第4章水流阻力和水头损失

合集下载

第四章 水流型态与水头损失.

第四章 水流型态与水头损失.
箱的水体积为0.28m3,试求弯管内的流速、 沿程水头损失和局部水头损失系数。
水力学
解:(1)先求弯管内的流速:
QV
A tA

A

100
0.28
0.052
4
1.43m s
Δh B
水力学

(2)再求沿程水头损失,由达西公式得:
hf
l 2
d 2g
0.0264 10 1.43 2 0.55m 0.05 2 9.8
1.雷诺实验
1883年英国科学家雷诺,通过实验发现液体 在流动中存在两种内部结构完全不同的流态: 层流和紊流。
(1)层流 当流速较小时,各流层质点互不混杂,
这种型态的流动叫层流。
水力学
(2)紊流 当流速较大时,各流层质点形成涡体
互相混掺,这种型态的流动叫做紊流。
水力学
同时发现,层流的沿程水头损失hf与流速一 次方成正比,紊流的hf与流速的1.75~2.0次方 成正比;在层流与紊流之间存在过渡区,hf与

2.83 3 0.0101
840.592000层流
水力学
五. 圆管层流运动和沿程水头损失
圆管层流运动可以应用牛顿内摩擦定律表达 式和均匀流内切应力表达式,通过积分求出过 水断面上的流速分布为抛物型分布。
J
u
4
r02 r 2
最大流速在管轴线处 u J r 2
max 4 0
(3)紊流过渡区 :λ既与Re有关,也与Δ有 关,hf 1.75~2。0 。
七. 沿程水头损失经验公式
谢才公式
C RJ
水力学
C是反映边界对液体运动影响的综合系 数,称为舍齐系数,单位:m1/2/s 。

流动阻力与水头损失 工程流体力学.ppt

流动阻力与水头损失  工程流体力学.ppt

uz t
uz x
dx dt
uz y
dy dt
uz z
dz dt
f 1 p 2u u +u • u
dt
质量力 压差力
粘性力
当地加 速度力
迁移加速度
§4-4 相似原理与量纲分析
一、量纲基本概念
单位(unit) :量度各种物理量数值大小的标准量,称单位。如长度
单位为m或cm等。——“量”的表征。
工程流体力学
第四章 流动阻力与水头损失
§4-1管路中流动阻力产生的原因及分类
一、阻力产生的原因 1)流体质点与管壁之间的摩擦撞击 2)管壁的粗糙度,引起涡流 3)管路的长度
湿周 R
水力半径
=2R
A Rh X
§4-1管路中流动阻力产生的原因及分类
一、流动阻力的分类
沿程水头损失 水头损失
局部水头损失
vc ——上临界流速
O
lgvc lgvc’ lgv
层 流: 过渡流: 紊 流:
v vc
vc v vc
v vc
临界雷诺数 雷诺数 Re vd
υ
Re c 2000 ——下临界雷诺数 Rec 14000 ——上临界雷诺数
工程上常用的圆管临界雷诺数
层 流: 过渡流: 紊 流:
Re Re c Re c Re Rec Re Rec
如:速度:dim v=LT-1;加速度dim a=LT-2;力dim F=MLT-2;
动力粘度dim =ML -1 T-1
• 量纲公式:
dim q LTM
• 量纲一的量(无量纲数、纯数,如相似准数):=0,=0,=0,即
dim q=1,如、及组合量Re等。
Re vd ,

第4章 水头损失

第4章  水头损失

2. 过流断面的水力要素
液流边界几何条件对水头损失的影响 产生水头损失的根源是实际液体本身具有粘滞性,而固
体边界的几何条件(轮廓形状和大小)对水头损失也 有很大的影响。(p54)
20
3 工程第项4目章 管水理头规损划失
液流横向边界对水头损失的影响
过水断面的面积 ω:过水断面的面积是一个因素 ,但仅靠过水断面面积尚不足表征过水断面几 何形状和大小对水流的影响。
R
22
3 工程第项4目章 管水理头规损划失
例 子:
管道
d2
d
R 4 d
d 4
23
3 工程第项4目章 管水理头规损划失
矩形断面明渠
R bh b 2h
h b
24
3 工程第项4目章 管水理头规损划失
梯形断面明 渠
a
(b 2mh b)h (b mh)h
2
m=tgθ
a h
b
b 2 h2 (hm)2 b 2h 1 m2
雷诺:O.Osborne Reynolds (1842~1912) 英国力学家、物理学家和工程师,杰出实验科学家
1867年-剑桥大学王后学院毕业
1868年-曼彻斯特欧文学院工程学教授
1877年-皇家学会会员
1888年-获皇家勋章
1905年-因健康原因退休
第4章 水头损失
30
3 工程项目管理规划
雷诺兴趣广泛,一生著述很多,近70篇论文都有很 深远的影响。论文内容包括
§4.1 沿程水头损失及局部水头损失
1. hf & hm
理想液体的运动是没有能量损失的,而实际液 体在流动的中为什么会产生水头损失 ?
5
3 工程第项4目章 管水理头规损划失

