七年级数学上册(人教版)配套教学教案433余角和补角.doc
人教版初中七年级数学上册《余角和补角》教案
人教版初中七年级数学上册《余角和补角》教案一、教学内容本节课选自人教版初中七年级数学上册,涉及《余角和补角》章节。
详细内容包括:余角的定义、性质及求解方法;补角的定义、性质及求解方法;运用余角和补角解决实际问题。
二、教学目标1. 理解并掌握余角和补角的概念,能正确区分和运用。
2. 学会求解余角和补角的方法,提高运算能力。
3. 能够运用余角和补角解决实际问题,增强学以致用的能力。
三、教学难点与重点重点:余角和补角的定义、性质及求解方法。
难点:如何运用余角和补角解决实际问题。
四、教具与学具准备1. 教具:三角板、量角器、教学PPT。
2. 学具:三角板、量角器、练习本。
五、教学过程1. 导入:通过生活中的实例,如剪刀、三角板等,引导学生观察并思考其中所包含的角的性质。
2. 新课导入:讲解余角和补角的定义,通过例题进行讲解,让学生掌握求解方法。
(1)余角的定义:两个角的和为90度的两个角互为余角。
(2)补角的定义:两个角的和为180度的两个角互为补角。
3. 实践操作:让学生使用三角板和量角器,观察并求解余角和补角。
4. 例题讲解:讲解余角和补角的性质,通过例题巩固知识点。
5. 随堂练习:布置一些有关余角和补角的练习题,让学生独立完成,并及时给予反馈。
6. 知识拓展:介绍余角和补角在实际问题中的应用,如建筑设计、剪裁等。
六、板书设计1. 定义:余角:两个角的和为90度。
补角:两个角的和为180度。
2. 性质:余角的和为90度,补角的和为180度。
3. 求解方法:(1)直接求解:通过观察和计算,直接得出余角和补角。
(2)互余/互补关系:已知一个角,求解与其互余/互补的角。
七、作业设计1. 作业题目:(1)求下列各角的余角和补角:a. 30°b. 45°c. 60°(2)已知一个角的度数,求解与其互余/互补的角的度数。
2. 答案:(1)a. 余角:60°,补角:150°b. 余角:45°,补角:135°c. 余角:30°,补角:120°(2)见学生解题过程。
2024年人教版初中七年级数学上册《余角和补角》精彩教案
2024年人教版初中七年级数学上册《余角和补角》精彩教案一、教学内容本节课选自2024年人教版初中七年级数学上册第四章《角的性质与分类》中的第4.3节“余角和补角”。
详细内容包括:1. 理解余角的定义及性质;2. 理解补角的定义及性质;3. 学会计算余角和补角;4. 掌握余角和补角的应用。
二、教学目标1. 知识与技能:让学生掌握余角和补角的定义,能够熟练计算余角和补角;2. 过程与方法:培养学生运用余角和补角的性质解决问题的能力;3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。
三、教学难点与重点1. 教学重点:余角和补角的定义及其性质;2. 教学难点:余角和补角的计算及应用。
四、教具与学具准备1. 教具:三角板、量角器;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入(1)请两名同学到讲台前演示:用三角板拼出两个互补的角;(2)引导学生观察并思考:什么是余角?什么是补角?2. 新知讲解(1)余角的定义:如果两个角的和等于90°,则这两个角互为余角;(2)补角的定义:如果两个角的和等于180°,则这两个角互为补角;(3)余角和补角的性质:互为余角的两个角的和为90°,互为补角的两个角的和为180°。
3. 例题讲解(1)找出互为余角和互为补角的例子;(2)计算给定角度的余角和补角。
4. 随堂练习(1)判断题:找出互为余角和互为补角的角;(2)计算题:计算给定角度的余角和补角。
5. 小组讨论(1)讨论余角和补角的性质;(2)讨论如何运用余角和补角解决实际问题。
六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°;补角:两个角的和等于180°。
3. 性质:互为余角的两个角的和为90°;互为补角的两个角的和为180°。
4. 例题及解答。
七、作业设计1. 作业题目(1)找出下列角的余角和补角:a. 30°b. 60°c. 120°(2)已知一个角的补角是80°,求这个角的度数。
人教版初中七年级数学上册《余角和补角》教案
人教版初中七年级数学上册《余角和补角》教案一、教学内容本节课选自人教版初中七年级数学上册《余角和补角》章节,主要内容包括:余角的定义及性质、补角的定义及性质、运用余角和补角解决实际问题。
二、教学目标1. 知识与技能:使学生掌握余角和补角的概念,理解并掌握余角和补角的性质,能运用余角和补角知识解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和推理能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和团队精神。
三、教学难点与重点教学难点:余角和补角的性质。
教学重点:余角和补角的定义,运用余角和补角解决实际问题。
四、教具与学具准备1. 教具:三角板、直尺、量角器、多媒体设备。
2. 学具:练习本、三角板、直尺、量角器。
五、教学过程1. 导入新课通过生活实例(如剪刀、墙角等)引出余角和补角的概念。
2. 讲解新课(1)余角的定义及性质a. 定义:两个角的和等于90°,则这两个角互为余角。
