第12章整式的乘除复习(2) 整式乘法
八年级数学上册 第12章 整式的乘除 12.5 因式分解 2 公式法课件
(2)原式=(2a)²- 2·2a·1+(1)² =(2a - 1)2.
第十六页,共二十页。
3.多项式4a²+ma+9是完全平方式(fāngshì),那么m的值是(D ) A.6 B.12 C. -12 D. ±12
4.计算: 2 0 1 4 2 2 0 1 4 4 0 2 6 2 0 1 3 2 .
解
步骤
平方差公式a2-b2=(a+b)(a-b)
完全平方公式a2±2ab+b2=(a±b)2
一提:公因式;
二套:公式; 三查:多项式的因式分解有没有分 解到不能再分解为止.
第十八页,共二十页。
第十九页,共二十页。
内容(nèiróng)总结
12.5 因式分解。(3)-x2-y2。三查(多项式的因式分解要分解到不能再分解为止)。3.中间有两 底数之积的±2倍.。(5)x2+x+0.25.。(4)因为ab不是a与b的积的2倍.。所以16x2+24x+9是一个完全平 方式,。(2)-x2+4xy-4y2.。解: (1)原式=3a(x2+2xy+y2)。分析:(1)中有公因式3a,应先提出(tí chū)公因式,再进一步分解因式。1002-2×100×99+99²。二套:公式
整式乘法 ( a + b )( a - b ) = a 2 - b 2
a 2 - b 2 = ( a + b )( a - b )
因式分解
两个数的平方差,等于这两个数的和与这两个数的差的乘积.
第六页,共二十页。
辨一辨:下列多项式能否用平方差公式(gōngshì)来分解因式,为什么?
(1)x2+y2 (2)x2-y2
第12章--整式的乘除知识点复习总结1
第12章 整式的乘除知识点总结(1)一、同底数幂的乘法1.法则:同底数幂相乘,_________________________________.2.公式:=⋅n m a a ___________.3.该公式可以反向利用,即=+n m a ____________.4.相关的结论:(1)()⎩⎨⎧=-为奇数)为偶数)n n A n_________(_________( (2)()⎩⎨⎧=-为奇数)(为偶数)(n n B A n __________________________ 二、幂的乘方1.法则:幂的乘方,________________________________.2.公式:()=nm a __________. 3.该公式可以反向利用,即=mn a ________=________.三、积的乘方1.法则:积的乘方,____________________________________________.2.公式:()=nab __________. 3.该公式可以反向利用,即=n n b a __________.4.若===6432,2,3b a b a 则________.5.计算:()20142013212⎪⎭⎫ ⎝⎛-⨯-四、同底数幂的除法1.法则:同底数幂相除,______________________________________.2.公式:______________________________.3.该公式可以反向利用,即___________________________.4.()()=-÷-310a a _________. 5.()()=÷4722a a ________. 6.()()=+÷+36b a b a ______________. 五.单项式乘以单项式1._____________________2._____________________3.对于只在一个单项式中出现的字母,则要在结果里面保留.六、单项式乘以多项式单项式与多项式相乘,将单项式分别乘以多项式的__________,再将所得的积_________.1.在进行运算时,要用到乘法____________,同时还要注意符号问题:同号________,异号________.七、多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.八、多项式的标准形式多项式的标准形式中,各个单项式之间是相加的.1.把多项式6322--x x 化为标准形式为_____________________.九、多项式中不含某项的问题若一个多项式中不含某项,则先把该多项式化为标准形式,再让该项系数_________.1.若()()62+-x m x 的结果中不含x 的一次项,则=m ________.2.若()()x b x a x 中不含++的一次项,则b a 、的关系是_____________.十、多项式相等的问题若两个多项式相等,则它们对应的________相等.若F Ex Dx C Bx Ax ++=++22,则____________________________.1.若()().________________,,322==++=--B A B Ax x x x 则。
华东师大版数学八年级上册第12章整式的乘除复习课件
17.对于任何实数,我们规定符号ab
c 的意义是:a
d
bx+1=0 时,x3+x 1x-x- 1 2的值.。
解:xx+-12 3xx-1=(x+1)(x-1)-3x(x-2)=x2-1-3x2+6x=-2x2+ 6x-1,∵x2-3x+1=0,∴x2-3x=-1,∴原式=-2(x2-3x)-1=2
检测练习
一、选择题 1.下列运算正确的是( D ) A.(x-2)2=x2-4 B.x3·x4=x12 C.x6÷x3=x2 D.(x2)3=x6 2.下列多项式相乘,不能用平方差公式计算的是( D ) A.(x-2y)(2y+x) B.(2y-x)(-x-2y) C.(x-2y)(-x-2y) D.(-2y-x)(x+2y)
多项 式的 乘法
单项 式的 除法
单项式与 多项式的 除法
乘法公 式(因 式分解)
同底数幂的乘法
am •an=am+n (m、n都是正整数) 幂的乘方 (am)n=amn (m、n都是正整数) 积的乘方
(ab)=an bn (n是正整数)
同底数幂的除法
1.am ÷an=am-n
(a≠0,m、n都是正整数,m>n)
4.反向思考法:如逆用乘法公式解题等。
中考考向分析 热点:整式的乘除法、整式乘法的应 用。
冷点:整式乘除法中技能性解题方法。
本章知识在中考中主要以选择、填空 题予以考查,少数中档题考查乘法公式的 应用,约占中考试卷的7%左右。
知识体系表解
整 式 的 乘 除
幂 的 运 算 性 质
单项 式的 乘法
单项式与 多项式的 乘法
(3)利用(2)猜想的结论计算: 29-28+27-……+23-22+2。 解:在(a-b)(an-1+an-2b+…+abn-2+bn-1)=an-bn中,取a=2,b= -1,n=10,得(2+1)(29-28+27-…+23-22+2-1)=210-(-1)10, 即3(29-28+27-…+23-22+2-1)=1023,29-28+27-…+23-22+2 -1=341,∴29-28+27-…+23-22+2=342。
整式的乘除知识点及题型复习
举例说明:如单项 式x^2除以多项式 2x-1,结果为 (x^2)/(2x1)=x+1
除法运算顺序:按照从左到 右的顺序进行除法运算,注 意先处理括号内的内容
除法法则:类似于多项式乘 法,将除法转化为乘法,然 后利用乘法法则进行计算
除法结果的化简:将除法结 果化简到最简形式,注意约
分和合并同类项
除法运算的注意事项:注意 处理符号和运算优先级的问
添加标题
解析:根据速度、时间和距离的关系,速度=距离/时间,所以时间=距离/速度。将已知数值代入公式,得到时间=100千米 /80千米/小时=1.25小时。
添加标题
题目:一架飞机以每小时800千米的速度从甲地飞往乙地,飞行了3小时后,发现方向有误,于是立即改变航向,并以每小时 1000千米的速度飞行了4小时,求飞机到达乙地所需的总时间。
项式。
整式除法的结 果仍为一个多 项式,其各项 系数和次数与 被除式相同。
整式除法的一 般形式为:被 除式=除式×商
式+余式。
在整式除法中, 需要注意除数 不能为0,且各 项系数和次数 必须符合数学
规则。
定义:将一个单项式除以另一个单项式的商称为单项式除以单项式。
运算法则:与单项式乘法类似,按照系数、字母因子的指数分别相除,对于只在被除式 中出现的字母因子,连同其指数一起作为商的一个字母因子。
定义:两个多项式相乘,将一个多项式的每一项与另一个多项式的每一项 相乘,再将所得积相加。 举例:$(x+1)(x+2) = x^2 + 3x + 2$
公式:$(x+a)(x+b) = x^2 + (a+b)x + ab$
注意事项:注意乘法分配律的应用,以及合并同类项时的符号问题。
第12章整式的乘除知识点总结
(3)两个公式可以相互转化.
