2019年春七年级数学下册第5章分式5.5第1课时分式方程及其解法练习浙教版

合集下载

浙江省各地浙教版数学七年级下册期末试题选编第5章分式练习题(Word版含解析)

浙江省各地浙教版数学七年级下册期末试题选编第5章分式练习题(Word版含解析)

浙教版数学七年级下册第5章:分式练习题一、单选题1.(南浔·七年级期末)当1x =时,下列分式没有意义的是( )A .1x x +B .1x x -C .1x x -D .1x x + 2.(·七年级期末)无论x 取什么数时,总是有意义的分式是( )A .221x x +B .21x x +C .331x x +D .25x x - 3.(南浔·七年级期末)已知11a x =+(0x ≠且1x ≠),2111a a =-,3211a a =-,……,111n n a a -=-,则2021a 等于( )A .1x -+B .1x +C .1x x +D .1x- 4.(镇海·七年级期末)能使分式4723x x +-值为整数的整数x 有( )个. A .1 B .2 C .3 D .45.(东阳·七年级期末)要使分式2(1)(2)x x x ---有意义,x 的取值应满足( ) A .x ≠1 B .x ≠2 C .x ≠1且x ≠2 D .x ≠1或x ≠26.(·七年级期末)将分式2+x x y中,x y 的值都扩大到原来的3倍,则扩大后分式的值( ) A .扩大到原来的3倍 B .扩大到原来的9倍 C .不变D .缩小到原来的137.(·七年级期末)下列分式中,是最简分式的是( ) A .23b ab B .11x x -- C .211a a -- D .21x x + 8.(·淳安县教育发展研究中心七年级期末)若x ≠y ,则下列分式化简中,正确的是( ) A .22x x y y +=+ B .22x x y y -=- C .33x x y y = D .22x x y y= 9.(·七年级期末)分式211x x ---可变形为( ) A .211x x -- B .211x x -- C .211x x +- D .211x x +-- 10.(宁波·七年级期末)下列从左到右的变形正确的是( )A .22()()a b a b a b ---=-B .2211a a a a ---=--C .226(23)(2)x x x x --=+-D .222469(23)m mn n m n -+=-11.(嘉兴·七年级期末)化简2b a b a a a ⎛⎫--÷ ⎪⎝⎭的结果是( ) A .a-b B .a+b C .1a b - D .1a b+ 12.(嵊州·七年级期末)下面的计算过程中,从哪一步开始出现错误( ).A .①B .①C .①D .①13.(·七年级期末)一件工程,甲单独做需要a 小时完成,乙单独做需要b 小时完成.若甲、乙二人合作完成此项工作,需要的时间是( )A .2a b + 小时B .11()a b + 小时C .1a b + 小时D .ab a b+ 小时 14.(·七年级期末)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空.北斗卫星导航系统可提供高精度的授时服务,授时精度可达10纳秒(1秒=1000000000纳秒)用科学记数法表示10纳秒为( )A .8110-⨯秒B .9110-⨯秒C .91010-⨯秒D .90.110-⨯秒15.(·七年级期末)若20.3a =-,23b -=-,21()3c -=-,01()3d =-,则( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b16.(吴兴·七年级期末)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为 ( ) A .109910-⨯ B .109.910-⨯ C .99.910-⨯ D .89.910-⨯17.(·七年级期末)已知a =2﹣55,b =3﹣44,c =4﹣33,d =5﹣22,则这四个数从小到大排列顺序是( ) A .a <b <c <d B .d <a <c <b C .a <d <c <b D .b <c <a <d18.(·七年级期末)若241()w 1a 42a +⋅=--,则w=( ) A .2)2(a a +≠- B .()22a a -+≠ C .)22(a a -≠ D .19.(吴兴·七年级期末)解分式方程11222x x x-=---时,去分母变形正确的是( )A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---20.(镇海·七年级期末)某煤厂原计划x 天生产120吨煤,由于采用新的技术,每天增加生产3吨,因此提前2天完成任务,列出方程为 ( )A .12012032x x =-- B .12012032x x =-+ C .12012032x x =-+ D .12012032x x =-- 21.(乐清·七年级期末)若关于x 的方程333x a x x +--=3a 有增根,则a 的值为( ) A .﹣1 B .17 C .13 D .122.(越城·七年级期末)已知关于x 的分式方程3x m x +-﹣1=1x 无解,则m 的值是( ) A .﹣2 B .﹣3 C .﹣2或﹣3 D .0或323.(·浦江县教育研究和教师培训中心七年级期末)关于x 的分式方程22428x m x x -=--有增根,则m 的值为( )A .1B .±1C .2D .2±24.(嵊州·七年级期末)关于x 的分式方程311x m x x -=--有增根,则m 的值是( ) A .﹣2B .3C .﹣3D .2二、填空题 25.(西湖·七年级期末)当x =_________时,分式242x x -+的值为0. 26.(·七年级期末)分式293x x --当x __________时,分式的值为零. 27.(诸暨·七年级期末)要使分式1x 1-有意义,x 的取值应满足______. 28.(·七年级期末)若代数式11x -有意义,则实数x 的取值范围是____. 29.(·七年级期末)已知x a y b =⎧⎨=⎩,是方程352x y -=的解,则代数式352a b +的值为______. 30.(江干·七年级期末)若2(1)3(1)x x ++=23成立,则x 的取值范围是___ 31.(温州·七年级期末)计算:276a b •22127b a=________________. 32.(·七年级期末)已知长方形的面积为2249a b -,其中长为23a b +,则宽为__________.33.(·七年级期末)PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.34.(·浦江县教育研究和教师培训中心七年级期末)已知2117x x x =-+,则2421x x x =-+______. 35.(·七年级期末)如果等式()221a a +-=1,那么a 的值为_____________.36.(鄞州·七年级期末)计算:2﹣1=_____.37.(南浔·七年级期末)化简:a b a b b a+--22=______________. 38.(越城·七年级期末)已知(x ﹣1)x +2=1,则整数x =__________39.(鄞州·七年级期末)若关于x 的分式方程21133x a x x+=---有增根,则a 的值为__________. 40.(镇海·七年级期末)若关于x 的方程2361mx m x x x x++=--无解,则m =______________。

第5章分式单元测试(基础过关卷,七下浙教)-七年级数学下册尖子生培优必刷题(原卷版)【浙教版】

第5章分式单元测试(基础过关卷,七下浙教)-七年级数学下册尖子生培优必刷题(原卷版)【浙教版】

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】第5章分式单元测试(基础过关卷,七下浙教)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023•余姚市校级模拟)若代数式x−1x+1有意义,则x 的取值范围是( )A .x ≠1B .x ≠﹣1C .x >1D .x >﹣12.(2023春•溧阳市校级月考)如果分式3x x−y 中的x =2、y =1,那么这个分式的值( ) A .3B .4C .5D .63.(2023•安徽模拟)计算(−13m)2⋅9m 的结果是( ) A .m 3B .﹣mC .m 2D .m4.(2023•南岗区校级一模)分式方程2x−5=3x的解为( )A .x =5B .x =﹣5C .x =15D .x =﹣155.(2023•长安区模拟)如图,若a =2b ,则表示a 2−ab a 2−b 2的值的点落在( )A .第①段B .第②段C .第③段D .第④段6.(2023春•淮阳区月考)如果将分式x x+y中的字母x ,y 的值分别扩大为原来的3倍,那么分式的值( )A .不改变B .扩大为原来的3倍C .缩小为原来的13D .缩小为原来的197.(2022秋•林州市校级期末)下列等式是四位同学解方程xx−1−2x 1−x=1过程中去分母的一步,其中正确的是( ) A .x ﹣2x =1B .x ﹣2x =﹣1C .x +2x =x ﹣1D .x ﹣2x =x ﹣1 8.(2022•法库县模拟)如果a 2+3a ﹣2=0,那么代数式(3a 2−9+1a+3)⋅a−3a 2的值为( )A .1B .12C .13D .149.(2023春•上城区校级月考)某化工厂要在规定时间内搬运1800千克化工原料,现有A ,B 两种机器人可供选择,已知B 型机器人每小时完成的工作量是A 型机器人的1.5倍,B 型机器人单独完成所需的时间比A 型机器人少10小时,如果设A 型机器人每小时搬运x 千克化工原料,则可以列出以下哪个方程( )A .10(1.5x +x )=1800B .10(1.5x ﹣x )=1800C .1800x−18001.5x=10 D .18001.5x−1800x =1010.(2022秋•韩城市期末)若关于x 的分式方程x+3x−5=2−m 5−x无解,则m 的值为( )A .4B .5C .6D .8二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上 11.(2023•西乡塘区校级一模)若分式3x−1x 2+1的值为0,则x 的值是 . 12.(2023春•靖江市校级月考)分式12x,14y 2,15xy的最简公分母是 .13.(2023•武昌区模拟)计算4aa 2−4−2a+2的结果是 . 14.(2023春•海陵区校级月考)已知1b−2a=3,则分式2a+3ab−4b 4ab−3a+6b 的值为 .15.(2023春•长宁区校级月考)若实数x 满足2x 2+2x−5x x 2+1=3,那么xx 2−4x+1= .16.(2022秋•海淀区校级月考)为了全力抗击新型冠状病毒感染肺炎,减少相互感染,每个人出门都必须带上口罩,所以KN 95型的口罩需求量越来越大.某大型口罩工厂接到生产200万副KN 95型口罩的生产任务,计划在若干天完成,由于情况疫情紧急,工厂全体员工不畏艰苦,工人全力以赴,每天比原计划多生产5万副口罩,结果只用了原计划时间的56就圆满完成生产任务,则原计划每天生产 万副口罩.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤) 17.已知分式3x−4(x−1)(x−4).(1)当x 为何值时,此分式有意义?(2)当x 为何值时,此分式等于0?(3)当x =2时,分式的值是多少?18.计算:(1)(−b2c3a)•9a22bc2(2)a−b2a+2b•a2+b2a2−b2.19.(2023春•兴化市月考)解方程:(1)1x =4x+3;(2)2x−2=1+xx−2+1.20.计算:(1)(xy−x2)⋅xyx2−2xy+y2÷x2x−y;(2)1−(x−11−x)2÷x2−x+1x2−2x+1.21.(2023•镇海区校级模拟)先化简,再求值:x−1x2−2x+1÷(x2+x−1x−1−x﹣1)−1x−2,然后从﹣1,0,1,2中选择一个合适的数作为x的值代入求值.22.(2022•思明区校级模拟)生活中有这么一个现象:“有一杯a 克的糖水里含有b 克糖,如果在这杯糖水里再加入m 克糖(仍不饱和),则糖水更甜了”,其中a >b >0,m >0.(1)加入m 克糖之前糖水的含糖率A = ;加入m 克糖之后糖水的含糖率B = ; (2)请你解释一下这个生活中的现象.23.(2023春•沙坪坝区校级月考)某工厂加工生产大,小两种型号的齿轮,每名工人每天只能生产一种型号的齿轮.一名熟练工每天生产的小齿轮数量是大齿轮的43,并且生产240个大齿轮所用的时间比生产同样数量的小齿轮要多用10天(1)求一名熟练工每天可以生产多少个大齿轮;(2)该工厂原有15名熟练工,由于订单激增,工厂需要招聘一批新工人,已知新工人每人每天可以生产3个大齿轮或5个小齿轮,工厂决定派3名熟练工带领一部分新工人一起生产大齿轮,其余工人全部生产小齿轮.已知2个大齿轮与3个小齿轮刚好配套.若一共招聘了28名新工人,问安排多少名新工人生产大齿轮,才能使得该工厂每天生产的大,小齿轮刚好配套?。

