直线与圆锥位置关系
直线与圆锥曲线知识点与题型归纳总结
直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。
直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点,具体如下:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决.②直线与圆锥曲线仅有一个公共点,对于圆或椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行;对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.(2)从代数角度看,可通过将表示直线的方程,代入二次曲线的方程消元后所得的一元二次方程的解的情况来判断.直线l 方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元(x 或y ), 如消去y 后得ax 2+bx +c =0.若f (x ,y )=0表示椭圆,上述方程中a ≠0,若f (x, y )=0表示双曲线或抛物线, 上述方程中a =0或a ≠0.①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行(或重合);当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合).②若a ≠0,设Δ=b 2-4ac .a .Δ>0时,直线和圆锥曲线相交于不同两点;b .Δ=0时,直线和圆锥曲线相切于一点;c .Δ<0时,直线和圆锥曲线没有公共点.直线与圆锥曲线的位置关系重点是相交:相交――→转化联立方程组有两组不等的实数解――→转化一元二次方程有两个不等实数解――→转化判别式大于零.2.弦长的求法求弦长――→转化求两点间的距离――→综合运用⎩⎪⎨⎪⎧消元,解方程组,一元二次方程根与系数的关系.(1)弦长:(直线与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)),直线斜率为k ,一般地,弦长公式|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2]. (2)若弦过焦点:可用焦半径公式来表示弦长,简化运算. 如x 2a 2+y2b 2=1(a >b >0), |AB |=2a -e(x 1+x 2) (过右焦点), |AB |=2a +e(x 1+x 2) (过左焦点).如抛物线y 2=2px (p >0), |AB |=x 1+x 2+p .3.中点弦问题设A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1上不同的两点,且x 1≠x 2,x 1+x 2≠0,M (x 0,y 0)为AB 的中点,则⎩⎨⎧x 21a 2+y 21b21,x 22a 2+y22b 21.两式相减可得y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·y 0x 0=-b 2a2.类似地,可得圆锥曲线为双曲线x 2a 2-y 2b 2=1时,有k AB ·y 0x 0=b 2a2.圆锥曲线为抛物线y 2=2px (p >0)时,有k AB =py 0.探究点1 直线与圆锥曲线的交点问题例1 已知双曲线C :2x 2-y 2=2与点P (1, 2),求过点P 的直线l 的斜率的取值范围,使l 与C 分别有一个公共点,两个公共点,没有公共点.例1 [解答] (1)当l 垂直x 轴时,此时直线与双曲线相切,有一个公共点.(2)当l 不与x 轴垂直时,设直线l 的方程为y -2=k(x -1)代入双曲线C 的方程中,整理得(2-k 2)x 2+2(k 2-2k)x -k 2+4k -6=0, (*) 当k 2=2,即k =±2时, (*)为一次方程,显然只有一解; 当k 2≠2时,Δ=4(k 2-2k)2-4(2-k 2)(-k 2+4k -6)=48-32k.令Δ=0,可解得k =32;令Δ>0,即48-32k >0,此时k <32;令Δ<0,即48-32k <0,此时k >32.∴当k =±2或k =32或k 不存在时,l 与C 只有一个公共点;当k <-2或-2<k <2或2<k <32时,l 与C 有两个公共点;当k >32时,l 与C 没有公共点.[点评] (1)为了设出直线方程,先讨论斜率是否存在.当斜率存在时,设出方程并与双曲线方程组成方程组,消去y 得到关于x 的方程.当二次项系数为零时,直线与渐近线平行与双曲线只有一个交点;当二次项系数不为零时,若Δ=0,则有一个切点;若Δ>0,则有两个交点;Δ<0,则没有交点.(2)有关直线和圆锥曲线的范围问题,常常使用Δ来体现范围.探究点2 中点弦问题例2 椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP →=PN →,AP →·MN →=0,求直线l 的方程.[解答] (1)设c =a 2-b 2,依题意得⎩⎪⎨⎪⎧b =2,e =c a =a 2-b 2a =63,即⎩⎪⎨⎪⎧b =2,6a 2=9a 2-9b 2,∴a 2=3b 2=12,即椭圆方程为x 212+y 24=1.(2)∵MP →=PN →,AP →·MN →=0,∴AP ⊥MN ,且点P 是线段MN 的中点, 由⎩⎪⎨⎪⎧y =kx -2,x 212+y 241,消去y ,得x 2+3(kx -2)2=12, 即(1+3k 2)x 2-12kx =0,(*),由k ≠0,得方程(*)中Δ=(-12k)2=144k 2>0,显然方程(*)有两个不相等的实数根.设M(x 1,y 1)、N(x 2,y 2),线段MN 的中点P(x 0,y 0),则x 1+x 2=12k 1+3k 2∴x 0=x 1+x 22=6k1+3k 2, ∴y 0=kx 0-2=6k 2-2(1+3k 2)1+3k 2=-21+3k 2即P ⎝⎛⎫6k 1+3k 2,-21+3k 2.∵k ≠0,∴直线AP 的斜率为k 1=-21+3k 2-26k1+3k2=-2-2(1+3k 2)6k.由MN →⊥AP →,得-2-2(1+3k 2)6k ·k =-1,∴2+2+6k 2=6,解得k =±33,故直线方程为y =±33x -2.探究点3 相交弦长与面积问题例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦点到相应准线的距离为22.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点到直线l 的距离为32,求△AOB 面积的最大值.例3 [解答] (1)∵e =c a =63,a 2c -c =22,解得a =3,c =2,∴b 2=3-2=1, 椭圆C 的方程为x 23+y 2=1.(2)当AB ⊥x 轴时,⎝⎛⎭⎫3223+y 2=1,得y 2=34,AB = 3. 当AB 不垂直x 轴时,设直线l 的方程为y =kx +m ,则|m|1+k2=32,得m 2=34k 2+34. 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1, |AB|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k29k 4+6k 2+1 =3+129k 2+1k2+6≤3+122×3+6=2(k ≠0),当且仅当9k 2=1k 2,即k =±33时,|AB|max =2,当k =0时,AB =3,综上所述|AB|max =2.∴当|AB|最大时,△AOB 面积最大值S =12×32×2=32.变式题:从椭圆x 2a 2+y2b 2=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴端点B 的连线AB 平行于OM .(1)求椭圆的离心率;(2)当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203(Q是椭圆上的点),求此时椭圆的方程. [解答] (1)如图,由题意知x M =-c , 故y M =b 2a .又△F 1OM ∽△OAB ,c a =b 2a b ⇒b =c ⇒e =22. (2)设椭圆方程为x 2a 2+y2b 2=1(a>b>0),由(1)知a 2=2b 2,方程变为x 2+2y 2=2b 2.设直线PQ 方程为y -0=2(x -b),联立方程组,得5x 2-8bx +2b 2=0, x 1+x 2=8b 5,x 1x 2=2b 25.|PQ|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=26b5∵|y 2-y 1|=|2(x 2-x 1)|=2(x 1+x 2)2-4x 1x 2=43b5S △F 1PQ =12×||PQ ×||-22b 3=203⇒b 2=25,∴a 2=50,∴椭圆方程为x 250+y 225=1.探究点4 弦的定比分点问题例4 已知椭圆x 25+y 29=1,焦点F (0,2),又点A ,B 在椭圆上,而且AF →=2FB →,求直线AB 的斜率.例4 [解答] AF →=2FB →⇒A ,F ,B 三点共线. 设AB 方程为y =kx +2,与椭圆方程联立,得 (9+5k 2)x 2+20kx -25=0, x 1+x 2=-20k 9+5k 2,x 1x 2=-259+5k2.又AF →=2FB →⇒⎩⎪⎨⎪⎧x1=-2x 2,2-y 1=2y 2-4,所以-x 2=-20k 9+5k 2,-2x 22=-259+5k 2,消去x 2,解得k =±33. 探究点5 综合应用问题例5 已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C的右支于M 、N 两点,试确定λ的范围,使OM →·ON →=0,其中点O 为坐标原点. [解答] 设M(x 1,y 1),N(x 2,y 2),由已知易求B(1,0). 当MN 垂直于x 轴时,MN 的方程为x =1.设M(1,y 0),N(1,-y 0)(y 0>0),由OM →·ON →=0,得y 0=1,∴M(1,1),N(1,-1). 又M(1,1),N(1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52. ∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时,设MN 的方程为y =k(x -1).由⎩⎪⎨⎪⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0. 由题意知λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM →·ON →=0,且M 、N 在双曲线右支上, ∴⎩⎪⎨⎪⎧x 1x 2+y 1y 2=0,x 1+x 2>0,x 1x 2>0⇒⎩⎨⎧k 2=λ(1-λ)λ2+λ-1,k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λ,λ2+λ-1>0⇒5-12<λ<23.综上知5-12≤λ<23. 变式题:已知点P 1(x 0,y 0)为双曲线x 28b 2-y 2b 21(b 为正常数)上任一点,F 2为双曲线的右焦点,过P 1作右准线的垂线,垂足为A ,连结F 2A 并延长交y 轴于点P 2.(1)求线段P 1P 2的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B 、D 两点,在E 上任取一点Q (x 1,y 1)(y 1≠0),直线QB 、QD 分别交y 轴于M 、N 两点.求证:以MN 为直径的圆过两定点.[解答] (1)由已知得F 2(3b,0),A ⎝⎛⎭⎫83b ,y 0,则直线F 2A 的方程为y =-3y0b (x -3b),令x=0,得y =9y 0,即P 2(0,9y 0).于是直线QB 的方程为:y =y 1x 1+2b(x +2b),直线QD 的方程为y =y 1x 1-2b(x -2b),可得M ⎝⎛⎭⎪⎫0,2by 1x 1+2b ,N ⎝ ⎛⎭⎪⎫0,-2by 1x 1-2b . 则以MN 为直径的圆的方程为: ⎩⎪⎨⎪⎧x 2+⎝ ⎛⎭⎪⎫y -2by 1x 1+2b ⎝ ⎛⎭⎪⎫y +2by 1x 1-2b =0.令y =0得x 2=2b 2y 21x 21-2b 2,而Q(x 1,y 1)在x 22b 2-y 225b 2=1上,则x 21-2b 2=225·y 21,于是x =±5b , 即以MN 为直径的圆过两定点(-5b,0),(5b,0).规律总结本节问题的研究集中体现了解析几何的基本思想和方法,要求有较强的分析问题和解决问题的能力,有些问题涉及代数、三角、几何等多方面的知识,因此在复习中要注意各部分之间的联系和综合利用知识解决问题的能力.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,通过消元最终归结为讨论一个一元二次方程Ax 2+Bx +C =0的实数解的个数问题.应特别注意要分A =0和A ≠0的两种情况讨论,只有A ≠0时,才可用判别式来确定解的个数. 当直线平行于抛物线的对称轴时,直线与抛物线只有一个公共点.这些情况在解题中往往容易疏忽,要特别注意,对于选择、填空题,用数形结合往往快速简捷.2.斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=|x 1-x 2|·1+k 2=|y 1-y 2|·1+1k 2(k ≠0),利用这个公式求弦长时,应注意应用韦达定理.3.与焦点弦长有关的问题,要注意应用圆锥曲线的定义.4.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程时,一般可设A (x 1,y 1)、B (x 2,y 2),利用A 、B 在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m ,y 1+y 2=2n ,故可求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程.5.求圆锥曲线的方程时,通常利用待定系数法.。
直线和圆锥曲线的位置关系
