函数的零点个数问题-含答案

合集下载

考点1零点的求法及零点的个数

考点1零点的求法及零点的个数

考点 1零点的求法及零点的个数题型 1:求函数的零点。

[例1]求函数 y x32x2x 2的零点.[ 解题思路 ] 求函数yx 32x 2x 2的零点就是求方程 x 32x 2x 2 0的根[解析]令 x32x2x 2 0,∴ x2 ( x 2) ( x 2) 0∴ (x 2)( x 1)( x 1) 0 ,∴x1或x 1或 x 2即函数yx32x 2x2的零点为 -1 ,1,2。

[ 反思归纳 ]函数的零点不是点,而是函数函数y f ( x) 的图像与x轴交点的横坐标,即零点是一个实数。

题型 2:确定函数零点的个数。

[例2]求函数 f(x)=lnx+2x - 6 的零点个数 .[ 解题思路 ] 求函数 f(x)=lnx+ 2x -6 的零点个数就是求方程 lnx + 2x -6=0 的解的个数[ 解析 ] 方法一:易证 f(x)= lnx+ 2x -6 在定义域(0,)上连续单调递增,又有 f (1) f (4)0,所以函数 f(x)= lnx + 2x-6 只有一个零点。

方法二:求函数 f(x)=lnx +2x- 6 的零点个数即是求方程lnx +2x- 6=0 的解的个数y ln x即求y62x 的交点的个数。

画图可知只有一个。

[ 反思归纳 ]求函数y f ( x)的零点是高考的热点,有两种常用方法:①(代数法)求方程f ( x)0的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数y f ( x)的图像联系起来,并利用函数的性质找出零点。

题型 3:由函数的零点特征确定参数的取值范围[ 例3] (2007 ·广东 ) 已知 a 是实数 , 函数f x2ax22x 3a, 如果函数y f x在区间1,1上有零点,求 a 的取值范围。

[ 解题思路 ] 要求参数 a 的取值范围,就要从函数y f x 在区间1,1 上有零点寻找关于参数 a 的不等式(组),但由于涉及到 a 作为x2的系数,故要对 a 进行讨论[ 解析]若a 0, f ( x)2x 3 ,显然在1,1上没有零点 ,所以a 0.48a 3a8a 224a4, 解得a37令2 a37y f x1,12时,上;①当恰有一个零点在②当f1 f 1a1a50 ,即1 a 5 时,yf x在1,1 上也恰有一个零点。

零点问题

零点问题

零点问题一、零点的定义1.函数f(x)=(x2-2)(x2-3x+2)的零点为______.答案:-2,2,1,22.已知函数f(x)=23x+1+a的零点为1,则实数a的值为______.解析:由已知得f(1)=0,即231+1+a=0,解得a=-12.二、函数零点所在区间的判断1、定义法1.函数f(x)=2x+3x的零点所在的一个区间是( )A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) 答案:B 2.函数f(x)=ln x+2x-6的零点所在的大致区间是( )A.(0,1) B.(1,2) C.(2,3) D.(3,4)解析:选C ∵y=ln x与y=2x-6在(0,+∞)上都是增函数,∴f(x)=ln x+2x-6在(0,+∞)上是增函数.又f(2)=ln 2-2<ln e-2<0,f(3)=ln 3>0.∴零点在区间(2,3)上,故选C.3.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是( ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)解析:选B ∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.4.已知函数f(x)=x3-x2+x2+14. 证明:存在x0∈⎝⎛⎭⎪⎫0,12,使f(x0)=x0.证明:令g(x)=f(x)-x.∵g(0)=14,g⎝⎛⎭⎪⎫12=f⎝⎛⎭⎪⎫12-12=-18,∴g(0)·g⎝⎛⎭⎪⎫12<0.又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上是连续曲线,∴存在x 0∈⎝⎛⎭⎪⎫0,12,使g (x 0)=0,即f (x 0)=x 0.2、图象法1.设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解析:选B 函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围.作图如下:可知f (x )的零点所在的区间为(1,2).故选B.三、判断函数零点个数1、方程法1.已知函数f (x )=⎩⎨⎧-2, x >0,-x 2+bx +c ,x ≤0,若f (0)=-2,f (-1)=1,则函数g (x )=f (x )+x 的零点个数为________.解析:依题意得⎩⎨⎧c =-2,-1-b +c =1,解得⎩⎨⎧b =-4,c =-2.令g (x )=0,得f (x )+x =0, 该方程等价于①⎩⎨⎧x >0,-2+x =0,或②⎩⎨⎧x ≤0,-x 2-4x -2+x =0,解①得x =2,解②得x =-1或x =-2, 因此,函数g (x )=f (x )+x 的零点个数为3. 2.已知函数f (x )=⎩⎨⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝ ⎛⎭⎪⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f [f (x )]+1的零点的个数是4,故选A.2、定义法1.已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:x 1 2 3 4 5 6y 124.4 33 -74 24.5 -36.7 -123.6则函数y =f (x )在区间[1,6]上的零点至少有( ) A .2个 B .3个 C .4个 D .5个解析:选B 依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.函数f (x )=e x +12x -2的零点有______个.解析:∵f ′(x )=e x +12>0,∴f (x )在R 上单调递增,又f (0)=1-2<0,f (1)=e -32>0,∴函数在区间(0,1)上有且只有一个零点.3、图像法1.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:12.函数f (x )=⎩⎨⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0解析:选B 法一:由f (x )=0得⎩⎨⎧x ≤0,x 2+x -2=0或⎩⎨⎧x >0,-1+ln x =0,解得x =-2或x =e. 因此函数f (x )共有2个零点. 法二:函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.3.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2 D .3解析:选 C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.4.(2017·郑州质检)已知函数f (x )=⎝ ⎛⎭⎪⎫12x -cos x ,则f (x )在[0,2π]上的零点个数为( ) A .1 B .2 C .3 D .4解析:选C 作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.5.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.四、已知函数有零点(方程有根)求参数取值范围1、直接法(定义法)1.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎢⎡⎦⎥⎤-1,-122.函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 因为函数f (x )=2x-2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0, 即a (a -3)<0.所以0<a <3.3.方程2x +3x =k 的解在[1,2)内,则k 的取值范围为______. 解析:令函数f (x )=2x +3x -k ,则f (x )在R 上是增函数. 当方程2x +3x =k 的解在(1,2)内时,f (1)·f (2)<0, 即(5-k )(10-k )<0,解得5<k <10. 当f (1)=0时,k =5. 答案:[5,10)2、分离参数法1、(2017·安庆摸底考试)若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,∴方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎪⎫2x -122-14,∵x ∈[-1,1],∴2x∈⎣⎢⎡⎦⎥⎤12,2,∴⎝ ⎛⎭⎪⎫2x -122-14∈⎣⎢⎡⎦⎥⎤-14,2.∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,2.2.(2016·宁夏育才中学第四次月考)已知函数f (x )=⎩⎨⎧e x+a ,x ≤0,3x -1,x >0(a ∈R),若函数f (x )在R 上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,0)解析:选D 当x >0时,f (x )=3x -1有一个零点x =13,所以只需要当x ≤0时,e x +a=0有一个根即可,即e x =-a .当x ≤0时,e x ∈(0,1],所以-a ∈(0,1],即a ∈[-1,0),故选D.3、数形结合法1.已知函数f (x )=⎩⎨⎧0,x ≤0,2x,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,0]∪(1,+∞)D .(-∞,1]∪(2,+∞) 解析:选C 函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,作出h (x )=⎩⎨⎧x ,x ≤0,2x+x ,x >0的图象,如图所示,观察它与直线y =m 的交点,得知当m ≤0或m >1时有交点,即函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是(-∞,0]∪(1,+∞).2.已知函数f (x )=⎩⎨⎧log 2x +1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是______.解析:函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x ),y =m 的交点有3个.画出函数y =f (x )的图象,则直线y =m 与其有3个公共点.又抛物线顶点为(-1,1),由图可知实数m 的取值范围是(0,1).3.函数f (x )=⎩⎨⎧2x-1,x ≥0,f x +1,x <0,若方程f (x )=-x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0)B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 函数f (x )=⎩⎨⎧2x-1,x ≥0,f x +1,x <0的图象如图所示,作出直线l :y =a -x ,向左平移直线l ,观察可得函数y =f (x )的图象与直线l :y =-x +a 的图象有两个交点,即方程f (x )=-x +a 有且只有两个不相等的实数根,即有a <1,故选C.五、方程根的分布问题1.已知关于x 的方程x 2+mx -6=0的一个根比2大,另一个根比2小,则实数m 的取值范围是______.解析:设函数f (x )=x 2+mx -6,则根据条件有f (2)<0,即4+2m -6<0,解得m <1. 答案:(-∞,1)2.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a . ①当-12a ≤-1,即0<a ≤12时,须使⎩⎨⎧f -1≤0,f 1≥0,即⎩⎨⎧a ≤5,a ≥1,∴无解.②当-1<-12a <0,即a >12时,须使⎩⎨⎧f ⎝ ⎛⎭⎪⎫-12a ≤0,f 1≥0,即⎩⎨⎧-12a -3-a ≤0,a ≥1,解得a ≥1,∴a 的取值范围是[1,+∞).。

专题01 零点个数问题(解析版)

专题01 零点个数问题(解析版)

专题01 零点个数问题专题概述本类问题题常以分段函数、抽象函数等为载体,考查函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等。