流体力学课件第四章流动阻力和水头损失

流体力学课件第四章流动阻力和水头损失

l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*

8
§4-4 圆管中的层流

层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系

均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态

两种流态
v小
' c
v小
v > vc
v大 v大

临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类

沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。

土力学第四章 流动阻力和水头损失

土力学第四章  流动阻力和水头损失

漩涡区中产生了较大的能量损失
漩涡区
C A C
D B
漩涡体形成、运转和分裂
漩涡区中产生了较大的能量损失
C A C
D B
流速分布急剧变化
漩涡区中产生了较大的能量损失
C A
D B
C 漩涡的形成,运转和分裂;流速分布急剧变化, 都使液体产生较大的能量损失。 这种能量损失产生在局部范围之内,叫做局部 水头损失hj 。
颜色水
l
hf
Q
V t
下游阀门再打开一点,管道中流速增大
红色水开始颤动并弯曲,出现波形轮廓
颜色水
l
hf
下游阀门再打开一点,管中流速继续增大
红颜色水射出后,完全破裂,形成漩涡,扩散至全管, 使管中水流变成红色水。 这一现象表明:液体质点运动中会形成涡体,各涡体相 互混掺。
Q
V t
颜色水
l
hf
Q
水流半径R
R A

粘性流体的两种流态
4.2.1 雷诺实验
雷诺:O.Osborne Reynolds (1842~1912) 英国力学家、物理学家和工程师,杰出实验科学家
1867年-剑桥大学王后学院毕业 1868年-曼彻斯特欧文学院工程学教授
1877年-皇家学会会员
1888年-获皇家勋章
1905年-因健康原因退休
两个过水断面的湿周相同,形状不同,过水断面 面积一般不相同,水头损失也就不同。 因此,仅靠湿周也不能表征断面几何形状的影响。
由于两个因素都不能完全反映横向边界对水头损失
的影响,因此,将过水断面的面积和湿周结合起来,全
面反映横向边界对水头损失影响。
水流半径R:
R
A

水力学第四章层流、紊流,液流阻力和水头损失

水力学第四章层流、紊流,液流阻力和水头损失

3.7d
结论2:
•紊流光滑区水流沿程水头损失系数只取决于雷诺数,粗糙度不 起作用。容易得出光滑区紊流沿程损失与流速的1.75次方成正 比。 •紊流粗糙区水流沿程水头损失系数只取决于粗糙度,由于粗糙 高度进入流速对数区,阻力大大增加,这是不难理解的。容易 得出粗糙区紊流沿程损失与流速的2.0次方成正比。 •在紊流光滑区与粗糙区之间存在紊流过渡粗糙区,此时沿 程损失系数与雷诺数和粗糙度都有关。 •尼古拉兹试验反映了圆管流动的全部情况,在其试验结果图上 能划分出层流区,过渡区、紊流光滑区、紊流过渡粗糙区,紊 流粗糙区。紊流粗糙区通常也叫做‘阻力平方区’。
ro gJ 2 2 gJ 4 1 4 gJ 4 Q (ro r )2 rdr (ro ro ) d 0 4v 4v 2 128v
上式为哈根——泊肃叶定律:圆管均匀层流的流量Q与管径d 的四次方成比例。 3、断面平均流速: V
Q gJ 2 1 ro umax A 8 2
1 1 1 1 1 , , , , 及 30 61 .2 120 252 507 1
1 1 1 1 1 1 , , , , 及 30 61 .2 120 252 507 10
层流时,

64 Re
f (Re)
1 1 1 1 1 1 , , , , 及 30 61.2 120 252 507 1014
1 u u x x dt 0 T0
2、紊流的切应力 由相邻两流层间时均流速相对运动
所产生的粘滞切应力
紊流产生附加切应力
du l t v Re
t v Re 2
纯粹由脉动流速所产生 的附加切应力
dy ( du 2 ) dy
普朗特 混合长 Re 与 du 有关,根据质点脉动引起动量交换(传递),又称为动量传递理论 dy 理论