直线和圆锥曲线的位置关系知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离.判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系.一般利用二次方程判别式来判断有无解,有几个解.1.直线0=++C By Ax 椭圆)0(12222>>=+b a by a x 的位置关系: 将直线的方程与椭圆的方程联立成方程组,消元转化为关于x 或y 一元二次方程,其判别式为∆.(1)⇔>∆0直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点);(2)⇔=∆0直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点);(3)⇔<∆0直线和椭圆相离⇔直线和椭圆无公共点.2.直线0=++C By Ax 和双曲线)0,0(12222>>=-b a by a x 的位置关系: 将直线的方程与双曲线的方程联立成方程组,消元转化为关于x 或y 的方程.(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和双曲线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和双曲线相切,有一个切点;(3)若0<∆,则直线和双曲线相离,无公共点.注意:(1)⇒>∆0直线与双曲线相交,但直线与双曲线相交不一定有0>∆,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0>∆是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,⇔=∆0直线与双曲线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线)0,0(12222>>=-b a by a x 外一点),(00y x P 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3.直线0=++C By Ax 和抛物线)0(22>=p px y 的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x 或y 方程.(一)若方程为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和抛物线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和抛物线相切,有一个切点;(3)若0<∆,则直线和抛物线相离,无公共点.注意:(1)⇒>∆0直线与抛物线相交,但直线与抛物线相交不一定有0>∆,当直线与抛物线的对称轴重合或平行时,直线与抛物线相交且只有一个交点,故0>∆也仅是直线与抛物线相交的充分条件,但不是必要条件.(2)当直线与抛物线的对称轴不重合或平行时,⇔=∆0直线与抛物线相切;(3)如说直线和抛物线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(4)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.知识点二:圆锥曲线的弦1.直线被圆锥曲线截得的线段称为圆锥曲线的弦.当直线的斜率k 存在时,直线b kx y +=与圆锥曲线相交于),(),,(2211y x B y x A ,两点,把直线方程代入曲线方程中,消元后所得一元二次方程为02=++c bx ax .则弦长公式:2121x x k AB -+=其中aa c ab x x x x x x ∆=--=-+=-4)(4)(22122121 当k 存在且不为零时, 弦长公式还可以写成:21211y y k AB -+=. 注意:当直线的斜率不存在时,不能用弦长公式解决问题,21y y AB -=.2.焦点弦:若弦过圆锥曲线的焦点叫焦点弦;抛物线)0(22>=p px y 的焦点弦公式α221sin 2p p x x AB =++=,其中α为过焦点的直线的倾斜角.3.通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径.椭圆和双曲线的通径为ab AB 22=,抛物线的通径p AB 2=. 知识点三:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆12222=+b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k -=;②在双曲线12222=-b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k =; ③在抛物线)0(22>=p px y 中,以),(00y x P 为中点的弦所在直线的斜率0y p k =. 注意:因为0>∆是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0>∆!知识点四:求曲线的方程1. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标),(y x 所满足的方程0),(=y x f 表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.2. 坐标法求曲线方程的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何因素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.通过坐标法,把点和坐标、曲线和方程联系起来,实现了形和数的统一.用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”. 3.求轨迹方程的常用方法:直接法、定义法、代入法、参数法等.规律方法指导1.直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.3.当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.4.解决直线与圆锥曲线的位置关系问题时,对消元后的一元二次方程,必须讨论二次项的系数和判别式,有时借助于图形的几何性质更为方便.。
直线与圆锥曲线的位置关系直线与圆锥曲线相交的弦长公式
直线与圆锥曲线的位置关系(1)从几何角度看:要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
(2)从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax°+bx+c=0.①.若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。
1、圆锥曲线的范围问题有两种常用方法:(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;(2)所求量可表示为另一变量的函数,求函数的值域。
2、圆锥曲线的最值、定值及过定点等难点问题。
直线与圆锥曲线的位置关系:(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ>0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ<0时,直线和圆锥曲线没有公共点,相离.直线与圆锥曲线相交的弦长公式:若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B 的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.。
直线与圆锥曲线的位置关系
规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,):(1)1l y k x =+⇒-过定点(,0):2(1)1l y k x -=+⇒-过定点(,2)证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。
练习:1、过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有( )条。
A .4B .3C .2D .1分析:作出抛物线232--=x x y ,判断点P(3,2)相对抛物线的位置。
解:抛物线232--=x x y 如图,点P (3,2)在抛物线的内部,根据过抛物线内一点和抛物线的对称轴平行或重合的直线和抛物线只有一个交点,可知过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有一条。
故选择D规律提示:含焦点的区域为圆锥曲线的内部。
(这里可以用公司的设备画图)一、过一定点P 和抛物线只有一个公共点的直线的条数情况:(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。
二、过定点P 和双曲线只有一个公共点的直线的条数情况:(1)若定点P 在双曲线内,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。
直线与圆锥曲线的位置关系(总结归纳)
O
X
种类:相离;相切; 相交(0个交点,一个交点,一个交点或两个交点)
位置关系与交点个数
Y
相交:两个交点
相切:一个交点
O
X 相离:0个交点
Y
O
X
若直线与渐近线平行, 则相交且只有一个交点.
判断直线与双曲线位置关系的操作程序 把直线方程代入双曲线方程
得到一元一次方程
直线与双曲线的 渐进线平行
相交(一个交点)
(2)当 a≠0 时,消去 x,得a+a 1y2-y-1=0.
①若a+a 1=0,即 a=-1,方程变为一元一次方程-y-1=0,
方程组恰有一组解yx==--11.,
a+1 ②若 a ≠0,即
a≠-1,令Δ=0,
得 1+4(a+a 1)=0,可解得 a=-45,这时直线与曲线相切,只有一个公共点.
综上所述知,当
两式相减可得yx11--yx22·yx11++yx22=-ba22,即 kAB=-ba22xy00
.
x2 y2 类似的可得圆锥曲线为双曲线a2-b2=1
时,有
kAB=ab22yx00.
2px0
圆锥曲线为抛物线 y2=2px(p>0)时,有 kAB= y0 .
求椭圆
x2 9
y2 4
1 被点
Q(2,1)平分的弦 AB
2
x
L4相切
x2
直线L绕着点(0,3)旋转过程中,直线L与双曲线
y2
1
43
的 交点情况如何?L的斜率变化情况如何?
L4 L3 y L2 L1 3
-2
2
x
直线L绕着点(-1,3)转过程中,直线L与抛物线 y 2 4 x
的交 点情况如何?L的斜率变化情况如何?
直线与圆锥曲线的位置关系教案
直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。
2. 能够运用直线与圆锥曲线的位置关系解决实际问题。
3. 培养学生的逻辑思维能力和数学解决问题的能力。
二、教学内容1. 直线与圆锥曲线的基本概念和性质。
2. 直线与圆锥曲线的相切、相离和相交情况。
3. 直线与圆锥曲线的交点个数与判别式。
4. 直线与圆锥曲线的应用问题。
三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。
2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。
3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。
四、教学准备1. 教学课件和教学素材。
2. 直尺、圆规等绘图工具。
3. 练习题和答案。
五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。
2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。
3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。
4. 练习:让学生进行相关的练习题,巩固所学知识。
6. 作业布置:布置相关的练习题,巩固所学知识。
六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。
2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。
七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。
2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。
八、作业布置1. 完成课后练习题,巩固所学知识。
2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。
九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。
2. 教学方法的适用性,是否达到预期教学效果。
十、教学评价1. 学生作业、练习题和课堂表现的评价。
2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。
3. 教学反馈,了解学生对教学内容的满意度和建议。
直线与圆锥曲线的位置关系的判断
1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c =0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与抛物线y2=2px只有一个公共点,则l与抛物线相切.(×)(2)直线y=kx(k≠0)与双曲线x2-y2=1一定相交.(×)(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.(√)(4)直线与椭圆只有一个交点⇔直线与椭圆相切.(√)。
第3讲 直线与圆锥曲线的位置关系
∴b=1,∴所求椭圆方程为x32+y2=1.
(2)设 A(x1,y1),B(x2,y2). ①当 AB⊥x 轴时,|AB|= 3. ②当 AB 与 x 轴不垂直时,设直线 AB 的方程为 y=kx+m.
由已知
|m| = 1+k2
23,得
2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦
直线 l:f(x,y)=0,曲线 r:F(x,y)=0,l 与 r 的两个不同的交
点 A、B,A(x1,y1)、B(x2,y2),则(x1,y1)、(x2,y2)是方程组
fx,y=0,
Fx,y=0
的两组解.方程组消元后化为关于 x(或 y)的一元二
次方程 Ax2+Bx+C=0(A≠0).判别式 Δ=B2-4AC,应用 Δ>0,
题型一 直线与圆锥曲线的位置关系
【例 1】 已知椭圆 C:xa22+by22=1(a>b>0)的离心率为 36,短轴 一个端点到右焦点的距离为 3. (1)求椭圆 C 的方程; (2)设直线 l 与椭圆 C 交于 A、B 两点,坐标原点 O 到直线 l 的 距离为 23,求△AOB 面积的最大值.