要注意函数零点、方程的根、不等式解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用.典型例题考向1 分段函数(或含绝对值函数)的零点个数问题【例1】(2020•漳州一模)已知函数21,1()43,1x e x f x x x x ⎧-<=⎨-+⎩,若y kx =与()f x 有三个公共点,则实数k 的取值范围是( ) A.4,1)e - B.4,0)(0,1)e - C.4,1)(1,1)e -D.4,0)(0,1)(1,1)e -【分析】如图所示,函数()f x 的图象,y kx =的图象.1x -→时,()1f x e →-,可得(1,1)A e -,1OA k e =-.1x <时,()1x f x e =-,()x f x e '=.1x 时,22()43(2)1f x x x x =-+=--,.假设()f x 与y kx =相切于原点时,01k e ==.结合图形可得k 范围,满足y kx =与()f x 有三个公共点.设直线y kx =与2()43(1)f x x x x =-+相切于点0(P x ,20043)x x -+,根据200004324x x x x -+=-,解得:0x ,可得斜率k .结合图形可得k 满足条件,使得y kx =与()f x 有三个公共点.【解答】解:如图所示,函数()f x 的图象,y kx =的图象. 1x -→时,()1f x e →-,可得(1,1)A e -,1OA k e =-.1x <时,()1x f x e =-,()xf x e '=.1x 时,22()43(2)1f x x x x =-+=--,()24f x x '=-.假设()f x 与y kx =相切于原点时,01k e ==.结合图形可得:11k e <<-时y kx =与()f x 有三个公共点.设直线y kx =与2()43(1)f x x x x =-+相切于点0(P x ,2043)x x -+, 则200004324x x x x -+=-,化为:203x =,解得:0x =4k =.结合图形可得:41k <<时,y kx =与()f x 有三个公共点.综上可得:41k <<,或11k e <<-时,y kx =与()f x 有三个公共点. 故选:C .【例2】(2019·郑州质量测试)已知函数f (x )=⎩⎪⎨⎪⎧e x -a ,x ≤0,2x -a ,x >0(a ∈R),若函数f (x )在R 上有两个零点,则实数a 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,1) D .(-∞,1]【答案】A【解析】画出函数f (x )的大致图象如图所示.因为函数f (x )在R 上有两个零点,所以f (x )在(-∞,0]和(0,+∞)上各有一个零点.当x ≤0时,f (x )有一个零点,需0<a ≤1;当x >0时,f (x )有一个零点,需-a <0,即a >0.综上,0<a ≤1.【变式训练】(2020•泉州一模)已知函数1,(0),()2,(0)x xe x f x x lnx x ⎧+=⎨-->⎩若函数()y f x a =-至多有2个零点,则a的取值范围是( ) A .1(,1)e -∞-B .1(,1)(1,)e-∞-+∞C .1(1,1)e--D .[1,1]e +【分析】利用导数判断出函数()f x 的图象,数形结合即可.【解答】解:当0x 时,()1x f x xe =+,则()(1)0x f x x e '=+=时,1x =-,则()f x 在(,1)-∞-上单调递减,在(1,0)-上单调递增,且当x →-∞时,()1f x →,1(1)1f e-=-;当0x >时,()2f x x lnx =--,则1()10f x x'=-=时,1x =,则()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,且f (1)1=-,函数()y f x a =-至多有2个零点等价于函数()f x 的图象与直线y a =的图象至多2个零点, 作出图象如下:由图可知,1a >时,图象有2个交点,满足; 111a e-时,图象有3个或4个交点,不满足; 11a e <-时,图象有2个或1个或0个交点,满足,故(a ∈-∞,11)(1e-⋃,)+∞,故选:B .考向2 复合函数的零点个数问题【例3】(2020•郑州一模)2|21|,1()log (1),1x x f x x x +<⎧=⎨->⎩,32515()244g x x x m =-++,若(())y f g x m =-有9个零点,则m 的取值范围是( ) A .(0,1)B .(0,3)C .5(1,)3D .5(,3)3【分析】求出函数()g x 的极值点,结合函数()y f x =的图象和()y g x =的图象,分类讨论,确定m 的范围. 【解答】解:令()t g x =,32515()244g x x x m =-++,2215151515()(2)(2)4244g x x x x x x x '=-=-=-, 当(,0)x ∈-∞,(2,)+∞时,函数()g x 递增,当(0,2)x ∈时,函数()g x 递减, 函数()g x 有极大值(0)2g m =+,极小值g (2)3m =-, 若(())y f g x m =-有9个零点,画出图象如下:观察函数()y f t =与y m =的交点,当0m <时,1t >,此时函数()y f t =与y m =最多有3个交点,故不成立,当0m =时,112t =-,22t =,(0)2g =,g (2)3=-,1()g x t =,有三个解,()2g x =有2个解,共5个解不成立;当3m >时,显然不成立;故要使函数有9个零点,03m <<,根据图象,每个y t =最多与()y g x =有三个交点,要有9个交点,只能每个t 都要有3个交点,当03m <<,()y f t =与y m =的交点,1122t -<<-,2112t -<<,329t <<,(0)2(2g m =+∈,5),g (2)3(3,0)m =-∈-,当322t m <<+时,由233(1),21m log t m t -==+,即2212m m <+<+时,得01m <<时,323t <<时3()x t =,有三个解, 2()g x t =,要有三个解132m -<-,即52m <,1()g x t =有三个解32m -<-,即1m <,综上,(0,1)m ∈, 故选:A .【例4】(2019·湖北重点中学联考)已知函数()x f x xe =,若关于x 的方程()()()2230f x tf x t R -+=∈有两个不等实数根,则t 的取值范围为__________.【答案】1322e e ⎫+⎪⎭【解析】xy xe =,易知()x f x xe =的图象如下:()11f e-=, 令()f x k =,则2230k tk -+=,得32,0t k k k=+>, 当()f x k =有两个不等实根是,则1k e>,所以123t e e <<+,即t 的取值范围是1322e e ⎫+⎪⎭。

