离散数学课件(4)

合集下载

离散数学课件-第4章-5

离散数学课件-第4章-5

M R3 M R 2 M R
0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1
M t ( R ) M R M R 2 M R3
二、有向图的路径
使用有向图表示关系有助于构造关系的传递闭包 。为此引入 一些需要用到的术语。
通过沿有向图的边(按照这条边的箭头指示的相同方向)移动有 向图就得到一条有向图中的路径。
定义1:在有向图G中从a到b的一条路径是G中一条或多条
边的序列(x0,x1),(x1, x2),(x2, x3),„,(xn-1, xn),其中 x0=a, xn=b. 即一个边的序列,其中一天的终点和路径中下一条边 的起点相同。这条路径记为x0, x1,„, xn-1, xn,长度为n 。在同一定点开始和结束的路径叫做回路或圈。 注:有向图的一条路径可以多次通过一个顶点。此外,有 向图的一条边也可以多次出现在一条路径中。
定理1:设R是集合A上的关系。从a到b存在一条长为1的路径, 当且仅当(a,b)∈Rn。 Proof: 使用数学归纳法证明。 根据定义,从a到b存在一条长为1的路径,当且仅当 (a,b)∈R。因此当n=1时定理为真。
假定对于正整数n定理为真,这是归纳假设。从a到b存 在一条长为n+1的路径,当且仅当存在元素c ∈A使得从a 到c存在一条长为1的路径,即(a,c) ∈R,以及一条从c到b
由引理1,我们看出R的传递闭包是R,R2,R3,…,Rn的并。这是 由于在R*的两个顶点之间存在一条路径,当且仅当对某个正整 数i(i ≤ n)在Ri的这些顶点之间存在一条路径。因为
R*=R ∪R2 ∪R3 ∪… ∪Rn
并且表示关系的并的0-1矩阵式这些关系的0-1矩阵的联合。 因此传递闭包的0-1矩阵是R的0-1矩阵的前n次幂的0-1矩阵 的联合。

离散数学ppt课件

离散数学ppt课件

02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。

离散数学及其应用 第2版课件第4章 关系

离散数学及其应用 第2版课件第4章  关系
2021/4/1
第4章 关系
定义4.7 A×B的任意子集R称为A到B的二元关系。特 别当A=B时,称R为A上的二元关系。其中称为空关系, A×B称为全关系。
关系可以推广到n元关系,我们主要讨论二元关系。 在计算机领域中,关系的概念也是到处存在的。如数据 结构中的线性关系和非线性关系,数据库中的表关系等。 例如,若A={1,2,3,4,5},B={a,b,c},则R= {<1,a>,<1,b>,<2,b>,<3,a>}是A到B的关系,S={<a, 2>,<c,4>,<c,5>}是B到A的关系。
第4章 关系
4.2 关系及其表示
4.2.1 关系
世界上存在着各种各样的关系。人和人之间有“同志”关 系、“师生”关系、“上下级”关系;两个数之间有“大于” 关系、“等于”关系、“小于”关系;两个变量之间有“函数” 关系;程序之间有“调用”关系等。所以,对关系进行深刻的 研究,对数学和计算机都有很大的用处。
定义4.6 令R为二元关系,DR={x|y(xRy)}和RR= {y|x(xRy)}分别称为R的定义域(或前域)和值域。关系R的域记 为FR=DR∪RR。
例如,设H={<1,2>,<1,4>,<2,4>,<3,4>}是一个 二元关系,则DH={1,2,3},RH={2,4},FR={1,2,3,4}。
2021/4/1
第4章 关系
定义4.8 若IA是A上的二元关系,且满足IA={<x, x>|x∈A},则称IA为A上的恒等关系。
定理4.5 若R和S是集合A到B的两个二元关系,则: (1)DR∪S=DR∪DS。 (2)DR∩SDR∩DS。 (3)DR-DSDR-S。 (4)RR∪S=RR∪RS。 (5)RR∩SRR∩RS。 (6)RR-RSRR-S。