b. 性质:互为余角的两个角之和为90°。
c. 例题讲解:找出互为余角的两个角。
d. 随堂练习:判断下列角是否互为余角。
(2)补角的定义及性质a. 定义:两个角的和等于180°,则这两个角互为补角。
b. 性质:互为补角的两个角之和为180°。
c. 例题讲解:找出互为补角的两个角。
d. 随堂练习:判断下列角是否互为补角。
3. 实践情景引入通过实际操作,让学生体会余角和补角的应用。
4. 知识巩固(1)讲解例题:计算下列各角的余角和补角。
(2)随堂练习:计算下列各角的余角和补角。
六、板书设计1. 余角和补角2. 定义及性质3. 例题及解答4. 课堂练习七、作业设计1. 作业题目(1)找出互为余角的两个角。
(2)找出互为补角的两个角。
(3)计算下列各角的余角和补角。
2. 答案(1)答案见练习题。
(2)答案见练习题。
(3)答案见练习题。
人教版七年级数学上册4.3.3余角与补角教学设计
"将课堂知识运用到生活中,你会发现数学其实无处不在。请同学们找一找家里的剪刀、直角三角板等物品,测量并计算它们的角度关系,感受余角与补角的实际应用。"
3.小组合作,共同探讨以下问题:在几何图形中,如何利用余角与补角的性质解决角度问题?
(二)过程与方法
1.培养学生的观察能力,让学生在实际情境中发现余角与补角的存在,理解其概念。
2.培养学生的逻辑思维能力,让学生通过分析、归纳、总结余角与补角的性质,形成系统的知识体系。
3.培养学生的动手操作能力,让学生在实际操作中掌握余角与补角的计算方法,提高解决问题的能力。
4.培养学生的团队协作能力,让学生在小组合作中学会倾听、交流、互助,共同完成学习任务。
(二)讲授新知
1.教师详细讲解余角与补角的定义,并通过图示和实际例子加深学生理解。
“余角指的是两个角的和等于180度的两个角,而补角指的是两个角的和等于90度的两个角。请看这个图示,角A和角B就是一对余角,因为它们的和等于180度;角C和角D就是一对补角,因为它们的和等于90度。”
2.引导学生总结余角与补角的性质,如:同角(等角)的余角相等,同角(等角)的补角相等。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生的学习积极性。
2.培养学生勇于探究、积极思考的学习态度,让学生在解决问题的过程中体验成功的喜悦。
3.培养学生的空间观念,让学生认识到几何图形在实际生活中的应用,提高学生的应用意识。
4.培养学生遵守数学规则,严谨、踏实的科学态度,为学生今后的学习打下坚实基础。
“同学们,你们发现没有,如果一个图形中有两个角是余角或补角,它们之间有一些什么共同的特点呢?”
人教版数学七年级上册4.3.3《 余角和补角》教学设计
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4章第3节的内容,这部分内容是在学生已经掌握了角的分类、垂线的性质等基础知识的基础上进行学习的。
本节课主要让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
教材通过生动的图片和实际问题引出余角和补角的概念,让学生在解决实际问题的过程中感受数学与生活的联系。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于角的分类和垂线的性质等基础知识有一定的掌握。
但是,对于抽象的数学概念,学生的理解可能还需要通过具体的实例来辅助。
因此,在教学过程中,教师需要结合学生的实际情况,通过生活实例和直观的图形,引导学生理解余角和补角的概念,并能够运用到实际问题中。
三. 教学目标1.知识与技能目标:让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的联系,增强学生对数学的兴趣。
四. 教学重难点1.教学重点:余角和补角的概念,判断两个角之间的关系。
2.教学难点:理解余角和补角的概念,能够运用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例和直观的图形,引导学生理解余角和补角的概念。
2.活动教学法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.启发式教学法:引导学生通过自主学习、合作学习,发现和总结余角和补角的概念和性质。
六. 教学准备1.教学素材:准备一些生活实例和图形,用于引导学生理解和运用余角和补角的概念。
2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容。
例如,展示一幅画,画中有两条直线相交,问学生这两条直线之间的角是什么关系。
七年级数学上册43角433余角和补角教案(新版)新人教版.docx
4. 3. 3余角和补角课型新授单位主备人教学目标:1.知识与技能:①了解余角和补角的概念,会求一个角的余角和补角.②知道余角和补角的性质,并能用它解决相关问题.③认识方位角并会画简单的方位角2、过程与方法:经历余角、补角性质的推导和应用过程,初步学握图形语言与符号语言Z间的相互转化,进一步提高识图能力,发展空间观念.3.情感、价值观:通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.重点、难点:教学重点:余角和补角的概念及性质教学难点:余角和补角的性质应用教学准备PPT课件和微课等。