七年级下数学-第5章--分式-经典易错题带答案-可直接打印2013浙教版版新教材

七年级下数学-第5章--分式-经典易错题带答案-可直接打印2013浙教版版新教材

七年级下数学-第5章--分式-经典易错题带答案-可直接打印2013浙教版版新教材第5章 分式1.若分式(x +1)(x -2)(x +1)(x +2)的值为0,则x 的值是( C )A .-1B .-1或2C .2D .-2【解析】 依题意(x +1)(x -2)=0,而分母(x +1)(x +2)≠0.由(x +1)(x -2)=0得x +1=0或x -2=0.∴x =-1或x =2.当x =-1时分母为0,当x =2时分母不为0.故x =2.选C.2.如果分式x 2-13x +3的值为0,则x =__1__. 【解析】 依题意得x 2-1=0且3x +3≠0,所以x =1.3.若|x |-3(x -3)(x +1)的值为零,则x 的值是__-3__. 4.[2011·内江]如果分式3x 2-27x -3的值为0,则x 的值应为__-3__. 【解析】 依题意分子3x 2-27=0且分母x -3≠0,所以x =-3.5.已知x +1x =3,求x 2x 4+x 2+1的值. 解:将x +1x=3两边同时乘以x ,得x 2+1=3x , ∴x 2x 4+x 2+1=x 2(x 2+1)2-x 2=x 29x 2-x 2=18. 6.下列化简结果中,正确的是( D )A.x 2-y 2x 2+z 2=-y 2z 2【解析】根据分式的基本性质,分子分母都除以xy ,得5y +1-5x 1y -1-1x=-3×5+1-3-1=72. 9.若1x =1y ,则分式2x +3xy -2y x -2xy -y的值为__-32__. 【解析】由已知1x =1y ,得x =y ,把x =y 代入得2x +3x 2-2x x -2x 2-x=-32. 10.计算:(1)(81-a 4)÷(a 2+9)÷(a -3);(2)(16a 4-b 4)÷(4a 2+b 2)÷(2a -b ).解:(1)原式=(9+a 2)(9-a 2)÷(a 2+9)÷(a -3)=(9-a 2)÷(a -3)=-a -3;(2)原式=(4a 2-b 2)÷(2a -b )=2a +b .11.阅读下列解题过程,然后解题:题目:已知x a -b =y b -c =z c -a(a 、b 、c 互不相等),求x +y +z 的值. 解:设x a -b =y b -c =z c -a =k , 则x =k (a -b ),y =k (b -c ),z =k (c -a ),∴x +y +z =k (a -b +b -c +c -a )=0,∴x +y +z =0.依照上述方法解答下列问题:已知y +z x =z +x y =x +y z ,其中x +y +z ≠0,求x +y -z x +y +z的值. 解:设y +z x =z +x y =x +y z =k ,则⎩⎨⎧y +z =kx , ①x +z =ky , ②x +y =kz , ③①+②+③得:2x +2y +2z =k (x +y +z ),∵x +y +z ≠0,∴k =2,∴原式=2z -z 2z +z =z3z =13.12.先阅读(1)小题的解题过程,再解答第(2)小题.(1)已知a 2-3a +1=0,求a 2+1a 2的值.解:由a 2-3a +1=0,知a ≠0.所以等式两边同除以a ,得a -3+1a =0,即a +1a =3.所以a 2+1a 2=⎝ ⎛⎭⎪⎫a +1a 2-2=7.(2)已知y 2+3y -1=0,求y 4+1y 4的值.解:由y 2+3y -1=0,知y ≠0.所以等式两边同除以y ,得y +3-1y =0,即y -1y =-3.所以y 4+1y 4=(y 2)2+1(y 2)2=⎝ ⎛⎭⎪⎫y 2+1y 22-2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫y -1y 2+22-2=[(-3)2+2]2-2=121-2=119.13.计算:x 2-4y 2x 2+2xy +y 2÷x +2y2x 2+2xy .解:原式=(x +2y )(x -2y )(x +y )2·2x (x +y )x +2y=2x (x -2y )x +y =2x 2-4xyx +y .14.先化简,再求值:81-a 2a 2+6a +9÷9-a 2a +6·1a +9,其中a =3.解:原式=(9-a )(9+a )(a +3)2·2(a +3)9-a ·1a +9=2a +3.当a =3时,原式=13.15.化简:(1)[2011·衢州]a -3b a -b +a +ba -b ;(2)[2011·佛山]x 2+4x -2+4x2-x ;(3)x 2x -3-6x x -3+9x -3.解:(1)原式=a -3b +a +b a -b =2a -2ba -b =2(a -b )a -b =2;(2)原式=x 2+4x -2-4x x -2=(x -2)2x -2=x -2;(3)原式=x 2-6x +9x -3=(x -3)2x -3=x -3.16.先化简,再求值:⎝ ⎛⎭⎪⎫x 2x -3-9x -3·1x 2+3x ,其中x =13.解:原式=x 2-9x -3·1x (x +3)=(x -3)(x +3)x -3·1x (x +3)=1x .当x =13时,原式=1x =113=3. 17.已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连结P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.解:如选P +Q 进行计算:P +Q =a 2+b 2a 2-b 2+2aba 2-b 2=a 2+b 2+2aba 2-b 2=(a +b )2(a +b )(a -b )=a +ba -b .当a =3,b =2时,P +Q =3+23-2=5.18.(1)[2012·泰安]化简:⎝ ⎛⎭⎪⎫2m m +2-m m -2÷mm 2-4=__m -6__.(2)[2012·枣庄]化简⎝ ⎛⎭⎪⎫1-1m +1(m +1)的结果是__m __.(3)[2012·山西]化简x 2-1x 2-2x +1·x -1x 2+x +2x 的结果是__3x __.(4)[2012·聊城]计算⎝ ⎛⎭⎪⎫1+4a 2-4÷a a -2=__aa +2__.19.[2012·黄冈]化简⎝ ⎛⎭⎪⎫x 2-1x 2-2x +1+1-x x +1÷xx -1的结果是__4x +1__.【解析】原式=⎝ ⎛⎭⎪⎫x +1x -1-x -1x +1×x-1x=(x +1)2-(x -1)2(x +1)(x -1)×x -1x =4x (x +1)(x -1)×x -1x =4x +1. 20.化简⎝ ⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3)的结果是 ( B ) A .2 B.2x -1 C.2x -3 D.x -4x -121.[2012·常德]化简:⎝ ⎛⎭⎪⎫x +x x 2-1÷⎝ ⎛⎭⎪⎫2+1x -1-1x +1.解:原式=x 3-x +x()x -1()x +1÷2x 2-2+x +1-x +1()x +1()x -1=x3()x +1()x -1·()x +1()x -12x 2=x 2.22.解方程:(1)[2012·重庆]2x -1=1x -2;(2)[2012·苏州]3x +2+1x =4x 2+2x ;(3)[2012·梅州]4x 2-1+x +21-x =-1.解:(1)2(x -2)=x -1,2x -4=x -1,x =3,检验:当x =3时,(x -1)(x -2)=2≠0,所以原方程的解为x =3.(2)去分母,得3x +x +2=4.解得x =12.经检验,x =12是原方程的解.(3)方程两边都乘以(x +1)(x -1),得4-(x +1)(x +2)=-(x 2-1),整理,得3x =1,解得x =13. 经检验,x =13是原方程的解. 故原方程的解是x =13. 23.[2012·巴中]若关于x 的方程2x -2+x +m 2-x=2有增根,则m 的值是__0__. 【解析】方程两边都乘以(x -2),得2-x -m =2(x -2),∵分式方程有增根,∴x -2=0,解得x =2,∴2-2-m =2×(2-2), 解得m =0.24.[2012·泉州]计算:m m -1-1m -1=__1__. 25.[2012·成都]化简:⎝ ⎛⎭⎪⎫1-b a +b ÷a a 2-b 2. 解:⎝ ⎛⎭⎪⎫1-b a +b ÷a a 2-b 2=a +b -b a +b·a 2-b 2a =a a +b·(a +b )(a -b )a =a -b .26. 化简分式x 2-1x 2+2x +1-x +1x -1.并从-2,-1,0,1,2中选一个能使分式有意义的数代入求值.解:原式=(x -1)(x +1)(x +1)2-x +1x -1=x -1x +1-x +1x -1=(x -1)2-(x +1)2(x -1)(x +1)=-4x x 2-1.把x=0代入,原式=0.或把x=-2代入,原式=-4×(-2)(-2)2-1=83.或把x=2代入,原式=-4×222-1=-83.类型之四解分式方程27.[2012·宜宾]分式方程12x2-9-2x-3=1x+3的解为(C)A.3 B.-3C.无解D.3或-3【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得:x=3.检验:把x=3代入(x+3)(x-3)=0,即x=3不是原分式方程的解.28.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次的54倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利为420元,问每支铅笔的售价是多少元?解:(1)设第一次每支铅笔的进价为x元,由题意得方程600 x-60054x=30,解得x=4.经检验,x=4是原方程的根.答:第一次每支铅笔的进价是4元.(2)设每支售价为y元,第一次购买了600÷4=150(支),则第二次购买了120枝,由题意得(150+120)y-2×600=420,解得y=6.答:每支铅笔的售价是6元.29.[2012·桂林]李明到离家2.1千米的学校参加班级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?解:(1)设李明步行的速度是x米/分,由题意得2100 x-21003x=20,解得x=70.答:李明步行的速度是70米/分.(2)因为210070+21003×70+1=41<42,所以李明能在联欢会开始前赶到学校.30.[2012·泰安]一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1x+11.5x=112,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30.答:甲,乙两公司单独完成此项工程各需20天,30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,根据题意得12(y+y-1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元),故甲公司的施工费较少.。

5.5.2 分式方程的应用 浙教版数学七年级下册同步练习(含解析)

5.5.2 分式方程的应用 浙教版数学七年级下册同步练习(含解析)