则 P(-4,0),显然直线 l 的斜率存在,设直线 l 的方程为 y=k(x+4), 如图设点 M(x1,y1),N(x2,y2),其中点 G(x0,y0). 将 y=k(x+4)代入x82+y42=1, 整理得:(2k2+1)x2+16k2x+32k2-8=0. 由 Δ=(16k2)2-4(2k2+1)(32k2-8)>0,
拓展提升——开阔思路 提炼方法 圆锥曲线与探索型问题包含两类题型,一是无明确结论,探索结论问
题;二是给定明确结论,探索结论是否存在问题.设置此类问题,旨在考 查创新意识和探究能力.
直线与圆锥曲线的位置关系教案
直线与圆锥曲线的位置关系教案教学目标:1. 理解直线与圆锥曲线的位置关系;2. 学会运用直线与圆锥曲线的性质解决问题;3. 提高推理能力和解决问题的能力。
教学重点:1. 直线与圆锥曲线的位置关系的判定;2. 直线与圆锥曲线的性质及应用。
教学难点:1. 直线与圆锥曲线的位置关系的判定;2. 直线与圆锥曲线的性质的灵活运用。
教学准备:1. 教材或教学资源;2. 投影仪或白板;3. 粉笔或教学板书。
教学过程:第一章:直线与圆锥曲线的位置关系简介1.1 引入通过展示一些实际问题,引导学生思考直线与圆锥曲线的位置关系,例如:在平面直角坐标系中,给定一个圆锥曲线(如椭圆、双曲线、抛物线),如何判断一条给定的直线与该圆锥曲线的位置关系(相交、切线、平行、远离)?1.2 讲解讲解直线与圆锥曲线的位置关系的判定方法,包括:(1)相交:直线与圆锥曲线有两个不同的交点;(2)切线:直线与圆锥曲线有一个交点,且该交点为切点;(3)平行:直线与圆锥曲线没有交点;(4)远离:直线与圆锥曲线相离,没有交点。
1.3 练习给出一些练习题,让学生运用所学知识判断直线与圆锥曲线的位置关系,并解释原因。
1.4 小结总结本章内容,强调直线与圆锥曲线的位置关系的判定方法及应用。
第二章:直线与圆锥曲线的性质2.1 引入通过展示一些实际问题,引导学生思考直线与圆锥曲线的性质,例如:在平面直角坐标系中,给定一条直线和一个圆锥曲线(如椭圆、双曲线、抛物线),如何描述它们的交点、切点等特征?2.2 讲解讲解直线与圆锥曲线的性质,包括:(1)交点的坐标:根据直线和圆锥曲线的方程,求出它们的交点坐标;(2)切点的坐标:根据直线和圆锥曲线的方程,求出它们的切点坐标;(3)斜率:直线与圆锥曲线相交时,交点的切线斜率与直线的斜率的关系;(4)距离:直线与圆锥曲线的距离公式。
2.3 练习给出一些练习题,让学生运用所学知识描述直线与圆锥曲线的交点、切点等特征,并计算相关距离和斜率。
直线与圆锥曲线的位置关系(1)
(1 两曲线的交点坐标为( 解 : (1)两曲线的交点坐标为(x, y)满足方程组 x 2 sinθ + y 2 cosθ = 1 sinθ 2 2 x cosθ - y sinθ = 1 cosθ
2 2
x 2 = sinθ + cosθ sinθ 即 2 有4个不同的交点 有4 cosθ y = cosθ - sinθ
直线与圆锥曲线的位置关系( 直线与圆锥曲线的位置关系(1)
直线与圆锥曲线交点个数的判定方法; 弦长公式;
一、直线与圆锥曲线位置关系的判定 的方程为: 圆锥曲线的方程为f(x,y)=0, 圆锥曲线的方程为 设直线L的方程为:y=kx+m,圆锥曲线的方程为
y = kx + m 2 消去y 消去y得 : (b2+a2k2)x2+2kma2x+a2(m2-b2)=0 x y2 2 + 2 =1 a b 二次项系数不可能为0 二次项系数不可能为 y = kx + m 2 2 消去y 消去y得 : (b2-a2k2)x2-2kma2x+a2(m2+b2)=0 x y 2 - 2 =1 a b 二次项系数为0时 二次项系数为 时,L与双 与双 曲线的渐近线平行或重合。 曲线的渐近线平行或重合。 y = kx + m 消去y 消去y得 : K2x2+(2mk-2p)x+2m2=0 2 y = 2px 二次项系数为0时 二次项系数为 时,L与抛 物线的对称轴平行或重合。 物线的对称轴平行或重合。
∴ a ∈ (− 6, 6),
又设方程的两根为x1,x2,A(x1,y1),B(x2,y2), 又设方程的两根为
2a −2 , x1 x 2 = ∴ x1 + x 2 = 2 3−a 3 − a2
直线与圆锥曲线的位置关系
基本计算
1. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2 ,y2)则弦长公式为:
| AB | 1 k x1 x2
2
1 k ( x1 x2 ) 4 x1 x2
2 2
2.在与弦中点、弦的斜率有关的题型中,用韦达 定理是常见思路。
例1 已知抛物线的方程为 y 4 x ,直线 l 过定点P(-2,1),斜率为 k ,k 为值时,直线 l 与抛物线 y 2 4 x :只有一个公共点;有两个公 共点;没有公共点?
b|b 公共点,则b的取值范围为
2 若直线y=x+b与曲线
x 1y
2
恰好有一个
2或 - 1 b 1
3 在y轴上的截距为1的直线与焦点在x轴上的椭圆
x2 y2 1恒有公共,则m的取值范围是 [1,5)∪(5,+∞) 变2.是否存在实数m,使在y轴上的截距为1的直
基本方法
1 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的情 况的讨论来研究,即方程消元后得到一个一元二次 方程,利用判别式 来讨论。 2 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解决。 3 特殊情形: (1)在双曲线中,当直线平行于其渐近线时,直 线与双曲线有且仅有一个公共点。 (2)在抛物线中,平行于其对称轴的的直线和抛 物线有且仅有一个公共点。
2 x2 y2 y 2 1 2x 1 )恒有公共 线与椭圆 (或 5 m m
点。若存在,则求出m;若不存在,请说明理由。
y2 x2 变3.不论k为何值,直线y=kx+b 与椭圆 1 9 4 总有公共点,则b的取值范围为 -3≤b≤3
直线与圆锥曲线的位置关系教案
直线与圆锥曲线的位置关系教案一、教学目标1. 知识与技能:(1)理解直线与圆锥曲线的位置关系;(2)学会运用直线与圆锥曲线的性质解决相关问题。
2. 过程与方法:(1)通过观察、分析、推理等方法,探索直线与圆锥曲线的位置关系;(2)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神,提高学生的表达沟通能力。
二、教学重点与难点1. 教学重点:(1)直线与圆锥曲线的位置关系;(2)运用直线与圆锥曲线的性质解决相关问题。
2. 教学难点:(1)直线与圆锥曲线的位置关系的判断;(2)灵活运用直线与圆锥曲线的性质解决实际问题。
三、教学过程1. 导入:(1)复习相关知识点,如直线、圆锥曲线的定义及性质;(2)提出问题,引导学生思考直线与圆锥曲线的位置关系。
2. 探究:(1)分组讨论,让学生观察直线与圆锥曲线的位置关系,总结规律;(2)每组派代表分享探究成果,师生共同总结直线与圆锥曲线的位置关系。
3. 讲解:(1)讲解直线与圆锥曲线的位置关系的判断方法;(2)举例说明如何运用直线与圆锥曲线的性质解决实际问题。
4. 练习:(1)布置课堂练习题,让学生巩固所学知识;(2)挑选部分练习题进行讲解,解答学生疑问。
5. 总结:(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调直线与圆锥曲线位置关系在实际问题中的应用。
四、课后作业1. 完成课堂练习题;2. 选取一个实际问题,运用直线与圆锥曲线的性质进行解答;3. 预习下一节课内容。
五、教学反思1. 反思教学效果:(1)学生对直线与圆锥曲线的位置关系的掌握程度;(2)学生运用直线与圆锥曲线的性质解决实际问题的能力。
2. 改进措施:(1)针对学生掌握不足的地方,进行有针对性的讲解和练习;(2)提供更多实际问题,让学生锻炼运用所学知识解决问题的能力。
六、教学评价1. 学生自评:(1)评价自己在课堂学习中的表现,如参与度、理解程度等;(2)反思自己在课后作业中的表现,如完成情况、解决问题能力等。
圆锥曲线:第五讲 直线与圆锥曲线(1)
第五讲 直线与圆锥曲线1.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度来看有三种:相离时,直线与圆锥曲线______公共点;相切时,直线与圆锥曲线有______公共点;相交时,直线与椭圆有______公共点,直线与双曲线、抛物线有一个或两个公共点.一般通过它们的方程来研究:设直线l :Ax +By +C =0与二次曲线C :f (x ,y )=0,由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元,如果消去y 后得:ax 2+bx +c =0, (1)当a ≠0时,①Δ>0,则方程有两个不同的解,直线与圆锥曲线有两个公共点,直线与圆锥曲线________; ②Δ=0,则方程有两个相同的解,直线与圆锥曲线有一个公共点,直线与圆锥曲线________; ③Δ<0,则方程无解,直线与圆锥曲线没有公共点,直线与圆锥曲线________. (2)注意消元后非二次的情况,即当a =0时,对应圆锥曲线只可能是双曲线或抛物线.当圆锥曲线是双曲线时,直线l 与双曲线的渐近线的位置关系是________;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴的位置关系是________. (3)直线方程涉及斜率k 要考虑其不存在的情形. 2.直线与圆锥曲线相交的弦长问题(1)直线l :y =kx +m 与二次曲线C :f (x ,y )=0交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,f (x ,y )=0得ax 2+bx +c =0(a ≠0),则x 1+x 2=________,x 1x 2=________,||AB = . (2)若弦过焦点,可得焦点弦,可用焦半径公式来表示弦长,以简化运算. 3.直线与圆锥曲线相交弦的中点问题中点弦问题常用“根与系数的关系”或“点差法”求解.(1)利用根与系数的关系:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解.(2)点差法:若直线l 与圆锥曲线C 有两个交点A ,B ,一般地,首先设出A (x 1,y 1),B (x 2,y 2),代入曲线方程,通过作差,构造出x 1+x 2,y 1+y 2,x 1-x 2,y 1-y 2,从而建立中点坐标和斜率的关系. 无论哪种方法都不能忽视对判别式的考虑. 【答案】1.无 一个 两个 (1)①相交 ②相切 ③相离 (2)平行或重合 平行或重合 2.(1)-b a ca1+k 2||x 1-x 2=1+k2b 2-4ac||a【基础自测】1 双曲线x 24-y 2=1与直线y =kx +1有惟一公共点,则k 的值为( )A .22B .