第四章 液流型态和水头损失

第四章 液流型态和水头损失

主流+二次流=螺旋流 二、局部水头损失的计算公式 沿程损失:
2 l v2 v hf ' d 2g 2g
l ( ' ) d
v2 局部阻力系数 hj — 2g 由实验: f (Re,几何尺寸),在局部障碍的强烈干扰下,较
借用上面形式: 小雷诺数(Re=104)时水流就进入阻力平方区,故认为 三、圆管中水流突然扩大的局部水头损失及其系数
2 1 1
p2 v hf 2g p2 )
2 2 2
以1-1和2-2断面之间的水体作为隔离体,建立沿流向的平衡方程。
p1 p2 0 l l sin 0
p1 p2 0 l ( z1 z 2 ) 0
整理:
0 l ( z1 ) (z2 )
内因:内摩擦阻力的存在(起决定作用) hw产生的原因 外因:固体边界的影响
沿程水头损失hf
hw
局部水头损失h j
hw h f h j
§4-3 液流型态及其判别
一、雷诺实验 1885年 Reynolds 层流:各流层的液体质点有条不紊地运动,互不混掺。 紊流:液体质点形成涡体,流动过程中互古拉兹人工粗糙管不同,
和分布无规律, 从而引出当量粗糙度的概念,以把工业管道的粗 糙折算成人工粗糙,表4-1。
三、 计算沿程水头损失的经验公式——谢才公式
(1755年) v C RJ
v C RJ C Rh f / l
2 2 2
C—谢才系数
m
1
2
/s
v 2 l8 g 8g l v 2 hf 2 2 C R8 g C 4 R 2 g
2
§4-5 计算沿程水头损失的通用公式

工程流体力学课件4流动阻力和水头损失

工程流体力学课件4流动阻力和水头损失
工程应用
在泵站设计时,应充分考虑流动阻力和水头损失,以提高泵的运 行效率,降低能耗。
THANKS
感谢观看
工程流体力学课件4 流动阻力和水头损失
目录
• 流动阻力的概念 • 水头损失的种类 • 流动阻力和水头损失的计算方法 • 工程实例分析
01
流动阻力的概念
定义与分类
定义
流动阻力是指流体在流动过程中受到 的阻碍作用,导致流体机械能的损失 。
分类
根据产生原因,流动阻力可分为摩擦 阻力和局部阻力。
产生原因
摩擦阻力
由于流体内部及流道壁面间的摩擦作用产生的阻力。
局阻力
由于流道截面变化、流体方向改变或流速分布不均等局部因素引起的阻力。
阻力系数
定义
阻力系数是表示流体在 单位速度梯度下流动时, 单位重量流体所受的阻 力,通常用希腊字母λ 表示。
计算公式
λ=f/Re,其中f为摩擦 阻力系数,Re为雷诺数。
应用
控制边界层流动的方法
为了减小边界层流动的能量损失,可以采用改变表面粗糙度、使用导流 装置或采用湍流控制技术等方法。这些方法在流体动力学研究和工程实 践中具有广泛应用。
04
工程实例分析
管道流动阻力与水头损失分析
1 2
管道流动阻力
由于流体与管壁之间的摩擦力以及流体内部的粘 性阻力,导致流体在管道中流动时能量损失。
沿程水头损失的大小与流体粘 度、管道或渠道的粗糙度、管 道或渠道的长度、流速等有关 。
沿程水头损失的计算公式为 $Delta h = f times frac{L}{D} times frac{v^2}{2g}$,其中 $Delta h$ 为沿程水头损失, $f$ 为摩阻系数,$L$ 为管道长 度,$D$ 为管道直径,$v$ 为 流速,$g$ 为重力加速度。