5.5 分式方程第2课时 分式方程的应用基础过关全练知识点1 分式方程的应用 1.(2022浙江丽水中考)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5 000元,购买篮球用了4 000元,篮球单价比足球贵30元.根据题意可列方程5 0002x =4 000x -30,则方程中x 表示( )A.足球的单价 B.篮球的单价C.足球的数量D.篮球的数量2.(2021浙江嘉兴中考)某校举行歌唱比赛,901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒的单价是荧光棒的1.5倍.若设荧光棒的单价为x 元,根据题意可列方程为( )A.401.5x -30x =20B.40x -301.5x =20C.30x -401.5x =20D.301.5x -40x =203.【新独家原创】为了弘扬爱国主义精神,星期天,某校组织共青团员到离学校20 km 的杭州博物馆参观.王老师从学校骑自行车先出发,1 h 后共青团员及其他教师坐大巴车从学校出发,沿相同路线前往博物馆,结果他们同时到达.已知大巴车的平均速度是王老师骑自行车平均速度的4倍,则大巴车的平均速度是 km/h.4.【新素材·电动汽车】(2022山西中考)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每千米的充电费比燃油车平均每千米的加油费少0.6元.若充电费和加油费均为200元,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每千米的充电费.知识点2 公式变形 5.把公式U―VR =VS(R+S≠0)变形为用U,S,R表示V的形式,下列变形中正确的是( )A.V=R+SUS B.V=SURC.V=UR+S D.V=USR+S6.【跨学科·生物】年出生人数和年死亡人数的差与年平均人口数的比,叫做年人口自然增长率,如果用p表示年出生人数,q表示年死亡人数,s表示年平均人口数,k表示年人口自然增长率,则年人口自然增长率k=p―qs.若把公式变形成用k,s,p表示q的形式,则q= .7.若商品的买入价为a 元,售出价为b 元,则毛利率p=b ―a a (b>a).某商场销售一款空调,其标价是1 635元/台,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)将p=b ―a a (b>a)变形成已知p,b,求a 的形式;(2)求这款空调的买入价.能力提升全练8.【教材变式·P133例4变式】(2022浙江杭州中考,6,)照相机成像应用了一个重要原理,用公式1f =1u +1v (v≠f)表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f,v,则u=( )A.fv f ―vB.f ―v fvC.fv v ―fD.v ―f fv 9.【主题教育·中华优秀传统文化】将一道古文题译为白话文:把一份文件用慢马送到900千米外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( )A.900x +1×2=900x ―3B.900x +1=900x ―3×2C.900x ―1×2=900x +3D.900x +1=900x +3×210.【主题教育·生命安全与健康】(2022山东青岛中考,11,)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节.小亮报名参加3 000米比赛项目,经过一段时间的训练,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为 .11.(2021江苏常州中考,24,)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?12.学校新到一批理、化、生实验器材需要整理.实验室管理员李老师单独整理完需要40分钟.现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅又单独整理了20分钟才完成任务.王师傅单独整理完这批实验器材需要多少分钟?13.【学科素养·模型观念】列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容(如图),求李明乘公交车,刘峰骑自行车每小时各行多少千米.素养探究全练14.【模型观念】(2022浙江台州温岭期末)杭绍台高铁开通后,相比原有的“杭甬—甬台”铁路,全程平均速度提高了50%,温岭站到杭州东站的里程缩短了50 km.行车时间减少了50分钟.测得杭绍台高铁从温岭站到杭州东站全程共s km.(1)求杭绍台高铁的平均速度(用含s的式子表示);(2)已知列车在杭甬线的平均速度与杭绍台高铁的平均速度相同,杭甬线与甬台线的线路里程之比为4∶5,求列车在甬台线的平均速度(用含s 的式子表示).答案全解全析基础过关全练1.D 设购买篮球x 个,则购买足球2x 个.根据题意可得5 0002x =4 000x -30,故选D.2.B 若荧光棒的单价为x 元,则缤纷棒的单价为1.5x 元.根据等量关系:荧光棒的数量-缤纷棒的数量=20,列出方程为40x -301.5x =20.故选B.3.答案 60解析 设王老师骑自行车的平均速度为x km/h,则大巴车的平均速度为4x km/h,依题意得20x -204x =1,解得x=15,经检验,x=15是原方程的解,且符合题意,∴4x=60.故大巴车的平均速度为60 km/h.4.解析 设这款电动汽车平均每千米的充电费为x 元,根据题意,得200x =200x +0.6×4,解得x=0.2,经检验,x=0.2是原方程的根,且符合题意.答:这款电动汽车平均每千米的充电费为0.2元.5.D U ―V R=V S ,去分母,得S(U-V)=RV,整理得(S+R)V=SU,两边同除以(S+R),得V=US R +S .6.答案 p-ks解析 k=p ―q s 的两边同乘s,得ks=p-q,移项得q=p-ks.7.解析 (1)p=b ―a a的两边同乘a,得ap=b-a,移项,得ap+a=b,合并同类项,得a(p+1)=b,系数化为1,得a=bp +1.(2)1 635×0.8÷(1+9%)=1 200(元/台).答:这款空调的买入价为1 200元/台.能力提升全练8.C ∵1f =1u +1v (v≠f),∴1u =1f -1v ,∴1u =v ―f fv ,∴u=fv v ―f .故选C.9.A 规定时间为x 天,则快马所需的时间为(x-3)天,慢马所需的时间为(x+1)天,由题意得等量关系:慢马速度×2=快马速度,∴可列方程为900x +1×2=900x ―3,故选A.10.答案 3 000x - 3 000(1+25%)x =3解析 根据等量关系:训练前跑完3 000米所用的时间-比赛时跑完3 000米所用的时间=3分钟,可列出方程:3 000x - 3 000(1+25%)x =3.11.解析 设该景点在设施改造后平均每天用水x 吨,则在改造前平均每天用水2x 吨,根据题意,得20x -202x =5,解得x=2.经检验,x=2是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.12.解析 设王师傅单独整理完这批实验器材需要x 分钟,工作总量为1,则王师傅的工作效率为1x ,李老师的工作效率为140,根据题意,得20×140+1x +20×1x =1,解得x=80.经检验,x=80是原分式方程的解,且符合题意.答:王师傅单独整理完这批实验器材需要80分钟.13.解析 设刘峰骑自行车每小时行x 千米,则李明乘公交车每小时行3x 千米,由题意得20x =303x +3060,解得x=20,经检验,x=20是原方程的解,且符合题意,∴3x=60.答:李明乘公交车每小时行60千米,刘峰骑自行车每小时行20千米.素养探究全练14.解析 (1)设杭绍台高铁的平均速度为v km/h,则“杭甬—甬台”铁路的平均速度为v 1.5 km/h,50分钟=56小时,根据题意列方程得s +50v 1.5-s v =56,解得v=90+35s.答:杭绍台高铁的平均速度为90+35s km/h.(2)设杭甬线,甬台线的线路里程分别为4x km,5x km,列车在杭甬线的平均速度与杭绍台高铁的平均速度都为v km/h,列车在甬台线的平均速度为v' km/h,根据题意列方程得4x +5x v 1.5=4x v +5x v′,解得v'=1019v,由(1)知v=90+35s,∴v'=1019×90+35s =90019+619s.答:+619s km/h.。

七年级数学下册《第五章分式》练习题-附答案(浙教版)

七年级数学下册《第五章分式》练习题-附答案(浙教版)

七年级数学下册《第五章分式》练习题-附答案(浙教版)一、选择题1.若分式x +12-x有意义,则x 满足的条件是( ) A.x ≠-1 B.x ≠-2 C.x ≠2 D.x ≠-1且x ≠22.若分式2x +63x -9的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-33.与分式﹣11-x的值相等的是( ) A.﹣1x -1 B.﹣11+x C.11+x D.1x -14.下列约分正确的是( ) A.B. =﹣1C. =D. =5.下列分式中,最简分式是( )A.x 2-1x 2+1B.x +1x 2-1C.x 2-2xy +y 2x 2-xyD.x 2-362x +126.下列运算结果为x -1的是( )A.1-1xB.x 2-1x ·x x +1C.x +1x ÷1x -1D.x 2+2x +1x +17.化简a 2a -1-1-2a 1-a的结果为( ) A.a +1a -1B.a -1C.aD.1 8.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-39.施工队要铺设1 000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务,设原计划每天施工x 米,所列方程正确的是( )A.1 000x -1 000x +30=2B.1 000x +30-1 000x =2C.1 000x -1 000x -30=2D.1 000x -30-1 000x=2 10.若﹣2<a ≤2,且使关于y 的方程y +a y -1+2a 1-y =2的解为非负数,则符合条件的所有整数a 的和为( )A.﹣3B.﹣2C.1D.2二、填空题11.要使分式1x -1有意义,x 的取值应满足 . 12.当x =1时,分式x x +2的值是________. 13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________. 14.方程2x +13-x =32的解是 . 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=. 类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么 (B +1)﹣(A +1)= .三、解答题17.化简:x -2x -1·x 2-1x 2-4x +4-1x -2.18.化简:(1-2x -1)·x 2-xx 2-6x +9.19.解分式方程:xx -1﹣2x =1;20.解分式方程:32x -4﹣xx -2=12.21.化简(xx -1 - 1 x 2-1 )÷x 2+2x +1x 2 ,并从-1,0,1,2中选择一个合适的数求代数式的值。

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。

故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。

2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。

B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。

【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。

4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。

A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。

2021-2022学年浙教版初中数学七年级下册第五章分式同步练习试题(含解析)

2021-2022学年浙教版初中数学七年级下册第五章分式同步练习试题(含解析)

初中数学七年级下册第五章分式同步练习(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分) 1、下列计算中,正确的是( )A .633422a a a ÷=B .326a a a ⋅=C .1133-⎛⎫=- ⎪⎝⎭D .224a a a +=2、下列各式与1(2)--相等的是( ) A .12B .-2C .2D .12-3、在研制新冠肺炎疫苗过程中,某细菌的直径大小为0.000000000072米,用科学记数法表示这一数字,正确的是( ) A .120.7210-⨯ B .127.210-⨯ C .117.210-⨯D .107.210-⨯4、下列计算结果正确的是( ) A .55623a a a +=B .()256a a a -⋅=-C .2124-=D .()021-=-5、空气的密度是1.293×10﹣3g /cm 3,用小数把它表示出来是( )g /cm 3. A .0.0001293B .0.001293C .0.01293D .0.12936、研究发现新冠肺炎病毒大小约为0.000000125米,数0.000000125用科学记数法表示为( ) A .125×10﹣9B .12.5×10﹣8C .1.25×10﹣7D .1.25×10﹣67、若22224n n n n +++=,则n 的值为( ) A .0 B .1C .2D .38、若41x +表示一个整数,则整数x 可取值共有( ) A .3个 B .4个 C .5个 D .6个9、已知30x y -=(0x ≠),则分式22232xy y x xy+-的值为( )A .2B .-2C .3D .-310、已知实数,,x y z 满足x y xy z +==,则下列结论:①若0z ≠,则412723x xy y x xy y -+=-++;②若3x =,则6y z +=;③若0z ≠,则()()1111x y x y--=+;④若6z =,则2224x y +=,其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(5小题,每小题4分,共计20分) 1、202020218(0.125)⋅-=______;()0220213--⨯=___________.2、计算201(20212019)3-⎛⎫-+-= ⎪⎝⎭__________.3、当x _______时,分式293x x --的值为零.4、有一工程需在x 天内完成.如果甲单独工作,刚好能够按期完成:如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,则依题意列出的方程是________.5、若分式2xx -有意义,则x 的取值范围是 ___. 三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:224114422a a a a a a ⎛⎫-+-÷⎪-+-+⎝⎭,其中a =﹣1.2、(1)计算:()10213820162π-⎛⎫--+--- ⎪⎝⎭;(2)先化简,再求值.()()()222352x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中2x =-,12y =. 3、计算:234()()23ba aabb ÷-⨯. 4、已知13x -=-,求代数式22()(22)11x x x x x-÷-+--的值.5、(1)计算:)22--;(2)化简:()()5311a a a a +--÷---------参考答案----------- 一、单选题 1、A 【分析】根据单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项可进行排除选项. 【详解】解:A 、633422a a a ÷=,正确,故符合题意; B 、325a a a ⋅=,原计算错误,故不符合题意;C 、1133-⎛⎫= ⎪⎝⎭,原计算错误,故不符合题意;D 、2222a a a +=,原计算错误,故不符合题意; 故选A . 【点睛】本题主要考查单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项,熟练掌握单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项是解题的关键. 2、D 【分析】根据负指数幂()1,0nna a a -=≠可直接进行求解. 【详解】解:由题意得:11(2)2--=-;故选D . 【点睛】本题主要考查负指数幂,熟练掌握负指数幂的算法是解题的关键. 3、C 【分析】用科学记数法表示较小的数,一般形式为a ×10−n,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】110.0000000000727.210-=⨯故选C 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键. 4、C 【分析】根据运算的法则逐一运算判断即可.【详解】解:A :55523a a a +=,故此选项错误;B :()257a a a-⋅=,故此选项错误;C :2124-=,故此选项正确;D :()021-=,故此选项错误;故答案为:C 【点睛】本题主要考查了同类型的合并,同底数幂的乘法,负指数幂,零指数幂,熟悉掌握运算的法则是解题的关键. 5、B 【分析】把1.293的小数点向左移3位即可. 【详解】解:30.001291.103293=⨯﹣ 故选B 【点睛】本题考查了还原科学记数法表示的小数,熟练掌握科学记数法的意义是解题的关键. 6、C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000000125=1.25×10-7, 故选:C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 7、A 【分析】由题意可得:244n ⨯=,通过整理得:21n =,则可求得0n =. 【详解】解:22224n n n n +++=,244n ⨯=,21n =,0n =.故选:A . 【点睛】本题主要考查了零指数幂法则,解答的关键是明确非0实数的0次方等于1. 8、D 【分析】 由x 是整数,41x +也表示一个整数,可知x +1为4的约数,即x +1=±1,±2,±4,从而得出结果. 【详解】 解:∵x 是整数,41x +也表示一个整数, ∴x +1为4的约数, 即x +1=±1,±2,±4,∴x =-2,0,-3,1,-5,3. 则整数x 可取值共有6个. 故选:D . 【点睛】本题考查了此题首先要根据分式值是整数的条件,能够根据已知条件分析出x +1为4的约数,是解决本题的关键. 9、C 【分析】由题意可知x =3y ,然后根据因式分解法进行化简,再将x =3y 代入原式即可求出答案. 【详解】 解:∵x -3y =0, ∴x =3y ,原式= (23)(2)+-y x y x x y(63)3(32)+=-y y y y y y3=故选:C 【点睛】本题考查分式的运算,解题的关键是熟练运用因式分解法将分式化简,再把x 换成3y . 10、D 【分析】①4272x xy y x xy y -+++转化为()()442727x y xy z z x y xy z z+--=+++,即可求解;②先求出y ,再求出z ,即可得到答案;③将()()11x y --变形求出值为1,再将11x y +变形求出值也为1,即可得到答案;④将2224x y +=进行变形为()2222x y x y xy +=+-,再将x y xy z +==整体代入,即可得到答案.【详解】解:①因为x y xy z +==,0z ≠所以,()()4441=27227273x y xy x xy y z z x xy y x y xy z z +--+-==-+++++,故此项正确;②因为,3x =,则x y xy +=. 所以,33y y +=解得:32y =;所以,313+422z x y =+==所以,31+4=622y z +=,故此项正确; ③因为0z ≠,x y xy z +==所以,()()()1111+=11x y y x xy x y xy z z --=--+=-+-+=;11=1y x x y z x y xy xy xy z+++===; 所以,()()1111x y x y--=+,故此项正确; ④因为6z =,x y xy z +==所以,()222222361224x y x y xy z z +=+-=-=-=,故此项正确; 故选D . 【点睛】本题考查完全平方公式、分式的加法以及整体代入方法,解答本题的关键是明确题意,求出学会整体代入. 二、填空题1、-0.125 1 9【分析】根据积的乘方逆运算、零指数幂与负指数幂的性质即可求解.【详解】[]202020202021202020208(0.125)8(0.125)(0.125)8(0.125)(0.125)0.125⋅-=⋅-⨯-=⨯-⨯-=-;()02 20213--⨯=11 199⨯=故答案为:-0.125;19.【点睛】此题主要考查实数的运算,解题的关键是熟知幂的运算公式及零指数幂与负指数幂的性质.2、10【分析】利用负整数指数幂,零指数幂的法则,即可求解.【详解】解:2211(20212019)19110 313-⎛⎫-+-=+=+=⎪⎝⎭⎛⎫-⎪⎝⎭.故答案为:10.【点睛】本题主要考查了负整数指数幂,零指数幂的法则,熟练掌握负整数指数幂,零指数幂的法则是解题的关键.3、= -3【分析】根据分母为0是分式无意义,分式值为零的条件是分子等于零且分母不等于零列式计算即可. 【详解】 解:根据题意,∵分式293x x --的值为零,∴29030x x ⎧-=⎨-≠⎩,∴3x =-; 故答案为:3=-. 【点睛】本题考查的是分式为0的条件、分式有意义的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4、1112(2)133x xx x ⎛⎫++-⋅= ⎪++⎝⎭ 【分析】有一工程需在x 天内完成,则甲的工作效率为1x,乙的工作效率为13x + ,则前两天完成的工作量为1123x x ⎛⎫+ ⎪+⎝⎭,乙单独做的工作量为()123x x -+,由此求解即可. 【详解】解:有一工程需在x 天内完成,则甲的工作效率为1x,乙的工作效率为13x + , 由题意得:()11122133x xx x ⎛⎫++-= ⎪++⎝⎭ , 故答案为:()11122133x x x x ⎛⎫++-= ⎪++⎝⎭.【点睛】本题主要考查了分式方程的实际应用,解题的关键在于能够准确找到等量关系列出方程. 5、2x ≠【分析】根据分母不等于零分式有意义,可得答案.【详解】 解:∵分式2x x -有意义, ∴20x -≠解得,2x ≠故答案为:2x ≠【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.三、解答题1、22a a +-,13-【分析】先计算括号内的异分母分式减法,再计算除法,最后将a =-1代入计算即可.【详解】 解:224114422a a a a a a ⎛⎫-+-÷ ⎪-+-+⎝⎭ 212221++⎛⎫=-⋅ ⎪--+⎝⎭a a a a a 1221a a a a ++=⋅-+22a a +=-, 当1a =-时,原式121123-+==---. 【点睛】此题考查分式的化简求值,正确掌握分式的混合运算是解题的关键.2、(1)4;(2)-+x y ,122【分析】(1)根据有理数的乘方、绝对值、零指数幂和负整数指数幂的计算方法可以解答本题;(2)根据完全平方公式、多项式乘多项式、多项式除以单项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】(1)解:原式9812=-++4=;(2)解:原式()22222443352x xy y x xy xy y y x =++-+-+-÷ ()2222x xy x =-+÷x y =-+.当2x =-,12y =时,原式122=.【点睛】本题考查整式的混合运算、实数的运算、零指数幂和负整数指数幂,解答本题的关键是明确它们各自计算方法,求出所求式子的值.3、23a -根据分式的乘除法进行计算,注意进行约分.【详解】 解:原式223344b b a a a b=-⋅⋅ 23a =-.【点睛】本题考查了分式的乘除法,解决本题的关键是遇到除法,变为乘法计算,并注意约分.. 4、32【分析】根据题意首先对代数式进行化简,然后将13x -=-代入求解即可.【详解】 解:原式2222222211x x x x x x x x----+-=÷-- 2211x x x x =-÷-- 2112x x x x -=-⋅- 12x=-, 当1133x -=-=-时,原式13122()3=-=⨯-. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.5、(1)1;(2)-1(1)根据绝对值的意义及零次幂的性质进行计算即可;(2)分别运用平方差公式及同底数幂的除法法则进行计算,再合并同类项即可.【详解】解:(1))022--21=-1=;(2)()()5311a a a a +--÷ 221a a =--1=-.【点睛】本题考查了实数及整式的混合运算,熟练掌握相关运算法则及性质是解题的关键.。