-22C .±22D .±22或±12解得k =±22.综上知D 正确,故选D.2 已知直线x =1过椭圆x 24+y 2b 2=1的焦点,则直线y =kx +2与椭圆至多有一个交点的充要条件是( )A .k ∈⎣⎡⎦⎤-12,12 B .k ∈⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫12,+∞ C .k ∈⎣⎡⎦⎤-22,22 D .k ∈⎝⎛⎦⎤-∞,-22∪⎣⎡⎭⎫22,+∞解:易知椭圆中c 2=a 2-b 2=4-b 2=1,即b 2=3,∴椭圆方程是x 24+y 23=1.联立y =kx +2可得(3+4k 2)x 2+16kx +4=0.由Δ≤0可解得k ∈⎣⎡⎦⎤-12,12.故选A. 3 已知两点M ⎝⎛⎭⎫1,54,N ⎝⎛⎭⎫-4,-54,给出下列曲线方程:①4x +2y -1=0;②x 2+y 2=3;③x22+y 2=1;④x 22-y 2=1.在曲线上存在点P 满足|MP |=|PN |的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④解:∵点P 满足|MP |=|PN |,∴点P 在线段MN 的垂直平分线l 上,l 的方程为y =-2x -3. 解法一:曲线①是直线,且与直线l 平行,故点P 不在曲线①上; 曲线②是圆心(0,0),半径为3的圆,圆心到直线l 的距离为d =35<3,即直线l 与圆相交,故存在点P在曲线②上;将直线l 的方程代入曲线③的方程得9x 2+24x +16=0,Δ=0,即存在点P 在曲线③上; 将直线l 的方程代入曲线④的方程得7x 2+24x +20=0,Δ>0,即存在点P 在曲线④上. 综上所述:曲线②③④满足题意.解法二:易知曲线①是直线;曲线②是圆心为(0,0),半径为3的圆;曲线③是椭圆;曲线④是双曲线.作出它们的图形,用数形结合来验证.故选D.4 过点(2,4)作直线与抛物线y 2=8x 有且只有一个公共点,则这样的直线有________条.解:注意到点(2,4)是抛物线上的点,用数形结合知满足题意的直线有两条,其一是过该点的切线;其二是过该点且与对称轴平行的直线.故填2.5 已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为__________.【典例】类型一 弦的中点问题例一 (1)已知一直线与椭圆4x 2+9y 2=36相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.解法一:设通过点M (1,1)的直线AB 的方程为y =k (x -1)+1,代入椭圆方程,整理得 (9k 2+4)x 2+18k (1-k )x +9(1-k )2-36=0. 设A ,B 的横坐标分别为x 1,x 2, 则x 1+x 22=-9k (1-k )9k 2+4=1,解之得k =-49. 故直线AB 的方程为y =-49(x -1)+1,即4x +9y -13=0. 解法二:设A (x 1,y 1). ∵AB 中点为M (1,1), ∴B 点坐标是(2-x 1,2-y 1).将A ,B 点的坐标代入方程4x 2+9y 2=36,得4x 21+9y 21-36=0,①及4(2-x 1)2+9(2-y 1)2=36,化简为4x 21+9y 21-16x 1-36y 1+16=0.②①-②,得16x 1+36y 1-52=0,化简为4x 1+9y 1-13=0. 同理可推出4(2-x 1)+9(2-y 1)-13=0.∵A (x 1,y 1)与B (2-x 1,2-y 1)都满足方程4x +9y -13=0, ∴4x +9y -13=0即为所求.解法三:设A (x 1,y 1),B (x 2,y 2)是弦的两个端点,代入椭圆方程,得⎩⎪⎨⎪⎧4x 21+9y 21=36, ①4x 22+9y 22=36, ②(2)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若||FQ =2,则直线l 的斜率等于________.解:设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,x 1+x 2=-2k 2-4k 2=-2+4k 2,y 1+y 2=k (x 1+x 2)+2k =4k ,设Q (x 0,y 0),则x 0=x 1+x 22=-1+2k 2,y 0=y 1+y 22=2k,即Q ⎝⎛⎭⎫-1+2k 2,2k ,又F (1,0),∴||FQ =⎝⎛⎭⎫-1+2k 2-12+⎝⎛⎭⎫2k 2=2,解得k =±1.故填±1. 【评析】(1)本题的三种解法很经典,各有特色,解法一思路直接,但计算量大,解法三计算简捷,所列式子“整齐、美观,对称性强”,但消去x 1,x 2,y 1,y 2时,要求灵活性高,整体意识强.(2)本题解答看似正确,但细想会发现:缺少对“直线与抛物线相交于A ,B 两点”这一几何条件的检验(这是易出错的地方,切记),即⎩⎪⎨⎪⎧k ≠0,Δ=(2k 2-4)2-4k 4>0,解得k ∈(-1,0)∪(0,1),而当k =±1时,直线l 恰好与抛物线相切,似与题意不符.本节课时作业第8题对本题已知条件数据作了修改,使满足题意的直线l 是存在的,进而可求得直线l 的斜率.变式 已知双曲线2x 2-y 2=2.(1)求以M (2,1)为中点的双曲线的弦所在的直线的方程;(2)过点N (1,1)能否作直线l ,使直线l 与所给双曲线交于P 1,P 2两点,且点N 是弦P 1P 2的中点?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)设以M (2,1)为中点的弦两端点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,y 1+y 2=2.又∵A ,B 两点在双曲线上,∴2x 21-y 21=2,2x 22-y 22=2,两式相减得2(x 1+x 2)(x 1-x 2)=(y 1+y 2)(y 1-y 2). 由双曲线的对称性知x 1≠x 2, ∴k AB =y 1-y 2x 1-x 2=2(x 1+x 2)y 1+y 2=4. ∴所求直线的方程为y -1=4(x -2),即4x -y -7=0.类型二 定点问题例二 已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明直线l 过定点.解:(1)如图,设动圆圆心O 1(x ,y ),由题意,||O 1A =||O 1M ,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于点H ,则H 是MN 的中点,||MH =12||MN =4,∴||O 1M =x 2+42.又||O 1A =(x -4)2+y 2,∴(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0);当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:如图,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2kb -8)x +b 2=0,其中Δ=(2kb -8)2-4k 2b 2=64-32kb >0,得kb <2.由根与系数的关系知x 1+x 2=8-2kbk 2,① x 1x 2=b 2k2,②∵x 轴是∠PBQ 的角平分线,∴y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0,2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③ 将①②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, 化简得k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),且过定点(1,0).【评析】第(1)问设动圆圆心坐标,利用圆的半径、弦的一半和弦心距组成的直角三角形求解,第(2)问设直线方程y =kx +b 和轨迹方程联立,再设两个交点坐标,由题意知直线BP 和BQ 的斜率互为相反数,导出k 和b 的关系,最后应用方程特点证明直线过定点.解析几何解答题的一般命题模式是先根据已知的关系确定一个曲线的方程,然后再结合直线方程与所求曲线方程把问题引向深入,其中的热点问题有:参数范围、最值、直线或曲线过定点、某些量为定值等.在直线与圆锥曲线交于不同两点的相关问题中,一般是设出点的坐标,然后确定点的坐标之间的关系(特别是直线是动直线时这个方法是必需的),再进行整体处理(通常是利用韦达定理处理这类问题).变式 若直线l :y =kx +m 与椭圆C :x 24+y 23=1相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.式得(4m 2-12)(k 2+1)4k 2+3-8km (km -2)4k 2+3+4+m 2=0,整理得7m 2+16mk +4k 24k 2+3=0,即(7m +2k )(m +2k )4k 2+3=0.解得m =-27k 或-2k .当m =-27k 时,y =kx -27k =k ⎝⎛⎭⎫x -27,过定点⎝⎛⎭⎫27,0; 当m =-2k 时,y =kx -2k ,过定点(2,0),即过椭圆右顶点,与题意矛盾. 所以直线l 过定点⎝⎛⎭⎫27,0. 类型三 定值问题例三 已知直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两点,且△OPQ 的面积S =62,其中O 为坐标原点.证明:x 21+x 22和y 21+y 22均为定值.证明:当直线l 垂直于x 轴时,设直线l 的方程为x =a (|a |<3),代入椭圆C 的方程得a 23+y 22=1,即y 1,2=±2⎝⎛⎭⎫1-a23,∴|PQ |=|y 1-y 2|=22⎝⎛⎭⎫1-a 23. ∵△OPQ 的面积S =62, ∴12|a |·22⎝⎛⎭⎫1-a 23=62,解之得a 2=32. ∴x 21+x 22=2a 2=3,y 21+y 22=2.由韦达定理得x 1+x 2=-6km3k 2+2, x 1x 2=3(m 2-2)3k 2+2.∴|PQ |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+2)2-12(m 2-2)3k 2+2=1+k 2·26·3k 2+2-m 23k 2+2.∵原点O 到直线l 的距离为d =|m |1+k 2,△OPQ 的面积S =62,∴12·1+k 2·26·3k 2+2-m 23k 2+2·|m |1+k 2=62. 