函数零点的题型总结

函数零点的题型总结

函数零点的题型总结例题及解析考点一函数零点存在性定理的应用【例1】已知函数f(x)=(12)x-13x,那么在下列区间中含有函数f(x)零点的是( )(A)(0,13) (B)(13,12)(C)(12,23) (D)(23,1)解析:f(0)=1>0,f(13)=(12)13-(13)13>0,F(12)=(12)12-(12)13<0,f(13)f(12)<0,所以函数f(x)在区间(13,12)内必有零点,选B.【跟踪训练1】已知函数f(x)=2x-log3x,在下列区间中包含f(x)零点的是( )(A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4)解析:由题意,函数f(x)=2x-log3x为单调递减函数,且f(2)= 22-log32=1-log32>0,f(3)= 23-log33=-13<0,所以f(2)·f(3)<0,所以函数f(x)=2x-log3x在区间(2,3)上存在零点,故选C.【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( )(A)[0,1] (B)[-1,0](C)[0,2] (D)[-1,1]解析:f(1)=ln 2>0,当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D;当a=2时,f(12)=ln 32-12<0,所以f(x)在(12,1)上至少有一个零点,舍去C.因此选A.考点二函数零点的个数考查角度1:由函数解析式确定零点个数【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( )(A)5 (B)4 (C)3 (D)2(2)已知f(x)=2xx +x-2x,则y=f(x)的零点个数是( )(A)4 (B)3 (C)2 (D)1解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π2,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B.解析:(2)令2xx +x-2x=0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.考查角度2:根据函数零点个数确定参数范围 【例3】 (1)已知函数f(x)= 24,1,ln 1,1,x x a x x x ⎧-+⎪⎨+≥⎪⎩<若方程f(x)=2有两个解,则实数a 的取值范围是( ) (A)(-∞,2) (B)(-∞,2] (C)(-∞,5) (D)(-∞,5] (2)已知函数f(x)= 3,2,1e ,20x xa x x a x x ⎧--≤-⎪⎪+⎨⎪--⎪⎩<<恰有3个零点,则实数a 的取值范围为( )(A)(-1e ,-13) (B)(-1e ,-21e) (C)[-23,-21e ) (D)[-23,-13)解析:(1)可知x ≥1时,f(x)=2必有一解,x=e,所以只需x<1时f(x)=2有一解即可,即x 2-4x+a=2有解,设g(x)=x 2-4x+a-2,由于该函数的对称轴为直线x=2,故只需g(1)=-3+a-2<0,即a<5,故实数a 的取值范围是(-∞,5).选C. 解析:(2)-1x x +-3a=-111x x +-+-3a=1x x +-1-3a,在(-∞,-2]上单调递减.若a≥0,则e x -a x在(-2,0)上递增,那么零点个数至多有一个,不符合题意,故a<0.故需f(x)当x ≤-2时,-1-3a>0,a<-13,且121-+-1-3a ≤0,a ≥-23,使得第一段有一个零点,故a ∈[-23,-13).对于第二段,e x -a x=e xx a x -,故需g(x)=xe x -a 在区间(-2,0)有两个零点,g ′(x)=(x+1)e x ,故g(x)在(-2,-1)上递减,在(-1,0)上递增,所以(2)0,(1)0,(0)0,g g g -⎧⎪-⎨⎪⎩><>解得-22e >a>-1e.综上所述,a ∈(-1e ,-13).故选A.【题组通关】1.若函数f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( C ) (A)(0,4) (B)(0,+∞)(C)(3,4) (D)(3,+∞)解析:如图,若f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a ∈(3,4),故选C.2.已知偶函数f(x)= 4log,04,(8),48,x x f x x ⎧≤⎪⎨-⎪⎩<<<且f(x-8)=f(x),则函数F(x)=f(x)-12x在区间[-2 018,2 018]的零点个数为( A )(A)2 020 (B)2 016 (C)1 010 (D)1 008解析:依题意,当4<x<8时,f(x)=f(8-x)对称轴为直线x=4,由f(x-8)=f(x)可知,函数f(x)的周期T=8. 令F(x)=0,可得f(x)=12x,求函数F(x)=f(x)-12x的零点个数,即求偶函数f(x)与函数y=12x图象交点个数,当0<x<8时,函数f(x)与函数y=12x图象有4个交点,2 018=252×8+2由f(2)=|log 42|=12>212=14知, 当0<x<2时函数f(x)与函数y=12x图象有2个交点.故函数F(x)的零点个数为(252×4+2)×2=2 020, 故选A.3.已知函数f(x)= 31,1,,1,x xx x ⎧≥⎪⎨⎪⎩<若关于x 的方程f(x)=k 有两个不同零点,则k 的取值范围是 . 解析:作出f(x)=31,1,,1x xx x ⎧≥⎪⎨⎪⎩<的函数图象如图所示.方程f(x)=k 有两个不同零点,即y=k 和f(x)= 31,1,1x x x x ⎧≥⎪⎨⎪⎩<的图象有两个交点,由图可得k 的取值范围是(0,1). 答案:(0,1)【教师备用 巩固训练2】 已知函数f(x)=32233,2,4(56),2,x x x x x x ⎧-+⎪⎨--+≥⎪⎩<则函数f(f(x))的零点个数为( ) (A)6 (B)7 (C)8 (D)9 解析:画出函数的图象,如图所示,令f(x)=t,因为f(f(x))=0则f(t)=0,由图象可知,f(t)=0有四个解,分别为t 1=2,t 2=3,-1<t 3<0,1<t 4<2, 由图象可知,当t 1=2时,f(x)=2有两个根,即函数f(f(x))有2个零点; 由图象可知,当t 2=3时,f(x)=3有一个根,即函数f(f(x))有1个零点;由图象可知,当-1<t 3<0时,f(x)=t 有三个根,即函数f(f(x))有3个零点;由图象可知,当1<t 4<2时,f(x)=t 有两个根,即函数f(f(x))有2个零点;综上所述,函数f(f(x))有8个零点. 考点三 函数零点的性质考查角度1:求零点的代数式的取值或取值范围 【例4】 (1)已知函数f(x)=122log ,022,0,x x x x x ⎧⎪⎨⎪++≤⎩>函数F(x)=f(x)-b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则43x x -2213232x x x x +的取值范围是( )(A)(2,+∞) (B)(174,25716] (C)[2,174) (D)[2,+∞) (2)已知函数f(x)是定义域为R 的偶函数,且满足f(12+x)=f(32-x),当x ∈[-1,0]时,f(x)=-x.若函数F(x)=f(x)+412x x +-,则在区间[-9,10]上的所有零点之和为 . 解析:(1)f(x)=122log ,0,22,0x x x x x ⎧⎪⎨⎪++≤⎩>=122log ,0,(11,0x x x x ⎧⎪⎨⎪++≤⎩>), 由二次函数的对称性可得x 1+x 2=-2,由12log x 3=-12log x 4可得x 3x 4=1,函数F(x)=f(x)-b 有四个不同的零点,等价于y=f(x)的图象与y=b 的图象有四个不同的交点,画出y=f(x)的图象与y=b 的图象,由图可得1<b ≤2,所以1<12log x 3≤2⇒x 3∈[14,12),所以43x x -2123()2x x x +=43x x +23x =231x+23x , 令t=23x ∈[116,14), 所以1t +t ∈(174,25716],故选B. 解析:(2)因为满足f(12+x)=f(32-x), 所以f(x)=f(2-x), 又因函数f(x)为偶函数,所以f(x)=f(-x)=f(2+x),即f(x)=f(2+x),所以T=2,令F(x)=0,f(x)=421x x +-,即求f(x)与y=421x x +-交点横坐标之和.y=421x x +-=12+9221x -, 作出图象如图所示.由图象可知有10个交点,并且关于(12,12)中心对称, 所以其和为102=5. 答案:(1)B (2)5考查角度2:隐性零点的性质 【例5】已知函数f(x)= ln(1),0,11,0,2x x x x +⎧⎪⎨+≤⎪⎩>若m<n,且f(m)=f(n),则n-m 的取值范围为( )(A)[3-2ln 2,2) (B)[3-2ln 2,2] (C)[e-1,2) (D)[e-1,2]解析:作出函数f(x)的图象,如图所示,若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e-1, 则满足0<n ≤e-1, -2<m ≤0,则ln(n+1)=12m+1,即m=2ln(n+1)-2,则n-m=n+2-2ln(n+1), 设h(n)=n+2-2ln(n+1),0<n ≤e-1,则h ′(n)=1-21n +=11n n -+, 当h ′(n)>0,解得1<n ≤e-1,当h ′(n)<0,解得0<n<1,当n=1时,函数h(n)取得最小值h(1)=1+2-2ln(1+1)=3-2ln 2,当n=0时,h(0)=2-2ln 1=2;当n=e-1时,h(e-1)=e-1+2-2ln(e-1+1)=e-1<2,所以3-2ln 2≤h(n)<2,即n-m的取值范围是[3-2ln 2,2),故选A.【题组通关】1.已知a>1,方程12e x+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则21x+22x+2x1x2的取值范围为( A ) (A)(1,+∞) (B)(0,+∞)(C)(12,+∞) (D)(12,1)解析:方程12e x+x-a=0的根,即y=12e x与y=a-x图象交点的横坐标,方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标, 而y=12e x与y=ln 2x的图象关于直线y=x对称,如图所示.所以x1+x2=a,所以21x +22x +2x 1x 2=(x 1+x 2)2=a 2,又a>1,所以21x +22x +2x 1x 2>1,故选A2.已知函数f(x)= 42log ,04,1025,4,x x x x x ⎧≤⎪⎨-+⎪⎩<>若a,b,c,d 是互不相同的正数,且f(a)=f(b)=f(c)=f(d),则abcd 的取值范围是( A ) (A)(24,25) (B)(18,24) (C)(21,24) (D)(18,25)解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.考点四 函数零点的应用【例6】 (1)已知α,β分别满足α·e α=e 2,β(ln β-2)=e 4,则αβ的值为( )(A)e (B)e 2 (C)e 3 (D)e 4 (2)已知f(x)=9x-t ·3x,g(x)=2121x x -+,若存在实数a,b 同时满足g(a)+g(b)=0和f(a)+f(b)=0,则实数t 的取值范围是 . 解析:(1)因为α·e α=e 2,所以e α=2e α, 因为β(ln β-2)=e 4,所以ln β-2=4e β,所以ln β-ln e 2=4e β,所以ln 2e β=4e β=22e e β. 所以α,2e β分别是方程ex=2e x ,ln x=2e x的根,因为点(α,2e α)与点(2e β,4e β)关于直线y=x 对称, 所以α=4e β,所以αβ=e 4.故选D.解析:(2)因为g(-x)=2121x x ---+=1212xx-+=-2121x x -+=-g(x),所以函数g(x)为奇函数, 又g(a)+g(b)=0,所以a=-b. 所以f(a)+f(b)=f(a)+f(-a)=0有解, 即9a -t ·3a +9-a -t ·3-a =0有解, 即t=9933a a aa--++有解.令m=3a+3-a(m ≥2),则9933a aa a--++=22m m-=m-2m ,因为ϕ(m)=m-2m 在[2,+∞)上单调递增,所以ϕ(m)≥ϕ(2)=1.所以t ≥1.故实数t 的取值范围是[1,+∞). 答案:(1)D 答案:(2)[1,+∞)【跟踪训练2】函数f(x)的定义域为D,若满足:①f(x)在D 内是单调函数;②存在[a,b]⊆D 使得f(x)在[a,b]上的值域为[2a ,2b ],则称函数f(x)为“成功函数”.若函数f(x)=log m (m x +2t)(其中m>0,且m ≠1)是“成功函数”,则实数t 的取值范围为( ) (A)(0,+∞) (B)(-∞,18] (C)[18,14) (D)(0,18] 解析:无论m>1还是0<m<1,f(x)=log m (m x +2t)都是R 上的单调增函数,故应有(),2(),2a f a b f b ⎧=⎪⎪⎨⎪=⎪⎩则问题可转化为求f(x)=2x ,即f(x)=log m (m x +2t)=2x,即m x+2t=12x m在R上有两个不相等的实数根的问题,令λ=12x m (λ>0),则m x+2t=12x m可化为2t=λ-λ2=-(λ-12)2+14,结合图形可得t∈(0,18].故选D.。

函数零点的个数问题

函数零点的个数问题

2x 2 x
2
2m
2x 2 x 2m2 8
0,利用换元设
t 2x 2x ( t 2 ),则问题转化为只需让方程 t2 2mt 2m2 8 0 存在大于等于 2 的解
即可,故分一个解和两个解来进行分类讨论。设 g t t2 2mt 2m2 8 0 。
(1)若方程有一个解,则有相切(切点 x m 大于等于 2)或相交(其中交点在 x 2 两侧),
3:已知函数
f
x
kx ln x,
2, x x
0
0k
R
,若函数
y
f x k 有三个零点,则实数 k
的取值范围是(

A. k 2
B. 1 k 0
C. 2 k 1
D. k 2
思路:函数 y f x k 有三个零点,等价于方程 f x k 有三个不同实数根,进而等
价于 f x 与 y k 图像有三个不同交点,作出 f x 的图像,则 k 的正负会导致 f x 图
A.
ln 3 3
,
1 e
B.
ln 3 9
,
1 3e
C.
ln 3 9
,
1 2e
D.
ln 3 9
,
ln 3 3
思路:
f x
f 3x
f x
f
x 3
,当
x
3,
9
时,
f
x
f
x 3
ln
x 3
,所以
- 4 - / 18
ln x,1 x 3
f
x
ln
x ,3 3
x
,而 g x
9
f
区间 a,b 内至少有函数 f x 的一个零点,即至少有一点 x0 a,b ,使得 f x0 0 。 (1) f x 在a,b 上连续是使用零点存在性定理判定零点的前提

高中数学讲义微专题10 函数零点的个数问题

高中数学讲义微专题10  函数零点的个数问题

微专题10 函数零点的个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系 设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