2019年春七年级数学下册第5章分式5.5第1课时分式方程及其解法练习新版浙教版

2019年春七年级数学下册第5章分式5.5第1课时分式方程及其解法练习新版浙教版

5.5 分式方程第1课时 分式方程及其解法知识点1 分式方程的定义只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程. 1.下列方程中,哪些是整式方程?哪些是分式方程? (1)x -40.2-x +30.5=1.6;(2)2-6-x 2=2x ;(3)8x2-1+1=x +8x -1;(4)x +3+1x +1=4+1x -1.知识点2 解分式方程 解分式方程的步骤:(1)分式方程两边同乘最简公分母,把分式方程转化为整式方程;(2)解这个整式方程,得出未知数的值;(3)检验所得到的值是不是原分式方程的根;(4)写出答案.使分式方程的分母为零的根是增根,增根使分式方程无意义,应该舍去. [注意] 检验是解分式方程的一个十分重要的步骤,切不可省略.2.解分式方程2x -3=3x的步骤:(1)去分母,方程两边同乘________,得整式方程____________; (2)解这个整式方程,得x =________;(3)检验:把x =________代入最简公分母x(x -3),得x(x -3)________(填“=0”或“≠0”),所以x =________是原分式方程的解.一 解分式方程教材例2变式题] 解下列方程: (1)2x =3x +1; (2)x 3x -1=2-11-3x ; (3)x x -1-2x2-1=1. [归纳总结] 解分式方程时,要注意以下几点:①不要忘记验根;②去分母时不要漏乘整式项;③当分式的分子是多项式时,去分母后不要忘记添括号.二 利用分式方程的增根求字母系数的值 教材例题补充题] 若关于x 的分式方程2x -3+x +m 3-x=2有增根,则m 的值是( ) A .m =-1 B .m =0C .m =3D .m =0或m =3[归纳总结] 利用分式方程的增根求待定字母的值,可按如下步骤进行:(1)先将分式方程转化为整式方程;(2)令最简公分母为0确定增根;(3)将增根代入所得的整式方程,求出待定字母的值.三 利用分式方程根的取值范围确定字母系数的取值范围教材例题补充题] [2015·荆州] 若关于x 的分式方程m -1x -1=2的解为非负数,则m 的取值范围是( )A .m>-1B .m ≥1C .m>-1且m≠1D .m ≥-1且m≠1[归纳总结] 确定根的取值范围时,要去掉使分式方程产生增根的情况.[反思] 下面是小马虎同学解分式方程的步骤,你认为他的解法正确吗?如果不正确,请指出错在哪里,然后写出正确答案.解方程:2x 2x -1=1-2x +2.解:原方程可化为2x 2x -1=x +2x +2-2x +2,即2x 2x -1=xx +2. 方程两边约去x ,得22x -1=1x +2. 去分母,得2x +4=2x -1. 所以此方程无解.一、选择题1.在方程x +53=7,-3x =2,x +12-x -13=4,3x -9x=1中,分式方程有( )A .1个B .2个C .3个D .4个2.把分式方程2x +4=1x转化为一元一次方程时,方程两边需同乘( )A .xB .2xC .x +4D .x(x +4)3.2015·济宁解分式方程2x -1+x +21-x=3时,去分母后正确的为( )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)4.若x =3是关于x 的分式方程a -2x -1x -2=0的根,则a 的值是( )A .5B .-5C .3D .-35.[2015·常德] 分式方程2x -2+3x2-x=1的解为( )A .x =1B .x =2C .x =13D .x =06.分式方程1x -1-2x +1=4x2-1的解是( )A .x =0B .x =-1C .x =±1D .无解7.下列分式方程中,有解的是( ) A .x +1x2-1=0 B .x2+1x -1=0 C .x +1x -1=1 D .(x -1)2x -1=1 8.对于非零的两个实数a ,b ,规定b =1b -1a.若+1)=1,则x 的值为( )A .32B .13C .12D .-12二、填空题9.解分式方程1x -1-1x +1=1x2-1去分母时,两边都乘______________.10.2016·湖州方程2x -1x -3=1的根是x =________.11.若关于x 的分式方程2(x -a )a (x -1)=-25的解为x =3,则a 的值为________.12.已知关于x 的方程a x +1-3x2-1=1有增根,则a 的值等于________.三、解答题13.解分式方程:(1)2016·连云港解方程:2x -11+x =0;(2)2016·绍兴解分式方程:x x -1+21-x=4.14.是否存在实数x ,使得代数式x -2x +2-16x2-4的值与代数式1+4x -2的值相等?15.若关于x 的分式方程ax a +1-2x -1=1的解与方程x +4x =3的解相同,求a 的值.16.当k 取何值时,关于x 的分式方程6x -1=x +k x (x -1)-3x 有解?17.若关于x 的分式方程x -m x -1-3x =1无解,求m 的值.1.[规律探索题] 已知:11×2=1-12,12×3=12-13,13×4=13-14,…(1)根据这个规律写出第n 个式子是________________________________________________________________________;(2)利用这个规律解方程:1x (x +1)+1(x +1)(x +2)+…+1(x +9)(x +10)=1x +10.2.阅读下面一段话:关于x 的分式方程x +1x =c +1c 的解是x =c 或x =1c ;关于x 的分式方程x +2x =c +2c 的解是x =c 或x =2c ;关于x 的分式方程x +3x =c +3c 的解是x =c 或x =3c ;…(1)写出方程x +1x =52的解:________;(2)猜想关于x 的分式方程x +m x =c +mc (m≠0)的解,并将所得解代入方程检验.详解详析【预习效果检测】1.[解析] 分式方程与整式方程的区别在于分母中是否含有未知数. 解:(1)(2)是整式方程,(3)(4)是分式方程. 2.(1)x (x -3) 2x =3(x -3) (2)9 (3)9 ≠0 9 【重难互动探究】例1 [解析] 首先确定各分母的最简公分母,然后去分母,解整式方程.解:(1)方程两边同时乘x(x +1),得2(x +1)=3x ,解得x =2.经检验,x =2是原分式方程的解.(2)方程两边同时乘(3x -1),得x =2(3x -1)+1,解得x =15.经检验,x =15是原分式方程的解.(3)方程两边同乘(x -1)(x +1),得 x(x +1)-2=(x -1)(x +1).去括号,得x 2+x -2=x 2-1. 移项、合并同类项,得x =1.检验:当x =1时,(x -1)(x +1)=0, 所以x =1是原分式方程的增根. 所以原方程无解.例2A [解析] 方程两边都乘(x -3),得2-x -m =2(x -3).因为分式方程有增根,所以x =3,所以2-3-m =2(3-3),解得m =-1.故选A .例3D [解析] 去分母,得m -1=2x -2,解得x =m +12.由题意得m +12≥0且m +12≠1.解得m ≥-1且m≠1.故选D .【课堂总结反思】[反思] 小马虎的解答不正确,错在“方程两边约去x”这一步.正解:原方程可化为2x 2x -1=xx +2. 去分母,得2x(x +2)=x(2x -1).去括号,得2x 2+4x =2x 2-x. 解得x =0.经检验,x =0是原方程的解. 【作业高效训练】 [课堂达标]1.[解析] B 方程-3x =2和3x -9x =1中的分母含有未知数,是分式方程.故选B .2.D 3.D 4.A 5.A 6.D7.[解析] D 选项A 中,当x +1=0时,x =-1,而当x =-1时,分母的值等于0,所以该方程无解;选项B 中,因为x 取任意值,x 2+1≥0恒成立,所以方程无解;选项C 中,因为x 取任意值,x +1的值总不等于x -1的值,所以分式x +1x -1的值总不等于1,方程无解;选项D 中,方程的解为x =2.8.[解析] D 由规定知,1+1)=1可化为1x +1-1=1,即1x +1=2,解得x =-12.∵-12+1≠0,∴符合条件.故选D .9.[答案] (x +1)(x -1) 10.[答案] -2 11.[答案] 5[解析] 因为关于x 的方程2(x -a )a (x -1)=-25的解为x =3,所以2(3-a )a (3-1)=-25,即3-a2a =-15.解这个方程得a =5.经检验,a =5满足题意. 12.[答案] -32[解析] 方程两边同乘(x +1)(x -1),得 a(x -1)-3=(x +1)(x -1). ∵原方程有增根,∴最简公分母(x +1)(x -1)=0, ∴增根是x =1或x =-1. 当x =-1时,a =-32;当x =1时,a 无解. 13.(1)x =-2 (2)x =2314.解: 根据题意,得x -2x +2-16x2-4=1+4x -2,去分母,得(x -2)2-16=x 2-4+4(x +2),去括号,得x 2-4x +4-16=x 2-4+4x +8, 移项、合并同类项,得8x =-16, 解得x =-2.经检验,x =-2是原方程的增根,故原分式方程无解. 所以不存在满足条件的实数x. 15.解:由x +4x =3,得x =2.∵关于x 的分式方程ax a +1-2x -1=1的解与方程x +4x=3的解相同, ∴把x =2代入方程ax a +1-2x -1=1中, 得2a a +1-22-1=1, 即2aa +1=3, 解得a =-3. 经检验,a =-3是方程2a a +1-22-1=1的根, ∴a =-3.16.解:6x -1=x +k x (x -1)-3x,方程两边同乘x(x -1),得 6x =x +k -3(x -1), ∴k =8x -3.∵原分式方程有解,∴x ≠0且x -1≠0,即x≠0且x≠1 ∴8x -3≠3且8x -3≠5,∴当k≠-3且k≠5时,原分式方程有解.17.解:去分母,得x(x -m)-3(x -1)=x(x -1),-mx -3x +3=-x , 整理,得(2+m)x -3=0.∵关于x 的分式方程x -m x -1-3x=1无解,∴x =1或x =0.当x =1时,2+m -3=0,解得m =1. 当x =0时,-3=0,无解.当2+m =0时,方程(2+m)x -3=0无解,此时m =-2. ∴m =1或m =-2. [数学活动] 1.解:(1)1n (n +1)=1n -1n +1(2)原方程可化为⎝ ⎛⎭⎪⎫1x -1x +1+⎝ ⎛⎭⎪⎫1x +1-1x +2+…+⎝ ⎛⎭⎪⎫1x +9-1x +10=1x +10, 即1x -1x +10=1x +10,解得x =10. 当x =10时,原分式方程的最简公分母不为0. 所以x =10是原分式方程的解.2.解:(1)方程x +1x =52可化为x +1x =2+12,可得该方程的解为x =2或x =12.(2)猜想:方程的解为x =c 或x =m c .分别将x =c 和x =mc 代入原方程可得方程的左边=右边,故方程x +m x =c +m c (m≠0)的解为x =c 或x =mc .。