令3k 2+2=t ,化简得t =2m 2,即3k 2+2=2m 2.x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝⎛⎭⎫-6km 3k 2+22-6(m 2-2)3k 2+2 =3.y 21+y 22=(kx 1+m )2+(kx 2+m )2 =k 2(x 21+x 22)+2km (x 1+x 2)+2m 2=3k 2-12k 2m 23k 2+2+2m 2=2.综上知,x 21+x 22=3,y 21+y 22=2,即均为定值.【评析】(1)繁难的代数运算是定值问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算;(2)对题目的两个几何特征的代数形式要有合理的预判,以便设计解题思路,优化解题过程.变式 已知椭圆的中心在坐标原点O ,焦点在x 轴上,斜率为1且过椭圆的右焦点F 的直线交椭圆于A ,B 两点,OA →+OB →与a =(3,-1)共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且OM →=λOA →+μOB →(λ,μ∈R ),证明:λ2+μ2 为定值.解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),F (c ,0),则直线AB 的方程为y =x -c ,代入椭圆方程得(a 2+b 2)x 2-2a 2cx +a 2(c 2-b 2)=0. 设A (x 1,y 1),B (x 2,y 2),(2)由(1)知,a 2=3b 2,故椭圆方程可化为x 2+3y 2=3b 2.设M (x ,y ),则OM →=(x ,y ),由已知得(x ,y )=λ(x 1,y 1)+μ(x 2,y 2),即⎩⎪⎨⎪⎧x =λx 1+μx 2,y =λy 1+μy 2.∵M (x ,y )在椭圆上,∴(λx 1+μx 2)2+3(λy 1+μy 2)2=3b 2,即λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2,①由(1)知,x 1+x 2=32c ,x 1x 2=38c 2.∴x 1x 2+3y 1y 2=x 1x 2+3(x 1-c )(x 2-c ) =4x 1x 2-3c (x 1+x 2)+3c 2=0.∵A ,B 在椭圆上,∴x 21+3y 21=3b 2,x 22+3y 22=3b 2,代入①式得λ2+μ2=1,故λ2+μ2为定值1.类型四 与弦有关的范围与最值问题例四 已知曲线C :y 2=-4x (x >-3),直线l 过点M (1,0)交曲线C 于A ,B 两点,点P 是AB 的中点,EP 是AB 的中垂线,E 点的坐标为(x 0,0),试求x 0的取值范围.解:由题意可知,直线l 与x 轴不垂直,可设l :y =k (x -1),代入曲线C 的方程得k 2x 2+2(2-k 2)x +k 2=0(-3<x ≤0),①由方程①得x A +x B =2(k 2-2)k 2,x P =12(x A +x B )=k 2-2k 2,y P =k (x P -1)=-2k, ∴直线EP 的方程为y +2k =-1k ⎝⎛⎭⎫x -k 2-2k 2.令y =0,得x 0=-1-2k 2.∵34<k 2<1, ∴-113<x 0<-3,即x 0的取值范围是⎝⎛⎭⎫-113,-3. 【评析】对于参数的取值范围问题,要能从几何特征的角度去分析参数变化的原因,谁是自变量,定义域是什么,这实际是函数问题,要学会用函数的观点分析这类问题.变式 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值. 解:(1)设椭圆的半焦距为c ,依题意⎩⎪⎨⎪⎧c a =63,a =3,得c =2,b 2=a 2-c 2=1, 所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2). 当AB 与x 轴垂直时,|AB |= 3. 当AB 与x 轴不垂直时, 设直线AB 的方程为y =kx +m . 由已知|m |1+k 2=32,得m 2=34(k 2+1).=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(1+k 2)(3k 2+1-m 2)(3k 2+1)2=3(1+k 2)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6≤3+122×3+6=4(k ≠0).当且仅当9k 2=1k 2,即k =±33时等号成立.当k =0时,|AB |= 3. 综上所述:|AB |max =2.∴当|AB |最大时,△AOB 的面积取得最大值 S =12×|AB |max ×32=32. 类型五 对称问题例五 已知抛物线y =ax 2-1(a ≠0)上总有关于直线x +y =0对称的相异两点,求a 的取值范围.解:设A (x 1,y 1)和B (x 2,y 2)为抛物线y =ax 2-1上的关于直线x +y =0对称的两相异点,则y 1=ax 21-1,y 2=ax 22-1.联立直线AB 与抛物线的方程并消去y ,得 ax 2-x +1a-1=0.依题意,上面的方程有两个相异实根, ∴Δ=1-4a ⎝⎛⎭⎫1a -1>0,解得a >34. ∴a 的取值范围是⎝⎛⎭⎫34,+∞. 【评析】应用判别式法解决此类对称问题,要抓住三点:(1)中点在对称轴上;(2)两个对称点的连线与对称轴垂直;(3)两点连线与曲线有两个交点,故Δ>0.一般通过“设而不求”、“点差法”得到对称点连线的方程,再与曲线方程联立,由判别式不等式求出参数范围.变式 已知椭圆C :x 24+y 23=1,试确定m 的取值范围,使得椭圆上有两个不同的点关于直线y =4x +m 对称.解:设P (x 1,y 1),Q (x 2,y 2)是椭圆C 上符合条件的两点,M (x ,y )是PQ 的中点,则有⎩⎪⎨⎪⎧3x 21+4y 21=12,3x 22+4y 22=12, 两式相减,得3(x 1-x 2)(x 1+x 2)+4(y 1-y 2)(y 1+y 2)=0. ∵x 1≠x 2,x 1+x 2=2x ,y 1+y 2=2y , ∴3x4y =-y 1-y 2x 1-x 2=-k PQ . ∵k PQ =-14,∴y =3x .【名师点睛】1.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程或动弦中点M (x ,y )轨迹时,一般可设A (x 1,y 1),B (x 2,y 2),利用A ,B 两点在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m (或2x ),y 1+y 2=2n (或2y ),从而求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程,或者得到动弦所在直线斜率与中点坐标x ,y 之间的关系,整体消去x 1,x 2,y 1,y 2,得到点M (x ,y )的轨迹方程.2.对满足一定条件的直线或者曲线过定点问题,可先设出该直线或曲线上两点的坐标,利用坐标在直线或曲线上以及切线、点共线或共圆、对称等条件,建立点的坐标满足的方程或方程组.为简化运算应多考虑曲线的几何性质,求出相应的含参数的直线或曲线,再利用直线或曲线过定点的知识加以解决. 以“求直线l :y =kx +2k +1(k 为参数)是否过定点?”为例,有以下常用方法:①待定系数法:假设直线l 过点(c 1,c 2),则y -c 2=k (x -c 1),即y =kx -c 1k +c 2,通过与已知直线方程比较得c 1=-2,c 2=1.所以直线l 过定点(-2,1).题中“k”不仅可以是一个参数,还可以是一个由参数组成的表达式.②赋值法:令k=0,得l1:y=1;令k=1,得l2:y=x+3,求出l1与l2的交点(-2,1),将交点坐标代入直线系得1=-2k+2k+1恒成立,所以直线l过定点(-2,1).赋值法由两步构成,第一步:通过给参数赋值,求出可能的定点坐标;第二步:验证其是否恒满足直线方程.③参数集项法:对直线l的方程中的参数集项得y=k(x+2)+1,令k的系数为0,得x=-2,y=1,k的取值是任意的,但l的方程对点(-2,1)恒成立,所以直线l过定点(-2,1).若方程中含有双参数,应考虑两个参数之间的关系.3.给出曲线上的点到直线的最短(长)距离或求动点到直线的最短(长)距离时,可归纳为求函数的最值问题,也可借助于图形的性质(如三角形的公理、对称性等)求解.4.圆锥曲线上的点关于某一直线对称的问题,通常利用圆锥曲线上的两点所在直线与已知直线l(或者是直线系)垂直,圆锥曲线上两点连成线段的中点一定在对称轴直线l上,再利用判别式或中点与曲线的位置关系求解.5.要重视对数学思想、方法进行归纳提炼,以达到优化解题思路、简化解题过程的目的.(1)方程思想解析几何题不少以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就能简化运算.(2)函数思想对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线段的长度及a,b,c,e,p之间构成函数关系,函数思想在处理这类问题时就很有效.(3)对称思想由于圆锥曲线和圆都具有对称性,所以可使分散的条件相对集中,减少一些变量和未知量,简化计算,提高解题速度,促成问题的解决.(4)参数思想参数思想是辩证思维在数学中的反映,一旦引入参数,用参数来划分运动变化状态,把圆、椭圆、双曲线上的点用参数形式设为(x0,y0),即可将参数视为常量,以相对静止来控制变化,实现变与不变的转化;另外,对于有些参数,视具体情况可在解题过程中将其消去,达到“设而不求”的效果.(5)转化思想解决圆锥曲线问题时要充分注意直角坐标方程与参数方程的联系及转化,达到优化解题的目的.除上述常用思想方法外,数形结合、分类讨论、整体思想、构造思想也是不可忽视的思想方法,复习时也应给予足够的重视.【针对训练】1.若双曲线x2-y2=1的右支上一点P(a,b)到直线y=x的距离为2,则a+b=()A .-12B .12C .±12D .±1解:由点到直线的距离公式得|a -b |2=2,即|a -b |=2. 又点P (a ,b )在双曲线的右支上,∴P 点在直线y =x 的下方,a -b >0.∴a -b =2. 又a 2-b 2=1,即(a -b )(a +b )=1,∴a +b =12.故选B.2.