零点个数怎么求

零点个数怎么求

零点个数怎么求①解方程:通过解方程 f(x)=0 得到零点;②数形结合:这是经常用到的分析方法,特别是选填题中得到广泛应用;③零点存在定理:用零点存在定理来确定某区间是否有零点,这是解答题中的重要方法;④求零点个数:求零点个数时,就要判断每个单调区间,同时还要判断个单调区间的零点存在性.而具体解答题的过程中,我们也会遇到函数较复杂,先将复杂问题转化为简单问题,再选择合适的方法来求零点.我们来看一个具体的例子.【例1】(2018全国2卷文数21-2)已知函数f(x)=\frac{1}{3}x^3-a(x^2+x+1),证明: f(x) 只有一个零点.【分析】 f(x) 是一个含参的三次函数,貌似是一个三次函数求零点个数问题,但是带着参数问题就变复杂了,所以这个时候可以转化一下,分离参数为求: a=\frac{x^3}{3(x^2+x+1)} 的解个数问题.进一步转化为函数g(x)=\frac{x^3}{3(x^2+x+1)}-a的零点个数问题.【解析】因为 x^2+x+1>0 恒成立.所以 f(x) 零点个数等价于函数函数g(x)=\frac{x^3}{3(x^2+x+1)}-a的零点个数问题.先判断 g(x) 单调性,用导数法:g'(x)=\frac{3x^2(x^2+x+1)-x^3(2x+1)}{3(x^2+x+1)^2}=\frac{x^2(x^2+2x+3)}{3(x^2+x+ 1)^2}\geq0 ,当且仅当 x=0 时 g'(x)=0 ,g(x) 单调递增.所以 g(x) 至多有一个零点,从而 f(x)至多有一个零点.又因为 f(3a+1)=\frac{1}{3}>0 , f(3a-1)=-6a^2+2a-\frac{1}{3}=-6(a-\frac{1}{6})^2-\frac{1}{6}<0 ,所以 f(x) 恰有一个零点.【小结】分离参数读者们应该还好理解,为什么要选择f(3a+1),f(3a-1) 就是一脸懵了.这属于找点的内容(内点定理),我们后面专门花章节来讲解这个内容.我们还是先理解零点存在定理的应用.本节我们重点讲解求零点个数问题的求法,近年高考也是热点题型,也是我们零点问题将面临的重点问题.【例2】(2019全国2卷理数20-1改编)已知函数f(x)=lnx-\frac{x+1}{x-1} ,求 f(x) 的零点个数.【分析】求零点个数问题,我们要求函数的单调区间,然后判断每一个单调区间的零点存在性.【解析】 f(x) 定义域为 (0,1)\cup(1,+\infty) ,而f(x)=lnx-1-\frac{2}{x-1} ,由和差法: y=lnx 和 y=-\frac{1}{x-1} 在(0,1)\cup(1,+\infty)上都是单调递增了,所以 f(x) 在(0,1)\cup(1,+\infty)单调递增;在 (0,1) 上 f(x) 单调递增,当 \frac{1}{3}<x<1 时,f(x)>f(\frac{1}{3})=\frac{2}{1-\frac{1}{3}}-1-ln3>\frac{2}{1-\frac{1}{3}}-3=0 ,当 0<x<\frac{1}{e^2} 时,f(x)<f(\frac{1}{e^2})=\frac{2}{1-\frac{1}{e^2}}-3<\frac{2}{1-\frac{1}{3}}-3=0 ,由零点存在定理和单调性, f(x) 在 (0,1) 有唯一零点,在 (1,+\infty) 上 f(x) 单调递增,当 1<x<3 时, f(x)<f(3)=ln3-2<0 ,当 x>e^2 时, f(x)>f(e^2)=1-\frac{2}{e^2-1}>1-\frac{2}{3-1}=0 ,所以 f(x) 在 (1,+\infty)有唯一零点.综上, f(x) 在定义域上有两个零点.【例3】(2019全国1卷文数20-1改编)已知函数h(x)=cosx+xsinx-1 ,证明: h(x) 在区间 (0,\pi) 存在唯一零点.【分析】让我确定零点个数,需要结合单调区间和零点存在定理来证明.【解析】给定了定义域区间为 (0,\pi) ,用导数法判断单调性: h'(x)=xcosx ,判正负区间: h'(x) 正负区间同 y=cosx ,易知在(0,\frac{\pi}{2}) 上 h'(x)>0,h(x) 单调递增;在(\frac{\pi}{2},\pi) 上, h'(x)<0,h(x) 单调递减.而 h(0)=0,h(\frac{\pi}{2})=\frac{\pi}{2}-1>0,h(\pi)=-2<0 ,由零点存在定理和单调性,所以在(0,\frac{\pi}{2})上 h(x) 无零点,在 (\frac{\pi}{2},\pi) 上有唯一零点.得证.【例4】(2015全国1卷文书21-1)设函数 f(x)=e^{2x}-alnx .讨论 f(x) 的导函数 f'(x) 零点的个数.【分析】先求出 f'(x) 及定义域,通过判断 f'(x) 单调性和零点存在性来确定零点个数.【解析】 f'(x)=2e^{2x}-\frac{a}{x}(x>0) .①当 a\leq0 时,显然 f'(x)>0 恒成立,无零点.②当 a>0 时,判断 f'(x) 的单调性,用和差法:y=2e^{2x},y=-\frac{a}{x} 都是在 (0,+\infty) 上的单调递增函数,所以 f'(x) 单调递增.当 x>max(1,\frac{a}{2e^2}) 时, f'(x)>2e^2-2e^2=0 ,当 x<min(1,\frac{a}{2e^2}) 时, f'(x)<2e^2-2e^2=0 ,所以此时 f'(x) 有唯一零点,综上,当 a\leq0 , f'(x) 无零点,当 a>0 时,有唯一零点.【例5】(2015广东理数19-2)设 a>1 ,函数f(x)=(1+x^2)e^x-a .证明 :f(x) 在 (-\infty,+\infty) 上仅有一个零点.【分析】还是求零点个数问题,用单调性+存在性来求解.【解析】 f(x) 的单调性,用求导法:f'(x)=e^x(x+1)^2\geq0 ,当且仅当 x=-1 时, f'(x)=0 ,所以 f(x) 是定义域上的单调递增函数.当 x>lna 时, f(x)>f(lna)>0 .当 -\sqrt{e-1}<x<-1 时,f(x)<\frac{e}{e}-a<0 ,由零点存在性定理及单调性,得证::f(x) 在 (-\infty,+\infty) 上仅有一个零点.【总结】通过上面五题,是否明白求解零点个数问题的基本方法,如果遇到复杂函数,分参转化为新函数的零点个数问题不失为一种思路;具体求解过程,先判断函数的单调性,再确定每个单调区间函数的零点存在性.但是对于开区间上零点的存在,往往很难通过取点来确定函数值的符号,我们也不容易用极限的思想来解释。

专题十四 函数的零点问题(1)(解析版)

专题十四 函数的零点问题(1)(解析版)

