h c f h c f h h c f h c f 332)]()([)()(-+'+-'+-=+构造辅助函数K x x c f x c f x x c f x c f x g 332)]()([)()()(++'+-'---+=那么0)()0(==h g g ,利用Rolle 中值定理,存在),0(1h x ∈使得0)(1='x g ,而)(]2)()([)(x xh xK x c f x c f x x g =++''--''='所以0)()0(1==x h h ,于是存在),0(12x x ∈使得0)(2='x h ,而Kx c f x c f x h 2)()()(++'''--'''-='所以有)()(2)()(222ξf K ξf x c f x c f K '''=⇒'''=+'''+-'''=【法二】考虑函数)]()()[(21)()()(a f x f a x a f x f x F '+'---=,3)()(a x x G -=那么0)()()()(='=='=a G a G a F a F ,连续运用Cauchy 中值定理,知)(121)()()()()()()()()()()()()()(ξf ξG ξF a G c G a F c F c G c F a G b G a F b F b G b F '''-=''''='-''-'=''=--=其中b c ξa <<<.(4)设f 在],[b a 上二阶可微,证明:对每个),(b a c ∈,有),(b a ξ∈,使成立))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''【证明】构造辅助函数)())(())()(())(())()(())(())()(()(x f b c a c b x a x c f a b c b a x c x b f c a b a c x b x a f x g -----+----+----=那么有0)()()(===c g b g a g ,于是存在c ξb ξa <<<<21使得0)()(21='='ξg ξg ,进而知存在),(21ξξξ∈使得0)(=''ξg ,即))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''10.设b a <<0,f 在],[b a 上可微,证明:存在),(b a ξ∈,使成立)()()()(1ξf ξξf b f a f b a b a '-=-【证明】利用Cauchy 中值定理,知存在),(b a ξ∈,使成立)()(1)()(11)()()()()()(122ξf ξξf ξξξf ξf ξa b a a f b b f b a a bf b af b f a f b a b a '-=--'=--=--=-16.设f 在]2,0[上二阶可微,且1)(≤x f ,1)(≤''x f ,证明:2)(≤'x f .【证明】写出21))((21))(()()0(x ξf x x f x f f -''+-'+=22)2)((21)2)(()()2(x ξf x x f x f f -''+-'+=其中2021≤≤≤≤ξx ξ.两式相减得])()2)(([21)(2)0()2(2122x ξf x ξf x f f f ''--''+'=-所以2122)()2)((21)0()2()(2x ξf x ξf f f x f ''--''+-≤'])2[(21)0()2(22x x f f +-++≤44212=⨯+≤故2)(≤'x f 18.设当],0[a x ∈时有M x f ≤'')(.又已知f 在),0(a 中取到最大值.证明:Ma a f f ≤'+')()0(.【证明】设f 在点),0(a b ∈处取得最大值,由Fermat 定理知0)(='b f .写出))(()()(1a b ξf a f b f -''+'='bξf f b f )()0()(2''+'='其中),(1a b ξ∈,),0(2b ξ∈.由此有估计Mab ξf b a ξf a f f ≤''+-''='+')()()()()0(21第二组参考题5.设f 在],[b a 上可微,)()(b f a f '=',证明:存在),(b a ξ∈,使成立aξa f ξf ξf --=')()()(【证明】考虑函数x a f x f x g )()()('-=,那么0)()(='='b g a g ,待证式为aξa g ξg ξg --=')()()(.