《离散数学》课件-第四章 二元关系

《离散数学》课件-第四章 二元关系
则关系R的各次幂为: R0 =A ={<1,1> , <2,2> , <3,3> , <4,4> , <5,5>} R1=R
R2= R • R={<1,1>,<2,2>,<1,3>,<2,4>, <3,5>}
R3=R2 • R={<1,2>,<2,1>,<1,4>,<2,3>, <2,5>}
R4= R3 • R={<1,1>,<2,2>,<1,5>,<2,4>,
从关系图来看关系的n次幂
R:
1
2
3
4
5
R2:
1
2
3
4
5
R2就是从R的关系图中的任何一个结点x出发,长 为2的路径,如果路径的终点是y,则在R2 的关系 图中有一条从x到y的有向边。其他以次类推:
R3:
1
2
3
4
5
R4:
1
2
3
4
5
定理 设|A|=n,R A×A,则必有i,j∈N, 0≤i<j≤2n2,使得Ri=Rj。
=R5,R7=R6•R=R5,…,Rn=R5 (n>5) 故Rn{R0,R1,R2,R3,R4,R5}。
S0=IA,S1=S,
S2=S•S={<a,c>,<b,d>,<c,e>,<d,f>}, S3=S•S•S=S2•S={<a,d>,<b,e>,<c,f>}, S4=S3•S={<a,e>,<b,f>}, S5=S4•S={<a,f>}, S6=S5•S=Φ, S7=Φ, …, 故,Sn{S0,S1,S2,S3,S4,S5,S6}

离散数学(集合论)ppt课件

离散数学(集合论)ppt课件
0 1 n n C C ... C 2 n n n
15
幂 集 定义
P(A) = { B | BA }
设 A={a,b,c},则 P(A)={,{a},{b},{c},{a,b},{a,c},{b,c}{a,b,c}}
计数: 6
2.真子集: A B A B A B
真包含
3.集合相等: A B A B 且 B A
14
n元集,m元子集
含有n个元素的集合简称n元集,它的含有m 个(m≤n)元素的子集称为它的m元子集. 例题3.2:A={a,b,c},求A的全部子集. 0元子集,即空集,只有1个. 1 1元子集,即单元集, c 个 {a},{b},{c} 3 2 元子集 个 {a,b},{a,c}{b,c} 2 3元子集1个c 3 {a,b,c} n元集的集合个数为:
2
当时德国数学家康托尔试图回答一些涉及无穷量 的数学难题,例如“整数究竟有多少?”“一个 圆周上有多少点?”0—1之间的数比1寸长线段 上的点还多吗?”等等。而“整数”、“圆周上 的点”、“0—1之间的数”等都是集合,因此对 这些问题的研究就产生了集合论。
3
1903年,一个震惊数学界的消息传出:集合论 是有漏洞的!这就是英国数学家罗素提出的著名 的罗素悖论。 可以说,这一悖论就象在平静的数 学水面上投下了一块巨石,而它所引起的巨大反 响导致了第三次数学危机。
19
集合基本运算的定义

交 相对补 对称差
AB = { x | xA xB }
AB = { x | xA xB } AB = { x | xA xB } AB = (AB)(BA) = (AB)(AB)
绝对补

离散数学四省公开课一等奖全国示范课微课金奖PPT课件

离散数学四省公开课一等奖全国示范课微课金奖PPT课件
f : DIn DI , 称 f 为f在I中解释.
(d) 对每一个n元谓词符号FL, 有一个DI上n元谓词常项 ,F 称 F 为F在I中解释. 设公式A, 取个体域DI , 把A中个体常项符号a、函数符
号f、谓词符号F分别替换成它们在I中解释 、a 、f ,F称
所得到公式A为A在I下解释, 或A在I下被解释成A.
比如,x(F(x,y)G(x,z)), x为指导变元,(F(x,y)G(x,z))为 x 辖域,x两次出现均为约束出现,y与 z 均为自由出现
又如, x(F(x,y,z)y(G(x,y)H(x,y,z))), x中x是指导变元, 辖域为(F(x,y,z)y(G(x,y)H(x,y,z))). y中y是指导变元, 辖 域为(G(x,y)H(x,y,z)). x3次出现都是约束出现, y第一次出 现是自由出现, 后2次是约束出现, z2次出现都是自由出现
19
第19页
实例
例7 判断以下公式中,哪些是永真式,哪些是矛盾式? (1) xF(x)(xyG(x,y)xF(x))
重言式 p(qp) 代换实例,故为永真式. (2) (xF(x)yG(y))yG(y)
矛盾式 (pq)q 代换实例,故为永假式. (3) x(F(x)G(x))
解释I1: 个体域N, F(x):x>5, G(x): x>4, 公式为真 解释I2: 个体域N, F(x):x<5, G(x):x<4, 公式为假 结论: 非永真式可满足式
2
第2页
谓词
谓词——表示个体词性质或相互之间关系词 谓词常项 如, F(a):a是人 谓词变项 如, F(x):x含有性质F n(n1)元谓词 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间关系 如, L(x,y):x与 y 相关系 L,L(x,y):xy,… 0元谓词——不含个体变项谓词, 即命题常项 或命题变项