专题十四函数的零点问题(1)1.函数零点的定义一般地,对于函数y=f(x)(x∈D),我们把方程f(x)=0的实数根x称为函数y=f(x)(x∈D)的零点.注:函数的零点不是一个“点”,而是方程f(x)=0的实根.2.函数零点存在性定理设函数f(x)在闭区间[a,b]上连续,且f(a) f(b)<0,那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点x0∈(a,b),使得f(x0)=0.注:(1)f(x)在[a,b]上连续是使用零点存在性定理判定零点的前提.(2)零点存在性定理中的几个“不一定”与“一定”(假设f(x)连续).①若f(a) f(b)<0,则f(x)“一定”存在零点,但“不一定”只有一个零点,可以有多个.要分析f(x)的性质与图象,如果f(x)单调,则“一定”只有一个零点.因此分析一个函数零点的个数前,可尝试判断函数是否单调.②若f(a) f(b)>0,则f(x)在[a,b]“不一定”存在零点,也“不一定”没有零点.如果f(x)单调,那么“一定”没有零点.③若f(x)在(a,b)有零点,则f(a) f(b)的符号是不确定的,“不一定”必须异号.受函数性质与图象影响.如果f(x)单调,则f(a) f(b)一定小于0.3.函数的零点,方程的根,两图象交点之间的联系设函数为y=f(x),则f(x)的零点即为满足方程f(x)=0的根,若f(x)=g(x)-h(x),则方程可转变为g(x)=h(x),即方程的根在坐标系中为g(x),h(x)交点的横坐标,其范围和个数可从图象中得到.由此看来,函数的零点,方程的根,两图象的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化.注:函数零点,方程的根,两图象交点的相互转化:有关零点个数及性质的问题会用到这三者的转化,且这三者各具特点:(1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点.(2)方程的根:当所给函数不易于分析性质和图象时,可将函数转化为方程,方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两个可分析的函数,为作图做好铺垫.(3)两图象的交点:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围.数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x的函数可作出图象,那么因为另外一个只含参数的图象为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡.4.常用结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.考点一 函数零点所在区间的判定问题 【方法总结】判断函数零点(方程的根)所在区间的方法(1)解方程法:当函数对应方程易解时,可通过解方程判断方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内.例如:对于方程ln x +x =0,无法直接求出根,构造函数f (x )=ln x +x ,由f (1)>0,1()2f <0即可判定其零点必在(12,1)中.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.【例题选讲】[例1] (1)已知函数f (x )的图象是连续不断的,且有如下对应值表:在下列区间中,函数f (x )必有零点的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案 B 解析 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数在(2,3)内有零点.(2)若函数f (x )唯一的零点同时在区间(0,16),(0,8),(0,4),(0,2)内,那么下列命题正确的是( ) A .函数f (x )在区间(0,1)内有零点 B .函数f (x )在区间(0,1)或(1,2)内有零点 C .函数f (x )在区间[2,16)上无零点 D .函数f (x )在区间(1,16)内无零点 答案 C 解析 由题意可确定f (x )唯一的零点在区间(0,2)内,故在区间[2,16)内无零点. (3)函数f (x )=e x +2x -3的零点所在的一个区间为( )A .(-1,0)B .(0,12)C .(12,1)D .(1,32)答案 C 解析 ∵1()2f =12e -2<0,f (1)=e -1>0,∴零点在(12,1)上,故选C .(4)已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x +x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 B 解析 ∵实数a ,b 满足2a =3,3b =2,∴a =log 23>1,0<b =log 32<1,∵函数f (x )=a x +x -b ,∴f (x )=(log 23)x +x -log 32单调递增,∵f (0)=1-log 32>0,f (-1)=log 32-1-log 32=-1<0,∴根据函数的零点判定定理得出函数f (x )=a x +x -b 的零点所在的区间为(-1,0).故选B .(5)函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)答案 B 解析 f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2x >0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83.因为8=22≈2.828>e ,所以8>e 2,即ln8>2,即f (3)<0.又f (4)=12-ln3<0,所以f (x )在(2,3)内存在一个零点.(6)设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点答案 D 解析 由f (x )=13x -ln x (x >0)得f ′(x )=x -33x ,令f ′(x )>0得x >3,令f ′(x )<0得0<x <3,令f ′(x )=0得x =3,所以函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x =3处有极小值1-ln 3<0,又f (1)=13>0,f (e)=e 3-1<0,1()f e =13e +1>0,所以f (x )在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点.故选D .【对点训练】1.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为________.1.答案 (1,2) 解析 据题意令f (x )=e x -x -2,由于f (1)=e 1-1-2=2.72-3<0,f (2)=e 2-4=7.39- 4>0,故函数在区间(1,2)内存在零点,即方程在相应区间内有根. 2.已知自变量和函数值的对应值如下表:则方程2x =x 2的一个根位于区间( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)2.答案 C 解析 令f (x )=2x ,g (x )=x 2,因为f (1.8)=3.482,g (1.8)=3.24,f (2.2)=4.595,g (2.2)=4.84.令 h (x )=2x -x 2,则h (1.8)>0,h (2.2)<0.故选C .3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)3.答案 A 解析 ∵a <b <c ,∴f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函 数零点存在性定理可知:在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点;因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 4.函数f (x )=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)4.答案 C 解析 方法一 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函 数f (x )=e x +x -2的零点所在的一个区间是(0,1),选C .方法二 函数f (x )=e x +x -2的零点,即函数y =e x 的图象与y =-x +2的图象的交点的横坐标,作出函数y =e x 与直线y =-x +2的图象如图所示,由图可知选C . 5.在下列区间中,函数f (x )=e -x +4x -3的零点所在的区间可能为( )A .⎝⎛⎭⎫-14,0B .⎝⎛⎭⎫0,14C .⎝⎛⎭⎫14,12D .⎝⎛⎭⎫12,34 5.答案 D 解析 函数f (x )=e -x +4x -3是连续函数,又因为1()2f =1e -1<0,3()4f =14e 3+3-3>0,所以1()2f 3()4f ⋅<0,故选D .6.若x 0是方程131()2x x =的解,则x 0属于区间( )A .⎝⎛⎭⎫23,1B .⎝⎛⎭⎫12,23C .⎝⎛⎭⎫13,12D .⎝⎛⎭⎫0,13 6.答案 C 解析 令g (x )=1()2x ,f (x )=13x ,则g (0)=1>f (0)=0,11321111()()()()2222g f =<=,1311()()32g =1311()()33f >=,所以由图象关系可得13<x 0<12.7.已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)7.答案 B 解析 因为a >1,0<b <1,f (x )=a x +x -b ,所以f (-1)=1a -1-b <0,f (0)=1-b >0,所以f (-1)·f (0)<0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点.8.若函数y =f (x )(x ∈R )是奇函数,其零点分别为x 1,x 2,…,x 2 017,且x 1+x 2+…+x 2 017=m ,则关于x 的方程2x +x -2=m 的根所在区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.答案 A 解析 因为函数y =f (x )(x ∈R )是奇函数,故其零点x 1,x 2,…,x 2 017关于原点对称,且其中 一个为0,所以x 1+x 2+…+x 2 017=m =0.则关于x 的方程为2x +x -2=0,令h (x )=2x +x -2,则h (x )为(-∞,+∞)上的增函数.因为h (0)=20+0-2=-1<0,h (1)=21+1-2=1>0,所以关于x 的方程2x+x -2=m 的根所在区间是(0,1).9.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)9.答案 C 解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).10.函数f (x )=ln x -2x2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.答案 B 解析 易知f (x )=ln x -2x 2在定义域(0,+∞)上是增函数,又f (1)=-2<0,f (2)=ln 2-12>0.根据零点存在性定理,可知函数f (x )=ln x -2x 2有唯一零点,且在区间(1,2)内.11.函数f (x )=12ln x +x -1x-2的零点所在的区间是( )A .⎝⎛⎭⎫1e ,1 B .(1,2) C .(2,e) D .(e ,3)11.答案 C 解析 易知f (x )在(0,+∞)上单调递增,且f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0.∴f (2)f (e)<0,故f (x )的零点在区间(2,e)内.12.已知函数f (x )=log a x +x -b (a >0且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.12.答案 2 解析 对于函数y =log a x ,当x =2时,可得y <1,当x =3时,可得y >1,在同一坐标系中画出函数y =log a x ,y =-x +b 的图象,判断两个函数图象的交点的横坐标在(2,3)内,∴函数f (x )的零点x 0∈(n ,n +1)时,n =2.考点二 简单函数(方程)零点(解)的个数判断 【方法总结】函数零点个数的判断方法(1)解方程法:令f (x )=0,如果能求出解,则方程解的个数即为函数零点的个数.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点所具有的性质.(3)数形结合法:对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题.即将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.【例题选讲】[例2] (1)(2018·全国Ⅲ)函数f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]的零点个数是________. 答案 3 解析 由题意知,cos ⎝⎛⎭⎫3x +π6=0,所以3x +π6=π2+k π,k ∈Z ,所以x =π9+k π3,k ∈Z ,当k =0时,x =π9;当k =1时,x =4π9;当k =2时,x =7π9,均满足题意,所以函数f (x )在[0,π]的零点个数为3.(2)函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0答案 B 解析 法一 由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e .因此函数f (x )共有2个零点.法二 函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.(3)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为( )A .1B .2C .3D .4答案 C 解析 g (x )=f (1-x )-1=⎩⎪⎨⎪⎧ (1-x )2+2(1-x )-1,1-x ≤0,|lg(1-x )|-1,1-x >0=⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,|lg(1-x )|-1,x <1,易知当x ≥1时,函数g (x )有1个零点;当x <1时,函数g (x )有2个零点,所以函数g (x )的零点共有3个,故选C .(4)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是 .答案 2 解析 当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上,f (x )有一个零点;当x >0时,f ′(x )=2+1x >0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(5)函数f (x )=12x -1()2x的零点个数为( )A .0B .1C .2D .3答案 B 解析 函数f (x )=12x -1()2x 的零点个数是方程12x -1()2x =0的解的个数,即方程12x =1()2x的解的个数,也就是函数y =12x 与y =1()2x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图所示,可得交点个数为1.(6)函数f (x )=3x |ln x |-1的零点个数为( )A .1B .2C .3D .4答案 B 解析 函数f (x )=3x |ln x |-1的零点数的个数即函数g (x )=|ln x |与函数h (x )=1()3x 图象的交点个数.作出函数g (x )=|ln x |和函数h (x )=1()3x 的图象,由图象可知,两函数图象有两个交点,故函数f (x )=3x |ln x |-1有2个零点.(7)已知函数f (x )=1()2x -cos x ,则f (x )在[0,2π]上的零点个数为________.答案 3 解析 如图,作出g (x )=1()2x 与h (x )=cos x 的图象,可知其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3.(8)(2015湖北)函数f (x )=2sin x sin ⎝⎛⎭⎫x +π2-x 2的零点个数为__________. 答案 2 解析 函数f (x )=2sin x sin ⎝⎛⎭⎫x +π2-x 2的零点个数等价于方程2sin x sin ⎝⎛⎭⎫x +π2-x 2=0的根的个数,即函数g (x )=2sin x sin ⎝⎛⎭⎫x +π2=2sin x cos x =sin 2x 与h (x )=x 2的图象交点个数.分别画出两函数图象,如图,由图可知,函数g (x )与h (x )的图象有2个交点.故零点个数为2.【对点训练】13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .313.答案 C 解析 解法1 令f (x )+3x =0,则⎩⎪⎨⎪⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x+3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.故选C .解法2 函数y =f (x )+3x 的零点个数就是y =f (x )与y =-3x 两个函数图象的交点个数,如图所示,由函数的图象可知,零点个数为2.14.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A .12,0B .-2,0C .12D .014.答案 D 解析 当x ≤1时,令f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x=12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0. 15.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点的个数为( )A .2B .3C .4D .515.答案 A 解析 当x <0时,f (2-x )=x 2,此时函数f (x )-g (x )=-1-|x |+x 2的小于零的零点为x =-1+52;当0≤x ≤2时,f (2-x )=2-|2-x |=x ,函数f (x )-g (x )=2-|x |+x -3=-1无零点;当x >2时,f (2-x )=2-|2-x |=4-x ,函数f (x )-g (x )=(x -2)2+4-x -3=x 2-5x +5大于2的零点有一个.因此函数y =f (x )-g (x )共有零点2个.16.设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( )A .4B .3C .2D .116.答案 C 解析 易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,∴x ≥0时,f (x )在(0,+∞)上是增函数,且f (1)=0,∴x =1是函数y =f (x )在(0,+∞)上唯一零点.从而x =-1是y =f (x )在(-∞,0)内的零点.故y =f (x )有两个零点.17.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( )A .0B .1C .2D .317.答案 C 解析 由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示.由图可知函数f (x )在定义域内的零点个数为2.18.函数f (x )=|log 2x |+x -2的零点个数为( )A .1B .2C .3D .418.答案 B 解析 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,在同一坐标平面上画出两函数的图象,如图所示.由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的根的个数为2.19.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点19.答案 B 解析 当x ∈(]0,1时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos 1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B . 20.函数f (x )=4cos 2x2·cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为__________. 20.答案 2 解析 f (x )=2(1+cos x )sin x -2sin x -|ln(x +1)|=sin 2x -|ln(x +1)|,x >-1,函数f (x )的零点个数即为函数y 1=sin 2x (x >-1)与y 2=|ln(x +1)|(x >-1)的图象的交点个数.分别作出两个函数的图象,如图,可知有两个交点,则f (x )有两个零点.21.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0x 2-2,x ≤0的零点个数是________.21.答案 3 解析 当x >0时,作函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有2个零 点;当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点,综上知f (x )有3个零点.22.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .422.答案 B 解析 函数y =f (x )+x -4的零点个数,即函数y =-x +4与y =f (x )的图象的交点的个数.如 图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B .23.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为________.23.答案 2 解析 函数g (x )=f (x )-e x 的零点个数即为函数y =f (x )与y =e x 的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x 有2个零点.24.已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为( )A .1个B .2个C .3个D .4个24.答案 B 解析 画出函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,的图象如图,由g (x )=2|x |f (x )-2=0可得第11页f (x )=22|x |,则问题化为函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,与函数y =22|x |=21-|x |的图象的交点的个数问题.结合图象可以看出两函数图象的交点只有两个,应选答案B .。