设斜率为2的直线过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OF A (O 为坐标原点)的面积为4,则抛物线的方程为( ) A .y 2=±4x B .y 2=±8x C .y 2=4xD .y 2=8x解:焦点F 坐标为⎝⎛⎭⎫a 4,0,设直线的方程为 y =2⎝⎛⎭⎫x -a 4,则A 点纵坐标为-a2,△OF A 的面积为 S =12·⎪⎪⎪⎪a 4·⎪⎪⎪⎪-a 2= a 216=4,解得a =±8.故选B. 3.直线y =2k 与曲线9k 2x 2+y 2=18k 2||x (k ∈R ,且k ≠0)的公共点的个数为( ) A .1B .2C .3D .4解:将y =2k 代入9k 2x 2+y 2=18k 2||x ,得9k 2x 2-18k 2||x +4k 2=0,∵k ∈R ,且k ≠0,∴9||x 2-18||x +4=0,即9(||x -1)2-5=0,解得||x =1±53,x =1±53或-1±53,因此公共点的个数为4.故选D.4.已知椭圆mx 2+ny 2=1与直线x +y -1=0相交于A ,B 两点,过AB 中点M 与坐标原点的直线的斜率为22,则mn =( ) A .22B .322C .1D .25.若直线mx +ny -5=0与圆x 2+y 2=5没有公共点,则过点P (m ,n )的一条直线与椭圆x 27+y 25=1的公共点的个数是( ) A .0B .1C .2D .1或2解:由已知得5m 2+n 2>5,即m 2+n 2<5.又m 27+n 25≤m 25+n 25<1,所以点P 在椭圆内,因此过点P 的一条直线与椭圆有两个公共点.故选C.6.椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上且直线P A 2斜率的取值范围是-2,-1],那么直线P A 1斜率的取值范围是( ) A.⎣⎡⎦⎤12,34 B.⎣⎡⎦⎤38,34 C.⎣⎡⎦⎤12,1D.⎣⎡⎦⎤34,1解:由题意知点P 在第一象限,设P 点横坐标为x ,则其纵坐标y =32·4-x 2,由P A 2的斜率知-2≤32·4-x 2x -2≤-1,∵2-x >0,2+x >0,∴上式可化为1≤32·2+x 2-x ≤2,即23≤2+x 2-x ≤43.∴P A 1的斜率k =32·4-x 2x +2=32·2-x 2+x ∈⎣⎡⎦⎤38,34.故选B. 7.已知P (4,2)是直线l 被椭圆x 236+y 29=1截得线段的中点,则直线l 的方程为________.解:线段两端点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8,y 1+y 2=4. ∵A ,B 在椭圆上,∴⎩⎨⎧x 2136+y 219=1,x 2236+y 229=1,8.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若||FQ =23,则直线l 的斜率等于________.解:设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,由⎩⎪⎨⎪⎧k ≠0,Δ=(2k 2-4)2-4k 4>0,解得k ∈(-1,0)∪(0,1),x 1+x 2=-2k 2-4k 2=-2+4k 2,y 1+y 2=k (x 1+x 2)+2k =4k ,设Q (x 0,y 0),则x 0=x 1+x 22=-1+2k 2,y 0=y 1+y 22=2k,即Q ⎝⎛⎭⎫-1+2k 2,2k ,又F (1,0),∴||FQ =⎝⎛⎭⎫-1+2k 2-12+⎝⎛⎭⎫2k 2=23,解得k =±22.故填±22.9.如图,M 是抛物线y 2=x 上的一点,动弦ME ,MF 分别交x 轴于A ,B 两点,且MA =MB .若M 为定点,证明:直线EF 的斜率为定值.证明:设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k , ∴直线ME 的方程为y -y 0=k (x -y 20).联立⎩⎪⎨⎪⎧y -y 0=k (x -y 20),y 2=x ,消去x ,得ky 2-y +y 0(1-ky 0)=0.解得y E =1-ky 0k ,∴x E =(1-ky 0)2k 2.同理,y F =1+ky 0-k,∴x F =(1+ky 0)2k 2.∴k EF =y E -y F x E -x F =1-ky 0k -1+ky 0-k (1-ky 0)2k 2-(1+ky 0)2k 2=2k -4ky 0k 2=-12y 0(定值).∴直线EF 的斜率为定值. 10.设动直线l :y =kx +m 与椭圆E :x 24+y 23=1有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出M 点的坐标;若不存在,说明理由.解:联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,即x 1=-4km,代入直线l 的方程得y 1=-4k 2m +m =3m.由图形的对称性,假设存在点M (t ,0),则MP →·MQ →=0,根据题意得Q (4,4k +m ),∴MP →=⎝⎛⎭⎫-4k m -t ,3m ,MQ →=(4-t ,4k +m ).∴MP →·MQ →= -4(4-t )k m -t (4-t )+12k m +3= (4t -4)k m -t (4-t )+3=4k (t -1)m +(t -1)(t -3)=0,当t =1,等式恒成立.∴坐标平面内存在定点M (1,0),使得以PQ 为直径的圆恒过点M .11.在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB ∥OA ,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C . (1)求C 的方程;(2)P 为C 上的动点,直线l 为C 在P 点处的切线,求O 点到直线l 的距离的最小值. 解:(1)设M (x ,y ),∵MB ∥OA ,∴B (x ,-3). 又∵A (0,-1),∴MA →=(-x ,-1-y ), MB →=(0,-3-y ),AB →=(x ,-2). ∵MA →·AB →=MB →·BA →, ∴(MA →+MB →)·AB →=0, 即-x 2+(-4-2y )·(-2)=0, 即y =14x 2-2.∴曲线C 的方程为y =14x 2-2.∴O 点到直线l 的距离d =|2y 0-x 20|x 20+4.∵y 0=14x 20-2,∴d =12x 2+4x 20+4=12(x 20+4+4x 20+4)≥2(当且仅当x 0=0时等号成立). ∴O 点到直线l 的距离的最小值为2.12 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点A (2,1),离心率为22,过点B (3,0)的直线l 与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)求BM →·BN →的取值范围;(3)设直线AM ,AN 的斜率分别为k AM ,k AN ,求证:k AM +k AN 为定值.解:(1)由题意得⎩⎨⎧4a 2+1b 2=1,a 2=b 2+c 2,c a =22,解之得a =6,b = 3. ∴椭圆C 的方程为x 26+y 23=1.(2)由题意显然直线l 的斜率存在,可设直线l 的方程为y =k (x -3). 由方程组⎩⎪⎨⎪⎧y =k (x -3),x 26+y 23=1消去y 整理得(1+2k 2)x 2-12k 2x +6(3k 2-1)=0. ∵直线l 与椭圆C 交于不同的两点M ,N , ∴Δ=144k 4-24(1+2k 2)(3k 2-1)=24(1-k 2)>0, 解之得-1<k <1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12k 21+2k 2,x 1x 2=6(3k 2-1)1+2k 2,∴BM →·BN →的取值范围是(2,3]. (3)证明:由(2)知k AM =y 1-1x 1-2, k AN =y 2-1x 2-2,则 k AM +k AN =y 1-1x 1-2+y 2-1x 2-2=(kx 1-3k -1)(x 2-2)+(kx 2-3k -1)(x 1-2)(x 1-2)(x 2-2)=2kx 1x 2-(5k +1)(x 1+x 2)+4(3k +1)x 1x 2-2(x 1+x 2)+4=)21(424)13(6)21()13(412)15()13(62222222k k k k k k k k k ++--+∙++∙+--∙ =-4k 2+42k 2-2=-2.∴k AM +k AN 为定值-2.。
高二上册数学选修一《2.8 直线与圆锥曲线的位置关系》知识点梳理
高二上数学选修一第二章《平面解析几何》知识点梳理2.8直线与圆锥曲线的位置关系课程目标A.清楚直线与圆锥曲线的三种位置关系.B.会用坐标法求解直线与圆锥曲线的有关问题.C.加强数形结合思想的训练与应用.重难点重点:直线与圆锥曲线的三种位置关系难点:会用坐标法求解直线与圆锥曲线的有关问题我们知道,通过直线的方程、圆的方程可以探讨直线与直线、直线与圆、圆与圆的位置关系的问题,而且这些问题都可以转化为方程组的解的问题。
类似地,因为平面直角坐标系中的点在椭圆、双曲线、抛物线上的充要条件是点的坐标满足对应的方程,所以我们同样可以通过方程组的解的问题来探讨直线与这些曲线的位置关系的问题。
一、典例解析例1.判断直线y=2x−2与椭圆x25+y24=1,是否有公共点,如有,求出公共点的坐标,如公共点有两个,求出以这两个公共点为端点的线段长。