工程流体力学课件4流动阻力和水头损失

工程流体力学课件4流动阻力和水头损失
产生原因
流体流经局部障碍时,流动状态发生急剧变化,产生漩涡 和二次流,使得流体的速度分布和方向发生变化,导致水 头损失。
影响因素
局部障碍的形式、流体流速、流体性质等。
总水头损失
总水头损失
01
指流体在管道或渠道中流动过程中所损失的总水头,
等于沿程水头损失和局部水头损失之和。
计算方法
02 总水头损失等于沿程水头损失和局部水头损失的代数
水利工程中的流动阻力与水头损失分析
水利工程中的流动阻力来 源
在水利工程中,流动阻力主要来自水体与边 界的摩擦力、水流内部的各种阻力等。这些 阻力会导致水头损失,影响水利工程的正常 运行。
水头损失对水利工程效益 的影响
水头损失的大小直接影响到水利工程的效益 。在设计水利工程时,应充分考虑水头损失 的影响,合理选择水泵和水轮机的型号,确
保工程效益最大化。
THANKS
工程流体力学课件4流 动阻力和水头损失
目录
Contents
• 流动阻力的概念 • 水头损失的种类 • 流动阻力和水头损失的计算 • 工程实例分析
01 流动阻力的概念
定义与分类
定义
流动阻力是指流体在流动过程中受到的阻碍作用,导致流体机械能的损失。
分类
分为内阻力和外阻力。内阻力是由于流体内部摩擦力引起的,如层流内摩擦力 和湍流内摩擦力;外阻力是指流体在流动过程中受到的外部阻碍,如流体与管 道壁面的摩擦力。
计算公式
阻力系数通常通过实验测定,也可以通过经验公式进行估算。常用的经验公式有达西韦斯巴赫公式和莫迪图等。
影响因素
阻力系数的大小受到流体的物理性质、管道的几何形状和尺寸、流动状态等多种因素的 影响。在工程实际中,需要根据具体情况进行实验测定或经验估算。

水力学_第4章层流和紊流、液流阻力和水头损失

水力学_第4章层流和紊流、液流阻力和水头损失
1 2
第 四水力学 章 gRJ gRJ 层 流 几点说明: 和 1.上两式适用于管道和明 渠均匀流。 紊 2.对层流和紊流也均适用 。 流 3.方程所表达的液体内部 一点处的切应力与断面 平均的沿程水头损失的 关系。 , 紊流研究中,一个与壁面切应力 有关的重要参数称为摩阻流速,其表达式为: 液 流 0 阻 u 力 和 在探讨紊流的流速分布及其他特性时经常要用到该参数。 水 流动为均匀流时它可表 示为: 头 gRJ 损 u 0 gRJ 失
y
x
y
x
x
y
第 四水力学 ' ' 因为ux和u y总是具有相反符号,故 章 ' 层 uxu 'y Re 流 取上式的时均值,则表 达式为 和 紊 Re uxu y 流 动自由程的概念,引入 混合长l . , 普朗特依据气体分子运 du u 两点液流的时均流速差 dy 为 液 在l 范围内,时均流速 可看作线性变化,则该 普朗特假设: 流 du 阻 u l dy 力 和 u y u x 水 头 u u u u 损 失
沿程阻力和沿程水头损失(均匀流和渐变流的水头损失) 当固体边界的形状尺寸沿程不变,液体在长直流段中流动产 生的阻力称为沿程阻力,由沿程阻力做功产生的水头损失称为 沿程水头损失,用hf表示。
局部阻力和局部水头损失(急变流的水头损失) 当固体边界的形状、尺寸或两者之一沿流程急剧变化时所产 生的阻力称为局部阻力,由局部阻力做功产生的水头损失称为 局部水头损失,用hj表示。
1
1 x
x
l1
x
x
1
x
y
x
y
第 四水力学 u y l12 ( dux )2 ux 章 dy 层 du 流 u x u y k1l12 ( x ) 2 dy 和 紊 2 du x 2 流 Re k1l1 ( ) dy , 液 式中均为正值,无需再 加负号。把系数 1合并到l1中去,即令 1l 21 l 2 k k 流 2 du x 2 阻 Re l ( ) dy 力 和 水 式中的l仍称混合长,由试验确 定。对于简单规则边界 条件下的紊流。 头 l y 为系数,一般常取为常 数;对于圆管均匀流 0.4, 称为卡门常数。 , 损 du du l ( ) 失 dy dy