教学过程一、创设情景、引入新课师:请同学们拿出一张长方形纸片,沿一个角折叠后,观察折痕与长方形的边形成了儿个角?(课件依次呈现这些图形、生:根据图片回答师:请大家思考Z1与Z2有什么数量关系?Z3与Z4又有什么数量关系?【通过熟悉的知识引入,让学生快速进入学习悄境,引出课题,激发学生的学习兴趣。
】二、自主学习、合作探究1•师:阅读课本,回答如果两个角的和为90° (直角),那么称这两个角什么关系?如果两个角的和为180° (平角),那么称这两个角什么关系?2.师:互为余角,我们又可以简称为互余。
互为补角我们又可以简称为互补。
想一想:互余的角是否一定是锐角?一个角的补角是否一定是钝角?生尝试回答3.师:请大家根据学案中的表格提示帮a找朋友.〈生独立完成,然后投影仪展示学生的答案)4.师:结合课件中图片,思考Z1与Z2, Z3都互为余角,Z2与Z3的大小有什么关系?延伸:Z1与Z2互余,Z3与Z4互余,如果Z2与Z4相等,那么Z1与Z3相等吗?为什么?由图像我们可以看出是相等。
那么能否用严格的理论证明我们的猜想.学生尝试写出证明过程。
类似地我们可以得出补角的性质。
Z1与,2互补,Z3与Z4互补,如果Z1与Z3相等,那么Z2与Z4相等吗?为什么?5.注意:①互余、互补是两角之间的数量关系,②互余和互补的两个角只与他们度数的和有关,而与位置无关。
人教版数学七年 级上册4.3.3余角与补角(第1课时) 教案
1、例如:一副三角板中,每一块都有一个角是90°,而另外两个角为30°,60°或45°,45°,那么它们两者之间有什么关系呢?2、,<几何画板>显示:2对角请学生观察,这几对角之间有什么关系?你能否发现什么规律?3、<几何画板>显示:58°122°21(3)(2)81°99°(1)54°126°F DE C AB这两对角有什么关系? 同样还有两副三角板的90°,90°,那么如果两个角的和是180°,我们再给这对角起个名教师提问每个三角板上的锐角度数,并计算其和30°+60°=90° 45°+45°=90°教师显示已度量好的两对角 41°+49°=90° 26°+64°=90°学生回答:相加都等于90°教师解释:如果两个角的和为90°(直角),那么这两个角互为余角。
强调:30°角是60°角的余角,60°角也是30°的余角,或者说30°与60°角互为余角,所以我们应注意定义中的两个角,互为什么意思?学生回答:126°+54°=180° 99°+81°=180° 122°+58°=180° 90°+90°=180°教师解释:如果两个角的和为180°(平的三角板入手,可充分调动学生的积极性使学生充分地发现两角的和为90°的规律教师解释余角的定义,使学生理解其概念。
好。
同事们又给我提出了宝贵意见:1、本节课的内容必须要分两课时完成,这样一节课完成设讲透,并且找不到本节课的重点,也很难发现亮点,对学生来讲,感觉就是听了,基础知识落实得不好。
人教版初中七年级数学上册《余角和补角》优质教案
人教版初中七年级数学上册《余角和补角》优质教案一、教学内容本节课选自人教版初中七年级数学上册,主要讲述《余角和补角》的相关概念及其应用。
具体内容包括:理解余角和补角的概念,掌握互余两角和互补两角的性质,运用余角和补角解决实际问题。
涉及章节:第四章《角的度量》第4.3节。
二、教学目标1. 知识与技能:学生能理解并掌握余角和补角的概念,能运用互余两角和互补两角的性质解决实际问题。
2. 过程与方法:通过实践情景引入、例题讲解、随堂练习,培养学生观察、分析、解决问题的能力。
3. 情感态度与价值观:培养学生合作交流的意识,激发学生学习数学的兴趣。
三、教学难点与重点教学难点:理解并运用互余两角和互补两角的性质。
教学重点:掌握余角和补角的概念及其应用。
四、教具与学具准备教具:三角板、量角器、黑板、粉笔。
学具:三角板、量角器、练习本、笔。
五、教学过程1. 实践情景引入:通过生活中的实例,如剪刀、折纸等,引导学生观察和发现余角和补角的现象。
2. 例题讲解:(1)互余角的性质:两个互余角的和等于90°。
(2)互补角的性质:两个互补角的和等于180°。
3. 随堂练习:让学生运用互余两角和互补两角的性质解决实际问题。
4. 小组讨论:组织学生进行小组讨论,分享解题思路和技巧。
六、板书设计1. 《余角和补角》2. 内容:(1)余角:两个角的和等于90°。
(2)补角:两个角的和等于180°。
(3)互余两角的性质:和为90°,差为常数。
(4)互补两角的性质:和为180°,差为常数。
七、作业设计1. 作业题目:a. 30°b. 45°c. 60°(2)已知一个角的度数,求其互余角和互补角。
(3)运用余角和补角解决实际问题。
2. 答案:(1)a. 60°和150° b. 45°和135° c. 30°和120°(2)略(3)略八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入,激发学生的学习兴趣,让学生在轻松愉快的氛围中掌握余角和补角的概念。
人教版初中七年级数学上册《余角和补角》教案
人教版初中七年级数学上册《余角和补角》教案一、教学内容本节课选自人教版初中七年级数学上册《余角和补角》章节,内容包括:余角的定义、性质和应用;补角的定义、性质和应用。
具体涉及余角和补角的计算方法,以及在实际问题中的运用。
二、教学目标1. 理解并掌握余角和补角的概念,能熟练运用相关性质进行计算。