解:联立直线与椭圆的方程,可得方程组y=2x−2x25+y24=1解方程组可得x=0y=−2或x=53y=43因此直线与椭圆有两个公共点,且公共点的坐标为(0,-2)(53,43)从而可知所求线段长为(53−0)2−[43−(−2)]2=553你认为应该怎样来判断直线与椭圆是否有公共点?如果有两个公共点,应该怎样求得对应线段的长?1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,有且只有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程,消元后所得方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程为f(x,y)=0.如消去y后得ax2+bx+c=0.由Ax+By+C=0,f(x,y)=0消元,①若a=0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合).②若a ≠0,设Δ=b 2-4ac.Δ>0时,直线和圆锥曲线相交于不同两点;Δ=0时,直线和圆锥曲线相切于一点;Δ<0时,直线和圆锥曲线没有公共点.2.直线与圆锥曲线相交时的弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|=(1+k2)[(x1+x2)2-4x1x2]或|P 1P 2|=1+1k2[(y1+y2)2-4y1y2](k ≠0).(2)当斜率k 不存在时,可求出交点坐标,利用两点间距离公式直接运算.1.判断(1)已知椭圆x2a2+y2b2=1(a>b>0)与点P (b ,0),过点P 可作出该椭圆的一条切线.()(2)直线y=k (x-a )与椭圆x2a2+y2b2=1的位置关系是相交.()(3)若直线与抛物线只有一个交点,则该直线与抛物线相切.()答案:(1)×(2)√(3)×2.顶点在原点,焦点在x 轴上且截直线2x-y+1=0所得弦长为15的抛物线方程为.解析:设所求抛物线的方程为y 2=ax (a ≠0).①直线方程变形为y=2x+1,②设抛物线截直线所得弦为AB.将②代入①,整理得4x 2+(4-a )x+1=0,则|AB|=(1+22)a -442-4×14=15.解得a=12或a=-4.所以所求抛物线的方程为y 2=12x 或y 2=-4x.答案:y 2=12x 或y 2=-4x例2.已知直线l :kx-y+2-k=0,双曲线C :x 2-4y 2=4,当k 为何值时,(1)l 与C 无公共点;(2)l 与C 有唯一公共点;(3)l与C有两个不同的公共点.分析直线与圆锥曲线的公共点的个数,就等于直线方程与圆锥曲线方程所组成的方程组的解的个数.因此本题可转化为方程组解的个数的判定,从而确定参数的取值.解:(1)将直线方程与双曲线方程联立,消去y得(1-4k2)x2-8k(2-k)x-4(k2-4k+5)=0.①要使l与C无公共点,即方程①无实数解,则有1-4k2≠0,且Δ<0,即64k2(2-k)2+16(1-4k2)(k2-4k+5)<0.解得k>-2+193或k<-2-193,故当k>-2+193或k<-2-193时,l与C无公共点.(2)当1-4k2=0,即k=±12时,方程①只有一解;当1-4k2≠0,且Δ=0,即k=-2±193时,方程①只有一解,故当k=±12或k=-2±193时,l与C有唯一公共点.(3)当1-4k2≠0,且Δ>0时,方程①有两个不同的解,即l与C有两个不同的公共点,于是可得,当-2-193<k<-2+193,且k≠±12时,l与C有两个不同的公共点.判断直线l与圆锥曲线C的位置关系时,可将直线l的方程代入曲线C的方程,消去y(或x)得一个关于变量x(或y)的一元二次方程ax2+bx+c=0(或ay2+by+c=0).(1)当a≠0时,若Δ>0,则直线l与曲线C相交;若Δ=0,则直线l与曲线C相切;若Δ<0,则直线l与曲线C相离.(2)当a=0时,即得到一个一次方程,则直线l与曲线C相交,且只有一个交点.此时,若C为双曲线,则l平行于双曲线的渐近线;若C为抛物线,则l平行于抛物线的对称轴.(3)当直线与双曲线或抛物线只有一个公共点时,直线与双曲线或抛物线可能相切,也可能相交.跟踪训练1已知直线l:y=2x+m,椭圆C:x24+y22=1.试问当m取何值时,直线l与椭圆C:(1)有两个不同的公共点;(2)有且只有一个公共点;(3)没有公共点?解:直线l的方程与椭圆C的方程联立,得方程组y=2x+m,①x24+y22=1,②将①代入②,整理得9x2+8mx+2m2-4=0,③这个关于x的一元二次方程的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.(1)由Δ>0,得-32<m<32.于是,当-32<m<32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不同的公共点.(2)由Δ=0,得m=±32.也就是当m=±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)由Δ<0,得m<-32或m>32.从而当m<-32或m>32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.例3已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y=x+1与椭圆交于P ,Q 两点,且OP ⊥OQ ,|PQ|=102,求椭圆的方程.分析设出椭圆方程,将椭圆方程和直线方程联立消去y ,转化为关于x 的一元二次方程,利用根与系数的关系,根据向量数量积和弦长公式建立方程组求解.解:设椭圆方程为mx 2+ny 2=1(m>0,n>0,m ≠n ),P (x 1,y 1),Q (x 2,y 2).由y=x+1,mx2+ny2=1,得(m+n )x 2+2nx+n-1=0,Δ=4n 2-4(m+n )(n-1)>0,即m+n-mn>0.由OP ⊥OQ ,得x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0,∴2(n -1)m+n−2nm+n +1=0,∴m+n=2.①又|PQ|2=(x 1-x 2)2+(y 1-y 2)2=2[(x 1+x 2)2-4x 1x 2]=8(m+n -mn )(m+n )2=1022,将m+n=2代入得mn=34.②由①②式,得m=12,n=32或m=32,n=12.故椭圆方程为x22+32y 2=1或32x 2+y22=1.若直线l 与圆锥曲线F (x ,y )=0相交于A ,B 两点,求弦AB 的长可用下列两种方法:(1)把直线的方程与圆锥曲线的方程联立,解得点A ,B 的坐标,然后用两点间距离公式,便得到弦AB 的长,一般来说,这种方法较为麻烦.(2)不求交点坐标,可用一元二次方程根与系数的关系求解.设直线方程为y=kx+m ,与圆锥曲线F (x ,y )=0交于两点A (x 1,y 1),B (x 2,y 2),则|AB|=(x1-x2)2+(y1-y2)2=(x1-x2)2+(kx1+m -kx2-m )2=1+k2·(x1+x2)2-4x1x2;或当k ≠0时,|AB|=1+1k2|y 1-y 2|=1+1k2·(y1+y2)2-4y1y2.当k=0时,直线平行于x 轴,∴|AB|=|x 1-x 2|.跟踪训练2抛物线y 2=12x 截直线y=2x+1所得弦长等于()A .15B .215C .152D .15解析:令直线与抛物线交于点A (x 1,y 1),B (x 2,y 2),由y=2x+1,y2=12x ,得4x 2-8x+1=0,∴x 1+x 2=2,x 1x 2=14,∴|AB|=(1+22)(x1-x2)2=5[(x1+x2)2-4x1x2]=15.答案:A三、达标检测1.直线y=kx-k+1与椭圆x29+y24=1的位置关系为()A .相交B .相切C .相离D .不确定解析:∵y=kx-k+1,∴y-1=k (x-1),过定点(1,1),定点在椭圆x29+y24=1内部,故选A .答案:A2.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有()A.1条B.2条C.3条D.4条答案:C3.已知点P (k ,1),椭圆x29+y24=1,点P 在椭圆外,则实数k 的取值范围为.解析:依题意得,k29+14>1,解得k<-332或k>332,故实数k 取值范围为-∞,-332∪332,+∞.答案:-∞,-332∪332,+∞4.已知直线l :x-y+m=0与双曲线x 2-y22=1交于不同的两点A ,B ,若线段AB 的中点在圆x 2+y 2=5上,则m 的值是.解析:设线段AB 的中点为M (x 0,y 0),由x -y+m=0,x2-y22=1,得x 2-2mx-m 2-2=0,∴x 0=m ,∴y 0=x 0+m=2m ,∵点M (x 0,y 0)在圆x 2+y 2=5上,∴m 2+(2m )2=5,∴m=±1,检验可知判别式Δ>0.故m=±1.答案:±15.抛物线x 2=-y 上的点到直线4x+3y-8=0的距离的最小值为.解析:设直线4x+3y+c=0与抛物线相切,由4x+3y+c=0,x2=-y ,得3x 2-4x-c=0,由Δ=16+12c=0,得c=-43,所以两平行线的距离为-8+4316+9=43.答案:436.如图,椭圆x216+y27=1的左、右焦点为F1,F2,一条直线l经过F1且与椭圆相交于A,B两点.(1)求△ABF2的周长;(2)若l的倾斜角是45°,求△ABF2的面积.解:(1)由x216+y27=1,知a=4,△ABF2的周长=(|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a=4a=16.(2)由椭圆方程x216+y27=1,可得F1(-3,0),F2(3,0),又l的倾斜角是45°,故斜率k=1,∴l的方程为y=x+3.将直线方程代入椭圆方程,整理得23x2+96x+32=0,∴x1+x2=-9623,x1x2=3223,|AB|=(1+1)×-96232-4×3223=11223.设点F2到直线l的距离为d,则d=|3-0+3|2=32.∴S△ABF2=12|AB|·d=12×11223×32=168232.四、小结。
直线与圆锥曲线的位置关系问题
2.连结圆锥曲线上两点的线段称为圆锥曲线的弦 设直线 l:f(x,y)=0,曲线 E:F(x,y)=0,l 与 E 的两个 不同的交点 P、Q,设 P(x1,y1),Q(x2,y2),则(x1,y1),(x2,
f(x,y)=0 y2)是方程组F(x,y)=0的两组解,方程组消元后化为关于 x(或者 y)的一元二次方程 Ax2+Bx+C=0(A≠0).判别式 Δ=B2 -4AC,应有 Δ>0,所以 x1、x2 是方程 Ax2+Bx+C=0 的解.由 根与系数的关系(韦达定理)求得 x1+x2=-BA,x1x2=CA,所以 P、 Q 两 点 间 距 离 为 |PQ| = (x1-x2)2+(y1-y2)2 =
=16,
所以 xB2=4+16k2,
又 由 O→B = 2 O→A , 得
xB2
=
4xA2
,
即
16 4+k2
=
1+164k2,
解得 k=±1,故直线 AB 的方程为 y=x 或 y=
-x.
解法二:A,B 两点的坐标分别记为(xA,yA), (xB,yB),
由O→B=2O→A及(1)知, O,A,B 三点共线且点 A,B 不在 y 轴上, 因此可设直线 AB 的方程为 y=kx. 将 y=kx 代入x42+y2=1 中,得(1+4k2)x2=4,
(2)运用类比的手法可以推出,已知 PQ 是双曲 线xa22-by22=1 的弦,中点 M(x0,y0),则 kPQ=ba22xy00; 已知抛物线 y2=2px(p>0)的弦 PQ 的中点 M(x0,y0), 则 kPQ=yp0. 4.圆锥曲线上的点关于某一直线的对称问题,解 决此类题的方法是利用圆锥曲线上的两点所在直
(1)求椭圆 C2 的方程; (2)设 O 为坐标原点,点 A,B 分别在椭圆 C1 和 C2 上,O→B=2O→A,求直线 AB 的方程.