(4)反向利用完全平方公式可以用于分解因式,是公式法里面的两个非常重要且常用的公式.
(5)有关的重要结论:
(6)完全平方式的判断判断所给的多项式是不是完全平方式只需要判断两个完全平方项所对应的数或式子的2倍是否等于多项式的第三项(或第三项的相反数)即可,若等于,则是;若不等于,则不是.
解:原式 (有些学生的结果到此为止)
(这才是最终的结果).
●例4.已知 ,求 的值.
分析本题具有一定的难度,要求学生对所学的公式结论深刻掌握.
解:
∴
●例5.已知 求 的值.
★5.整式的乘法
整式的乘法运算有三种:(1)单项式·单项式;(2)单项式·多项式;(3)多项式·多项式.
单项式·单项式系数与系数相乘,同底数幂相乘,单独的幂保留.
(7)配方法配方法是一种很重要的解决问题的方法,可以用来分解因式、解方程(如在九年级要学习的解一元二次方程)等.把题目所给的多项式进行变形、拆项等处理,使多项式中出现完全平方式的过程,叫做配方,利用配方来解决问题的方法就叫做配方法.
●例14.若 是完全平方式,则 ________.
分析:根据完全平方式的判断方法,两个完全平方项 与25所对应的 的乘积的2倍,应等于 .所以 ,解得
分解因式: .
解:原式
说明:当然,这里还用到了配方法和其它的公式.
●例20.已知 ,求 的值.
解:
∴ ,得到
∴ .
例21.将代数式 化为 的形式.
解:
这里, .
即积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.
(1)公式可推广:
华东师大版(新版)八年级数学上册:第12章整式的乘除小结与复习课件
8.因式分解的步骤 如果多项式的各项有公因式,那么先 提取公因式; 在各项提出公因式后或各项没有公因式的情况下,视察多项 式的次数:二项式可以尝试运用 平方差公式分解因式;三项 式可以尝试运用 两数和(差)公的式分解因式; 分解因式必须分解到每一个因式在指定的范围内都不能
再分解 为止.
9.图形面积与代数恒等式
整体思想
例6 若2a+5b-3=0,则4a·32b= 8 . 【解析】已知条件是2a+5b-3=0,无法求出a,b的值因此可以 逆用积的乘方先把4a·32b.化简为含有与已知条件相关的部分, 即4a·32b=22a·25b=22a+5b.把2a+5b看做一个整体,因为2a+5b3=0,所以2a+5b=3,所以4a·32b=23=8.
[注意] 其中的a、b代表的不仅可以是单独的数、单独的字
母,还可以是一个任意的代数式;这几个法则容易混淆,计算 时必须先搞清楚该不该用法则、该用哪个法则.
2.整式的乘法 单项式与单项式相乘,把它们的 系数 、 相同字母的幂 分别 相乘,对于只在一个单项式中出现的字母,则连同它的指数一 起作为积的一个 因式 . 单项式与多项式相乘,用 单项式 和 多项式 的每一项分别相 乘,再把所得的积 相加 . 多项式与多项式相乘,先用一个多项式的 每一项 与另一个 多项式的 每一项 相乘,再把所得的积 相加 .
5.因式分解的意义 把一个多项式化成几个整式的 积 的情势,叫做多项式的 因式分解.
因式分解的过程和 整式乘法 的过程正好相反.
6.用提公因式法分解因式 公因式的确定:公因式的系数应取多项式各项整数系数的 最大公约数 ;字母取多项式各项 相同 的字母;各字母 指数取次数最 低 的. 一般地,如果多项式的各项都含有公因式,可以把这个公 因式提到 括号 外面,将多项式写成 因式乘积 的情势,这 种分解因式的方法叫做提公因式法. [注意] 提公因式法是因式分解的首选方法,在因式分解时 先要考虑多项式的各项有无公因式.
第12章 整式的乘除(知识点+例题)
第12章 整式的乘除与因式分解 知识链接一、整式的乘法1.同底数幂的乘法法则同底数幂相乘,底数不变,指数相加。
即:m n m n a a a+⋅=(m ,n 都是正整数)。
例1:计算 (1)821010⨯;(2)23x x ⋅-(-)();(3)n 2n 1n aa a a ++⋅⋅⋅例2:计算 (1)35b 2b 2b 2+⋅+⋅+()()();(2)23x 2y y x -⋅()(2-)例3:已知x 22m +=,用含m 的代数式表示x 2。
2.幂的乘方(重点)幂的乘方是指几个相同的幂相乘,如53a ()是三个5a 相乘,读作a 的五次幂的三次方。
幂的乘方法则:幂的乘方,底数不变,指数相乘。
即m n mn a a =()(m ,n 都是正整数)。
例4:计算(1)m 2a ();(2)()43m ⎡⎤-⎣⎦;(3)3m 2a -()3.积的乘方(重点)积的乘方的意义:指底数是乘积形式的乘方。
如:()()()()3ab ab ab ab =⋅⋅积的乘方法则:积的乘方,等于把积得每一个因式分别乘方,再把所得的幂相乘。
如:n n n ab a b ⋅()=例5:计算(1)()()2332xx -⋅-;(2)()4xy -;(3)()3233a b -例6:已知a b 105,106==,求2a 3b 10+的值。
例7:计算(1)201120109910010099⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭;(2)()315150.1252⨯4.单项式与单项式相乘(重点)法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式例含有的字母,则连同它的指数作为积的一个因式。
例8:计算(1)2213ab a b 2abc 3⎛⎫⋅-⋅ ⎪⎝⎭; (2) ()()n 1n 212x y 3xy x z 2+⎛⎫-⋅-⋅- ⎪⎝⎭; (3) ()()322216m n x y mn y x 3-⋅-⋅⋅-5.单项式与多项式相乘(重点)法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
整式的乘除-单元复习-讲义
永成教育一对一讲义教师: 学生:日期:2014. 星期:时段:完全平方公式:()=+2b a ,()=-2b a练习2:计算①)15()31(2232b a b a -⋅ ②xy y xy y x 3)221(22⋅+-③)86)(93(++x x ④)72)(73(y x y x -+ ⑤2)3(y x -3、整式的除法 复习巩固例题精讲类型一 多项式除以单项式的计算 例1 计算:(1)(6ab+8b)÷2b ; (2)(27a 3-15a 2+6a)÷3a ;练习: 计算:(1)(6a 3+5a 2)÷(-a 2); (2)(9x 2y-6xy 2-3xy)÷(-3xy);(3)(8a 2b 2-5a 2b +4ab)÷4ab.类型二 多项式除以单项式的综合应用 例2 (1)计算:〔(2x+y)2-y(y+4x)-8x 〕÷(2x)(2)化简求值:〔(3x+2y)(3x-2y)-(x+2y)(5x-2y)〕÷(4x) 其中x=2,y=1练习:(1)计算:〔(-2a 2b )2(3b 3)-2a 2(3ab 2)3〕÷(6a 4b 5).(2)如果2x-y=10,求〔(x 2+y 2)-(x-y)2+2y(x-y)〕÷(4y)的值3、测评填空:(1)(a 2-a)÷a= ;(2)(35a 3+28a 2+7a)÷(7a)= ; (3)( —3x 6y 3—6x 3y 5—27x 2y 4)÷(53xy 3)= . 选择:〔(a 2)4+a 3a-(ab)2〕÷a = ( ) A.a 9+a 5-a 3b 2 B.a 7+a 3-ab 2 C.a 9+a 4-a 2b 2 D.a 9+a 2-a 2b 2 计算:(1)(3x 3y-18x 2y 2+x 2y)÷(-6x 2y); (2)〔(xy+2)(xy-2)-2x 2y 2+4〕÷(xy).4、拓展提高:(1)化简 3422222++⨯⨯-n nn ; (2)若m 2-n 2=mn,求2222m n n m +的值.小结:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
第12章《整式的乘除》单元测试(含答案解析)
<第12章整式的乘除>一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.62.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣13.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.274.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±815.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.196.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =17.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.28.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )29.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm210.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .15.假设x3 =﹣8a9b6 ,那么x .16.计算: (3m﹣n +p ) (3m +n﹣p ) = .17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.20.2a =5 ,2b =3 ,求2a +b +3的值.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.<第12章整式的乘除>参考答案与试题解析一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先逆用幂的乘方的性质转化为以3为底数的幂相乘 ,再利用同底数幂的乘法的性质计算后根据指数相等列出方程求解即可.