函数零点的7种问题及解法

函数零点的7种问题及解法

函数零点的7种问题及解法1.若x0是方程lgx+x=2的解,则x0属于区间()a.(0,1) b.(1,1.25)c.(1.25,1.75) d.(1.75,2)解析:设f(x)=lg x +x-2,则f(1.75)=f74=lg 74-,f(2)=lg 20.答案:d2.函数f(x)=x2+2x-3,x0,-2+lnx,x0的零点个数为()a.0个 b.1个 c.2个 d.3个解析::x0时由x2+2x-3=0x=-3;x0时由-2+lnx=0x=e2.答案:c3.设函数f(x)=x2-x+a(a0),若f(m)0,则()a.f(m-1)0b.f(m-1)0c.f(m-1)=0d.f(m-1)与0的'大小不能确定解析:融合图象极易推论.答案:a4.函数f(x)=ex+x-2的零点所在的一个区间就是()a.(-2,-1) b. (-1,0)c. (0,1) d.(1,2)解析:因为f(0)=-10,f(1)=e-10,所以零点在区间(0,1)上,选c.答案:c5.函数f(x)=4x-2x+1-3的零点是________解析:由4x-2x+1-3=0(2x+1)(2x-3)=02x=3, x=log23.答案:log236.函数f(x)=(x-1)(x2-3x+1)的零点就是__________.解析:利用定义可求解.答案:1,7.若函数y=x2-ax+2有一个零点为1,则a等于__________.解析:由零点定义可以解.答案:38.未知函数f(x)=logax+x-b(a0且a1),当时,函数f(x)的零点为x0(n,n+1)(nn*),则n=________.解析:根据f(2)=loga2+2-blogaa+2-3=0,f(3)=loga3+3-blogaa+3-4=0,x0(2,3),故n=2.答案:29.证明:方程x2x=1至少有一个小于1的正根.证明:令f(x)=x2x-1,则f(x)在区间(-,+)上的图象是一条连续不断的曲线.当x=0时,f(x)=-10.当x=1时,f(x)=10.f(0)f(1)0,故在(0,1)内至少有一个x0,当x=x0时,f(x)=0.即至少有一个x0,满足01,且f(x0)=0,故方程x2x=1至少有一个小于1的正根.。

函数零点的题型总结

函数零点的题型总结
根据函数零点个数确定参数范围的方法:(1)直接解方程f(x)=0,根据该方程的解,得出符合零点个数要求的参数值满足的不等式解得参数范围;(2)数形结合,把f(x)=0分拆为g(x)=h(x),已知的零点个数即为函数y=g(x)的图象与函数y=h(x)的图象交点的个数,据此得出参数值满足的不等式解得参数范围;(3)研究函数的单调性和极值点等,利用函数零点的存在性定理得出参数满足的不等式解得参数范围.
【题组通关】
1.已知a>1,方程 ex+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则 + +2x1x2的取值范围为( A )
(A)(1,+∞)(B)(0,+∞)
(C)( ,+∞)(D)( ,1)
解析:方程 ex+x-a=0的根,即y= ex与y=a-x图象交点的横坐标,
方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标,
(A)(24,25)(B)(18,24)
(C)(21,24)(D)(18,25)
解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.
考点四 函数零点的应用
【例6】 (1)已知α,β分别满足α·eα=e2,β(ln β-2)=e4,则αβ的值为( )
所以函数f(x)在区间( , )内必有零点,选B.
利用方程根的存在性定理判断函数零点所在区间的步骤:①先移项使方程右边为零,再令方程左边为函数 f(x);②求区间(a,b)两端点的函数值f(a),f(b);③若函数在该区间上连续且f(a)·f(b)<0,则方程在该区间内必有根.

专题训练:嵌套函数的零点问题(含解析)

专题训练:嵌套函数的零点问题(含解析)

嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.642.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.13.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axe x -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x1e x 121-x 2e x21-x 3e x3的值为()A.1B.-1C.aD.-a5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.16.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.97.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2xe x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.98.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81 B.-81 C.9 D.-99.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x 1e x122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.3610.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.1611.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1eB.0,eC.1,eD.0,113.(2023·山西阳泉·统考三模)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.eB.1C.1+mD.1-m14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.64【答案】C【解析】令t (x )=x e x ,则t (x )=1-xe x.所以当x <1时,t (x )>0,函数t (x )=x e x 单调递增;当x >1时,t(x )<0,函数t (x )=x e x单调递减.所以t (x )max =t (1)=1e.由题意g t =t 2+at -2a 必有两个根t 1<0,且0<t 2<1e.由根与系数的关系有:t 1+t 2=-a ,t 1t 2=-2a .由图可知,t 1=x e x 有一解x 1<0,即t 1=x 1e x 1.t 2=xex 有两解x 2,x 3且0<x 2<1<x 3,即t 2=x 2e x 2=x3ex 3.所以2-x 1e x 122-x 2e x 22-x3e x 3=2-t 1 22-t 2 2-t 2 =2-t 1 2-t 2 2=4-2t 1+t 2 +t 1t 2 2=4+2a -2a 2=16.故选:C2.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.1【答案】D 【解析】令y =ln x x ,则y ′=1-ln xx 2,故当x ∈(0,e )时,y ′>0,y =ln x x 是增函数,当x ∈(e ,+∞)时,y ′>0,y =ln x x是减函数;且limx →0ln xx =-∞,ln e e =1e ,lim x →+∞ln xx =0;令ln x x =t ,则可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故△=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与t 1≤1e 且t 2≤1e相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合y =ln xx 的性质可得,ln x 1x 1=t 1,ln x 2x 2=t 2,ln x 3x 3=t 2,故1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=(1-t 1)2(1-t 2)(1-t 2)=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=1;故选D .3.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a【答案】A【解析】令t =xe x ,则t ′=(x +1)e x ,故当x ∈(-1,+∞)时,t ′>0,t =xe x 是增函数,当x ∈(-∞,-1)时,t ′<0,t =xe x 是减函数,可得x =-1处t =xe x 取得最小值-1e ,x →-∞,t →0,画出t =xe x 的图象,由f (x )=0可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故Δ=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与-2e<t 1+t 2<0相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合t =xe x 的性质可得,x 1e x 1=t 1,x 2e x 2=t 1,x 3e x 3=t 2,故(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-t 1)(1-t 1)(1-t 2)2=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-1+a +1-a )2=1.故选:A .4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x 1e x 121-x 2e x 21-x3ex 3的值为A.1B.-1C.aD.-a【答案】A 【解析】令x e x =t ,构造g (x )=x e x ,求导得g (x )=1-xex ,当x <1时,g (x )>0;当x >1时,g (x )<0,故g (x )在-∞,1上单调递增,在1,+∞ 上单调递减,且x <0时,g (x )<0,x >0时,g (x )>0,g (x )max =g (1)=1e,可画出函数g (x )的图象(见下图),要使函数f (x )=x e x2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则方程t 2+at -a =0需要有两个不同的根t 1,t 2(其中t 1<t 2),则Δ=a 2+4a >0,解得a >0或a <-4,且t 1+t 2=-at 1⋅t 2=-a ,若a >0,即t 1+t 2=-a <0t 1⋅t 2=-a <0 ,则t 1<0<t 2<1e,则x 1<0<x 2<1<x 3,且g x 2 =g x 3 =t 2,故1-x 1e x121-x 2e x21-x 3ex 3=1-t 1 21-t 2 2=1-t 1+t 2 +t 1t 2 2=1+a -a 2=1,若a <-4,即t 1+t 2=-a >4t 1⋅t 2=-a >4 ,由于g (x )max =g (1)=1e ,故t 1+t 2<2e<4,故a <-4不符合题意,舍去.故选A .5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.1【答案】D【解析】令f (x )=0,分离参数得a =x x -ln x -ln x x 令h (x )=x x -ln x -ln xx由h ′(x )=ln x 1-ln x 2x -ln xx 2x -ln x 2=0 得x =1或x =e .当x ∈(0,1)时,h ′(x )<0;当x ∈(1,e )时,h ′(x )>0;当x ∈(e ,+∞)时,h ′(x )<0.即h (x )在(0,1),(e ,+∞)上为减函数,在(1,e )上为增函数.∴0<x 1<1<x 2<e <x 3,a =x x -ln x -ln x x 令μ=ln xx则a =11-μ-μ即μ2+(a -1)μ+1-a =0,μ1+μ2=1-a <0,μ1μ2=1-a <0,对于μ=ln x x ,μ =1-ln xx 2则当0<x <e 时,μ′>0;当x >e 时,μ′<0.而当x >e 时,μ恒大于0.不妨设μ1<μ2,则μ1=ln x 1x 1,μ2=ln x 2x 2,μ3=ln x 3x 3, 1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 =(1-μ1)2(1-μ2)(1-μ3)=[(1-μ1)(1-μ2)]2=[1-(1-a )+(1-a )]2=1.故选D .6.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.9【答案】A【解析】f x =9ln x 2+a -3 x ln x +33-a x 2=0∴a -3 x ln x -3x 2 =-9ln x 2∴a -3=9ln x 23x 2-x ln x =9ln x x 23-ln xx令t =3-ln x x ,t ∈0,+∞ ,则ln xx =3-t ,∴t =-1-ln x x 2=ln x -1x 2令t =0,解得x =e∴t ∈0,e 时,t <0,t 单调递减;t ∈e ,+∞ 时,t >0,t 单调递增;∴t min =3-1e ,t ∈3-1e,+∞ ,∴a -3=9(3-t )2t =9t 2-54t +81t ∴9t 2-51+a t +81=0.设关于t 的一元二次方程有两实根t 1,t 2,∴Δ=51+a 2-4×9×81>0,可得a >3或a <-105.∵a -3=93-t 2t >0,故a >3∴a <-105舍去∴t 1+t 2=51+a 9>51+39=6,t 1t 2=9.又∵t 1+t 2=t 1+9t 1≥29=6,当且仅当t 1=t 2=3时等号成立,由于t 1+t 2≠6,∴t 1>3,t 2=9t 1<3(不妨设t 1>t 2).∵x 1<1<x 2<x 3,可得3-ln x 1x 1>3,3-ln x 2x 2<3,3-ln x 3x 3<3.则可知3-ln x 1x 1=t 1,3-ln x 2x 2=3-ln x 3x 3=t 2.∴3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3=t 1t 2 2=81.故选:A .7.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2x e x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.9【答案】D【解析】由f x =0得a =x e x -3e xe x -x,即a =x e x -31-x e x =-1-x e x -31-x e x+1,记t =1-x e x ,且设g x =1-xex ,一方面由a =-t -3t +1得t 2+a -1 t +3=0(*),当Δ>0时方程(*)有两个不相等的实数根t 1,t 2,且t 1+t 2=1-a ,t 1t 2=3;另一方面,由g x =x -1e x知g x 在-∞,1 上单调递减,在1,+∞ 上单调递增,g 1=1-1e,g 0 =1,当x →-∞时,g x →+∞,当x →+∞时,g x →1-,如图:t1≥1>t 2>1-1e,且1-x 1e x 1=t 1,1-x 2e x 2=1-x3ex 3=t 2,因此1-x 1e x 121-x 2e x 21-x 3e x 3=t 21⋅t 2⋅t 2=t 1t 2 2=9.故选:D8.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81B.-81C.9D.-9【答案】A【解析】由f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点知:9x 2+(a -3)xe x +3(3-a )e 2x =0有三个不同的实根,即a -3=9x 23e 2x -xe x =9x ex 23-x ex有三个不同实根,若t =3-xe x ,则a -3=9(3-t )2t ,整理得9t 2-(a +51)t +81=0,若方程的两根为t 1,t 2,∴t 1t 2=9,而t=xe x -e x e 2x=x -1e x,∴当x <1时,t <0即t 在(-∞,1)上单调递减;当x >1时,t >0即t 在(1,+∞)上单调递增;即当x =1时t 有极小值为3-1e ,又x 1<0<x 2<x 3,x =0有t =3,即t 1>3>t 2>3-1e.∵方程最多只有两个不同根,∴x 1<0<x 2<1<x 3,即t 1=3-x 1e x 1,t 2=3-x 2e x 2=3-x 3e x3,∴3-x1e x 123-x 2e x23-x 3ex 3=t 12t 22=81.故选:A9.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x1e x 122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.36【答案】D【解析】因为f (x )=2(a +2)e 2x -(a +1)xe x +x 2,所以f (x )=e 2x 2(a +2)-(a +1)x e x +x e x 2,因为e 2x>0,所以2(a +2)-(a +1)x e x +x e x 2=0有三个不同的零点x 1,x 2,x 3,令g x =x e x ,则g x =1-x e x,所以当x <1时g x >0,当x >1时g x <0,即g x 在-∞,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =1e ,当x >0时x e x >0,令t =x ex ∈-∞,1e ,则2(a +2)-(a +1)t +t 2=0必有两个根t 1、t 2,不妨令t 1<0、0<t 2<1e ,且t 1+t 2=a +1,t 1t 2=2a +2 ,即t 1=x e x 必有一解x 1<0,t 2=xe x 有两解x 2、x 3,且0<x 2<1<x 3,故2-x 1e x122-x 2e x22-x 3ex 3=2-t 1 22-t 2 2=4-2t 1+t 2 +t 1t 2 2=4-2a +1 +2a +2 2=36故选:D10.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.16【答案】C【解析】f (x )=(a +3)e 2x -(a +1)xe x +x 2=e 2x x e x 2-a +1 ⋅x ex +a +3 ,e 2x >0,x e x2-a +1 ⋅xex +a +3 =0有三个不同的零点x 1,x 2,x 3.令g x =x e x ,g x =1-xe x,g x 在-∞,1 递增,在1,+∞ 上递减,g x max =g 1 =1e .x >0时,xex >0.令t =x ex ∈-∞,1e,t 2-a +1 ⋅t +a +3 =0必有两个根t 1,t 2,t 1<0,0<t 2<1e,且t 1+t 2=a +1,t 1⋅t 2=a +3,t 1=x e x 有一解x 1<0,t 2=x ex 有两解x 2,x 3,且0<x 2<1<x 3,故1-x 1e x 121-x 2e x 21-x3e x 31-t 1 21-t 22=1-t 1+t 2 +t 1⋅t 2 2=1-a +1 +a +3 2=9.故选:C11.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m【答案】B【解析】令t =ln xx-1,则t =1-ln xx 2,当x >e 时,t <0,当0<x <e 时,t >0,所以t 在e ,+∞ 上递减,在0,e 上递增,所以当x =e 时,函数取得最大值1e-1,函数t =ln xx-1的图象如图所示:则ln x 1x 1-1=t 1,ln x 2x 2-1=t 2,ln x 3x 3-1=t 3,由图象知:t 2=t 3,因为关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,所以方程t +1t+m +1 =0有两个不等的实数解t 1,t 2,由韦达定理得:t 1⋅t 2=1,所以ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 =t 12⋅t 2⋅t 3=t 12⋅t 22=1,故选:B12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1eB.0,eC.1,eD.0,1【答案】A 【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+m +1 t +m +1=0.令函数g x =e ln x x ,则g x =e ⋅1-ln xx 2,由g x >0,解得0<x <e ,g x <0,解得x >e所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,且g e =1作出图象如图所示,要使关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+m +1 t +m +1=0一定有两个实根t 1,t 2,且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-m +1 ,t 1t 2=m +1.所以Δ=m +1 2-4m +1 >0,解得m >3或m <-1若t 1=1,则1+m +1 ×1+m +1=0,解得m =-32,则t 2=-12此时e ln x 2x 2=t 2=-12只有1个实数根,此时原方程没有3个不等实数根,故不满足题意.若t 1=0,则m =-1,可得t 2=0,显然此时原方程没有3个不等实数根,故不满足题意.要使原方程有3个不等实数根,则t 1<0<t 2<1所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.所以e ln x 1x 1=t 1,e ln x 2x 2=e ln x 3x 3=t 2故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e t 1+t 2 =-2m +1 e ∈0,1e.故选:A13.(2023·山西阳泉·统考三模)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.eB.1C.1+mD.1-m【答案】B 【解析】设f x =ln x x ,则f x =1-ln xx 2,故函数在0,e 上单调递增,在e ,+∞ 上单调递减,f e =1e,画出函数图像,如图所示:设ln x x =t ,ln x x +x ln x -x +m =0,则ln x x +1ln x x -1+m =0,即t +1t -1+m =0,化简整理得到:t 2+m -1 t +1-m =0,故t 1+t 2=1-m ,t 1t 2=1-m ,且t 1<0,0<t 2<1e,ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1=t 1-1 2t 2-1 2=t 1t 2-t 1+t 2 +1 2=1.故选:B .14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e【答案】BC 【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+(m +1)t +m +1=0.令函数g (x )=e ln x x ,则g (x )=e ⋅1-ln xx 2,所以g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减.作出图象如图所示,要使关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+(m +1)t +m +1=0一定有两个实根t 1,t 2(t 1<0<t 2<1),且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-(m +1),t 1t 2=m +1.所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e (t 1+t 2)=-2(m +1)e ∈0,1e.因为2e 3∈0,1e ,1e 2∈0,1e,所以BC 都符合题意,故选:BC15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.【答案】0,1e 2-e【解析】由f x =0,两边同时除以e xx -e x变形为x e x +e xx -e x+m =0,有x ex +1x e x-1+m =0设x ex =t 即t +1t -1+m =0,所以t 2+(m -1)t +1-m =0令g (x )=x e x ,则g (x )=1-xe x,所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,且g 0 =0,g 1 =1e,当x >0时,g (x )>0其大致图像如下.要使关于x 的方程x e x +e xx -e x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<0<x 2<x 3.结合图像可得关于t 的方程g (t )=t 2+(m -1)t +1-m =0一定有两个不等的实数根t 1,t 2且t 1<0<t 2<1e ,从而1<m <1+1e 2-e.t 1+t 2=1-m ,t 1⋅t 2=1-m ,则x 1e x 1=t 1,x 2e x 2=x3ex 3=t 2.所以x 1e x 1-1 2x 2e x 2-1 x3e x 3-1 =t 1-1 2t 2-1 2=t 1-1 t 2-1 2=t 1t 2-t 1+t 2 +1 2=[1-m -(1-m )+1]2=1m -x 1e x1-12x 2e x 2-1 x 3e x 3-1 =m -1∈0,1e 2-e .故答案为:0,1e 2-e。