【最新】浙教版七年级数学下册第五章《5.5分式方程(2)》公开课课件.ppt

【最新】浙教版七年级数学下册第五章《5.5分式方程(2)》公开课课件.ppt

数后,分数的值变为它的倒数,那么加上的
这个数是多少?
3 x 2
解 :设这个数为x,则可列方程 2 x 3 ,
3.某车间加工1200个零件,原来每天可加工x个,则 1200 需_____x ___天可加工完成;如果采用新工艺,工效是 原来的1.5倍,这样每天可以加工_1_._5_x_个,同样多的
头的距离,v表示明胶片(像)到镜头的距离,如果一
架照相机f已固定,那么就要依靠调整U、V来使成像
清晰。
如果用焦距f=35mm的相机拍摄离镜头的跳高
u=2m的花卉,成像清晰,那么拍摄时胶片到镜头的距
离v大约是多少?(精确到0.1mm)
变式:照相机成像应用了一个重要原理,即 1 1 1 f uv
(V≠f),问在f、v已知的情况下,怎样确定物体到镜头
每个月的用水量×水的单价=每个月的用水费. 今年的用水单价=去年用水单价×(1+1/3). 所以,首先要表示出小丽家这两个月的用水量. 每个月的用水量=水费/水的单价.
例题欣赏
解:设该市去年用水的价格为x元/m3,则今年 的水价为(1+1/3)x元/m3,根据题意得
30 (1 1)x
15 x
5
• 10、人的志向通常和他们的能力成正比例。2021/1/122021/1/122021/1/121/12/2021 9:56:46 AM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/122021/1/122021/1/12Jan-2112-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/122021/1/122021/1/12Tuesday, January 12, 2021 • 13、志不立,天下无可成之事。2021/1/122021/1/122021/1/122021/1/121/12/2021

七年级数学下册第5章分式5.5分式方程第2课时校本作业B本新版浙教版word版本

七年级数学下册第5章分式5.5分式方程第2课时校本作业B本新版浙教版word版本

5.5 分式方程(第2课时)课堂笔记列分式方程解简单应用题:1. 实际问题→数学问题→列出方程→解方程→检验→答.2. 检验含两个步骤:其一对所列方程进行验根,其二看所得根是否符合实际情况. 分层训练A 组 基础训练1. (毕节中考)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为( )A . x 400=30300-xB .30400-x =x 300 C . 30400+x =x 300 D . x 400=30300+x 2. 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x 米,则可得方程103000-x -x3000=15,根据此情景,题中用“…”表示的缺失的条件应补为( )A . 每天比原计划多铺设10米,结果延期15天才完成B . 每天比原计划少铺设10米,结果延期15天才完成C . 每天比原计划多铺设10米,结果提前15天才完成D . 每天比原计划少铺设10米,结果提前15天才完成 3. 某工地调来144人参加挖土和运土,已知3人挖出的土1人恰好能全部运走. 怎样调配劳动力才能使挖出来的土能及时运走且不窝工(停工等待)?为解决此问题,可设派x 人挖土,其他人运土.列出如下方程:①x x -144=31;②144-x =3x ;③x +3x =144;④xx -144=3. 其中正确的有( )A. 1个B. 2个C. 3个D. 4个 4. 已知公式l=180R n π,用l ,n 表示R ,正确的是( ) A . R=180l n π B . R=l n π180 C . R=πn l 180 D . R=ln 180π 5. 有一艘轮船,顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,已知水流的速度是3千米/时,如果设轮船在静水中的速度是x 千米/时,下列所列方程正确的是 ( )A. 340-x =330+xB. x 40=330+xC. 340+x =x 30D. 340+x =330-x 6. 春节期间,文具店的一种笔记本8折优惠出售. 某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本. 这种笔记本春节期间每本的售价是( )A. 2元B. 3元C. 2.4元D. 1.6元7. 在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下. 已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为.8. 若商品的买入价为a ,售出价为b ,则毛利率p=a ab -(b >a ). 把这个公式变形成已知p ,b ,求a 的公式,则a=.9. (丽水中考)为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台. 已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:求m 的值.10. 两电阻r 1,r 2并联后的电阻值为R ,且R ,r 1,r 2之间的关系为R 1=11r +21r . (1)用含R ,r 2的代数式表示r 1;(2)当r 2=6Ω,R=3Ω时,求r 1的值.11.某快递公司的分拣工小王和小李在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,求小李每小时分拣多少个物件.B组自主提高12.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出小伙伴的人数.13.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场,现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天.信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天各能加工的产品数量.C组综合运用14. 某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与用900元购进的足球个数相等.(1)篮球与足球的单价各是多少元?(2)该校打算用1000元购进篮球和足球,问:恰好用完1000元,并且篮球、足球都买的购买方案有哪几种?参考答案5.5 分式方程(第2课时)【分层训练】1—6. ACCCDC 7. x 90=20120+x 8.1+p b 9. 用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,即可得:m 90=375-m ,解得m=18,经检验m=18是原方程的解,即m=18. 10. (1)r 1=Rr R r -22 (2)r 1=6Ω 11. 设小李每小时分拣x 个物件,则小王每小时分拣(x +8)个物件. 根据题意,得860+x =451+x ,解得x =24. 经检验,x =24是原方程的根,且符合题意.答:小李每小时分拣24个物件.12. 设共有x 个小伙伴,由题意,得2360-x ×60%=x72360-,解得x =8. 经检验,x =8是原方程的根,且符合题意.答:共有8个小伙伴.13. 设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品. 由题意,得x 1200-x5.11200=10,解得x =40. 经检验,x =40是原方程的根,且符合题意.1.5×40=60(件).答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.14. (1)设足球单价为x 元,则篮球单价为(x +40)元,依题意得:401500+x =x900,解得:x =60,经检验,x =60是原方程的解,则x +40=100元,答:篮球和足球的单价分别是100元,60元.(2)设恰好用完1000元,可购买篮球m 个和购买足球n 个,依题意得:100m +60n =1000,整理得:m =10-53n ,∵m ,n 都是整数,∴①n =5时,m =7,②n =10时,m =4,③n =15时,m =1,∴有三种方案:①购买篮球7个,足球5个;②购买篮球4个,足球10个;③购买篮球1个,足球15个.。

七年级数学下册《第五章分式》单元测试卷-附答案(浙教版)

七年级数学下册《第五章分式》单元测试卷-附答案(浙教版)

七年级数学下册《第五章分式》单元测试卷-附答案(浙教版)一、单选题1.当x=-2时,下列各式哪个无意义( )A .-1x x B .224x - C .2224x x -+ D .24x x ++ 2.如果把分式32a bab+中的a 和b 都扩大两倍,则分式的值( ) A .变为原来的4倍 B .变为原来的12C .不变D .变为原来的2倍3.计算 2310635x y y x -⋅ ,结果是( ) A .24x y -B .24y x-C .4yx- D .215yx-4.计算12a a +的值是( ) A .3a B .32aC .22a D .23a 5.下列方程中,是分式方程的个数是( )①113x += ,②341x =+ ,③2111x x -=+ ,④1223x x -+= ,⑤12x x π++= . A .1个B .2个C .3个D .4个6.不论x 取何值,下列代数式的值不可能为0的是()A .21x -B .11x - C .()21x -D .11x x -+ 7.把分式2xyx y- 中x ,y 的值都扩大为原来的3倍,则分式的值( ) A .为原来的6倍B .为原来的3倍C .不变D .为原来的9倍8.计算-a 2÷( 2a b )•( 2b a)的结果是( )A .1B .3b a-C .-3a b D .-149.如果 4x y -= ,那么代数式222222x yx y x y +-- 的值是( )A .-2B .2C .12D .12-10.甲、乙两人做某种机械零件,已知甲做350个零件的时间是乙做240个零件所用时间的54倍,两人每天共做130个零件.七(1)班同学根据条件提出了不同的问题,设出相应的未知数x ,并列出如下方程,数学老师批阅后,发现一个不正确,这个不正确的方程一定是( )A .35052404130x x =⨯- B .35024054130x x⨯=⨯-C .35024013054x x+= D .35024013054x x+= 二、填空题11.化简: 22224ab a b = .12.23(2)x y y ⎛⎫-⋅- ⎪⎝⎭= 。

2024七年级数学下册第5章分式5.5分式方程5.5.2分式方程的应用习题课件新版浙教版

2024七年级数学下册第5章分式5.5分式方程5.5.2分式方程的应用习题课件新版浙教版

8 【2023·泰安】为进行某项数学综合与实践活动,小明 到一个批发兼零售的商店购买所需工具.该商店规定 一次性购买该工具达到一定数量后可以按批发价付款, 否则按零售价付款.小明如果给学校九年级学生每人 购买一个,只能按零售价付款,需用3 600元;如果多 购买60个,则可以按批发价付款,同样需用3 600元, 若按批发价购买60个与按零售价购买50个所付款相同, 则这个学校九年级学生有多少人?
即有三种进货方案: 方案一:购进A款丝巾2条,购进B款丝巾9条, 利润为(240-160)×2+(200-120)×9=880(元); 方案二:购进A款丝巾5条,购进B款丝巾5条, 利润为(240-160)×5+(200-120)×5=800(元); 方案三:购进A款丝巾8条,购进B款丝巾1条, 利润为(240-160)×8+(200-120)×1=720(元). ∵720<800<880,∴方案一的总利润最高.
【点拨】
∵大货车每辆运输 x 吨货物, ∴小货车每辆运输(x-5)吨货物,则7x5=x5-05. 【答案】 B
2 【2022·丽水】某校购买了一批篮球和足球.已知购买足
球的数量是篮球的 2 倍,购买足球用了 5 000 元,购买
篮球用了 4 000 元,篮球单价比足球贵 30 元.根据题意
可列方程5 20x00=4 0x00-30,则方程中 x 表示( )
(2)小汪在销售单上记录了两天的数据,如下表:
日期 A款丝巾(条) B款丝巾(条) 销售总额(元)
12月10日
4
12月11日6Biblioteka 62 1608
3 040
两款丝巾的销售单价分别是多少元?
解:设 A 款丝巾的销售单价是 a 元,B 款丝巾的销售单价 是 b 元, 根据题意,得46aa++68bb==23 106400,,解得ab==224000,. 答:A 款丝巾的销售单价是 240 元,B 款丝巾的销售单价 是 200 元.