【解答】解:3•9m•27m =3•32m•33m =31 +2m +3m =321 ,∴1 +2m +3m =21 ,解得m =4.应选B.【点评】此题考查了幂的乘方的性质的逆用 ,同底数幂的乘法 ,转化为同底数幂的乘法 ,理清指数的变化是解题的关键.2.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣1【考点】多项式乘多项式.【分析】把式子展开 ,找到所有x2项的所有系数 ,令其为0 ,可求出p、q的关系.【解答】解:∵ (x2 +px +2 ) (x﹣q ) =x3﹣qx2 +px2﹣pqx +2x﹣2q =﹣2q + (2﹣pq )x + (p﹣q )x2 +x3.又∵结果中不含x2的项 ,∴p﹣q =0 ,解得p =q.应选A.【点评】此题主要考查了多项式乘多项式的运算 ,注意当要求多项式中不含有哪一项时 ,应让这一项的系数为0.3.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.27【考点】解二元一次方程组;非负数的性质:绝||对值;非负数的性质:偶次方.【专题】方程思想.【分析】先根据相反数的定义列出等式|x +y +1| + (x﹣y﹣2 )2 =0 ,再由非负数的性质求得x、y的值 ,然后将其代入所求的代数式 (3x﹣y )3并求值.【解答】解:∵|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,∴|x +y +1| + (x﹣y﹣2 )2 =0 ,∴ ,解得 , ,∴ (3x﹣y )3 = (3× + )3 =27.应选D.【点评】此题主要考查了二元一次方程组的解法、非负数的性质﹣﹣绝||对值、非负数的性质﹣﹣偶次方.解题的关键是利用互为相反数的性质列出方程 ,再由非负数是性质列出二元一次方程组.4.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±81【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构判断即可确定出k的值.【解答】解:∵x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,∴﹣k =±6 ,那么k =±6.应选C.【点评】此题考查了完全平方式 ,熟练掌握完全平方公式是解此题的关键.5.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.19【考点】整式的除法.【专题】计算题.【分析】根据商乘以除数等于被除数列出关系式 ,整理后利用多项式相等的条件确定出a ,b ,c的值 ,即可求出a﹣b +c的值.【解答】解:依题意 ,得 (17x2﹣3x +4 )﹣ (ax2 +bx +c ) =5x (2x +1 ) ,∴ (17﹣a )x2 + (﹣3﹣b )x + (4﹣c ) =10x2 +5x ,∴17﹣a =10 ,﹣3﹣b =5 ,4﹣c =0 ,解得:a =7 ,b =﹣8 ,c =4 ,那么a﹣b +c =7 +8 +4 =19.应选D.【点评】此题考查了整式的除法 ,熟练掌握运算法那么是解此题的关键.6.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =1【考点】同底数幂的乘法;合并同类项.【专题】存在型.【分析】分别根据合并同类项、同底数幂的乘法及完全平方公式对各选项进行解答即可.【解答】解:A、a与b不是同类项 ,不能合并 ,故本选项错误;B、由同底数幂的乘法法那么可知 ,a2•a3 =a5 ,故本选项正确;C、a2 +2ab﹣b2不符合完全平方公式 ,故本选项错误;D、由合并同类项的法那么可知 ,3a﹣2a =a ,故本选项错误.应选B.【点评】此题考查的是合并同类项、同底数幂的乘法及完全平方公式 ,熟知以上知识是解答此题的关键.7.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.2【考点】因式分解 -运用公式法.【分析】利用完全平方公式分解因式进而求出即可.【解答】解:由题意得 (a2 +b2 )2 =5 +a2b2 ,因为ab =2 ,所以a2 +b2 = =3.应选:B.【点评】此题主要考查了公式法分解因式 ,熟练利用完全平方公式是解题关键.8.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )2【考点】提公因式法与公式法的综合运用.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义 ,利用排除法求解.【解答】解:A、用平方差公式 ,应为x2y2﹣z2 = (xy +z ) (xy﹣z ) ,故本选项错误;B、提公因式法 ,符号不对 ,应为﹣x2y +4xy﹣5y =﹣y (x2﹣4x +5 ) ,故本选项错误;C、用平方差公式 , (x +2 )2﹣9 = (x +2 +3 ) (x +2﹣3 ) = (x +5 ) (x﹣1 ) ,正确;D、完全平方公式 ,不用提取负号 ,应为9﹣12a +4a2 = (3﹣2a )2 ,故本选项错误.应选C.【点评】此题考查了提公因式法 ,公式法分解因式 ,熟练掌握公式的结构特征是解题的关键.9.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm2【考点】完全平方公式.【专题】计算题.【分析】根据题意列出算式 ,计算即可得到结果.【解答】解:根据题意得: (1 +2 )2﹣12 =9﹣1 =8 ,即新正方形的面积增加了8cm2 ,应选C.【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.10.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2【考点】平方差公式的几何背景.【分析】第|一个图形中阴影局部的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积 ,等于a2﹣b2;第二个图形阴影局部是一个长是 (a +b ) ,宽是 (a﹣b )的长方形 ,面积是 (a +b ) (a﹣b );这两个图形的阴影局部的面积相等.【解答】解:∵图甲中阴影局部的面积 =a2﹣b2 ,图乙中阴影局部的面积 = (a +b ) (a﹣b ) , 而两个图形中阴影局部的面积相等 ,∴阴影局部的面积 =a2﹣b2 = (a +b ) (a﹣b ).应选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差 ,这个公式就叫做平方差公式.二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构 ,按照要求x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,可知m =1.k =﹣4 ,那么m +k =﹣3.【解答】解:∵x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,∴m =1 ,k =﹣4 ,∴m +k =﹣3.故答案为:﹣3.【点评】此题主要考查完全平方公式的变形 ,熟记公式结构是解题的关键.完全平方公式: (a±b )2 =a2±2ab +b2.12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.【考点】整式的除法.【专题】新定义.【分析】先设出2021※2021 =m ,再根据新运算进行计算 ,求出m的值即可.【解答】解:设2021※2021 =m ,由得 , (1 +2021 )※1 =2 +2021 ,2021※ (2021﹣2021 ) =m +2×2021 ,那么2 +2021 =m +2×2021 ,解得,m =2021※2021 = (2 +2021 )﹣2021×2 =﹣2021.故答案为:﹣2021.【点评】此题主要考查了有理数的混合运算 ,在解题时要注意按照两者的转换公式进行计算即可.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2 = (x +y ) (x﹣y ) ,然后用整体代入法进行求解.【解答】解:∵x +y =﹣4 ,x﹣y =8 ,∴x2﹣y2 = (x +y ) (x﹣y ) = (﹣4 )×8 =﹣32.故答案为:﹣32.【点评】此题考查了平方差公式 ,由题设中代数式x +y ,x﹣y的值 ,将代数式适当变形 ,然后利用 "整体代入法〞求代数式的值.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .【考点】完全平方公式.【专题】计算题.【分析】等式左边利用完全平方公式展开 ,利用多项式相等的条件确定出m的值即可.【解答】解:∵ (x﹣m )2 =x2 +x +a =x2﹣2mx +m2 ,∴﹣2m =1 ,a =m2 ,那么m =﹣ ,a =.故答案为:﹣【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.15.假设x3 =﹣8a9b6 ,那么x .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法那么进行解答即可.【解答】解:∵x3 =﹣8a9b6 ,∴x3 = (﹣2a3b2 )3 ,∴x =﹣2a3b2.故答案为: =﹣2a3b2.【点评】此题考查的是幂的乘方与积的乘方法那么 ,先根据题意得出x3 = (﹣2a3b2 )3是解答此题的关键.16.计算: (3m﹣n +p ) (3m +n﹣p ) = .【考点】平方差公式;完全平方公式.【专题】计算题.