2. 能够运用余角和补角的知识解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和空间想象能力,激发学习兴趣。
三、教学难点与重点重点:余角和补角的定义和性质,以及在实际问题中的应用。
难点:正确运用余角和补角的性质进行计算,解决实际问题。
四、教具与学具准备1. 教具:三角板、直尺、量角器、多媒体课件。
2. 学具:三角板、直尺、量角器、练习本。
五、教学过程1. 实践情景引入:通过展示一副三角板,让学生观察并思考:如何利用三角板上的角度拼出直角、平角?2. 知识讲解:(1)余角的定义:两个角的和等于90°,则这两个角互为余角。
(2)余角的性质:互为余角的两个角,它们的和为90°。
(3)补角的定义:两个角的和等于180°,则这两个角互为补角。
(4)补角的性质:互为补角的两个角,它们的和为180°。
3. 例题讲解:讲解教材中的例题,引导学生运用余角和补角的性质进行计算。
4. 随堂练习:布置教材中的练习题,让学生独立完成,巩固所学知识。
六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°,则这两个角互为余角。
补角:两个角的和等于180°,则这两个角互为补角。
3. 性质:互为余角的两个角,它们的和为90°。
互为补角的两个角,它们的和为180°。
4. 例题及解答过程。
七、作业设计1. 作业题目:(1)求下列各角的余角和补角:a. 30°b. 60°c. 45°d. 75°(2)已知一个角的余角比它的补角小30°,求这个角。
人教版七年级上数学《余角和补角》教案
《余角和补角》教案
一、教学目标
1.理解余角和补角的概念,掌握它们的性质和应用。
2.通过观察、比较、归纳、演绎等活动,培养数学思维能力和解决问题的能力。
3.感受数学与现实生活的联系,激发学习数学的兴趣和热情。
二、教学内容与过程
1.导入新课
通过展示一些常见的几何图形,引导学生观察并思考:这些图形有什么特点?它们之间有什么联系?引入余角和补角的概念。
1.学习余角和补角的概念
(1)余角:如果两个角的和等于90度,那么这两个角互为余角。
(2)补角:如果两个角的和等于180度,那么这两个角互为补角。
通过讲解和示范,帮助学生理解余角和补角的概念及特征。
1.余角和补角的性质
(1)余角的性质:等角的余角相等。
(2)补角的性质:等角的补角相等。
(3)对顶角相等。
通过实例和练习,让学生掌握余角和补角的性质,并能利用它们解决实际问题。
1.余角和补角的计算
(1)利用余角和补角的性质进行计算。
(2)利用对顶角相等进行计算。
通过实例和练习,让学生掌握余角和补角的计算方法,提高他们的计算能力和应用能力。
1.课堂小结与布置作业
总结本节课学习的内容,强调余角和补角的重要性及其应用。
布置相关练习题和思考题,要求学生掌握基本概念和知识,培养其数学思维能力和解决问题的能力。
人教版数学七年级上册4.3.3《余角和补角》教学设计
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4.3.3节的内容,本节主要介绍余角和补角的概念、性质及其应用。
通过本节的学习,使学生掌握余角和补角的概念,了解它们之间的关系,能运用余角和补角解决一些实际问题。
二. 学情分析七年级的学生已经学习了角的初步知识,对角的概念有一定的了解。
但是,对于余角和补角这样的概念性知识,还需要通过实例来加深理解。
此外,学生的空间想象能力和逻辑思维能力仍在发展阶段,需要通过大量的练习来巩固所学知识。
三. 教学目标1.了解余角和补角的概念,掌握它们的性质。
2.能够运用余角和补角解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.余角和补角的概念。
2.余角和补角的性质。
3.运用余角和补角解决实际问题。
五. 教学方法采用讲授法、实例分析法、小组讨论法、练习法等多种教学方法,引导学生通过观察、思考、讨论、练习,从而掌握余角和补角的知识。
六. 教学准备1.PPT课件。
2.相关练习题。
3.黑板、粉笔。
七. 教学过程导入(5分钟)利用PPT展示一些生活中的图片,如一副画、一座建筑等,让学生观察其中的角,并提出问题:“这些角之间有什么关系?”引导学生思考,引出余角和补角的概念。
呈现(10分钟)1.讲解余角和补角的概念。
2.通过实例展示余角和补角的性质。
操练(10分钟)学生在课堂上完成PPT上的练习题,教师巡回指导。
巩固(10分钟)学生分组讨论,总结余角和补角的性质,并用它们解决实际问题。
拓展(10分钟)引导学生思考:在实际生活中,除了余角和补角,还有哪些角的概念?它们有什么作用?小结(5分钟)教师总结本节课的主要内容,强调余角和补角的概念和性质。
家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。
板书(5分钟)教师在黑板上板书本节课的主要内容,包括余角和补角的概念、性质等。
教学过程总结:本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,使学生掌握了余角和补角的知识。
人教版七年级数学上册4.3.3.2《余角和补角(第2课时)》教学设计