离散数学课件第四章 关系

离散数学课件第四章  关系
Discrete Mathematics
关系的性质
例 2 (1) A上的全域关系EA,恒等关系IA及空关系都是A 上的对称关系;IA和 同时也是A上的反对称关系. (2)设A={1,2,3},则 R1={<1,1>,<2,2>}既是A上的对称关系,也是A上 的反对称关系; R2= {<1,1>,<1,2>,<2,1>}是对称的,但不是反对 称的; R3 ={<1,2>,<1,3>}是反对称的,但不是对称的; R4= {<1,2>,<2,1>,<1,3>}既不是对称的也不是 反对称的.
❖ 二、关系的表达方式 1. 集合表达式:列出关系中的所有有序对。 例 1 设A={1,2,3,4},试列出下列关系R的元素。 (1) R={<x,y> | x是y的倍数} (2) R={<x,y> | (x-y)2 A } (3) R={<x,y> | x/y是素数}
Discrete Mathematics
关系
第四章 二元关系
第一节 有序对与笛卡尔积
❖ 定义 1 由两个元素x和y(允许x=y)按顺序排列成 的二元组叫做一个有序对,记为<x, y>。
❖ 有序对的性质: 1.当 x ≠ y时,<x, y> ≠ <y, x>。 2.<x, y>=<u, v>的充分必要条件是 x=u且y=v。
Discrete Mathematics
笛卡尔积
❖ 定义 2 设A, B是集合。由A中元素作为第一元素,B 中元素作为第二元素组成的所有有序对的集合,称 为集合A与B的笛卡尔积(或直积),记为A×B。 即 A×B={<x,y>|x A y B}

《离散数学关系》课件

《离散数学关系》课件
表示元素之间的顺序关系,如 大小关系、前后关系等。
等价关系
表示元素之间具有相同性质的 关系,等价关系具有自反性、 对称性和传递性。
偏序关系
表示元素之间的部分顺序关系 ,偏序关系具有自反性、反对
称性和传递性。
02 关系的运算
关系的并
总结词
关系的并运算是将两个关系中的所有元素组合在一起形成一个新的关系。
性质
离散数学关系具有传递性、反对称性、自反性等性质。传递性是指如果关系R(x,y)和关系R(y,z)都成立,则关系 R(x,z)也成立;反对称性是指如果关系R(x,y)和关系R(y,x)同时成立,则x=y;自反性是指对于集合中的任意元素x ,都存在关系R(x,x)。
关系的表示方法
表格法
通过表格的形式表示关系,行表示关系的起点,列表示关系的终 点,表格中的元素表示起点和终点之间是否存在关系。
05 关系的应用
关系在数据库中的应用
关系数据库
关系代数
数据库规范化
关系数据库是建立在关系模型基础上 的数据库,使用二维表格来表示和存 储数据。关系数据库中的表通过行和 列来组织数据,每一列代表一个属性 ,每一行代表一个记录。关系数据库 中的关系是指表格之间的关系,通过 主键和外键来建立表格之间的联系。
基数性质
关系的基数具有一些性质,如非 负性(基数总是大于或等于0)、 传递性(如果关系R中存在元素a 和b,且a和b之间有关系,那么 在关系S中a和b也一定有关系)等 。
基数计算
计算关系的基数需要先确定关系 中所有元素的数量,然后进行计 数。例如,如果一个关系是由两 个集合的笛卡尔积形成的,那么 它的基数就是这两个集合的元素 数量的乘积。
VS
推荐系统
推荐系统是根据用户的历史行为和偏好, 为其推荐相关或感兴趣的物品或服务的过 程。在推荐系统中,关系是指用户和物品 之间的关系,通过分析用户和物品之间的 关联规则和协同过滤等技术来实现个性化 推荐。

离散数学——有限集与无限集(课件)