【分析】原式利用平方差公式化简 ,再利用完全平方公式计算即可得到结果.【解答】解:原式 =9m2﹣ (n﹣p )2 =9m2﹣n2 +2np﹣p2.故答案为:9m2﹣n2 +2np﹣p2【点评】此题考查了平方差公式 ,以及完全平方公式 ,熟练掌握公式是解此题的关键.17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .【考点】因式分解 -分组分解法.【专题】压轴题;阅读型.【分析】首||先进行合理分组 ,然后运用提公因式法和公式法进行因式分解.【解答】解:原式 = (a2 +2ab +b2 ) + (ac +bc )= (a +b )2 +c (a +b )= (a +b ) (a +b +c ).故答案为 (a +b ) (a +b +c ).【点评】此题考查了因式分解法 ,要能够熟练运用分组分解法、提公因式法和完全平方公式.18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )【考点】规律型:数字的变化类.【分析】观察以下各式:1×2×3×4 +1 =52 = (12 +3×1 +1 )2;2×3×4×5 +1 =112 = (22 +3×2 +1 )2;3×4×5×6 +1 =192 = (32 +3×3 +1 )2 ,4×5×6×7 +1 =292 = (42 +3×4 +1 )2 ,得出规律:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2 , (n≥1 ).【解答】解:∵1×2×3×4 +1 =[ (1×4 ) +1]2 =52 ,2×3×4×5 +1 =[ (2×5 ) +1]2 =112 ,3×4×5×6 +1 =[ (3×6 ) +1]2 =192 ,4×5×6×7 +1 =[ (4×7 ) +1]2 =292 ,∴n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.故答案为:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.【点评】此题考查了数字的变化规律 ,解答此题的关键是发现规律为n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3n +1 )2 (n≥1 ) ,一定要通过观察 ,分析、归纳并发现其中的规律.三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.【考点】整式的混合运算 -化简求值.【分析】 (1 )将 (x﹣y )2通过配方法转化成 (x +y )2 ,x2y +xy2因式分解即可;(2 )利用配方法转化成 = (x +y )2﹣3xy即可;(3 )根据整式的乘法把式子展开即可;(4 )先把m2 +m﹣1 =0 ,变形为m2 =1﹣m.把m3 +2m2 +2021变形为m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021即可;【解答】解: (1 ) (x﹣y )2 =x2﹣2xy +y2 =x2 +2xy +y2﹣4xy = (x +y )2﹣4xy42﹣4×3 =4 , x2y +xy2 =xy (x +y ) =3×4 =12 ,(2 )x2﹣xy +y2 = (x +y )2﹣3xy = ( + +﹣ )2﹣3 ( + ) (﹣ ) = (2 )2﹣3×2 =28﹣6 =22(3 ) (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1 =2x2﹣3x +1﹣ (x2 +2x +1 ) +1 =x2﹣5x +1 =3 +1 =44 )由m2 +m﹣1 =0 ,得m2 =1﹣m.把m3 +2m2 +2021 =m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021 =m﹣1﹣m +2 +2021【点评】此题考查了学生的应用能力 ,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.20.2a =5 ,2b =3 ,求2a +b +3的值.【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法那么求出即可.【解答】解:2a +b +3 =2a•2b•23 =5×3×8 =120.【点评】此题主要考查了同底数幂的乘法运算 ,熟练掌握运算法那么是解题关键.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.【考点】因式分解的应用.【分析】先把原式变形为1 +32﹣22 +52﹣42 +… +1012﹣1002,再因式分解得1 + (3 +2 ) + (5 +4 ) +… + (101 +100 ) ,然后进行计算即可.【解答】解:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012=1 +32﹣22 +52﹣42 +… +1012﹣1002=1 + (3 +2 ) (3﹣2 ) + (5 +4 ) (5﹣4 ) +… + (101 +100 ) (101﹣100 )=1 + (3 +2 ) + (5 +4 ) +… + (101 +100 )==5151.【点评】此题考查了因式分解的应用 ,用到的知识点是平方差公式 ,关键是对要求的式子进行变形 ,注意总结规律 ,得出结果.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.【考点】整式的混合运算 -化简求值.【专题】计算题.【分析】按单项式乘以单项式法那么和平方差公式化简 ,然后把给定的值代入求值.【解答】解:原式 =x2﹣2x﹣x2 +1 =﹣2x +1 ,当x =10时 ,原式 =﹣2×10 +1 =﹣19.【点评】考查的是整式的混合运算 ,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.【考点】因式分解的应用.【分析】将原式因式分解 ,结果能被12整除即可.【解答】解:因为 (n +5 )2﹣ (n﹣1 )2 =n2 +10n +25﹣ (n2﹣2n +1 ) =12 (n +2 ) ,所以 (n +5 )2﹣ (n﹣1 )2能被12整除.【点评】考查了因式分解的应用 ,解决此题的关键是用因式分解法把所给式子整理为含有12的因数相乘的形式.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.【考点】规律型:数字的变化类.【专题】证明题;探究型.【分析】 (1 )等号左边第|一个因数为整数 ,与第二个因数的分子相同 ,第二个因数的分母比分子多1;等号右边为等号左边的第|一个数式﹣第二个因数 ,即n× =n﹣;(2 )把左边进行整式乘法 ,右边进行通分.【解答】解: (1 )猜想:n× =n﹣;(2 )证:右边 = = =左边 ,即n× =n﹣.【点评】主要考查:等式找规律 ,难点是怎样证明 ,不是验证.此题隐含着逆向思维及数学归纳法的思想.。
12章整式的乘除单元复习
课题整式的乘除单元复习课型复习课教师复备教学目标1、牢固掌握幂的运算性质和整式乘除的运算法则,理解、掌握乘法公式;2、分解因式的方法及运用;3、培养自己的运算能力,以及分析问题、解决问题的能力。
教学重点、难点重点:有关乘除法的各种运算法则和公式的理解与运用。
难点:有关乘除法的各项运算法则的理解与应用。
教具多媒体课前预习【导学提纲】知识结构与知识归纳:(一)知识结构见教材P43(二)知识归纳:1、整式乘除相关法则及公式有哪些?2、因式分解:(1)因式分解的步骤是什么?(2)因式分解的常用方法有哪些?(3)分解因式要注意哪些问题?典例讲解1、幂的运算性质例1已知,m nx a x b==(m、n为正整数),求323232,,,m n m n m nx x x x+-的值。
(思路点拨:注意公式的逆用)2、整式的乘除例 2 计算: (1)(x+2)(x-3);(2)(3x-1)(2x+1).例 3 先化简,再求值:23222(3)(25)2a ab b a b a b a-+--÷,其中2,1a b=-=-。
(思路点拨:注意运算顺序及准确性)(变式训练):若21()2102a b c ++-++=,求2324224()()()3ac a c c b -÷⋅-的值。
3、乘法公式的灵活运用例4 计算:(1)(a +3)(a -3); (2)(2a +3b)(2a -3b);(3)(1+2c)(1-2c). (4)(-2x -y )(2x -y ).例5.利用平方差公式计算:(1)(5+6x )(5-6x ) (2)(3m-2n )(3m+2n )(3)(-4x +1)(-4x -1) (4)11()()44x y x y ---+例6.已知2()49,12a b ab -==-,求22(1)a b +;2(2)()a b +的值。
(思路点拨:注意公式的变形及相互关系)4、因式分解的运用例7.把下列多项式因式分解(1)3a+3b (2)5x-5y+5z (3) 4a 3b-2a 2b2例8.求2220162015-的值(思路点拨:注意观察数字特征,灵活运用因式分解进行有关计算)(变式训练)计算:2222211111(1)(1)(1)(1)(1)23420152016-----课后反思 教后 反思。
2022秋八年级数学上册第12章整式的乘除12.3乘法公式2两数和(差)的平方课件新版华东师大版
19.【2021·广水期末】[知识生成] 通常,用两种不同的方法计算同一个图形的面积,可以得到一
个恒等式. 例如:如图①是一个长为2a,宽为2b的长方形,沿图中虚线用
A.2 cm2 B.2a cm2 C.4a cm2 D.(a2-1)cm2
【点拨】本题利用了面积法,长方形的面积等于大正 方形的面积减去小正方形的面积,即(a+1)2-(a-1)2 =4a(cm2).