浙教版七年级数学下册第5章检测卷附答案

浙教版七年级数学下册第5章检测卷附答案

浙教版七年级数学下册第5章 检测卷一、选择题(每题3分,共30分) 1.下列式子是分式的是( )A.a -b2B.5+yπC.x +3xD .1+x2.若分式3xx -1有意义,则x 应满足( ) A .x =0B .x ≠0C .x =1D .x ≠13.若分式|x |-3x +3的值为0,则x 的值为( )A .3B .-3C .±3D .任意实数4.下列分式为最简分式的是( )A.2ac 3bcB.2aa 2+3aC.a +ba 2+b 2D.a +1a 2-15.下列各式中,正确的是( )A .--3x 5y =3x -5yB .-a +b c =-a +b cC.-a -b c =a -b cD .-ab -a =aa -b6.分式方程3x =4x +1的解是( )A .x =-1B .x =1C .x =2D .x =37.当a =2时,计算a 2-2a +1a 2÷⎝ ⎛⎭⎪⎫1a -1的结果是( )A.32B .-32C.12D .-128.对于非零的两个实数a ,b ,规定a *b =3b -2a,若5*(3x -1)=2,则x 的值为( )A.56B.34C.23 D .-169.若分式方程x x -1-1=m(x -1)(x +2)有增根,则m 的值为( ) A .0或3B .1C .1或-2D .310.某中学为响应“足球进校园”的号召,决定在某商场购进A ,B 两种品牌的足球,购买A 品牌足球花费2 400元,购买B 品牌足球花费3 600元,且购买A 品牌足球的数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌足球多花30元,设购买一个A 品牌足球花x 元,根据题意,下面所列方程正确的是( )A.2 400x =3 600x +30B.2 400x =3 600x +30×2 C.3 600x +30=2 400x ×2 D.2 400x +30=3 600x ×2 二、填空题(每题3分,共24分) 11.23x 2(x -y ),12x -2y ,34xy的公分母是______________.12.若x =1是分式方程a -2x -1x -2=0的根,则a =________. 13.若代数式1x -2和32x +1的值相等,则x =________. 14.若关于x 的分式方程mx -1+31-x=1的解为正数,则m 的取值范围是______________. 15.若关于x 的方程2x -2+x +m2-x=2有增根,则m 的值是________. 16.将梯形面积公式S =12(a +b )h 变形成已知S ,a ,b ,求h 的形式,则h =________.17.已知点A ,B 在数轴上,它们所对应的数分别是-2,x -73x -1,且点A ,B 到原点的距离相等,则x 的值为________.18.数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分) 19.计算: (1)2a a 2-9-1a -3;(2)⎝ ⎛⎭⎪⎫1a -1b ÷a 2-b 2ab .20.解分式方程: (1)2x =3x +2;(2)x +1x -1+4x 2-1=1.21.已知y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3,试说明:当x 取任何有意义的值时,y 值均不变.22.先阅读下列解题过程,再回答问题:计算:4x 2-4+12-x. 解:原式=4(x +2)(x -2)-1x -2 ①=4(x +2)(x -2)-x +2(x +2)(x -2) ② =4-(x +2) ③ =2-x ④(1)以上解答有错误,错误步骤的序号是________,错误做法是________; (2)请你给出正确的解答过程.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用含x 的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,求做出的三棱柱盒子的个数.(第23题)24.阅读下面材料,解答后面的问题.解方程:x -1x -4xx -1=0. 解:设y =x -1x ,则原方程可化为y -4y=0,方程两边同时乘y ,得y 2-4=0,解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -4y=0的解.当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13.经检验,x 1=-1,x 2=13都是原分式方程的解.所以原分式方程的解为x 1=-1,x 2=13. 上述这种解分式方程的方法称为换元法. 问题:(1)若在方程x -14x -x x -1=0中,设y =x -1x ,则原方程可化为________________; (2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为________________;(3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.答案一、1.C 2.D 3.A 4.C 5.D 6.D 7.D8.B 提示:根据题意得33x -1-25=2,解得x =34.经检验x =34是所列分式方程的解.故选B. 9.A 10.B二、11.12x 3y -12x 2y 212.1 提示:∵x =1是分式方程a -2x -1x -2=0的根,∴a -21-11-2=0.解得a =1. 13.7 14.m >2且m ≠315.0 提示:知道产生增根的原因是解决问题的关键. 16.2Sa +b17.-118.15 提示:由题意可知15-1x =13-15,解得x =15,经检验,x =15是所列分式方程的解.三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a -3(a +3)(a -3)=1a +3. (2)原式=b -a ab ·ab (a +b )(a -b )=-a -b ab ·ab (a +b )(a -b )=-1a +b. 20.解:(1)方程两边都乘x (x +2),得2(x +2)=3x ,解得x =4.检验:当x =4时,x (x +2)≠0,所以原分式方程的解为x =4.(2)方程两边都乘(x +1)(x -1),得(x +1)2+4=(x +1)(x -1),解得x =-3. 检验:当x =-3时,(x +1)(x -1)≠0,所以原分式方程的解为x =-3.21.解:y =x 2+6x +9x 2-9÷x +3x 2-3x -x +3=(x +3)2(x +3)(x -3)·x (x -3)x +3-x +3=x -x+3=3.故当x 取任何有意义的值时,y 值均不变. 22.解:(1)③;去分母(2)正确解法:原式=4(x +2)(x -2)-1x -2=4(x +2)(x -2)-x +2(x +2)(x -2)=4-(x +2)(x +2)(x -2)=-x -2(x +2)(x -2)=-1x +2.23.解:(1)裁剪时x 张用A 方法,则(19-x )张用B 方法.所以侧面的个数为6x +4(19-x )=(2x +76)个,底面的个数为5(19-x )=(95-5x )个.(2)由题意,得2x +7695-5x =32,解得x =7.经检验,x =7是所列分式方程的解,且符合题意.因为2x +763=2×7+763=30,所以做出的三棱柱盒子的个数是30个.24.解:(1)y 4-1y=0(2)y -4y=0(3)原方程可化为x -1x +2-x +2x -1=0, 设y =x -1x +2,则原方程可化为y -1y=0. 方程两边同时乘y ,得y 2-1=0,解得y 1=1,y 2=-1. 经检验,y 1=1,y 2=-1都是方程y -1y=0的解.当y =1时,x -1x +2=1,该方程无解; 当y =-1时,x -1x +2=-1,解得x =-12.经检验,x =-12是原分式方程的解.所以原分式方程的解为x =-12.七年及数学下册计算专项练习1.计算:(1)16+38-(-5)2; (2)(-2)3+|1-2|×(-1)2 023-3125.(3)-32+4×327; (4)16+|2-3 3|-3-64-(-6)2+ 3.(5)16+38-(-5)2; (6)(-2)3+|1-2|×(-1)2 021-3 125.(7)35+23-|35-23|;(8)(-2)2-327+|3-2|+ 3.(9)214+0.01-3-8;(10)(10)3-0.125+|3-2|-3-34+|3|-(-2)2.2.求下列各式中x的值:(1)x2-81=0;(2)x3-3=3 8 .(3)⎩⎨⎧6x +5y =31,①3x +2y =13;②(4)⎩⎨⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②(5)解方程组:⎩⎨⎧x 2-y +13=1,3x +2y =10; (6)解不等式:x -52+1>x -3;(7)解不等式组:⎩⎨⎧x +5≤0,3x -12≥2x +1,并写出它的最大负整数解.(8)⎩⎨⎧3x -2y =-1,3x -4y =-5; (9)⎩⎨⎧x -2≤14-3x ,5x +2≥3(x -1). 参考答案1.解:(1)原式=4+2-5=1.(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2.(3)原式=-9+2×3=-3.(4)原式=4+3 3-2+4-6+3=4 3. (5)原式=4+2-5=1;(6)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (7)原式=35+23-35+23=4 3. (8)原式=2-3+2-3+3=1. 解:(9)原式=32+0.1+2=3.6.(10)原式=-0.5+2-3-32+3-2=-2.2.解:(1)依题意,得x 2=81,根据平方根的定义,得x =±9.(2)依题意,得x 3=278,根据立方根的定义,得x =32. 解:(3)②×2得,6x +4y =26,③ ①-③得,y =5.将y =5代入①得,6x +25=31,则x =1. 所以方程组的解为⎩⎨⎧x =1,y =5.(4)解不等式①得,x <2; 解不等式②得,x ≥-3.所以不等式组的解集为-3≤x <2.解:(5)整理,得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.②-①,得4y=2,解得y =12.所以原方程组的解为⎩⎨⎧x =3,y =12.(6)去分母,得(x -5)+2>2(x -3),去括号,得x -5+2>2x -6,移项,得x -2x >-6+5-2,合并同类项,得-x >-3,系数化为1,得x <3.(7)解不等式x +5≤0,得x ≤-5.解不等式3x -12≥2x +1,得x ≤-3.所以不等式组的解集为x ≤-5.所以它的最大负整数解为-5.解:(8)⎩⎨⎧3x -2y =-1,①3x -4y =-5,②①-②,得2y =4,解得y =2.把y =2代入①,得x =1.所以这个方程组的解是⎩⎨⎧x =1,y =2.(9)⎩⎨⎧x -2≤14-3x ,①5x +2≥3(x -1),② 由①,得x ≤4,由②,得x ≥-52, 所以原不等式组的解集为-52≤x ≤4.。

【四清导航】春七年级数学下册 第5章 分式课件(A)(新版)浙教版

【四清导航】春七年级数学下册 第5章 分式课件(A)(新版)浙教版
5x+xy-5y 1 1 13.(4 分)若 - =3,则 的值为( x y x-xy-y 7 A.- 2 7 B. 2 2 C. 7 2 D.- 7
B
)
14.(4 分)化简(x4-18x2+81)÷ (x2-6x+9)的结果是__(x+3)2_
第2课时 利用约分进行多项式的除法
3x2+xy-3y2 y x 15.(8 分)已知: - =5,求分式 2 的值. x y 2x -xy-2y2
1.(3分)计算(3ab3-6a2b2)÷(2a-b)的结果是( ) A.3ab2 B.-3ab2 C.3a2b D.-3a2b 2.(3分)化简(a2-b2)÷(a2+ab)的结果为( )
b A.- a a-b B. a a+b C. a D.-b B )
3.(3 分)计算(4x2+12xy+9y2)÷ (-2x-3y)的结果是( A.2x+3y B.-2x-3y C.3x+2y D.-3x-2y a+b a 2 4.(3 分)已知 = ,则 的值为( b 3 b 3 A. 2 4 B. 3 5 C. 3 3 D. 5 B ) C )
A
)
D.x=-1 B ) 1 D.x≠ 2 A )
x-3 4.(3 分)若分式 的值为 0,则 x 的值是( x+4 A.x=3 B.x=0 C.x=-3
D.x=-4
30 5.(3 分)一个圆锥的体积为 10,若这个圆锥的底面积为 S,是圆锥的高为__ __. S 1 30 6.(3 分)若分式 有意义,则实数 x 的取值范围是__ __. S x-5 x-8 7.(3 分)若分式 的值为 0,则 x 的值等于__8__. x 8.(3 分)甲、乙两地相距 10 千米,某人从甲地到乙地,步行时用 2x 小时,骑自行车时比步 行时所用时间的一半少 0.2 小时,则骑自行车的速度为__ 10 __千米/小时. x-0.2

七年级数学下册(浙教版)

七年级数学下册(浙教版)