第四章层流和紊流及水流阻力和水头损失

第四章层流和紊流及水流阻力和水头损失

第四章 层流和紊流及水流阻力和水头损失1、紊流光滑区的沿程水头损失系数 λ 仅与雷诺数有关,而与相对粗糙度无关。

( )2、圆管紊流的动能校正系数大于层流的动能校正系数。

( )3、紊流中存在各种大小不同的涡体。

( )4、紊流运动要素随时间不断地变化,所以紊流不能按恒定流来处理。

( )5、谢才公式既适用于有压流,也适用于无压流。

( )6、''yu x u ρτ-=只能代表 X 方向的紊流时均附加切应力。

( )7、临界雷诺数随管径增大而增大。

( ) 8、在紊流粗糙区中,对同一材料的管道,管径越小,则沿程水头损失系数越大。

( ) 9、圆管中运动液流的下临界雷诺数与液体的种类及管径有关。

( ) 10、管道突然扩大的局部水头损失系数 ζ 的公式是在没有任何假设的情况下导出的。

( ) 11、液体的粘性是引起液流水头损失的根源。

( ) 11、不论是均匀层流或均匀紊流,其过水断面上的切应力都是按线性规律分布的。

( ) 12、公式gRJ ρτ= 即适用于管流,也适用于明渠水流。

( ) 13、在逐渐收缩的管道中,雷诺数沿程减小。

( ) 14、管壁光滑的管子一定是水力光滑管。

( ) 15、在恒定紊流中时均流速不随时间变化。

( ) 16、恒定均匀流中,沿程水头损失 hf 总是与流速的平方成正比。

( ) 17、粘性底层的厚度沿流程增大。

( ) 18、阻力平方区的沿程水头损失系数λ 与断面平均流速 v 的平方成正比。

( ) 19、当管径和流量一定时,粘度越小,越容易从层流转变为紊流。

( ) 20、紊流的脉动流速必为正值。

( ) 21、绕流阻力可分为摩擦阻力和压强阻力。

( ) 22、有一管流,属于紊流粗糙区,其粘滞底层厚度随液体温度升高而减小。

( ) 23、当管流过水断面流速符合对数规律分布时,管中水流为层流。

( ) 24、沿程水头损失系数总是随流速的增大而增大。

第四章 流动阻力和水头损失

第四章 流动阻力和水头损失
0.3164 Re 0.25
2.粗糙区:希弗林松公式
k 0.11 d
0.25
3.舍维列夫公式: 适用于旧钢管和旧铸铁 管 紊流过渡区,v≤1.2m/s
m3 2.0
雷诺实验揭示了沿程水头损失与流速的关系。当
v<vc时,hf~v1.0;当v>vc时, hf~v1.75~2.0 。
发现了流体流动中存在两种性质不同的形态,即
层流和紊流: 层流——流体呈层状流动,各层质点互不掺混; 紊流——流体质点的运动轨迹极不规则,各层 质点相互掺混,且产生随机脉动。
切应力分布:
r 0 r0
1.切应力分布 2.层流、紊流均适用
§4-4 圆管中的层流运动
1.流动特性
流体呈层状流动,各层质点互不掺混
层流中的切应力为粘性切应力
du dy
其中 y=r0-r

Hale Waihona Puke du dr2.断面流速分布
du 牛顿内摩擦定律 dr r 又 g J 2
总水头损失=沿程水头损失+局部水头损失
二、流动阻力
hw——流体粘性引起
1.沿程阻力——沿程损失(长度损失、摩擦损失)
l v hf d 2g
λ——沿程阻力系数
2.局部阻力——局部损失
2
达西-魏斯巴赫公式
v hj 2g
ζ——局部阻力系数
2
3.总能量损失
**说明几点
hw h f h j
d ux u x y l1 u x y l1 dy d ux u x u x y l1 u x y l1 dy
(2) 横向脉动速度 u x

流体阻力和水头损失

流体阻力和水头损失

1
2
逐渐开大阀门B,玻璃管内流速增大到某一临界值υc'时,颜色水纤流出现抖
动。再开大阀门B,颜色水纤流破散并与周围清水混合,使玻璃管的整个断面都
带有颜色。表明此时质点的运动轨迹极不规则,各层质点相互掺混,这种流动状
态称为湍流。
将以上实验按相反顺序进行,先开大阀门B,使玻璃管内为湍流,然后逐渐
关小阀门B,则按相反顺序重演前面实验中发生的现象。只是由湍流转变为层流
的流速υc小于由层流转变为湍流的流速υc'。
流体阻力和水头损失
1.3 黏性流体的两种流态——层流和湍流
C D
(a)
υ小 υ小
hf
(b)
E
A
B (c)
1
2
υc'>υc υ大υ大
流态转变的流速分别称为上临界流速υc'和下临界流速υc。实验发现,上临界 流速υc'是不稳定的,受起始扰动的影响很大。在水箱水位恒定、管路入口平顺、 管壁光滑、阀门开启轻缓的条件下,υc'可比υc大许多。下临界流速υc是稳定的, 不受起始扰动的影响,对任何起始湍流,当流速υ小于υc'值,只要管路足够长, 流动终将发展为层流。实际流动中,扰动难以避免,因此,把下临界流速υc作为 流态转变的临界流速。当υ<υc时,流动是层流;当υ>υc时,流动是湍流。
1 2
1 2
112
2
22
2g 2g
流体阻力和水头损失
1.3 黏性流体的两种流态——层流和湍流
C D
(a)
hf
(b)
E
A
B (c)
1
2
υ小 υ小 υc'>υc υ大υ大
又因断面1和2之间只有沿程水头损失,而无局部水头损失,故hw=hf,因此,