【答案】C
16.【中考·邵阳】先化简,再求值:(a-2b)(a+2b)-(a- 2b)2+8b2,其中a=-2,b= 1 . 2
(4)根据(3)中的等量关系解决如下问题:若x+y=6,xy= 11, 2
则(x-y)2=_1_4______;
[知识迁移] 类似地,用两种不同的方法计算同一几何体的体积,也可以 得到一个恒等式. (5)根据图③,写出一个代数恒等式: __(_a_+__b_)_3=__a_3_+__3_a_2_b_+__3_a_b_2+__b_3___; (6)已知a+b=3,ab=1,利用上面的恒等式求的值. 解:∵a+b=3,ab=1, ∴a3+2 b3=(a+b)3-23ab(a+b)=27- 2 9=9.
D.-12
8.【中考·白银】若x2+4x-4=0,则3(x-2)2-6(x+
1)(x-1)的值为( B )
A.-6
B.6
C.18
D.30
【点拨】3(x-2)2-6(x+1)(x-1)=-3(x2+4x)+18,
由x2+4x-4=0得x2+4x=4,所以原式=-3×4+18
华师版八年级数学上册作业课件(HS)第十二章 整式的乘除 整式的乘法 第2课时 单项式与多项式相乘
C.16x
D.6x
3.(3分)(沈丘月考)(-3x+1)(-2x)2等于(D) A.-6x3-2x2 B.6x3-2x2 C.6x3+2x2 D.-12x3+4x2 4.(3分)(河南模拟)计算:(2x2)3-6x3(x3+2x2+x)=( D) A.-12x5-6x4 B.2x6+12x5+6x4 C.x2-6x-3 D.2x6-12x5-6x4
8.(4分)一个长方体的长、宽、高分别是3m-4,2m和m,则它的体积是(C) A.3m3-4m2 B.3m2-4m3 C.6m3-8m2 D.6m2-8m3 9.(4分)(蔡县期中)如果一个三角形的底边长为2x2y+xy-y2, 底边上的高为6xy,那么这个三角形的面积为(A ) A.6x3y2+3x2y2-3xy3 B.6x2y2+3xy-3xy2 C.6x2y2+3x2y2-y2 D.6x2y+3x2y2
华师版
第十二章 整式的乘除
12.2 整式的乘法
第2课时 单项式与多项式相乘
1.(3分)单项式乘以多项式依据的运算律是( D) A.加法结合律 B.加法交换律 C.乘法结合律 D.乘法分配律
2.(3分)计算6x·(3-2x)的结果,与下列哪一个式子相同( A) A.-12x2+18x B.-12x2+3
10.计算 x(1+x)-x(1-x)等于( B )
A.2x B.2x2
C.0
D.-2x+2x2
11.若-x2y=2,则-xy(x5y2-x3y+2x)的值为(A )
A.16 B.12 C.8 D.0
12.(沈丘月考)要使(x2+ax+5)(-6x3)的展开式中不含 x4 项,
则 a 应等于( D )
三、解答题(共 36 分) 16.(12 分)计算: (1)4xy(3x2+2xy-1);
华师大版八年级数学上册第12章 整式的乘除 整合【新版】
专训一:整体思想在整式乘除运算中的应用名师点金:解决某些数学问题时,把一组数或一个式子看作一个整体进行处理,不仅可以简化解题过程,而且还能拓宽思路,培养创新意识,体现了数学中的一种重要思想——整体思想.这一思想在整式的乘法运算中体现明显,在解题中应用较多,要引起重视.幂的运算中的整体思想1.已知2x +5y -3=0,求4x ·32y 的值.乘法公式运算中的整体思想类型1 化繁为简整体代入2.已知a =38x -20,b =38x -18,c =38x -16,求式子a 2+b 2+c 2-ab -ac -bc 的值.类型2 变形后整体代入3.已知x +y =4,xy =1,求式子(x 2+1)(y 2+1)的值.4.已知a -b =b -c =35,a 2+b 2+c 2=1,求ab +bc +ca 的值.5.已知a2+a-1=0,求a3+2a2+2 016的值.6.已知(2 016-a)(2 014-a)=2 015,求(2 016-a)2+(2 014-a)2的值.多项式乘法运算中的整体思想类型1大数中的换元7.若M=123 456 789×123 456 786,N=123 456 788×123 456 787,试比较M与N的大小.类型2多项式中的换元8.计算:(a1+a2+…+a n-1)(a2+a3+…+a n-1+a n)-(a2+a3+…+a n-1)(a1+a2+…+a n)(n≥3,且n为正整数).专训二:因式分解的七种常见用途名师点金:因式分解是整式恒等变形中的一种重要变形,它与整式的乘法是两个互逆的过程,是代数恒等变形的重要手段,在有理数计算、式子的化简求值、几何等方面起着重要作用.用于简便计算1.计算:2 0162-4 034×2 016+2 0172.2.计算:⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1-132⎝ ⎛⎭⎪⎫1-142·…·(1-1102)·(1-1112).用于化简求值3.已知2x -3=0,求式子x(x 2-x)+x 2(5-x)-9的值.用于判断整除4.随便写出一个十位数字与个位数字不相等的两位数,把它的十位数字与个位数字对调得到另一个两位数,并用较大的两位数减去较小的两位数,所得的差一定能被9整除吗?为什么?用于判断三角形的形状5.已知a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.用于比较大小6.已知A=a+2,B=a2+a-7,其中a>2,比较A与B的大小.用于解方程(组)7.已知大正方形的周长比小正方形的周长大96 cm,大正方形的面积比小正方形的面积大960 cm2,请你分别求出这两个正方形的边长.用于探究规律8.观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,….你发现了什么规律?请用含有n(n为正整数)的等式表示出来,并说明理由.专训三:整式的乘除中的几种热门考点名师点金:本章的主要内容有幂的运算,整式的乘除法,乘法公式,以及利用提公因式法和公式法分解因式等,在考试中,常常与数的运算、式子的化简求值、几何等知识综合在一起考查.中考中一般以基础题为主.幂的运算1.(2015·临沂)下列计算正确的是()A.a2+a2=2a4B.(-a2b)3=-a6b3C.a2·a3=a6D.a8÷a2=a42.计算:(1)(-a2b)2=________;(2)42 016×(-0.25)2 017=________.3.已知:3x+5y=8,求8x·32y的值.整式的乘除运算4.下列计算结果是x2-6x+5的是()A.(x-2)(x-3) B.(x-6)(x+1)C.(x-1)(x-5) D.(x+6)(x-1)5.若(-2x2)(3x2-ax-6)-3x3+x2的结果中不含x的三次项,则a=________.6.小明在进行两个多项式的乘法运算时,不小心把乘(x-2y)错抄成除以(x -2y),结果得到3x,则第一个多项式是什么?正确的结果应该是什么?7.先化简,再求值:2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x-52y),其中x=-1,y=2.乘法公式的运用8.下列计算正确的是()A.(-x-y)(x+y)=x2-y2B.(x-y)2=x2-y2C.(x+3y)(x-3y)=x2-3y2D.(-x+y)2=x2-2xy+y29.