直线与圆锥曲线的位置关系教案
直线与圆锥曲线的位置关系教案第一章:直线与圆锥曲线的基本概念1.1 直线的基本概念直线的定义直线的性质直线的方程1.2 圆锥曲线的基本概念圆锥曲线的定义圆锥曲线的性质圆锥曲线的方程第二章:直线与圆锥曲线的交点2.1 直线与圆的交点直线与圆的位置关系直线与圆的交点个数直线与圆的交点坐标求解方法2.2 直线与椭圆的交点直线与椭圆的位置关系直线与椭圆的交点个数直线与椭圆的交点坐标求解方法2.3 直线与双曲线的交点直线与双曲线的position 关系直线与双曲线的交点个数直线与双曲线的交点坐标求解方法第三章:直线与圆锥曲线的切点3.1 直线与圆的切点直线与圆的位置关系直线与圆的切点性质直线与圆的切点坐标求解方法3.2 直线与椭圆的切点直线与椭圆的位置关系直线与椭圆的切点性质直线与椭圆的切点坐标求解方法3.3 直线与双曲线的切点直线与双曲线的position 关系直线与双曲线的切点性质直线与双曲线的切点坐标求解方法第四章:直线与圆锥曲线的距离4.1 直线与圆的距离直线与圆的位置关系直线与圆的距离公式直线与圆的距离求解方法4.2 直线与椭圆的距离直线与椭圆的位置关系直线与椭圆的距离公式直线与椭圆的距离求解方法4.3 直线与双曲线的距离直线与双曲线的position 关系直线与双曲线的距离公式直线与双曲线的距离求解方法第五章:直线与圆锥曲线的应用5.1 直线与圆的相切问题直线与圆相切的条件直线与圆相切的应用实例直线与圆相切的解题方法5.2 直线与椭圆的相切问题直线与椭圆相切的条件直线与椭圆相切的应用实例直线与椭圆相切的解题方法5.3 直线与双曲线的相切问题直线与双曲线相切的条件直线与双曲线相切的应用实例直线与双曲线相切的解题方法第六章:直线与圆锥曲线的对称性6.1 直线与圆的对称性直线与圆的对称性质直线与圆的对称变换直线与圆的对称问题实例与解法6.2 直线与椭圆的对称性直线与椭圆的对称性质直线与椭圆的对称变换直线与椭圆的对称问题实例与解法6.3 直线与双曲线的对称性直线与双曲线的对称性质直线与双曲线的对称变换直线与双曲线的对称问题实例与解法第七章:直线与圆锥曲线的相交弦7.1 直线与圆的相交弦直线与圆的相交弦性质直线与圆的相交弦公式直线与圆的相交弦问题实例与解法7.2 直线与椭圆的相交弦直线与椭圆的相交弦性质直线与椭圆的相交弦公式直线与椭圆的相交弦问题实例与解法7.3 直线与双曲线的相交弦直线与双曲线的相交弦性质直线与双曲线的相交弦公式直线与双曲线的相交弦问题实例与解法第八章:直线与圆锥曲线的焦点8.1 直线与圆的焦点直线与圆的焦点性质直线与圆的焦点问题实例与解法直线与圆的焦点应用8.2 直线与椭圆的焦点直线与椭圆的焦点性质直线与椭圆的焦点问题实例与解法直线与椭圆的焦点应用8.3 直线与双曲线的焦点直线与双曲线的焦点性质直线与双曲线的焦点问题实例与解法直线与双曲线的焦点应用第九章:直线与圆锥曲线的综合问题9.1 直线与圆的综合问题直线与圆的位置关系的综合应用直线与圆的交点、切点、距离的综合问题实例与解法直线与圆的对称性、相交弦、焦点的综合应用9.2 直线与椭圆的综合问题直线与椭圆的位置关系的综合应用直线与椭圆的交点、切点、距离的综合问题实例与解法直线与椭圆的对称性、相交弦、焦点的综合应用9.3 直线与双曲线的综合问题直线与双曲线的position 关系的综合应用直线与双曲线的交点、切点、距离的综合问题实例与解法直线与双曲线的对称性、相交弦、焦点的综合应用第十章:直线与圆锥曲线的拓展与提升10.1 直线与圆锥曲线的拓展问题直线与圆锥曲线的特殊位置关系问题直线与圆锥曲线的创新性问题实例与解法直线与圆锥曲线的综合应用提升10.2 直线与圆锥曲线的解题策略与方法直线与圆锥曲线的分类讨论方法直线与圆锥曲线的数形结合方法直线与圆锥曲线的构造法与方程法10.3 直线与圆锥曲线的教学反思与评价直线与圆锥曲线教学的重点与难点直线与圆锥曲线教学的方法与技巧直线与圆锥曲线教学的评价与反思重点和难点解析1. 第一章:直线与圆锥曲线的基本概念重点关注直线和圆锥曲线的定义、性质和方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆锥曲线的位置关系一、学习目标:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法;能利用方程求圆锥曲线的有关范围与最值;掌握对称问题的求法。
二、考点分析:1. 加强对直线与圆锥曲线的位置关系问题的复习直线与圆锥曲线的位置关系问题一直为高考的热点。
这类问题常涉及到圆锥曲线的性质和直线的基本知识、线段的中点、弦长、垂直问题,因此在分析这类问题时应利用数形结合思想、设而不求法与弦长公式及韦达定理等内容去解决,这样就加强了对数学各种能力的考查。
2. 关于直线与圆锥曲线相交弦的问题则结合韦达定理采用设而不求法来解决。
利用引入一个参数表示动点的坐标x 、y ,间接把它们联系起来,减少变量、未知量时则采用参数法。
解答有些题目时还常用到其与平面几何的关系,利用平面几何知识会化难为易,化繁为简,收到意想不到的解题效果。
3. 对于直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究由它们的方程组成的方程组是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法。
4. 当直线与圆锥曲线相交时:若涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);若涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化。
同时还应充分挖掘题目中的隐含条件,寻找量与量之间的关系进行灵活转化,往往就能做到事半功倍。
三、知识梳理1. 直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度看可分为三类:无公共点,仅有一个公共点及有两个相异公共点。
直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究。
因为方程组解的个数与交点的个数是一样的。
直线与圆锥曲线的位置关系可分为:相交、相切、相离,对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切。
即将直线l 的方程代入曲线C 的方程,消去y 或消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0。
(1)交点个数①当a =0或a ≠0,∆=0时,曲线和直线只有一个交点; ②当a ≠0,∆>0时,曲线和直线有两个交点; ③当a ≠0,∆<0时,曲线和直线没有交点。
(2)弦长公式:x x 4)x x (k 1 |x x |k 1|AB |212212122⋅-+⋅+=-⋅+==22a)k 1(∆+=||a利用这个公式求弦长时,要注意结合运用韦达定理。
当弦过圆锥曲线的焦点时,可用焦半径公式进行运算。
2、中点弦问题:设A (11y ,x ),B (x 2,y 2)是椭圆12222=+by ax 上不同的两点,且21x x ≠,0x x 21≠+,M (x 0,y 0)为AB 的中点,则两式相减可得2221212121ab x x y y x x y y -=++⋅--,22OM AB ab k k -=⋅。
这种方法叫点差法,最后需要检验直线与曲线是否相交。
对于双曲线、抛物线,可得类似的结论。
3、对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率);②曲线上两点所在的直线与曲线有两个公共点(∆>0);③曲线上两点的中点在对称直线上。
4、重难点问题探析:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题。
(1)体会“设而不求”法在解题中简化运算的功能。
①求弦长时运用“韦达定理”设而不求。
②求弦中点问题时运用“点差法”设而不求。
(2)体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中的运用。
考点一:直线与圆锥曲线的位置关系的判断方法及弦长公式 例1、已知椭圆:1922=+yx,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长。
例2、 已知椭圆及直线.(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程.例3、(1)过点5)P 与双曲线221725xy-=有且只有一个公共点的直线有几条,分别求出它们的方程。
(2)直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当k 为何值时,A 、B 两点在双曲线的同一支上?当k 为何值时,A 、B 两点分别在双曲线的两支上? 例4. 直线与双曲线相交于、两点. 当为何值时,以为直径的圆经过坐标原点.例5.已知直线(1)1y a x =+-与曲线2y ax =恰有一个公共点,求实数a 的值。
例6. 斜率为1的直线经过抛物线的焦点,与抛物线相交于两点、,求线段的长。
例7.(1)设抛物线被直线截得的弦长为,求k 值.(2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面积为9时,求P 点坐标.例8.已知抛物线方程为)0)(1(22>+=p x p y ,直线m y x l =+:过抛物线的焦点F 且被抛物线截得的弦长为3,求p 的值。
知识点二:中点弦问题 例1.若直线与抛物线交于A 、B 两点,且AB 中点的横坐标为2,求此直线方程.例2.求过点A (3,-1)且被A 平分的双曲线4y 4x 22=-的弦MN 所在直线的方程。
例3.已知双曲线)0b ,0a (1by ax 2222>>=-的焦点F 1(5-,0),F 2(5,0),以点A (3,-1)为中点的双曲线的弦MN 所在直线的方程为05y 4x 3=-+,求双曲线的方程。
例4.过点(1,1)P -作直线与椭圆22142xy+=交于,A B 两点,若线段A B 的中点为P ,求直线A B 所在的直线方程和线段A B 的长度.例 5.椭圆22221a x b y +=与直线10x y +-=相交于,A B 两点,C 是,A B 的中点.若||A B =O C 的斜率为2,求椭圆的方程。
例6.过点(2,0)-的直线l 与抛物线2y x =相交于,A B 两点,求A B 中点的轨迹方程。
知识点三:对称问题 例1.已知椭圆22:143xyE +=,试确定m 的取值范围,便得椭圆E 上存在不同的两点关于直线:4l y x m =+对称。
例2.直线l 经过点(1,1),若抛物线y 2=x 上存在两点关于直线l 对称,求直线l 斜率的取值范围.知识点四:利用方程求圆锥曲线的有关范围与最值例1、已知抛物线x y 42=,过点P (4,0)的直线与抛物线相交于),(),(2211y x B y x A 两点,则2221y y +的最小值是例2、过双曲线的一个焦点的直线垂直于一条渐近线,且与双曲线的两支相交,求该双曲线离心率的范围。
例3.设椭圆方程为1422=+yx ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最小值与最大值.例4.(2005年辽宁卷)如图所示,已知O 为坐标原点,(,0)(0)P a a >为x 轴上一动点,过点P 作直线交抛物线22(0)y px p =>于,A B 两点,tan ABC S t AO B ∆=⋅∠,试问:当a 为何值时,t 取得最小值,并求出这个最小值。
例5.给定双曲线2212yx -=.(1)过点(2,1)A 的直线l 与所给的双曲线交于12,P P ,求线段12P P 的中点P 的轨迹方程;(2)过点(1,1)B 能否作直线m ,使m 与所给的双曲线交于12,Q Q ,且B 是线段12Q Q 的中点?若存在,求出直线方程.如果不存在,请说明理由。
例6.已知双曲线22*21()4xy b N b-=∈的左右焦点分别为12,F F ,问双曲线上是否存在一点P ,使 (1)21212||||||PF PF F F ⋅=;(2)1225||||8F F PF <<≤同时成立?若存在,求出双曲线方程;若不存在,请说明理由。
例7、已知直线k x y +=2被抛物线y x 42=截得的弦长AB 为20,O 为坐标原点。
(1)求实数k 的值;(2)问点C 位于抛物线弧AOB 上何处时,△ABC 的面积最大?例8、过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程。
例9、已知定点A (-1,0),F (2,0),定直线l :x =12,不在x 轴上的动点P 与点F的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交直线l 于点M 、N(1)求E 的方程;(2)试判断以线段MN 为直径的圆是否过点F ,并说明理由。
巩固练习一、选择题1、椭圆22221()xya b a b+=>>0的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是A. 02⎛ ⎝⎦B. 10,2⎛⎤⎥⎝⎦C. )1,1D. 1,12⎡⎫⎪⎢⎣⎭2、到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 A. 直线B. 椭圆C. 抛物线D. 双曲线3、设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线F B 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为224、设1F 、2F 分别为双曲线22221(0,0)x y a b ab-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为A. 340x y ±=B. 350x y ±=C. 430x y ±=D. 540x y ±=5、已知椭圆2222:1(0)x yC a b ab+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A 、B 两点,若3AF FB =,则k =A. 1 D. 26、设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足。
如果直线AF 的斜率为3-,那么|PF|=A. B. 8C.D. 16二、填空题7、动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为 。
8、点00()A x y ,在双曲线221432xy-=的右支上,若点A 到右焦点的距离等于02x ,则0x =___ 。