流体力学流动阻力和水头损失

流体力学流动阻力和水头损失
hf=(p1-p2 / 记录层流与紊流情况下的平均流速u与对应 的hf,作u-hf关系曲线。
2020/3/31
流动阻力和水头损失
17
第四章 流动阻力和水头损失
vc vc
2020/3/31
流动阻力和水头损失
18
第四章 流动阻力和水头损失
线段AC及ED都是直线,
用 lg h f lg k m lg 表示
的影响
可用过水断面的水力要素来表征,如过水断面
的面积A、湿周 及力半径R等。
对圆管:
d 2
R A 4 d
d 4
2020/3/31
流动阻力和水头损失
9
第四章 流动阻力和水头损失
2、液流边界纵向轮廓对水头损失的影响
因边界纵向轮廓的不同,可有两种不同 形式的液流:均匀流与非均匀流
均 匀 流
2020/3/31
分布进行改组流线发生弯曲并产生旋涡,在这些局部地区就有局部水头损
失。
2020/3/31
流动阻力和水头损失
6
第四章 流动阻力和水头损失
液流产生水头损失的两个条件
(1) 液体具有粘滞性。
(2) 由于固体边界的影响,液流内部质点之间 产生相 对运动。
液体具有粘滞性是主要的,起决定性作用。
2020/3/31
流动阻力和水头损失
10
第四章 流动阻力和水头损失

+hj



均匀流时无局部水头损失,非均匀渐变流时局部
水头损失可忽略不计,非均匀急变流时两种水头损失 都有。
2020/3/31
流动阻力和水头损失
11
第四章 流动阻力和水头损失
二、水头损失的计算公式

水流阻力和水头损失精品

水流阻力和水头损失精品
(4) 由于边界层很薄,可以近似认为边界层中各截面上的 压强等于同一截面上边界层外边界上的压强值。
第4页/共66页
三、总阻力与总能量损失
在工程实际中,绝大多数管道系统是由许多等直管段和一些管道附件连接在一起所组成的,所以在一个管道系统中,既有沿程损失又有局部损失。我们把沿程阻力和局部阻力二者之和称为总阻力,沿程损失和局部损失二者之和称为总能量损失。总能量损失应等于各段沿程损失和局部损失的总和,即
湿周
水力半径
对于圆管水力半径
第12页/共66页
【例题】 管道直径 100mm,输送水的流量 m3/s,水的运动粘度 m2/s,求水在管中的流动状态?若输送 m2/s的石油,保持前一种情况下的流速不变,流动又是什么状态?
【解】
(1)雷诺数
第47页/共66页
边界层的流态:根据实验结果可知,同管流一样,边界层内也存在着层流和紊流两种流动状态,若全部边界层内部都是层流,称为层流边界层,若在边界层起始部分内是层流,而在其余部分内是紊流,称为混合边界层,如图所示,在层流变为紊流之间有一过渡区。判别边界层的层流和紊流的准则数仍为雷诺数,但雷诺数中的特征尺寸用离前缘点的距离x表示之,特征速度取边界层外边界上的速度 ,即临界雷诺数为
局部水头损失的通用计算公式:
应用举例
第34页/共66页
第35页/共66页
雷诺试验
雷诺实验的动态演示
第36页/共66页
抛物型流速分布
中心线的最大流速
第37页/共66页
紊流的脉动现象

(时均)恒定流
(时均)非恒定流
第38页/共66页
紊流的粘性底层
层流底层厚度
可见,δ0随雷诺数的增加而减小。
当Re较小时,

第4章水流阻力和水头损失

第4章水流阻力和水头损失

1 2
p1 p2 h f z1 z2 g g
1
2
1

2 τ0
P 1 p1 A 1 P2 p2 A2
面积
1 Z1 L
F L 0
2
Z2 O
τ0 G=ρgAL
湿 周
O
列流动方向的平衡方程式: 水力半径——过水断面面积与 湿周之比,即A/χ
vk d


vk d

2300
若Re<Rek
1.0 h V ,水流为层流, f
1.75~2.0 若Re>Rek,水流为紊流, hf V
公式只适用于圆管,对于非圆管用当量直径来实现, 如下:
湿周: 过水断面中液体与固体接触的边界长度 水力半径:R
非圆管
A