运用乘法公式计算:(1)(m-2n+3)(m+2n-3);(2)(a-3b+2)2.10.(2014·绍兴)先化简,再求值:a(a -3b)+(a +b)2-a(a -b),其中a =1,b =-12.11.已知x +y =3,xy =-7,求下列各式的值:(1)x 2+y 2; (2)x 2-xy +y 2; (3)(x -y)2.利用提公因式法和公式法分解因式12.将下列各式分解因式:(1)2a 3b 2c +4ab 3c -abc ;(2)x 2+4x +4;(3)(2a +b)(2a -b)+b(4a +2b);(4)x2(x-y)+(y-x);(5)3ax2-6axy+3ay2.整式乘除的应用13.已知(x+y)2=5,(x-y)2=3,求3xy-1的值.14.已知n是整数,试说明(2n+1)2-1能被8整除.(第15题)15.(2014·青海)如图,长和宽分别为a ,b 的长方形,它的周长为15,面积为10,则a 2b +ab 2的值为________.16.△ABC 的三边长分别是a ,b ,c ,且a +2ab =c +2bc ,请判断△ABC 是等边三角形、等腰三角形还是直角三角形?并说明理由.17.一天,小明在纸上写了一个算式:4x 2+8x +11,并对小刚说:“无论x 取何值,这个式子的值都是正值,不信你试一试!”小刚动笔演算许多次,结果正如小明所说.小刚很困惑,你能运用所学的知识说明一下其中的道理吗?数学思想方法的应用a .转化思想18.若2x =3,4y =5,则2x -2y 的值是( )A .35B .-2C .355D .65b .整体思想19.若m +n =3,则2m 2+4mn +2n 2-6的值为( )A .12B .6C .3D .0c .换元思想20.计算:2 0153-2 014×2 015×2 016.答案专训一1.解:4x ·32y =(22)x ·(25)y =22x ·25y =22x +5y .因为2x +5y -3=0,所以2x +5y =3,所以原式=23=8.点拨:本题运用了整体思想和转化思想.2.解:由a =38x -20,b =38x -18,c =38x -16,可得a -b =-2,b -c =-2,c -a =4.从而a 2+b 2+c 2-ab -ac -bc =12[(a -b)2+(b -c)2+(c -a)2]=12×[(-2)2+(-2)2+42]=12×24=12.3.解:(x 2+1)(y 2+1)=x 2y 2+x 2+y 2+1=(xy)2+(x +y)2-2xy +1.把x +y =4,xy =1整体代入,原式=12+42-2×1+1=16.4.解:由a -b =b -c =35,可以得到a -c =65.由(a -b)2+(b -c)2+(a -c)2=2(a 2+b 2+c 2)-2(ab +bc +ca),得到ab +bc +ca =(a 2+b 2+c 2)-12[(a -b)2+(b-c)2+(a -c)2].将a 2+b 2+c 2,a -b ,b -c 及a -c 的值整体代入,可得ab +bc+ca =1-12×[(35)2+⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫652]=1-12×5425=-225. 5.解:因为a 2+a -1=0①,所以将等式两边都乘a ,可得a 3+a 2-a =0②.将①②相加,得a 3+2a 2-1=0,即a 3+2a 2=1.所以a 3+2a 2+2 016=1+2 016=2 017.6.解:(2 016-a)2+(2 014-a)2=[(2 016-a)-(2 014-a)]2+2(2 016-a)(2 014-a)=22+2×2 015=4+4 030=4 034.点拨:本题运用乘法公式的变形x 2+y 2=(x -y)2+2xy ,结合整体思想求解,使计算简便.7.解:设123 456 788=a ,则123 456 789=a +1,123 456 786=a -2,123 456 787=a -1.从而M =(a +1)(a -2)=a 2-a -2,N =a(a -1)=a 2-a.所以M -N =(a 2-a -2)-(a 2-a)=-2<0,所以M <N.8.解:设a 2+a 3+…+a n -1=M ,则原式=(a 1+M)(M +a n )-M(a 1+M +a n )=a 1M +a 1a n +M 2+a n M -a 1M -M 2-a n M =a 1a n .点拨:本题如果按正常展开的方式来运算显然是很复杂的.这一类带“…”的题中,往往蕴藏着重要的技巧,而发现技巧的关键是观察.因此,在解决这类问题时,不要忙于解答,而要冷静观察,寻找解决问题的突破口.比如此题,在观察时能发现a 2+a 3+…+a n -1这个式子在每一个因式中都存在.因此,可以考虑将这个式子作为一个整体,设为M ,问题就简化了,体现了整体思想的运用.专训二1.解:2 0162-4 034×2 016+2 0172=2 0162-2×2 016×2 017+2 0172=(2 016-2 017)2=1.2.解:原式=⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1-12(1+13)⎝ ⎛⎭⎪⎫1-13(1+14)⎝ ⎛⎭⎪⎫1-14·…·(1+110)(1-110)(1+111)(1-111)=32×12×43×23×54×34×…×1110×910×1211×1011=12×1211=611.3.解:原式=x 3-x 2+5x 2-x 3-9=4x 2-9=(2x +3)(2x -3).当2x -3=0时,(2x +3)(2x -3)=0.4.解:所得的差一定能被9整除.理由:设该两位数个位上的数字是b ,十位上的数字是a ,且a ≠b ,则这个两位数是10a +b.将十位数字与个位数字对调后的数是10b +a ,则这两个两位数中,较大的数减较小的数的差是|10a +b -(10b +a)|=9|a -b|,所以所得的差一定能被9整除.5.解:∵a 2+b 2+c 2-ab -bc -ac =0,∴2a 2+2b 2+2c 2-2ab -2bc -2ac =0.即a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2=0.∴(a -b)2+(b -c)2+(a -c)2=0.又∵(a -b)2≥0,(b -c)2≥0,(a -c)2≥0,∴a -b =0,b -c =0,a -c =0,即a =b =c ,∴△ABC 为等边三角形.6.解:B -A =a 2+a -7-a -2=a 2-9=(a +3)(a -3).因为a >2,所以a +3>0,从而当2<a <3时,a -3<0,所以A >B ;当a =3时,a -3=0,所以A =B ;当a >3时,a -3>0,所以A <B.7.解:设大正方形和小正方形的边长分别为x cm ,y cm ,根据题意,得⎩⎨⎧4x -4y =96,①x 2-y 2=960.②由①得x -y =24,③由②得(x +y)(x -y)=960,④把③代入④得x +y =40.⑤由③⑤得方程组⎩⎨⎧x -y =24,x +y =40,解得⎩⎨⎧x =32,y =8.答:大正方形的边长为32 cm ,小正方形的边长为8 cm .点拨:根据目前我们所学的知识,还无法解方程组⎩⎨⎧4x -4y =96,x 2-y 2=960,但是我们可以利用因式分解,把这个问题转化为解关于x ,y 的二元一次方程组的问题.8.