06 第6章 数据与统计图表
第6章 数据与统计 图表
6.1数据的收集与整理 6.2条形统计图和折线统计图 6.3扇形统计图 6.4频数与频率 6.5频数直方图
感谢聆听
02 第2章 二元一次方程
第2章 二元一次方 程
2.1 二元一次方程 2.2 二元一次方程组 2.3 解二元一次方程组 2.4 二元一次方程组的应用 2.5 三元一次方程组及其解法(选学)
03 第3章 整式的乘除
第3章 整式 的乘除
06
3.6 同底数 幂的除法
01
3.1 同底数 幂的乘法
05
七年级数学下册(浙教版 )
演讲人 202X-06-08
REPORT
目录
01. 第1章 平行线 03. 第3章 整式的乘除 05. 第5章 分式
02. 第2数据与统计图表
01 第1章 平行线
第1章 平行线
1.1平行线 1.2同位角、内错角、同旁内角 1.3平行线的判定 1.4平行线的性质 1.5图形的平移
3.5 整式的 化简
02
3.2 单项式 的乘法
04
3.4 乘法公 式
03
3.3 多项式 的乘法
第3章 整式的乘除
3.7 整式的除法
04 第4章 因式分解
第4章 因式分解
4.1 因式分解 4.2 提取公因式 4.3 用乘法公式分解因式
05 第5章 分式
第5章 分式
5.1 分式 5.2分式的基本性质 5.3 分式的乘除 5.4 分式的加减 5.5 分式方程

【浙教版】七年级数学下册: 分式方程(第1课时)课件

【浙教版】七年级数学下册: 分式方程(第1课时)课件

概 念 观察下列方程: 一元一次方程
一元二次方程
1、2(x-1)=x+1; x2+x-20=0; x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 0; x 1 1; 1 1 1 x 1 5x 9 ; 2、 x 1 x 1 2 x 1 y x 1 x2 1
方程中只含分式,或分式和整式, 分式方程:并且分母里含有未知数的方程.
5.5 分式方程
第1课时

找一找:



① ③
);
1. 下列方程中属于分式方程的有(
属于一元分式方程的有( ① 2 x 1 3x 1 x
① ). ② x 1 y 1 2x 1 3 4

4 3 7 ③ x y
必须检验
x 1 6 0 挑战自我 (填空)1、解方程: x 2 x 2 2x
解:方程两边同乘以最简公分母 x(x-2) ,
2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . ①
② 解得 x1= -3 , x2= 2 . ③ 检验:把 x1= -3 ,代入最简公分母,
小结
• 解分式方程的一般步骤. • 增根与验根. • 增根及增根产生的原因. • 解分式方程容易发生的错误. • 在解分式方程中你有何收获与体会. • 要注意灵活运用解分式方程的步骤. • 同时要有简算意识,提高运算的速 度和准确性. • 体会数学转化的思想方法.