考虑辅助函数⎪⎩⎪⎨⎧=≤<--=ax b x a ax a g x g x G ,0,)()()(若)()(a g b g =,那么有0)()(==a G b G ,于是存在),(b a ξ∈使得0)(='ξG ,即aξa g ξg ξg a ξa g ξg a ξξg --='⇒=-+--')()()(0)()()())((2若)()(a g b g >,那么0)()()()()()())(()(22<--=-+--'='a b b g a g a b a g b g a b b g b G 以及0)(>b G ,所以在b x =的某个左邻域],[b δb -内有点c 使得0)()(>>b G c G ,从而)(x G 在),(b a 内取到最大值,故存在),(b a ξ∈使得0)(='ξG .若)()(a g b g <,同理.6.设f 在],[b a 上连续,在),(b a 内可微,又有),(b a c ∈使成立0)(='c f ,证明:存在),(b a ξ∈,满足ab a f ξf ξf --=')()()(【证明】构造辅助函数ab x a f x f x g ---=e)]()([)(那么ab xa b a f x f x f x g -----'='e ])()()([)(.如果0)(='c g ,那么取c ξ=即可.如果0)(>'c g ,那么)()(a f c f <,于是0)(<c g ,所以存在),(0c a x ∈使得0)()()(0<--='ac a g c g x g ,由达布定理知存在),(0c x ξ∈使得0)(='ξg .如果0)(<'c g ,同理.7.设f 在],[b a 上连续,在),(b a 上可微,0)(=a f ,0)(>x f ,],(b a x ∈∀,证明:对每个0>α,存在),(,21b a x x ∈,使成立)()()()(2211x f x f αx f x f '='【证明】只需考虑1>α的情形.构造辅助函数)(ln )(x f x F =,],(b a x ∈,则-∞=+→)(lim x F ax .记λb F =)(,可取),(b a c ∈使得1)(-=λc F ,由Lagrange 中值定理知)()()(11ξF cb c F b F c b '=--=-,),(1b c ξ∈再取),(c a d ∈使得cb ab αλd F ---=)(,由Lagrange 中值定理知)(1)()()(12ξF αcb αc b a b a b αd b d F b F ξF '>-=--->--=',),(2d a ξ∈由达布定理可知存在),(3b a ξ∈使得)()(13ξF αξF '='.8.设f 在),(+∞-∞上二阶连续可微,1)(≤x f ,且有4)]0([)]0([22='+f f ,证明:存在ξ,使成立0)()(=''+ξf ξf .【证明】在]2,0[上利用Lagrange 中值定理,知存在)2,0(1∈x 使得1)(2)0()2()(11≤'⇒-='x f f f x f 同理存在)0,2(2-∈x 使得1)(2)0()2()(22≤'⇒---='x f f f x f 构造辅助函数22)]([)]([)(x f x f x h '+=,]2,2[-∈x ,于是2)(1≤x h ,2)(2≤x h ,4)0(=h ,所以h 在)2,2(-∈ξ处取到最大值,于是0)(='ξh ,即有)()]()([2='''+ξf ξf ξf 由于3)]([4)]([22≥-≥'ξf ξf ,所以0)(≠'ξf ,故0)()(=''+ξf ξf .9.设f 在),(+∞-∞上二阶连续可微,且对所有R ,∈h x 成立。
四川大学数学类基础课程《数学分析
四川大学数学类基础课程《数学分析(II)习题课》教学大纲课程名称:数学分析(II)习题课英文名称:Mathematical Analysis-II课程性质:必修课程代码:本大纲主笔人:黄勇面向专业:数学类各专业主讲课教材名称:数学分析(上、下)出版单位:高等教育出版社出版日期:2004年10(第2版)编著:陈纪修於崇华金路习题课指导书名称:数学分析习题课讲义(上、下)出版单位:高等教育出版社出版日期:2004年1月(第1版)编著:谢惠民恽自求等习题课讲义名称:自己编写一、课程学时学分课程总学时:104学时课程总学分:5学分习题课总学时:36学时习题课总学分:2学分二、习题课的地位、作用和目的数学分析是数学专业最重要的一门基础课,是许多后继课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课程必备的基础,是数学专业本科一、二年级学生的必修课。