离散数学——有限集与无限集(课件)
说明:要想证等势,必须找出一一对应的关系。
§4.3 无限集的性质
例4.5 自然数集 N={0,1,2,3……}与其子集S={1,3,5……}均为无限集,且N~S
N:0 1 2 3 … n … ↕ ↕ ↕↕ ↕ ↕↕
S: 1 3 5 7 … 2n+1…
此例说明了无限集的一个特性:一个无限集可以同它的一个 真子集等势 。
§4.3 无限集的性质
(2)集合大小的比较 ➢ 有限集大小的比较,用“相等”、“不相等” ➢ 无限集大小的比较,用“等势”、“不等势” 等势即为基数相同,由此立即可知:所有可列集的基
数均为‫א‬0。
(3)可列集是最小的无限集 没有比基数‫א‬0更小的无限集,但存在比基数‫א‬0更大的 无限集。如实数集。
§4.3 无限集的性质
构造一S内的实数r=0.b0b1b2…bn… 其中当aii≠1时,bi=1
当aii=1时,bi=2 因为b0≠a00,所以r ≠x0 因为b1≠a11,所以r ≠x1
… 因为总有一位不同,所以r ≠xi ,这与r S矛盾, 即(0,1)是不可列的。 2、证明S~R,即建立一一对应关系。设R中的元素为y,S中的元 素为x,因为S不可列,所以只能建立关系式:
∀x S,可表示为x=0.y1y2y3…(yi {0,1,…9}) 假设S是可列的,则它的元素可依次排列:x0,x1,x2,… 且我们有 x0=0.a00a01a02…a0n… x1=0.a10a11a12…a1n… … xm=0.am0am1am2…amn… … 只需证还能找到一个元素rS,但r不在x0,x1,x2,…中
§4.3 无限集的性质
证明: 1、构造无限集M的一真子集M' 。 先从M中任取一个元素m1,剩余部分为M-{m1}—无限集 再从M-{m1}中任取一元素m2,剩余部分为M-{m1,m2} … 继续下去,取出m3,m4,…,得到一个无限集合M1 M1={m1,m2 ,…,},令M2=M-M1(若M可列,M2为空)

离散数学第四章课件

离散数学第四章课件

无对称的偶对。
表示关系矩阵的主对角线两侧各有一个1且 对称,即有一个对称的偶对。
C1
n(n+1) 2
n(n+1) C 2 n(n+1) 2
表示关系矩阵的主对角线两侧全为1,
C1 + n(n+ +…+ 2
n(n+1) C 2 n(n+1) 2
于是
C0 n(n+1) 2 =
2
n(n+1) 2
四、反对称性 ⒈ 定义: 若xy(x∈A∧y∈A∧xRy∧yRx→x=y), 称R是反对称的。 例:设A={ a , b , c , d } R={ < a , b > , < a , c > , < b , b > , <b,d>,<c,c>,<c,d>, < d , d >}
⒉自反关系的关系矩阵的特征
R的关系矩阵的主对角线上的元素均为
1 ,则该关系就不具有自反性;
主对角线上有一个元素不为1,则该关
系就不具有自反性。
⒊ 自反关系的图的特征 自反关系的关系图中,每个顶点都有 自回路,则该关系具有自反性。
二、反自反性 ⒈ 定义:若x(x∈A xRx)则该关系是 反自反的。 ⒉ 具有反自反性的关系的关系矩阵的主对角
2 t1× t2 × … ×tn
五、关系的表示法-----通常有三种表示方法
⒈ 集合表示法: 因为关系也是集合,所以也可以用集合 的表示方法
例:A={ 2, 3,4,6 ,9,12 }上的整除关系
用特征描述法表示为
R={ < x , y > | x∈A ∧ y∈A ∧ x|y }
用穷举法表示为
R={ < 2 , 2 > , < 2 , 4 > , < 2 , 6 > ,

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

离散数学第四章课件

离散数学第四章课件
离散数学 第四章 函数
1
目录
4-1 函数的基本概念 4-2 逆函数和复合函数 4-4 基数的概念 4-5 可数集与不可数集 4-6 基数的比较 小结 习题
2
函数是一个基本的数学概念,应用的范围很广,在计算机 科学的理论中,如计算理论 、开关理论、编译理论、数 据库理论、软件工程、计算机安全保密,操作系统等都 用到函数。函数---输入和输出间的关系。也叫变换、映 射。
h={<x,y>|x,y∈R∧y= x2 }
r ={<x,y>|x,y∈R∧y=lgx }
v ={<x,y>|x,y∈R∧y= √ x }
可见这里所说的函数与以前的数学中函数有区别。
6
4-1 函数的基本概念
自变元与函数值(像源与映像) :f:XY, 如果<x,y>∈f, 称x是自变元(像源),称 y是x 的函数值(x的映像) 。 <x,y>∈f y=f(x) f:xy
.定义域、值域和陪域(共域) :f:XY, f的定义域(domain),记作dom f,或Df 即 Df =dom f={x|x∈X∧y(y∈Y∧<x,y>f)} =X f的值域(range) :记作ran f, 或Rf 即或f(X) Rf =ran f=f(X)={y| y∈Y∧x(x∈X∧<x,y>f)} 前面例中Rh =ran h=h(R)=R+, R+是非负实数。 f的陪域(codomain):即是Y称之为f的陪域。
用有向图复合:
1X。 2。 3。
f
。Y 。1 。2 。3
4
g X。1
。2 。3 。4 。5
g f
X 1。 2。