人教版七年级数学上册4.3.3.2《余角和补角(第2课时)》教学设计一. 教材分析人教版七年级数学上册4.3.3.2《余角和补角(第2课时)》这一节内容是在学生已经掌握了角的概念、分类以及度量的基础上进行教学的。
本节课主要介绍余角和补角的概念,以及如何求一个角的余角和补角。
通过本节课的学习,使学生能够理解余角和补角的概念,掌握求一个角的余角和补角的方法,并能够运用到实际问题中。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于角的概念、分类以及度量已经有所了解。
但是,对于余角和补角的概念以及求法可能还比较陌生。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握余角和补角的概念和求法。
三. 教学目标1.知识与技能:使学生理解余角和补角的概念,掌握求一个角的余角和补角的方法。
2.过程与方法:通过观察、操作、交流等活动,培养学生抽象、概括的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学活动的态度。
四. 教学重难点1.教学重点:余角和补角的概念,求一个角的余角和补角的方法。
2.教学难点:余角和补角的概念的理解和应用。
五. 教学方法1.情境教学法:通过具体的问题和实际例子,引导学生理解和掌握余角和补角的概念和求法。
2.互动教学法:通过小组讨论和交流,引导学生主动参与学习,培养学生的合作能力和交流能力。
3.实践操作法:通过实际操作和练习,使学生能够熟练掌握求一个角的余角和补角的方法。
六. 教学准备1.教具:黑板、粉笔、多媒体设备。
2.学具:练习本、尺子、量角器。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节课的内容:在三角形ABC中,已知∠A=30°,求∠B 的补角和余角。
2.呈现(10分钟)讲解余角和补角的概念,以及求一个角的余角和补角的方法。
通过具体的例子和实际问题,使学生理解和掌握余角和补角的概念和求法。
3.操练(10分钟)学生分组进行练习,教师巡回指导。
七年级(人教版)集体备课教案:4.3.3 《余角和补角》
七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。
本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。
教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。
二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。
但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。
三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。
同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。
四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。
难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。
五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。
通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。
六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。
此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。
例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。
人教版七年级数学上册4.3.3余角和补角教学设计
1.教师引导学生回顾本节课所学内容,总结余角和补角的定义、性质和求解方法。
2.学生分享自己在学习过程中的收获和感悟,提出学习中遇到的问题。
3.教师针对学生的问题进行解答,强调重点和难点。
4.布置课后作业,要求学生在课后巩固所学知识,并预习下一节课的内容。
五、作业布置
为了巩固本节课所学的余角和补角知识,特布置以下作业:
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,使他们认识到数学在生活中的重要性。
2.激作意识,使他们学会与他人共同解决问题,相互学习,共同进步。
4.培养学生严谨、踏实的学术作风,使他们认识到学习数学需要勤奋和思考。
二、学情分析
例如:一个等腰三角形的底角为50度,求顶角的度数。
4.创新思维题:探讨余角和补角在几何图形中的巧妙应用,设计一道有趣的几何题目,并给出解答。
5.课后阅读:阅读教材相关内容,预习下一节课将要学习的知识,了解直角三角形的性质。
作业要求:
1.请同学们认真完成作业,保持字迹工整,以便于教师批改和反馈。
2.遇到问题及时与同学或老师沟通交流,共同解决,提高自己的解题能力。
2.自主探究,理解概念:
给学生提供丰富的学习资源,如教材、教辅、网络资料等,让他们在自主学习的基础上,通过小组讨论、师生互动等方式,掌握余角和补角的定义及其性质。
3.实践操作,巩固知识:
设计不同难度的练习题,让学生在实践中巩固所学知识。注重分层教学,针对不同学生的需求,提供适当的指导,帮助他们突破难点。
a.基础练习:求给定角的余角和补角;
b.提高练习:运用余角和补角的性质解决实际问题;
c.拓展练习:探讨余角和补角在几何图形中的应用。
人教版数学七年级上4.3.3《余角和补角》教案
-实际应用:学会将余角和补角的概念应用到解决实际问题中,如计算角的补角或余角,以及利用这些知识简化计算过程。
举例:在讲解余角时,可以通过一个具体的例子,如两个角的度数分别为30°和60°,它们互为余角,因为30°+60°=90°。强调这种关系在几何证明和计算中的应用。
关于学生小组讨论,我觉得整体效果还是不错的,学生们能够围绕主题展开讨论,并提出自己的观点。但在讨论过程中,我发现有些学生过于依赖课本,缺乏独立思考。因此,我需要在教学中更加注重培养学生的创新意识和解决问题的能力。
最后,在总结回顾环节,学生对余角和补角的知识点有了较为全面的掌握,但仍有个别学生在提问时表现出对某些部分的理解不够深入。在今后的教学中,我需要关注这部分学生,及时解答他们的疑问,确保他们能够跟上教学进度。
其次,在新课讲授环节,我发现学生在理解余角和补角的定义及性质时,存在一定的难度。尽管我通过举例和比较来进行解释,但仍有部分学生表示理解不够透彻。在以后的教学中,我可以尝试使用更生动的例子,或者结合生活实际,让学生在具体情境中感受余角和补角的概念,以便更好地理解。
在实践活动环节,学生们分组讨论和实验操作的过程较为顺利,但我注意到有些小组在讨论时,成员之间的交流并不充分。为了提高学生的团队合作能力,我可以在今后的教学中加强引导,鼓励他们多发表自己的观点,学会倾听和尊重他人的意见。
今天的学习,我们了解了余角和补角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对余角和补角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版初中七年级数学上册《余角和补角》教案
人教版初中七年级数学上册《余角和补角》教案一、教学内容1. 余角的定义与性质2. 补角的定义与性质3. 余角和补角的应用二、教学目标1. 理解并掌握余角和补角的概念及其性质。
2. 能够运用余角和补角的性质解决实际问题。
3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点1. 教学难点:余角和补角的性质及应用。
2. 教学重点:余角和补角的定义及其相互关系。
四、教具与学具准备1. 教具:三角板、量角器、多媒体设备。
2. 学具:练习本、三角板、量角器。
五、教学过程1. 导入:通过生活中的实例(如剪刀、壁虎爬行等),引导学生发现余角和补角的存在,激发学生学习兴趣。
2. 新课导入:介绍余角和补角的定义,讲解其性质,让学生通过实际操作加深理解。
(1)余角的定义与性质(2)补角的定义与性质(3)余角和补角的相互关系3. 例题讲解:讲解典型例题,让学生学会运用余角和补角的性质解题。
4. 随堂练习:设计有针对性的练习题,巩固所学知识。
六、板书设计1. 《余角和补角》2. 定义:(1)余角的定义(2)补角的定义3. 性质:(1)余角的性质(2)补角的性质4. 应用:(1)余角的应用(2)补角的应用七、作业设计1. 作业题目:(1)求下列角的余角和补角:40°、70°、135°(2)已知一个角的补角是它的2倍,求这个角。
2. 答案:(1)40°的余角是50°,补角是140°;70°的余角是20°,补角是110°;135°的余角是45°,补角是45°。
(2)设这个角为x,则它的补角为180°x。
根据题意得:180°x=2x解得:x=60°八、课后反思及拓展延伸1. 反思:本节课学生对余角和补角的概念及其性质掌握程度,以及解题方法的运用。
2. 拓展延伸:引导学生思考余角和补角在生活中的应用,如建筑设计、工艺品制作等,激发学生学习兴趣,提高学生的创新能力。
4.3.3余角和补角 教案-人教版七年级数学上册
教学设计回顾提出问题:(1)如图4-3-40①,已知∠1=61°,∠2=29°,那么∠1+∠2=.(2)如图②,已知∠COD=90°,∠1=45°,∠2=45°,那么∠1+∠2+∠COD=.(3)如图③,已知∠1=62°,∠2=118°,那么∠1+∠2=.图4-3-40为学生创设一种回忆、思考的情境,自然而然地导入,为本节课的探究活动做好铺垫.活动一: 创设情境导入新课【课堂引入】(多媒体展示)著名的比萨斜塔位于意大利的比萨小镇,是一座由白色云石建成的古塔.该塔发生倾斜但斜而不倒,比萨斜塔因此远近闻名.比萨斜塔始建于1173年,从地面到塔顶高55米,自建成以后曾发生多次倾斜,常人只凭眼睛也能察觉.意大利科学家伽利略曾在斜塔的顶层做过自由落体运动实验,开创了实验物理的新时代,斜塔也因而更加闻名遐迩.意大利政府曾想尽办法制止古塔的继续倾斜,但到目前为止未能成功.你知道斜塔的倾角是多少度吗?你能用什么方法测量呢?下面是某位游客设计的测量斜塔倾角的方案:将斜塔看成一条线段OA,在正午太阳直射地面时标记塔顶的影子B,画出直线OB,想办法测出了∠AOB=85°.问题:利用对著名的世界建筑见闻激发学生的探究欲望,有利于学生主动参与,感受数学来源于生活,应用于生活.(1)斜塔OA倾斜了多少度?(2)斜塔OA与OC所成的角是多少度?(3)斜塔OA与OB所成的另外一个角(即∠AOD)是多少度?