解:规律:n 2+[n(n +1)]2+(n +1)2=(n 2+n +1)2.理由如下:n 2+[n(n +1)]2+(n +1)2=[n(n +1)]2+2n 2+2n +1=[n(n +1)]2+2n(n +1)+1=[n(n +1)+1]2=(n 2+n +1)2.专训三1.B2.(1)a 4b 2 (2)-0.253.解:8x ·32y =23x ·25y =23x +5y =28=256.4.C 5.326.解:第一个多项式是3x(x -2y)=3x 2-6xy.正确的结果是(3x 2-6xy)(x -2y)=3x 3-12x 2y +12xy 2.7.解:原式=2(4x 2-1)+5x 2-15xy -16x 2-10xy=8x 2-2+5x 2-15xy -16x 2-10xy=-3x 2-25xy -2.当x =-1,y =2时,原式=-3×(-1)2-25×(-1)×2-2=45.8.D9.解:(1)原式=[m -(2n -3)][m +(2n -3)]=m 2-(2n -3)2=m 2-(4n 2-12n +9)=m 2-4n 2+12n -9.(2)原式=[(a -3b)+2]2=(a -3b)2+4(a -3b)+4=a 2-6ab +9b 2+4a -12b +4.10.解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2.当a=1,b=-12时,原式=12+⎝⎛⎭⎪⎫-122=54.11.解:(1)x2+y2=x2+2xy+y2-2xy=(x+y)2-2xy=32-2×(-7)=23.(2)x2-xy+y2=x2+2xy+y2-3xy=(x+y)2-3xy=32-3×(-7)=30.(3)(x-y)2=x2-2xy+y2=x2+2xy+y2-4xy=(x+y)2-4xy=32-4×(-7)=37.12.解:(1)原式=abc(2a2b+4b2-1).(2)原式=(x+2)2.(3)原式=(2a+b)(2a-b)+2b(2a+b)=(2a+b)(2a-b+2b)=(2a+b)2.(4)原式=x2(x-y)-(x-y)=(x-y)(x2-1)=(x-y)(x+1)(x-1).(5)原式=3a(x2-2xy+y2)=3a(x-y)2.13.解:由(x+y)2=5,(x-y)2=3,可得x2+2xy+y2=5①,x2-2xy+y2=3②.①-②得4xy=2,∴xy=1 2.∴3xy-1=3×12-1=12.14.解:(2n+1)2-1=[(2n+1)+1][(2n+1)-1]=2(n+1)·2n=4n·(n+1).因为n是整数,所以n与n+1是两个连续的整数,而两个连续的整数中必有一个偶数,所以n·(n+1)能被2整除,所以4n·(n+1)能被8整除.故(2n+1)2-1能被8整除.点拨:要说明(2n+1)2-1能被8整除,只要将此式因式分解,说明各因式的积能被8整除即可.15.7516.解:△ABC是等腰三角形.理由如下:∵a+2ab=c+2bc,∴(a-c)+2b(a-c)=0,∴(a-c)(1+2b)=0.∵1+2b>0,∴a=c.∴△ABC为等腰三角形.17.解:∵4x2+8x+11=4(x2+2x+1)+7=4(x+1)2+7,且(x+1)2≥0,∴4(x +1)2+7≥7.即无论x取何值,4x2+8x+11的值都是正值.18.A19.A20.解:设2 015=a,则原式=a3-(a-1)·a·(a+1) =a3-a(a2-1)=a3-a3+a=a=2 015.。
第12章整式的乘除复习2
专题三:利用整式乘法进行说理
试说明:代数式 (2x 3)(6x 2) 6x(2x 13) 8(7x 2)
的值与x的取值无关。
分析:代数式的值与x的取值无关,即不论x取何值, 代数式的取值是不变的,因此,原代数式化简后的 结果不含x。
变式:若代数式 (2x 3)(6x 2) 6x(2x 13) 8(kx 2)
3 (3)(a2 3)(a 2) a(a2 2a 2)
(4)(3 x6 y2 6 x3 y5 0.9x2 y3) (0.6xy)
4
5
专题二:利用整式乘积中项的特征求参数的值
若 (x 1)(x2 mx n) x3 6x2 11x 6 ,
求m和n的值。
解 : (x 1)(x2 mx n) x3 6x2 11x 6 x3 mx2 nx x2 mx n x3 6x2 11x 6 x3 (m 1)x2 (n m)x n x3 6x2 11x 6 m 1 6,n m 11,n 6 m 5, n 6
的值与x的取值无关,求k的值。
分析:若代数式的值与x的取值无关,则原代数式化 简后不含x的项,也就是说含x的项系数为0。
专题四:整式运算的实际应用
刘明家的住房结构如图,刘明的爸爸打算把卧室以外
的部分都铺上地砖,至少需要多少平方米的地砖?如
果每1m2的地砖的价格是a元,则购买地砖至少需要
多少钱?
y 2y
右边是三项,第一项是首的平方,第二项是首尾乘 积的2倍,第三项是尾的平方. 口诀:首平方,尾平方,首尾积的2倍放中间.
基础练兵
先化简,在求值:
(1)[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y= -1.5
整式的乘除知识点及题型复习
整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。
3、23132--⎛⎫-+ ⎪⎝⎭= 。
4、322(3)---⨯- = 。
5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。
A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。
《整式的乘法》整式的乘除
汇报人: 2023-11-28
contents
目录
• 整式乘除法的定义与规则 • 整式乘法的运算方法 • 整式除法的运算方法 • 整式乘除法的实际应用 • 整式乘除法在数学中的重要性 • 整式乘法的技巧和注意事项
01
整式乘除法的定义与规则
整式的乘法定义
整式乘法的定义
整式乘法是将几个整式相乘,所得的 积叫做整式的乘积。
整式乘法的运算顺序
在进行整式乘法时,应先进行单项式 的乘法运算,再合并同类项。
整式的乘法规则
同底数幂相乘
同底数幂相乘,底数不变,指 数相加。
幂的乘方
幂的乘方,底数不变,指数相 乘。
积的乘方
积的乘方,等于把积的每一个 因式分别乘方,再把所得的幂 相乘。
单项式与多项式相乘
单项式与多项式相乘,就是根 据分配律用单项式去乘多项式 的每一项,再把所得的积相加
单项式与多项式的乘法运算
要点一
总结词
要点二
详细描述
逐项处理,将单项式与多项式的每一项分别相乘,再合并 同类项。
单项式与多项式的乘法运算,需要把单项式与多项式的每 一项分别相乘,并且把所得的积相加。具体地,对于多项 式的每一项,将其系数和字母部分分别与单项式的系数和 字母部分相乘,然后合并同类项得到结果多项式的每一项 。特别地,当多项式中有一项与单项式完全相同时,则结 果多项式中该项的系数为单项式的系数乘以多项式中该项 的系数。
03
整式除法的运算方法
单项式与单项式的除法运算
总结词
简单、易于操作
详细描述
单项式与单项式的除法运算相对简单,只需将被除数除以除数,得到商即可。例 如,$10/3 = 3.33\ldots$。
第12章 整式的乘除章节复习(课件)
x2 2y2 2xy 6y 9 0
从中得 到什么 感悟?