语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法


高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。

浙教版七年级下第五章分式解答题精选及答案

浙教版七年级下第五章分式解答题精选及答案

浙教版七年级下第五章分式解答题精选解答题(共40小题)1.先化简,再求值:(x﹣2+)÷,其中x=﹣.2.(1)计算:(8a6b3)2÷(﹣2a﹣2b)3(2)化简:3.先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.4.先化简,再选一个你喜欢的x的值代入求值.5.先化简,再求值:(+)÷,其中x=.6.先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=07.已知:a2﹣a﹣2=0,求代数式的值.8.先化简,再求值:(1﹣),其中m=2019.9.阅读材料,并回答问题:小明在学习分式运算过程中,计算﹣的解答过程如下:解:﹣①=﹣②=(x﹣2)﹣(x+2)③=x﹣2﹣x﹣2 ④=﹣4 ⑤问题:(1)上述计算过程中,从步开始出现了错误(填序号);(2)发生错误的原因是:;(3)在下面的空白处,写出正确的解答过程:10.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:,则是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=(要写出变形过程);(3)应用:先化简,并求x取什么整数时,该式的值为整数.11.化简求值:,其中a=2.12.某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本.(1)请利用分式方程求出每本笔记本的原来标价;(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入本笔记本?13.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?14.先化简,再求值÷(1﹣),其中a=2.15.刘阿姨到超市购买大米,第一次按原价购买,用了90元,几天后,遇上这种大米8折出售,她用120元又买了一些,两次一共购买了40kg.求这种大米的原价.16.求代数式:÷(x+2﹣)的值,其中x=﹣3+.17.解方程:(1)﹣=1(2)=+18.解方程:﹣=1.19.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.20.某工厂需要在规定时间内生产1400个某种零件,该工厂按一定速度加工5天后,发现按此速度加工下去会延期10天完工,于是又抽调了一批工人投入这种零件的生产,使工作效率提高了50%,结果如期完成加工任务.(1)求该工厂前5天每天生产多少个这种零件;(2)求规定时间是多少天.21.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是20千米,在相同的路线上,小红驾车的速度是骑自行车速度的4倍,小红每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小红骑自行车的速度.22.某中学组织学生去离学校12km的东山农场,学生大队在以原定的速度行走了3km后,加快了行进速度,速度提高到原来的1.2倍,结果学生大队比原定所需时间提前了0.4h到达目的地.求学生大队原定的行进速度.23.按要求完成下列各小题.(1)计算:2÷(﹣1)﹣9×()2+20160;(2)解方程:﹣=0.24.在2019年元旦前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快销售一空,根据市场需求情况,该花店又用7000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?25.某校八年级学生去距离学术10千米的博物馆参观,一部分学生骑自行车,其余学生乘汽车.已知骑车学生所用的时间是乘车学生所用时间的2倍,且汽车的速度比骑车学生的速度快15千米/小时.求骑车学生的速度.26.解方程.27.解分式方程:+2=28.某中学组织学生去离学校15km的农场,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h,先遣队和大队的速度各是多少?29.阅读下面的对话:MM:“请帮我称些梨.”售货员:“您上次买的梨卖没了,您试一试新进的苹果,价格虽然比梨贵些,但苹果营养价值更高.”MM:“好,我跟上次一样,也买30元钱.”对比两次的电脑小票,MM发现:每千克苹果的价格是梨的1.5倍,苹果的重量比梨轻2.5千克.根据上面的对话和MM发现,分别求出苹果和梨的单价.30.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价150元销售,最后剩下50件按八折优惠卖出,求两批衬衫全部售完后利润是多少元?31.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?32.若关于x的方程+=有增根,求增根和m的值.33.关于x的方程﹣=有增根,求m的值.34.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.35.甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?36.星期天,小明和小华从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小华的速度的 1.2倍,结果小明比小华早5分钟到达,求两人的速度.37.2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?38.两个小组同时从山脚开始攀登一座600m高的山,第一小组的攀登速度(即攀登高度与攀登时间之比)是第二小组的1.2倍,并比第二小组早20min到达山顶.(1)第二小组的攀登速度是多少?(2)如果山高为hm,第一小组的攀登速度是第二小组的k(k>1)倍,并比第二小组早tmin到达山顶,则第一小组的攀登速度是多少?39.正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.40.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?参考答案与试题解析一.解答题(共40小题)1.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.2.解:(1)原式=64a12b6÷(﹣8a﹣6b3)=﹣8a18b3;(2)原式=÷=•=.3.解:原式=•﹣=﹣==﹣,当x=2时,原式=﹣.4.解:原式=÷(﹣)=÷=•=﹣,当x=0时,原式=﹣=1.5.解:原式=[+]•=(+)•=•=,当x=时,原式==﹣1.6.解:÷(a﹣2﹣)+=====,∵a2﹣2a﹣6=0,∴a2=2a+6,∴原式==2.7.解:原式=(+)•=•=•=a+1,∵a2﹣a﹣2=0,∴(a+1)(a﹣2)=0,解得a=﹣1或a=2,∵a+1≠0,即a≠﹣1,∴a=2,则原式=2+1=3.8.解:原式=(﹣)•=•=,当m=2019时,原式==.9.解:﹣①=﹣②=(x﹣2)﹣(x+2)③=x﹣2﹣x﹣2 ④=﹣4 ⑤问题:(1)上述计算过程中,从③步开始出现了错误(填序号);(2)发生错误的原因是:不能去分母;(3)在下面的空白处,写出正确的解答过程:解:(1)上述计算过程中,从③步开始出现了错误(填序号);故答案为:③;(2)发生错误的原因是:不能去分母;故答案为:不能去分母;(3)正确解答过程为:解:﹣=﹣==﹣.10.解:(1)①=1+,是和谐分式;②=1+,不是和谐分式;③==1+,是和谐分式;④=1+,是和谐分式;故答案为:①③④.(2)==+=a﹣1+,故答案为:a﹣1+.(3)原式=﹣•=﹣===2+,∴当x+1=±1或x+1=±2时,分式的值为整数,此时x=0或﹣2或1或﹣3,又∵分式有意义时x≠0、1、﹣1、﹣2,∴x=﹣3.11.解:原式====,当a=2时,原式=.12.解:(1)设笔打折前售价为x元,则打折后售价为0.9x元,由题意得:+10=,解得:x=4,经检验,x=4是原方程的根.答:打折前每支笔的售价是4元;(2)购入笔记本的数量为:360÷(4×0.8)=112.5(元).故该校最多可购入112本笔记本.13.解:(1)设大巴的平均速度为x公里/小时,则小车的平均速度为1.5x公里/小时,根据题意,得:=++,解得:x=40,经检验:x=40是原方程的解,答:大巴的平均速度为40公里/小时,则小车的平均速度为60公里/小时;(2)设苏老师赶上大巴的地点到基地的路程有y公里,根据题意,得:+=,解得:y=30,答:苏老师追上大巴的地点到基地的路程有30公里.14.解:原式=÷[1﹣]=÷(﹣)=÷=•=,当a=2时,原式=.15.解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=6.经检验,x=6是原方程的解.答:这种大米的原价是每千克6元.16.解:原式=÷(﹣)=÷=•=,当x=﹣3+时,原式==.17.解:(1)﹣=1,去分母,得2+3x=x﹣2,移项合并,得2x=﹣4,解得x=﹣2,经检验,x=﹣2是原分式方程的解,故原分式方程的解是x=﹣2.(2)=+去分母,得42x=12(x+8)+10x,去括号,得20x=96,解得x=4.8,经检验,x=4.8是原分式方程的解.18.解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.19.解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.20.解:(1)设该工厂前5天每天生产x个这种零件,,解得,x=40,经检验,x=40是原分式方程的解,答:该工厂前5天每天生产40个这种零件;(2)由(1)该工厂前5天每天生产40个这种零件,﹣10=25,答:规定的时间是25天.21.解:设小红骑自行车的速度是每小时x千米,则驾车的速度是每小时4x千米.根据题意得:.解得x=20.经检验x=20是分式方程的解,并符合实际意义.答:小红骑自行车的速度是每小时20千米.22.解:设大队的原来速度为xkm/h,则后来的速度是1.2xkm/h,根据题意可得:,解得:x=,经检验:x=是原方程的根且符合题意,答:学生大队原定的行进速度是km/h.23.解:(1)原式=﹣2﹣1+1=﹣2;(2)去分母得:2x﹣5x+5=0,解得:x=,经检验,x=是原分式方程的解.24.解:设第二批鲜花每盒的进价是x元,根据题意得:,解得x=70,经检验,x=70是原方程的解,且符合题意.答:第二批鲜花每盒的进价是70元.25.解:设骑车学生的速度是x千米/小时,则汽车的速度是(x+15)千米/小时,依题意得:=2×,解得x=15,经检验:x=15是所列方程的解,且符合题意.答:骑车学生的速度是15千米/小时.26.解:设=y.则原方程为y+=8.解得:y=4.则=4.解得:x=3.经检验:x=3是原方程的根.∴原方程的解为x=3.27.解分式方程:+2=去分母得,x﹣1+2(x﹣2)=﹣3,3x﹣5=﹣3,解得x=,检验:把x=代入x﹣2≠0,所以x=是原方程的解.28.解:设大队的速度为x千米/时,则先遣队的速度是1.2x千米/时,+0.5,解得:x=5,经检验x=5是原方程的解,1.2x=1.2×5=6.答:先遣队的速度是6千米/时,大队的速度是5千米/时.29.解:设梨x元一千克,苹果1.5x元一千克,根据题意列方程得+2.5=解得x=4,1.5x=6,经检验x=4是方程的解,即梨的单价4元,苹果的单价6元.30.解:(1)设该商家第一批购进的衬衫为x件,则第二批购进的衬衫为2x件,根据题意得:+10=,解得:x=120,经检验,x=120是所列方程的解.答:该商家第一批购进的衬衫为120件.(2)该商家第一批购进的衬衫单价为13200÷120=110(元/件);第二批购进的衬衫为2×120=240(件),单价为110+10=120(元/件).全部售完获得的利润为(150﹣110)×120+(150﹣120)×(240﹣50)+(150×80%﹣120)×50=10500(元).答:这样两批衬衫全部售完所获得的利润为10500元.31.解:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,根据题意得+=120,解得x=2400,经检验x=2400是原方程的解,当x=2400时,1.5x=3600.答:笔记本电脑和台式电脑的单价分别为3600元和2400元.32.解:去分母得:﹣3(x+1)=m,由分式方程有增根,得到x2﹣1=0,即x=1或x=﹣1,把x=1代入整式方程得:m=﹣6;把x=﹣1代入整式方程得:m=0(舍去),则增根为x=1,m=﹣6.33.解:两边乘(x+2)(x﹣2)得到,x(x+2)﹣x﹣m=2x(x﹣2)①∵方程有增根,∴x=2或﹣2,x=2时,8﹣2﹣m=0,m=6,x=﹣2时,2﹣m=16,m=﹣14,经检验,m=6或﹣14均符合题意,∴m的值为6或﹣14.34.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3.35.解:设乙每分钟打x个字,则甲每分钟打(x+5)个字,根据题意得:=,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x+5=50.答:甲每分钟打50个字,乙每分钟打45个字.36.解:设小华的速度是x米/分钟,则小明速度是1.2x米/分钟,依题意得:,解得:x=60,经检验x=60是原方程的解,1.2×60=72(米/分钟)答:小华的速度是60米/分钟,小明的速度是72米/分钟.37.解:设B车行驶的时间为t小时,则A车行驶的时间为2.5t小时,根据题意得:,解得:t=3.6,经检验,t=3.6是原分式方程的解,且符合题意,∴2.5t=9.答:A车行驶的时间为9小时,B车行驶的时间为3.6小时.38.解:(1)设第二小组的攀登速度是xm/min,,解得,x=5经检验,x=5是原分式方程的解,答:第二小组的攀登速度是5m/min;(2)设第一小组的攀登速度是am/min,,解得,a=,经检验,a=是原分式方程的解,答:第一小组的攀登速度是m/min.39.解:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意得:﹣=1.5,解得:x=325,经检验x=325是分式方程的解,且符合题意,则高铁的速度是325千米/小时.40.解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.5 分式方程第1课时 分式方程及其解法知识点1 分式方程的定义只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程. 1.下列方程中,哪些是整式方程?哪些是分式方程? (1)x -40.2-x +30.5=1.6;(2)2-6-x 2=2x ;(3)8x 2-1+1=x +8x -1;(4)x +3+1x +1=4+1x -1.知识点2 解分式方程 解分式方程的步骤:(1)分式方程两边同乘最简公分母,把分式方程转化为整式方程;(2)解这个整式方程,得出未知数的值;(3)检验所得到的值是不是原分式方程的根;(4)写出答案.使分式方程的分母为零的根是增根,增根使分式方程无意义,应该舍去. [注意] 检验是解分式方程的一个十分重要的步骤,切不可省略.2.解分式方程2x -3=3x的步骤:(1)去分母,方程两边同乘________,得整式方程____________; (2)解这个整式方程,得x =________;(3)检验:把x =________代入最简公分母x(x -3),得x(x -3)________(填“=0”或“≠0”),所以x =________是原分式方程的解.一 解分式方程教材例2变式题] 解下列方程: (1)2x =3x +1; (2)x 3x -1=2-11-3x ; (3)x x -1-2x 2-1=1. [归纳总结] 解分式方程时,要注意以下几点:①不要忘记验根;②去分母时不要漏乘整式项;③当分式的分子是多项式时,去分母后不要忘记添括号.二 利用分式方程的增根求字母系数的值教材例题补充题] 若关于x 的分式方程2x -3+x +m3-x=2有增根,则m 的值是( )A .m =-1B .m =0C .m =3D .m =0或m =3[归纳总结] 利用分式方程的增根求待定字母的值,可按如下步骤进行:(1)先将分式方程转化为整式方程;(2)令最简公分母为0确定增根;(3)将增根代入所得的整式方程,求出待定字母的值.三 利用分式方程根的取值范围确定字母系数的取值范围教材例题补充题] [2015·荆州] 若关于x 的分式方程m -1x -1=2的解为非负数,则m 的取值范围是( )A .m>-1B .m ≥1C .m>-1且m≠1D .m ≥-1且m≠1[归纳总结] 确定根的取值范围时,要去掉使分式方程产生增根的情况.[反思] 下面是小马虎同学解分式方程的步骤,你认为他的解法正确吗?如果不正确,请指出错在哪里,然后写出正确答案.解方程:2x 2x -1=1-2x +2.解:原方程可化为2x 2x -1=x +2x +2-2x +2,即2x 2x -1=xx +2. 方程两边约去x ,得22x -1=1x +2. 去分母,得2x +4=2x -1. 所以此方程无解.一、选择题1.在方程x +53=7,-3x =2,x +12-x -13=4,3x -9x=1中,分式方程有( )A .1个B .2个C .3个D .4个2.把分式方程2x +4=1x转化为一元一次方程时,方程两边需同乘( )A .xB .2xC .x +4D .x(x +4)3.2015·济宁解分式方程2x -1+x +21-x=3时,去分母后正确的为( )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)4.若x =3是关于x 的分式方程a -2x -1x -2=0的根,则a 的值是( )A .5B .-5C .3D .-35.[2015·常德] 分式方程2x -2+3x2-x=1的解为( )A .x =1B .x =2C .x =13D .x =06.分式方程1x -1-2x +1=4x 2-1的解是( )A .x =0B .x =-1C .x =±1D .无解7.下列分式方程中,有解的是( ) A .x +1x 2-1=0 B .x 2+1x -1=0 C .x +1x -1=1 D .(x -1)2x -1=1 8.对于非零的两个实数a ,b ,规定b =1b -1a .若+1)=1,则x 的值为( )A .32B .13C .12D .-12二、填空题9.解分式方程1x -1-1x +1=1x 2-1去分母时,两边都乘______________.10.2016·湖州方程2x -1x -3=1的根是x =________.11.若关于x 的分式方程2(x -a )a (x -1)=-25的解为x =3,则a 的值为________.12.已知关于x 的方程a x +1-3x 2-1=1有增根,则a 的值等于________.三、解答题13.解分式方程:(1)2016·连云港解方程:2x -11+x =0;(2)2016·绍兴解分式方程:x x -1+21-x=4.14.是否存在实数x ,使得代数式x -2x +2-16x 2-4的值与代数式1+4x -2的值相等?15.若关于x 的分式方程ax a +1-2x -1=1的解与方程x +4x =3的解相同,求a 的值.16.当k 取何值时,关于x 的分式方程6x -1=x +k x (x -1)-3x 有解?17.若关于x 的分式方程x -m x -1-3x =1无解,求m 的值.1.[规律探索题] 已知:11×2=1-12,12×3=12-13,13×4=13-14,…(1)根据这个规律写出第n 个式子是________________________________________________________________________;(2)利用这个规律解方程:1x (x +1)+1(x +1)(x +2)+…+1(x +9)(x +10)=1x +10.2.阅读下面一段话:关于x 的分式方程x +1x =c +1c 的解是x =c 或x =1c ;关于x 的分式方程x +2x =c +2c 的解是x =c 或x =2c ;关于x 的分式方程x +3x =c +3c 的解是x =c 或x =3c ;…(1)写出方程x +1x =52的解:________;(2)猜想关于x 的分式方程x +m x =c +mc (m≠0)的解,并将所得解代入方程检验.详解详析【预习效果检测】1.[解析] 分式方程与整式方程的区别在于分母中是否含有未知数. 解:(1)(2)是整式方程,(3)(4)是分式方程. 2.(1)x (x -3) 2x =3(x -3) (2)9 (3)9 ≠0 9 【重难互动探究】例1 [解析] 首先确定各分母的最简公分母,然后去分母,解整式方程.解:(1)方程两边同时乘x(x +1),得2(x +1)=3x ,解得x =2.经检验,x =2是原分式方程的解.(2)方程两边同时乘(3x -1),得x =2(3x -1)+1,解得x =15.经检验,x =15是原分式方程的解.(3)方程两边同乘(x -1)(x +1),得 x(x +1)-2=(x -1)(x +1).去括号,得x 2+x -2=x 2-1. 移项、合并同类项,得x =1.检验:当x =1时,(x -1)(x +1)=0, 所以x =1是原分式方程的增根. 所以原方程无解.例2 A [解析] 方程两边都乘(x -3),得2-x -m =2(x -3).因为分式方程有增根,所以x =3,所以2-3-m =2(3-3),解得m =-1.故选A .例3 D [解析] 去分母,得m -1=2x -2,解得x =m +12.由题意得m +12≥0且m +12≠1.解得m ≥-1且m≠1.故选D .【课堂总结反思】[反思] 小马虎的解答不正确,错在“方程两边约去x”这一步.正解:原方程可化为2x 2x -1=xx +2. 去分母,得2x(x +2)=x(2x -1).去括号,得2x 2+4x =2x 2-x. 解得x =0.经检验,x =0是原方程的解. 【作业高效训练】 [课堂达标]1.[解析] B 方程-3x =2和3x -9x =1中的分母含有未知数,是分式方程.故选B .2.D 3.D 4.A 5.A 6.D7.[解析] D 选项A 中,当x +1=0时,x =-1,而当x =-1时,分母的值等于0,所以该方程无解;选项B 中,因为x 取任意值,x 2+1≥0恒成立,所以方程无解;选项C 中,因为x 取任意值,x +1的值总不等于x -1的值,所以分式x +1x -1的值总不等于1,方程无解;选项D 中,方程的解为x =2.8.[解析] D 由规定知,1+1)=1可化为1x +1-1=1,即1x +1=2,解得x =-12.∵-12+1≠0,∴符合条件.故选D .9.[答案] (x +1)(x -1) 10.[答案] -2 11.[答案] 5[解析] 因为关于x 的方程2(x -a )a (x -1)=-25的解为x =3,所以2(3-a )a (3-1)=-25,即3-a2a =-15.解这个方程得a =5.经检验,a =5满足题意. 12.[答案] -32[解析] 方程两边同乘(x +1)(x -1),得 a(x -1)-3=(x +1)(x -1). ∵原方程有增根,∴最简公分母(x +1)(x -1)=0, ∴增根是x =1或x =-1. 当x =-1时,a =-32;当x =1时,a 无解. 13.(1)x =-2 (2)x =2314.解: 根据题意,得x -2x +2-16x 2-4=1+4x -2,去分母,得(x -2)2-16=x 2-4+4(x +2),去括号,得x 2-4x +4-16=x 2-4+4x +8, 移项、合并同类项,得8x =-16, 解得x =-2.经检验,x =-2是原方程的增根,故原分式方程无解. 所以不存在满足条件的实数x. 15.解:由x +4x =3,得x =2.∵关于x 的分式方程ax a +1-2x -1=1的解与方程x +4x=3的解相同, ∴把x =2代入方程ax a +1-2x -1=1中, 得2a a +1-22-1=1, 即2aa +1=3, 解得a =-3. 经检验,a =-3是方程2a a +1-22-1=1的根, ∴a =-3.16.解:6x -1=x +k x (x -1)-3x,方程两边同乘x(x -1),得 6x =x +k -3(x -1), ∴k =8x -3.∵原分式方程有解,∴x ≠0且x -1≠0,即x≠0且x≠1 ∴8x -3≠3且8x -3≠5,∴当k≠-3且k≠5时,原分式方程有解.17.解:去分母,得x(x -m)-3(x -1)=x(x -1),-mx -3x +3=-x , 整理,得(2+m)x -3=0.∵关于x 的分式方程x -m x -1-3x=1无解,∴x =1或x =0.当x =1时,2+m -3=0,解得m =1. 当x =0时,-3=0,无解.当2+m =0时,方程(2+m)x -3=0无解,此时m =-2. ∴m =1或m =-2. [数学活动] 1.解:(1)1n (n +1)=1n -1n +1(2)原方程可化为⎝ ⎛⎭⎪⎫1x -1x +1+⎝ ⎛⎭⎪⎫1x +1-1x +2+…+⎝ ⎛⎭⎪⎫1x +9-1x +10=1x +10, 即1x -1x +10=1x +10,解得x =10. 当x =10时,原分式方程的最简公分母不为0. 所以x =10是原分式方程的解.2.解:(1)方程x +1x =52可化为x +1x =2+12,可得该方程的解为x =2或x =12.(2)猜想:方程的解为x =c 或x =m c .分别将x =c 和x =mc 代入原方程可得方程的左边=右边,故方程x +m x =c +m c (m≠0)的解为x =c 或x =mc .。

相关文档
最新文档