离散数学及其应用课件第4章第8节

离散数学及其应用课件第4章第8节

例题
例4.8.5 令f是从A={a,b,c,d}到B={1,2,3,4,5}的函 数,f(a)=1,f(b)=2,f(c)=3,f(d)=5,f是单射、满射还是双射 函数?
解 f是单射函数。
例题
例4.8.7 图4.8.1定义了函数f,g,h,指出f,g,h哪些是单 射,满射和双射。
1
a
a
1
a
1
2
(2)由于f是单射函数,所以对任意的x1、x2A且x1x2,有f(x1) f(x2)。又因为g是单射函数,则有g(f(x1)) g(f(x2)),即gof(x1) gof(x2)。 所以,gof是单射函数。
(3)由(1)(2)可知,gof既是单射又是满射,因而是双射函数。
定理4.8.4
定理4.8.4 设f和g是函数,gof是f和g的复合函数,于是有: • 如果gof是满射函数,则g必定是满射函数。 • 如果gof是单射函数,则f必定是单射函数。 • 如果gof是双射函数,则g必定是满射函数,f是单射函数。
对任意xA都有gof (x)=g(f(x))。
注意,如果f的值域不是g的定义域的子集,就无法定义gof。
例题
例4.8.8 令f和g为函数。f是从{a,b,c}到{1,2,3}的函数, f(a)=3,f(b)=2,f(c)=1。g是从{a,b,c}到它自己的函数, g(a)=b,g(b)=c,g(c)=a。求fog和gof。
定义4.8.3 设f、g均为集合A到集合B的函数。若对xA, 都有f(x)=g(x),则称函数f和g相等,记作f=g。
定义4.8.4 设A、B为集合,所有从A到B的函数构成BA,读 作“B上A”,即
BA={f | f:AB}。
例题
例4.8.4 集合A={0,1,2},B={a,b}。写出所有从A到B的函

离散数学课件第4章.ppt

离散数学课件第4章.ppt
【example】设R是英语字母串的集合上的关系并且使得 aRb当且仅当l(a)=l(b),其中l(x)是x的长度。R是等价关系吗?
Solution:
因为l(a)=l(b),从而只要a是一个串,就有aRa,故aR是自反的 其次,假设aRb,即l(a)=l(b)。那么有bRa,因为l(a)=l(b),因 此R是对称的。 最后假设aRb和bRc,那么有l(a)=l(b)和l(b)=l(c)。因此 l(a)=l(c),即aRc,从而R使传递的。 由于R是自反的、对称的和传递的,R是等价关系。
系的所有元素的集合叫做a的等价类。 A的关于R的等价类记作[a]R 当只有一个关系被考虑时,我们将省去下标R并把这个等价类
写作[a]. 换句话说,如果R是集合A上的等价关系,元素a的等价类是
[a]R={s|(a,s)∈ R} 如果b∈ [a]R,b叫做这个等价类的代表元。
一个等价类的任何元素都可以作为这个类的代表元。也就是 说,对作为这个类的代表元所选择的特定元素没有特殊要求。
【example】对于模4同余关系,0和1的等价类是什么?
Solution: 0的等价类包含使得a ≡ 0( mod 4)的所有整数a。这个类中的
整数是被4整除的那些整数。因此,对于这个关系0的等价类是 [0]={…, -8, -4, 0, 4, 8,…}
-上述关系R图就是由三个独立的完全图构成的。
下面给出八个关系如图所示,根据等价关系有向图的特点, 判断哪些是等价关系。
下面是A ={1,2,3}中关系:
1。
1。
1。
1。
2。 。3
R1
1。
2。 。3
R2
1。
2。 。3 2。 。3
R3
1。