数学分析习题课是数学分析课程的重要组成部分,是学生学习这门课程的一个必要环节。
尤其是各位教师和学生们都应该充分地认识到习题课的重要性,习题课与主讲课同等重要。
数学分析习题课是通过学生自己严格的课堂和课外习题训练,再加上习题课教师对数学分析学习中各类习题的讲解,能使学生加深对课程内容的理解,全面系统地掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。
三、习题课的教学方式与教学要求教学方式:以课堂教学为主,充分利用现代化技术,结合计算机实习与多媒体辅助教学,提高教学效果。
教学要求:习题课的教学是通过学生在课后进行严格的习题训练、在课堂上由习题课老师和学生通过讲、练结合的方式进行。
每次主讲老师讲完教材内容后布置下习题由学生课后训练,并于下次课将所完成的作业本上交由习题课老师批改。
习题课教师通过批改学生的课后作业,可以及时发现学生作业中的问题。
高中地理复习新高考第24讲《农业区位因素》讲义练习题附答案
⾼中地理复习新⾼考第24讲《农业区位因素》讲义练习题附答案第24讲农业区位因素2017版课程标准内容要求2017级四省市教学内容建议1.结合实例,分析农业区位因素[⽔平1-4] 1.结合实例,分析农业区位因素[综合思维、区域认知]2.农业⽣产活动对地理环境影响[⽔平3-4] 2.结合实例,说明农业⽣产活动对地理环境的影响(环境保护内容)[⼈地协调观、综合思维、区域认知、地理实践⼒][知识体系构建][主⼲知识整合]⼀、农业区位的含义1.绝对区位:农业⽣产所选定的地理位置。
2.相对区位:农业与地理环境各因素的相互联系。
⼆、主要的农业区位因素1.⾃然因素对农业⽣产的影响⾃然因素在农业⽣产中占有重要地位,地形、⽓候、⼟壤、⽔源等⾃然条件决定某地区适宜发展的农业类型,分析时可依据其所在地区的⾃然条件去分析,具体总结如下:2.社会经济因素、农业技术因素对农业⽣产的影响在现代农业中,市场、交通、科技、政策等决定农业⽣产的⽅式、⽔平和效率,所以社会经济条件和技术条件是决定性因素,图析如下:三、农业区位因素的变化[易误辨析]宁夏⽠农常在⽠地⾥铺上⼀层鹅卵⽯,试分析其作⽤。
提⽰减少蒸发,保持⽔分;增⼤⽓温⽇较差,利于积累有机物,提⾼⽠果品质。
四、农业⽣产对地理环境的影响考点⼀农业区位因素分析【例1】(2017·天津⽂综)读图⽂材料,回答问题。
近年来,由优质咖啡加⼯的⽩咖啡深受中国青年喜爱。
这种优质咖啡适宜⽣长在热量充⾜,光照适度,湿度⼤,⼟壤较肥沃的环境,由于易遭受⾍害还需⼈⼯精⼼护理。
怡保地区具备哪些种植优质咖啡的有利区位条件?提取上图中信息并说明。
[尝试⾃解][错因诊断]①不能⽤因果关系的短语作答;②漏学要点,导致失分。
[解题步骤]第⼀步,获取信息:题⼲信息“有利区位条件”;⽂本信息“这种优质咖啡适宜⽣长在热量充⾜,光照适度,湿度⼤,⼟壤较肥沃的环境,易遭受⾍害”;图像信息“怡保地区地处热带⾬林⽓候区”。
最新习题课讲义(级数)
习题课讲义(级数)第九讲:无穷级数一、常数项级数1、概念与性质:(1)数列«Skip Record If...»中的各项用加号连接的形式:«Skip Record If...»称为无穷项数项级数,第«Skip Record If...»项称为一般项(通项)。
数列«Skip Record If...»称为级数«Skip Record If...»的前«Skip Record If...»项之和(部分和),若«Skip Record If...»,则称级数«Skip Record If...»的和为«Skip Record If...»,级数«Skip Record If...»收敛;若«Skip Record If...»不存在,则称级数«Skip Record If...»发散。
若级数«Skip Record If...»收敛,«Skip Record If...»称为级数«Skip Record If...»的余项,«Skip Record If...»。