A
d
2
对于圆管水力半径
雷诺数可理解为水流惯性力和粘滞力量纲之比 量纲:称为因次,指物理量的性质和类别,例如 长度和质量,分别用[L]和[M]表达
[V ] [惯性力]=[m][a]=[ ][L ] [ ][ L2 ][V 2 ] [T ] du 2 [V ] [粘性力] [ ][ A][ ] [ ][ L ] [ ][V ][ L] dy [ L]
3
量纲为
[惯性力] [ ][ L ][V ] [ ][ L][V ] [粘带力] [ ][V ][ L] [ ]
2 2
几个基本概念
层流底层、过渡层和紊流核心
§4.3 均匀流基本方程
1、沿程水头损失与切应力的关系
列1-1、2-2断面伯努利方程式:
2 p1 1v12 p2 2 v2 z1 z2 hf g 2g g 2g

第四章流体阻力和水头损失

第四章流体阻力和水头损失

剪切变形速率:
dα dβ v u dt x y
ε xy
ε yx
v x
u y
ε yz
εzy
w y
v z
εzx
ε xz
u z
w x
第26页/共117页
(4)旋转运动
dα dβ 则流体微团只发生角变形 dα dβ 则流体微团只发生旋转,不发生角变形 dα dβ 流体微团在发生角变形的同时,还要发生旋转运动
沿程阻力:粘性造成的摩擦阻力和惯性造成的能量 消耗。
2024/8/1
局部阻力:液流中流速重新分布,旋涡中粘性力做 功和质点碰撞产生动量交换。
第4页/共117页
三、阻力的分 类
2024/8/1
1、沿程阻力与沿程水头损失 (1) 沿程阻力:沿着管路直管段所产生的阻力。
(管路直径不变,计算公式不变) (2) 沿程水头损失:克服沿程阻力所消耗的能量。
问题: (1) 实物试验很困难或太昂贵的情况,如何进行试验?
(2) 变量太多
A 实验中应测哪些量
相似原理
B 实验数据如何整理 因次分析
第35页/共117页
一、因次分析
1、因次:即量纲,是标志性质不同的各类物理量的符 号。
如:长度因次用 [L] 表示。
基本因次: [M],[L],[T]
无单位的数 —— 无因次量,即因次为1
第二节 两种流态及转化标 一、流动准状态 —— 雷诺实验
1、层流 —— 质点是直线运动
管内流速较低,看到管内 有一条很直的有色水线。有色 水线呈直线形状,非常稳定, 这表明管内水的流动都是沿着 轴向,流体质点没有横向运动, 不相互掺混,从管中心开始向 管壁延伸流动是一层一层的, 这种流动称为层流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沿程水头损失与平均流速成正比。 紊流时:
2 450,m 1.75— 2即lg hf lg k2 mlg或hf k2m
沿程水头损失与平均流速的1.75—2次方成正比。
三、两种流态
雷诺试验 ——揭示了水流运动具有层流与紊流两种流态。
当流速较小时,各流层的液体质点是有条不紊地运动, 互不混杂,这种型态的流动叫做层流。
(3)be段 当vc<v< vc ’,水流状态不稳定,既可能是层 流(如bc段),也可能是紊流(be段),取决于水流的原来 状态。应注意的是在此条件下层流状态会被任何偶然 的干扰所破坏,很不稳定。例如,层流状态如果被管 壁上的个别凸起所破坏,那么在vc<v< vc ’时,它就 不会回到原来的层流状态而呈紊流的型态。
在管道流动中的沿程损失可用下式求得
hf