重庆大学《离散数学》课件-第4章函数

重庆大学《离散数学》课件-第4章函数
对于任意的 ∈ , ≠ ,因此 ∈ − 。 因为 = ,故有
∈ ( − )。由的任意性可知 − () ⊆ ( − )成立
4.2 逆函数和复合函数
▪ 例:定义一函数: → 如下:
1、 的定义域不是,而是的子集
2、 不满足函数定义:值的唯一性
所以 是一种二元关系,但不是函数
一个函数的逆函数存在的话,则此函
数一定是双射函数。
▪ 定理:设: X → 是一双射函数,那么 是Y → X的双射函数。
▪ 证明: (1)首先证明 :Y → X的函数。
因为是满射的,对任意的 ∈ 必有 < , >∈ ,且 = ,因此< , >∈
等函数。
定理:设函数: X → ,则 = ∘ = ∘
定理:如果函数: → 有逆函数 −1 : → ,则 −1 ∘ = ,且
∘ −1 =
例:令:{0,1,2} →{a,b,c},其定义如下图所示,求 −1 ∘ 和 ∘ −1
设: X → ,: → 是两个函数,则复合函数 ∘ 是一个从X到的
函数,对于每一个 ∈ 有 ∘ = (())。
例:设 = 1,2,3 , = , , = , ,
= < 1, >, < 2, >, < 3, > , = < , >, < , > , 求 ∘
, = 。又因为是入射,对每一个 ∈ 必有唯一的 ∈ ,使得<
, >∈ ,因此仅有唯一的 ∈ ,使得
< , >∈ 。因此 是一个函数。
(2)证 :Y → X满射的。
= =

北京工业大学《离散数学》课件-四章 推理和证明

北京工业大学《离散数学》课件-四章 推理和证明
:“我要去拉斯维加斯。”
“我将学习离散数学。”
因此?
15
化简律
推理规则:
pq
p
相应永真式:(真值表证明)
p q p; p q q
例:设 :“我将学习离散数学。”
:“我将学习英国文学。”
“我将学习离散数学和英国文学。”
因此?
16
合取律
推理规则:
p
q
pq
相应永真式:(真值表证明)
Mortal Socrates
有效论证: 步骤
1. x Man x Mortal x
理由
前提引入
2. Mam Socrates Mortal Socrates 全称引入,用 1
3. Mam Socrates
前提引入
4. Mortal Socrates
,等式两边同时
平方,得到:
n2 = ( k +
其中
得证!
k2
2
= k2
k2

42
例:直接证明“两个有理数之和为有理数”。
证明:假设 和 是有理数,那么存在整数 , , , 使得:
r p / q, s t / u , u 0, q 0
p t pu qt v
rs

q u
qu
w
得证!
43
证明
• 假设
方法(反证法):
成立,证明 成立。也就是说,需要给出一个
结论: t
21
有效论证(2)
3.构造有效论证:
步骤
1. p q
2. p
3. r p
4.
5.

离散数学函数ppt课件

离散数学函数ppt课件
第四章 函数
第一节 函数的基本概念 第二节 函数的合成和合成函数的性质 第三节 二元运算
第一节 函数的基本概念
一、函数的定义 二、特种函数
一、函数的定义
1、函数 2、函数的定义域 3、函数的值域 4、陪域 5、函数相等 6、函数的图和矩阵表示 7、缩小和扩大(略)
映射
函数
1、函数
f:X→Y
y=f(x),
对任意的xX都存在唯一的yY <x,y> f
任意性 唯一性
原像
像点
函数是满足任意性和唯一性的二元关系。
函数举例
设X={x1,x2,x3,x4},Y={y1,y2,y3} 判断下列关系是否是函数?
f1={<x1, y1>,<x2, y2>,<x2, y3>, <x3, y1>,<x4, y3>}
f2={<x1, y1>,<x2, y1>,<x3, y1>, <x4, y2>}
XY={<a,0>,<a,1>,<b,0>,<b,1>,<c,0>,<c,1>}
|XY|=6 关系是笛卡尔乘积的子集 |ρ(XY)|=26
结论:存在26个从X到Y的二元关系
解答
函数是满足任意性和唯一性的二元关系
结论:存在|Y||X|=23个从X到Y的函数。
结论
BA: 从A到B的所有可能的函数的集合 BA={f|f:A→B}
h(1)=a,h(2)=a,h(3)=c
f=g f≠h g≠h
B≠F D≠F
6、函数的图和矩阵表示
图Gf : <x,y> ∈f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档