例1:判定下列级数的敛散性:①«Skip Record If...»:解:«Skip Record If...»,«Skip Record If...»«Skip Record If...»,故«Skip Record If...»发散;②«Skip Record If...»:解:«Skip Record If...»,«Skip Record If...»«Skip Record If...»,故«Skip Record If...»收敛;③调和级数:«Skip Record If...»;解:由«Skip Record If...»,«Skip Record If...»«Skip Record If...»,故级数«Skip Record If...»发散。
考研数学习题课讲义--4 多元函数微积分学
2 x uv f f 4 , 练习 设对任意的 x 和 y, 有 用变量代换 将 f (x, y)变 2 2 1 x y y 2 (u v )
2
g g 2 2 换成 g(u, v), 试求满足 a b u v 中的常数 a 和 b. u v
2
2
3
例 11 设
x u 2 v z y u vz
,求
u v u , , . x x z
练习: 1. 设函数 z = z(x, y)由方程 z e
2 x 3 z
2 y 确定, 则 3
z z ____ . x y
2. 设 z = z(x, y) 是由方程 x2 + y2 z = (x + y + z) 所确定的函数, 其中 有二阶导数 且
x2 y4
, 则函数在原点偏导数存在的情况是 ______ .
(A) fx(0, 0) 存在, fy(0, 0) 存在 (B) fx(0, 0) 存在, fy(0, 0) 不存在 (C) fx(0, 0) 不存在, fy(0, 0) 存在 (D) fx(0, 0) 不存在, fy(0, 0) 不存在
.
2
例 7 设 ������ = ������ (������ 2 + ������ 2 , ), 其中 f (u, v) 具有连续的二阶偏导数, 求 . ������ ������������������������
������
����Байду номын сангаас� 2 ������
例 8 设 ������ = ������(������������ + ������������) + ������(������ 2 ������, ������������ 2 ), 其中 f, g 都具有连续的二阶偏导数, 求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2,鲁兵逊每小时可以抓4条鱼(F)或者摘2个椰子(C),他一天工作8小时。
星期五每小时可以抓1条鱼或者摘2个椰子,一天也工作8小时。
鲁滨逊和星期五的效用函数可以表示为U(F,C)=FC.
(1)如果两人完全自己自足,各人的消费为多少?
(2)如果两个人可以进行贸易,个人的生产和消费时多少,交易价格是多少?
3,经济体中有两种消费者A 和B ,已知两者的效用函数为ln A A A U X Y =+,B B B U X Y =。
已经知道A 有3单位X 和2单位Y ,而B 有1单位X 和6单位Y ,又知道经济体中有50个A 消费者,和100个B 消费者。
他们能够通过市场交易来实现效用的最大化。
请推导市场的均衡价格和两类消费者的消费量。
解:首先设1x P =,先求解消费者A 的需求函数
,max ln ..32221A A
A A A A A Y X Y A Y A Y
X Y s t X Y P P X P Y P ++≤+=+⎧⎪⇒⎨=⎪⎩
再求解消费者B 的需求函数 ,max ..161321
32B B
B B B B Y Y X Y B Y B Y X Y s t X Y P P X P Y P +≤+⎧=+⎪⎪⇒⎨⎪=+⎪⎩
故商品A 的超额需求函数为150(3)100(1)50(21)100(3)4001002
A A A Y Y Y E X Y P P P =-+-=-+-=- 当达到一般均衡时,超额需求为零,故得到0.25Y P = 代入到以上得到的消费者A 、
B 的需求,得到
2.54A A
X Y =⎧⎨=⎩ 1.255
B B X Y =⎧⎨=⎩ 或者。