图4-3-41活动二:实践探究交流新知【探究1】互为余角教师课件演示互为余角的两个角.学生通过观察,回答教师提出的问题.师生共同总结互为余角的概念.如果两个角的和等于90°(直角),就说这两个角互为余角,其中一个角是另一个角的余角.如图4-3-42,∠1是∠2的余角或∠2是∠1的余角.图4-3-42教师应关注:学生的语言表达能力;学生是否独立思考并积极参与到数学问题中;学生是否真正理解了这个概念.练习1:图中给出的各角中哪些互为余角?图4-3-43学生计算并回答,对照答案.教师根据回答给出评价.教师应关注计算的准确性.强调互为余角反映的是角的数量关系,而不是角的位置关系.从直观的角度去感受互为余(补)角的概念.并用语言去表达这个概念,培养口头表达能力.通过利用余(补)角的概念进行计算,一方面检查学生是否理解概念,另一方面培养学生的计算能力.类比互为余角的概念学习互为补角的概念.如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.如图4-3-44,∠3是∠4的补角或∠4是∠3的补角.图4-3-44活动二:实践探究交流新知练习2:图中给出的各角中哪些互为补角?图4-3-45【探究3】余角和补角的性质思考:如图4-3-46,∠1与∠2,∠3都互为补角,那么∠2与∠3的大小有什么关系?图4-3-46可独立思考计算解决,也可小组讨论完成.教师应关注学生的猜想、说理.总结:同角(等角)的补角相等.对于余角也有类似的性质:同角(等角)的余角相等.练习3:填写下表:∠α∠α的余角∠α的补角16°70°23'44″38°36'y°(0<y<90)结论:同一个锐角的补角比它的余角大.以表格的形式引导学生逐步加深对余角、补角的概念及其性质的理解,理清学生对概念和性质模糊的地方.轮船、飞机等物体运动的方向与方向之间的夹角称为方位角,领航员常用地图和罗盘进行方位角的测定.有时以、方向为基准,描述物体运动的方向.如:“北偏东30°”“南偏东25°”“北偏西60°”.图4-3-47(1)正东和正西方向所成的角是度;(2)正南和西南方向所成的角是度;(3)西北和东北方向所成的角是度;(4)正西和东南方向所成的角是度.基础训练小结归纳课本138页练习学生独立完成,师生共同检验。
人教版七年级上册433余角和补角教案
4.3.3余角和补角【出示目标】1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等;同角或等角的补角相等.3.理解方位角的概念,会用角描述方向,解决实际问题.【预习导学】自学指导看书学习第137、138页的内容,知道什么是补角和余角,以及它们的性质.知识探究1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中每一个角都是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角.3.性质:等角的余角相等,等角的补角相等.【自学反馈】1.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°则∠1,∠2,∠3互为余角.(×)(3)如果一个角有补角,那么这个角一定是钝角.(×)(4)互补的两个角不可能相等.(×)(5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×)(7)如果∠A=25°,∠B=75°,那么∠A与∠B互为余角.(×)(8)如果∠A=x°,∠B=(90-x)°,那么∠A与∠B互余.(√)2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:45°.【出示目标】活动1:小组讨论1.如图,点A、O、B在同一直线上,OD平分∠AOB,∠COE =90°.回答下列问题:(1)写出图中所有的直角∠AOD,∠BOD,∠EOC;(2)写出图中与∠AOE相等的角∠3;(3)写出图中∠AOE所有的余角∠2,∠4;(4)写出图中∠COD的补角∠EOB;(5)写出图中∠DOE的补角∠AOC.2.如图,点O在直线AB上,OD平分∠COA,OE平分∠COB.①∠COB+∠AOC=180°,∠EOD=90°.②图中互余的角有 4 对,互补的角有 5 对.活动2:活学活用1.请认真观察下图,回答下列问题:(1)图中有几对互余的角?(2)图中哪几对角是相等的角(直角除外)?为什么?解:(1)6;(2)∠C=∠B,∠COD=∠BOE=∠A.2.用方位角描述下列方向.【课堂小结】1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角的余角相等;(2)等角的补角相等.【随堂训练】教学至此,敬请使用学案随堂训练部分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全新修订版
(教
案)
七年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
4・3.3余角和补角
1.在具体情境中认识余角和补角,掌握余角和补角的性质;(重点)
2.能利用余角和补角的性质进行计算和简单的推理.(重点)
90° ,又VZ/I的度数比度数的3倍还多30°…・・Z力=3Z〃+3(T ,・・・3Z〃+30° + Z〃=90°,解得Z〃=15。
.故Z〃的度数为15° .