l d
V2 2g
达西公式
式中 —沿程阻力系数,它与雷诺数和管壁粗糙度有
关,是一个无量纲的系数。
l—管道长度,m; d—管道内径,m; V—管道中有效截面上的平均流速,m/s。
二、局部阻力与局部损失
在管道系统中通常装有阀门、弯管、变截面管等局部装置。 流体流经这些局部装置时流速将重新分布,流体质点与质点及 与局部装置之间发生碰撞、产生漩涡,使流体的流动受到阻碍, 由于这种阻碍是发生在局部的急变流动区段,所以称为局部阻 力。流体为克服局部阻力所损失的能量,称为局部损失。
hw hf hm 能量损失的叠加原理
§4.2雷诺试验——层流与紊流
一、沿程水头损失和平均流速的关系
十九世纪初人们就已经发 现圆管中液流的水头损失和流速 有一定关系。在流速很小的情况 下,水头损失和流速的一次方成 正比,在流速较大的情况下,水 头损失则和流速的二次方或接近 二次方成正比。
产生损失的内因
物理性质—— 粘滞性和惯性
产生水 损耗机
流阻力 固体边界—固壁对流动的阻滞和扰动
械能hw
产生损失的外因
§4.1沿程水头损失和局部水头损失
实际流体在管内流动时,由于粘性的存在,总要产 生能量损失。产生能量损失的原因和影响因素很复杂,
通常可包括粘性阻力造成的粘性损失 和局hf部阻力造
成的局部损失 两部h分j 。
当流速较大,各流层的液体质点形成涡体,在流动过 程中,互相混掺,这种型态的流动叫做紊流。
雷诺实验虽然是在圆管中进行,所用液体是水,但在其 它边界形状,其它实际液体或气体流动的实验中,都能发现 这两种流动型态。因而雷诺等人的实验的意义在于它揭示了 液体流动存在两种性质不同的型态——层流和紊流。层流与 紊流不仅是液体质点的运动轨迹不同,其内部结构也完全不 同,反映在水头损失规律不一样上。所以分析实际液体流动, 例如计算水头损失时,首先必须判别流动的型态。
水头损失的分类
沿程水头损失hf 局部水头损失hj
一、沿程阻力与沿程损失
粘性流体在管道中流动时,流体与管壁面以及流体之 间存在摩擦力,所以沿着流动路程,流体流动时总是受到 摩擦力的阻滞,这种沿流程的摩擦阻力,称为沿程阻力。 流体流动克服沿程阻力而损失的能量,就称为沿程损失。 沿程损失是发生在缓变流整个流程中的能量损失,它的大 小与流过的管道长度成正比。造成沿程损失的原因是流体 的粘性,因而这种损失的大小与流体的流动状态(层流或 紊流)有密切关系。
如果用灯光把液体照亮,可以看出:紊流状态下的颜色水 体是由许多明晰的、时而产生、时而消灭的小漩涡组成。这时 液体质点的运动轨迹是极不规则的,不仅有沿管轴方向(质点主 流方向)的位移,而且有垂直于管轴的各方位位移。各点的瞬时 速度随时间无规律地变化其方向和大小,具有明显的随机性。
试验中改变流量,将 与 h f 对应关系绘于双对数坐
二、雷诺试验
实验装置主要由恒水位水箱A和玻璃管B等组成。玻璃管入 口部分用光滑喇叭口连接,管中的流量用阀门C调节。
在所实验的管段上,因为水平直管路中流体作稳定流时,
根据能量方程可以写出其沿程水头损失就等于两断面间的压力
水头差,即
D
hf

p1 p2

AE
1
hf B
2C
( a)
( b)
( c)
雷 诺 实 验 装 置图
结果表明:
无论是层流状态还是紊流状态,实验点都分别集中在不同 斜率的直线上,方程式为
lg hf lg k m lg
式中 lg k —直线的截距;
m —直线的斜率,且 m tg ( 为直线与水平线
的交角)。 层流时:
1 450, m 1即lg hf lg k1 lg或hf k1
标纸上,得到 hf v关系曲线.
lg hf
C
C
450

lg k1 lg k2 lg c
lg
lg c
hf v关系曲线图试Fra bibliotek曲线明显地分为三部分:
(1)ab段 当v<vc时,流动为稳定的层流, 所有试验点都分布在与横轴(lgv轴)成45° 的直线上,ab的斜率m1=1.0。
(2)ef段 当v>时,流动只能是紊流,试验 曲 线 ef 的 开 始 部 分 是 直 线 , 与 横 轴 成 60°15′,往上略呈弯曲,然后又逐渐成为 与横轴成63°25′的直线。ef的斜率m2=1.75 ~2.0。
主要内容:
流动阻力和水头损失的分类及计算 雷诺试验—— 层流与紊流 均匀流基本方程 圆管中的层流运动 紊流运动 沿程阻力系数的变化规律 局部水头损失
水头损失原因
任何实际液体都具有粘性,粘性的存在会使液流具有 不同于理想流体的流速分布,并使相邻两层运动液体之间、 液体与边界之间除压强外还相互作用着切向力(或摩擦力), 此时低速层对高速层的切向力显示为阻力。而克服阻力作 功过程中就会将一部分机械能不可逆地转化为热能而散失, 形成能量损失。
在管道流动中局部损失可用下式求得
hm

V2 2g
式中 —局部阻力系数。
局部阻力系数 是一个无量纲的系数,根据不同的局部装置由
实验确定。
三、总阻力与总能量损失
在工程实际中,绝大多数管道系统是由许多等直管段和一 些管道附件连接在一起所组成的,所以在一个管道系统中,既 有沿程损失又有局部损失。我们把沿程阻力和局部阻力二者之 和称为总阻力,沿程损失和局部损失二者之和称为总能量损失。 总能量损失应等于各段沿程损失和局部损失的总和,即
相关文档
最新文档