典例解读
乘法公式
例11 化简求值:2x y2 2x y2x y 4xy ,其中x 2015,y 1
解原式 4x2 4xy y2 4x2 y2 4xy
4x2 4xy y2 4x2 y2 4xy 2y2 当x 2015,y 1时,原式 2
1.计算:
(1) 4x 2 y 3 z 3
(2)x3 x5 x3 x 3 x 2 3 x 2 4
经 (3) a5 a8 a4
(4) 3a 3 2 a 3 4a2 a 7 5a 3 3
典
(5)2m 2 n
3
3
mn 2
3
2
mn
4 2
化简求值:
(1)x 2 y 2 2 2 x 2 y 2 ,其中x y 1
(2)x 32 x 2x 2 4xx 3,其中x2 3x 2 (3)x 12 x 3x 3 x 3x 1,其中x2 2x 2
数学活动室
1.若x y2 1,x y2 49,求 x2 y 2和xy;
典例解读
幂的运算
a3 • a3
例 1 下列运算正确的是( D )
A、a 4 a3 a12
B、a6 a3 a 2
C、a 3 2 a 5
D、 ab2 a 2b 2
a3 a3
典例解读
幂的运算
例 2 计算:x x2 x3
x x 2 x3 2
x x2 x3 2 x x2 x 2 3
例 9 计算:a 32
1012
a b2 a2 2ab b2
1012 101 99
2a 3b2 2a 3b2 2a 3b c2
1012 102 98
第12章整式的乘除知识点总结
第12章整式的乘除§幂的运算一、同底数幂的乘法1、法则:a m·a n·a p·……=a m+n+p+……(m、n、p……均为正整数)文字:同底数幂相乘,底数不变,指数相加。
2、注意事项:(1)a可以是实数,也可以是代数式等。
如:π2·π3·π4=π2+3+4=π9;(-2)2·(-2)3=(-2)2+3=(-2)5=-25;(2)3·(2)4=(2)3+4=(2)7;(a+b)3·(a+b)4·(a+b)= (a+b)3+4+1=(a+b)8(2)一定要“同底数幂”“相乘”时,才能把指数相加。
(3)如果是二次根式或者整式作为底数时,要添加括号。
二、幂的乘方1、法则:(a m)n=a mn(m、n均为正整数)。
推广:{[(a m)n]p}s=a mn p s文字:幂的乘方,底数不变,指数相乘。
2、注意事项:(1)a可以是实数,也可以是代数式等。
如:(π2)3=π2×3=π6;[(2)3]4=(2)3×4=(2)12;[(a-b)2]4= (a-b)2×4=(a-b)8(2)运用时注意符号的变化。
(3)注意该法则的逆应用,即:a mn= (a m)n,如:a15= (a3)5= (a5)3三、积的乘方1、法则:(ab)n=a n b n(n为正整数)。
推广:(acde)n=a n c n d n e n文字:积的乘方等于把积的每一个因式都分别乘方,再把所得的幂相乘。
2、注意事项:(1)a、b可以是实数,也可以是代数式等。
如:(2π)3=22π2=4π2;(2×3)2=(2)2×(3)2=2×3=6;(-2abc)3=(-2)3a3b3c3=-8a3b3c3;[(a+b)(a-b)]2=(a+b)2(a-b)2(2)运用时注意符号的变化。
(3)注意该法则的逆应用,即:a n b n =(ab)n;如:23×33= (2×3)3=63,(x+y)2(x-y)2=[(x+y)(x-y)]2四、同底数幂的除法1、法则:a m÷a n=a m-n(m、n均为正整数,m>n,a≠0)文字:同底数幂相除,底数不变,指数相减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6) -3xy2z· (பைடு நூலகம்y3)2
=-3xy2z · x2y6 =-3x3y8z
注意:单项式乘法中,如有积的乘方,就要按 积的乘方法则先求出积的乘方,然后在进行 乘法运算.
2.单项式乘以多项式
单项式与多项式相乘,只要将单项式分别乘以多项 式的每一项,再将所得的积加.即 m(a+b+c)=ma+mb+mc 因为代数式中的字母都表示数,所以单项式可以看 作是一个数,多项式可以看作是若干个数的和。因 此,单项式与多项式相乘,可以根据乘法的分配律, 用单项式乘以多项式的每一项,从而转化为单项式 的乘法,最后再把所得的积相加.
第12章整式的乘除
整式乘法的复习
学习目标:
一、 熟记整式的乘法法则: (1)单项式乘以单项式: (2)单项式乘以多项式: (3)多项式乘以多项式: 二、 能够运用整式的乘法法则进行 有关计算.
1.单项式乘以单项式:
单项式与单项式相乘,只要将它们的系数、相同字 母的幂分别相乘,对于只在一个单项式中出现的字 母,则连同它的指数一起作为积的一个因式. 根据上述法则,在做单项式与单项式的乘法运算时 可以按一下三个步骤进行: (1)系数相乘—确定积的系数,要注意符号; (2)相同字母相乘—底数不变,指数相加; (3)只在一个单项式中出现的字母—连同字母的 指数写在乘积中.
例2.计算: (1) 2a2· (3a2-5b). (2 )(-2a2)· (3ab2-5ab3)
解:(2)(-2a2)· (3ab2-5ab3) = (-2a2)· 3ab2 +(-2a2)· (- 5ab3 ) = -6a3b2+10a3b3.
(3) 3x3y· (2xy2-3xy); =6x4y3-9x4y2 (4) 2x· (3x2-xy+y2);
(5) x(x2-1)+2x2(x+1)-3x(2x-5); (6) 5/2xy· 3y2+4/5x2y3). (-x
3.多项式乘以多项式
多项式与多项式相乘,先用一个多项式的每
一项分别乘以另一个多项式的每一项,再把 所得的积相加.即 (m+n)(a+b)=ma+mb+na+nb 或(m+n)(a+b)=m(a+b)+n(a+b) 在运用多项式与多项式相乘的法则时,必须 做到不重不漏.因此,相乘时,要按一定的顺 序进行.
例1.计算 (1) 2x3· 2 5x (2) 3x2y· (-2xy3); 解:(2) 3x2y· (-2xy3); = [3· (-2)]· 2· (y· 3) (x x)· y = -6x3y4 (3) (-5a2b3)· (-4b2c); (4) (-9a2b3)· 3; 8ab =(-9×8)(a2 · 3 · 3) a)(b b =-72a3b6 (5) (-3a2)3· (-2a3)2 =-27a6 · 6 4a =-108a12;
例3.计算:
(1) (x+2)(x-3); (2) (3x-1)(2x+1); (3) (x-3y)(x+7y); (4) (2x+5y)(3x-2y); (5) (x+5)(x-7); (6) (x+5y)(x-7y); (7) (2m+3n)(2m-3n); (8) (2a+3b)2 (9)(4a2-2a+1)(2a+1); (10) (x+2y)(x2-2xy+4y2).