方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.
【类型三]余角、补角和角平分线的
—、情境导入
让学生观察意大利著名建筑比萨斜塔.
比萨斜塔建于1173年,工程曾间断了两次很长的吋间,历经约二百年才完工.设讣为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜. 上BOC=9Q° , OM、OV分別是上AOB, AAOC 的平分线,ZAOB与ZCOM互补,求乙BON 的度数.
解析:根据补角的性质,可得ZAOB+ Z6^7=180°,根据角的和差,可得
+ Z应財=90°,根据角平分线的性质,可
二、合作探究
探究点一:余角和补角
及其性质
【类型_]余角和补角的概念
A.。
+0 = 180°
B. a—〃 = 180°
C. 。
一0=90° D・。
+0=90°解析:如果。
与0互为余角,则0=90°.故选
D.
方法总结:正确记忆互为余角的定义是解决问题的关键.
【类型二]利用余角和补角计算求值
数比,〃度数的3倍还多30°,求ZE的度数.
解析:根据Z/1与Z"互余,得出Z/1+ Z〃=90°,再由Z/的度数比Z〃度数的3 倍还多30° ,从而得到Z^=3ZZ?+30° , 再把两个算式联立即可求出Z2的值.
解:・・・/〃与Z〃互余,・•・/〃+ 的度数,根据角的和差,可得答案.
解:由ZAOB与Z COM互补,得ZAOB+ ZG2片180° .
由角的和差,得AAOB+ ABOM+ ACOB = 180° ,
/AOB+ 上.
Ftl如是ZAOB的平分线,得ABOM=^Z AOB,
即Z/1防+*Z/I防=90°.解得上AOB= 60° .
由角的和差,得AAOC= ABOC+ AAOB = 90°+60° =150° .
由妙平分AAOC 得Z/10N=gz/10C= 错
误!X150° =75°.由角的和差,得ZBON
=ZAON—ZAOB=75° -60° =15° .
方法总结:本题考查了余角与补角及角
综合计算
ffl 如图,已知厶加在ZMC内部, 得"0心ZAOB,根据解方程,可得Z昇加
已知Z/I与Z〃互余,且Z/的度如果与〃互为余角,则(
平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.
探究点二:方位角
【类型_]利用方位角确定方向
〃地是海上观测站,从肘地发现两
艘船/、〃的方位如图所示,下列说法中正确
的是()
A.船力在财的南偏东30°方向
B.船M在財的南偏西30°方向
C.船〃在於的北偏东40°方向
D.船〃在肘的北偏东50°方向
解析:船畀在必的南偏西90° -30° = 60°
方向,故A、B选项错误;船〃在M的北偏
东90° -50° =40°方向,故C正确, D错误.故
选C.
方法总结:用方位角描述方向时,通常以
正北或正南方向为角的始边,以对象所处的射
线为终边,故描述方位角时,一般先叙述北或
南,再叙述偏东或偏西.
【类型二]方位角的有关计算
从港口0出发,当分别行驶到爪B、C处时,经
测量得甲船位于港口的北偏东44°方向, 乙船
位于港口的北偏东76°方向,丙船位于
(2)根据方向角的表示方法,可得乙EOB,
ZEO4的度数,根据角的和差,可得答案.
解:如图,(1)由乙船位于港口的北偏东
76°方向,丙船位于港口的北偏西45°方向,得
上EOB=W° ,上EOC=A5° .rtl角的和差,得Z BOC=
Z EOB^r Z EOC= 76° + 45° =121° :
(2)由甲船位于港口的北偏东44°方向, 乙
船位于港口的北偏东76“方向,得ZEOB = 76°,
AEOA=\\° .由角的和差,得AAOB =ZEOB—上
EOA=7&° -44° =32° .
方法总结:解决本题主要是理解方向角的
表示方法,结合图形找到相应的角,然后进行
计算.
三、板书设计
1.互余、互补
(1)和为90°的两个角互余;
(2)和为180。
的两个角互补.
2.方位角
通过比萨斜塔这一学生熟知的著名建筑
激发学生的学习兴趣,再运用现代化的教学手
段,把图形的“静”变成“动”,在动态课件
演示中引出概念,增强了趣味性,并且可以充
分调动学生的学习兴趣,一下子把学生吸引到
课堂上来.这样也把书本上原本呆板的概念激
活了,使数学知识充满新鲜感, 实现了书本知
识和学生发现的一种沟通,增强学生对几何图
形的敏感性.
港口的北偏西45°方向.
(1)求ZB0C的度数;
⑵求AAOB的度数.
解析:(1)根据方向角的表示方法,可得乙EOB,乙EOC的度数,根据角的和差,可得答案;
如图所示,甲、乙、丙三艘轮船
E。