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。

函数的零点与解析问题及例题分析

函数的零点与解析问题及例题分析

函数的零点与解析问题及例题分析1. 函数的零点函数的零点指的是函数取值为零的点,即满足$f(x) = 0$的$x$值。

求函数的零点是许多数学问题中的基本任务。

求函数的零点方法很多,常见的包括二分法、牛顿法、割线法等。

下面以二分法为例来说明求函数零点的过程。

例题1::已知函数$f(x) = \sin(x)$,求$f(x)$的零点。

解析过程如下:1. 首先确定一个区间$[a, b]$,使得$f(a)$和$f(b)$异号。

2. 将区间中点记作$c$,计算$f(c)$的值。

3. 如果$f(c)$为零,则$c$是$f(x)$的零点;否则,根据$f(c)$和$f(a)$(或$f(b)$)的符号确定新的区间。

4. 重复步骤2和3,直到找到一个足够接近零点的解。

2. 解析问题解析问题是指在数学运算中的一些特殊情况,如分母为零、根号内为负数等。

解析问题的存在可能导致函数无法取值或无法计算。

解析问题的判定和处理与具体的数学表达式有关。

以下是一些常见的例子:- 分母为零:当函数中出现分母为零的情况时,其解析问题是分母为零的$x$值,并且在该点处函数无法取值。

- 根号内为负数:当函数中出现根号内为负数的情况时,其解析问题是根号内为负数的$x$值,并且在该点处函数无法计算。

解析问题在数学问题的解决中需要注意,可以通过数值计算的方法来规避这些问题。

3. 例题分析例题2::已知函数$f(x) = \frac{1}{x^2 - 4}$,求$f(x)$的定义域。

解析过程如下:由于分母为$x^2 - 4$,我们需要排除使分母为零的情况。

即解方程$x^2 - 4 = 0$,求得$x = \pm 2$。

因此,函数$f(x)$的定义域为$(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$。

以上是关于函数的零点与解析问题的简要分析和例题讲解。

希望对您有所帮助!。

专题01 “四招”判断函数零点个数-2019年高考数学压轴题之函数零点问题(解析版)

专题01 “四招”判断函数零点个数-2019年高考数学压轴题之函数零点问题(解析版)

专题一 “四招”判断函数零点个数函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕函数零点个数的判断问题,例题说法,高效训练.【典型例题】第一招 应用函数性质,判定函数零点个数 例1.已知偶函数()()4log ,04{8,48x x f x f x x <≤=-<<,且()()8f x f x -=,则函数()()12xF x f x =-在区间[]2018,2018-的零点个数为( )A. 2020B. 2016C. 1010D. 1008 【答案】A 【解析】当08x <<时,函数()f x 与函数12xy =图象有4个交点201825282=⨯+由()4211122242f log ==>=知,当02x <<时函数()f x 与函数12xy =图象有2个交点故函数()F x 的零点个数为()2524222020⨯+⨯= 故选A .第二招 数形结合,判定函数零点个数例2.【2018届福建省永春一中、培元、季延、石光中学四校高三上第二次联考】定义在R 上的函数()f x 满足()()21f x f x +=+,且[]0,1x ∈时, ()4xf x =; (]1,2x ∈时, ()()1f f x x=. 令()()[]24,6,2g x f x x x =--∈-,则函数()g x 的零点个数为( )A. 7B. 8C. 9D. 10 【答案】B∵函数f (x )满足f (x+2)=f (x )+1,即自变量x 每增加2个单位,函数图象向上平移1个单位,自变量每减少2个单位,函数图象向下平移1个单位, 分别画出函数y=f (x )在x ∈[﹣6,2],y=12x+2的图象,∴y=f(x)在x∈[﹣6,2],y=12x+2有8个交点,故函数g(x)的零点个数为8个.故选:B.第三招应用零点存在性定理,判定函数零点个数例3.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研】已知函数.(1)讨论的单调性;(2)讨论在上的零点个数.【答案】(1)见解析;(2)见解析∴当时,在上单调递增.当时,在上单调递减,在上单调递增.(2)设,则由(1)知①当时,即,当时,,在单调递减,∴当,即,时,在上恒成立,∴当时,在内无零点.当,即,时,,根据零点存在性定理知,此时,在内有零点,∵在内单调递减,∴此时,在有一个零点.②当时,即,当时,,在单调递增,,.∴当,即时,,根据零点存在性定理,此时,在内有零点. ∵在内单调递增,∴此时,在有一个零点.当时,,∴此时,在无零点.③当时,即,当时,;当时,;则在单调递减,在单调递增.∴在上恒成立,∴此时,在内无零点.∴综上所述:当时,在内有1个零点;当时,在有一个零点;当时,在无零点.第四招构造函数,判定函数零点个数例4.【山东省菏泽市2019届高三上学期期末】已知函数f(x)=lnx+﹣1,a∈R.(1)当a>0时,若函数f(x)在区间[1,3]上的最小值为,求a的值;(2)讨论函数g(x)=f′(x)﹣零点的个数.【答案】(1);(2)详见解析.f’(x)min=f(a)=lna,令,得.当a≥3时,f’(x)<0在(1,3)上恒成立,这时f(x)在[1,3]上为减函数,∴,令得a=4﹣3ln3<2(舍去).综上知.(2)∵函数,令g(x)=0,得.设,,当x∈(0,1)时,φ'(x)>0,此时φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ’(x)<0,此时φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是(x)的最大值点,φ(x)的最大值为.又φ(0)=0,结合φ(x)的图象可知:①当时,函数g(x)无零点;②当时,函数g (x )有且仅有一个零点;③当时,函数g (x )有两个零点;④a≤0时,函数g (x )有且只有一个零点; 综上所述,当时,函数g (x )无零点;当或a ≤0时,函数g (x )有且仅有一个零点;当时,函数g (x )有两个零点.【规律与方法】函数零点个数的求解与判断:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.(4)构造函数模型,判断零点个数.构造函数可根据题目不同,直接做差构造函数、分离参数后构造函数、先求导数再构造函数、先换元再构造函数等.【提升训练】1.【浙江省杭州地区(含周边)重点中学2019届高三上期中】已知定义在R 上的奇函数,满足当时,则关于x 的方程满足A .对任意,恰有一解B .对任意,恰有两个不同解C .存在,有三个不同解D .存在,无解【答案】A 【解析】 当时,,,时,;时,,在上递减,在上递增,,在上递增,又x 大于0趋近于0时,也大于0趋近于0;x 趋近于正无穷时,也趋近于正无穷,又为R上的奇函数,其图象关于原点对称,结合图象知,对任意的a,方程都恰有一解.故选:A.2.【吉林省延边州2019届高三2月复检测】已知函数在上可导且,其导函数满足,对于函数,下列结论错误的是( )A.函数在上为单调递增函数B.是函数的极小值点C.函数至多有两个零点D.时,不等式恒成立【答案】D若,则有2个零点,若,则函数有1个零点,若,则函数没有零点,故正确;由在递减,则在递减,由,得时,,故,故,故错误,故选D.3.已知函数()y f x =的图像为R 上的一条连续不断的曲线,当0x ≠时,()()'0f x f x x+>,则关于x 的函数()()1g x f x x=+的零点的个数为( ) A .0 B .1 C .2 D .0或2 【答案】A4.【新疆乌鲁木齐市2019届高三一模】已知函数.(Ⅰ)若的图像在点处的切线与直线平行,求的值;(Ⅱ)若,讨论的零点个数. 【答案】(Ⅰ)(Ⅱ)1个【解析】 (Ⅰ)函数, 导数为,, 图象在点处的切线斜率为,由切线与直线平行,可得,解得; (Ⅱ)若,可得,由,可得(舍去),即的零点个数为; 若,由,即为,可得,,设,, 当时,,递减;当时,,递增,可得处取得极大值,且为最大值,的图象如图:由,即,可得和的图象只有一个交点,即时,的零点个数为,综上可得在的零点个数为.5.【辽宁省大连市2019届高三下学期第一次(3月)双基测试】已知函数f(x)=lnx+ax2-x(x>0,a∈R).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)求证:当a≤0时,曲线y=f(x)上任意一点处的切线与该曲线只有一个公共点.【答案】(Ⅰ)见解析;(Ⅱ)见解析【解析】(Ⅰ)f′(x)=+2ax-1=(x>0),设g(x)=2ax2-x+1(x>0),(1)当0<a<时,g(x)在(0,),(,+∞)上大于零,在(,)上小于零,所以f(x)在(0,),(,+∞)上递增,在(,)上递减,(2)当a≥时,g(x)≥0(当且仅当a=,x=2时g(x)=0),所以f(x)在(0,+∞)上单调递增,(3)当a=0时,g(x)在(0,1)上大于零,在(1,+∞)上小于零,所以f(x)在(0,1)上单调递增,在(1,+∞)单调递减,(4)当a<0时,g(x)在(0,)上大于零,在(,+∞)上小于零,所以f(x)在(0,)上递增,在(,+∞)上递减;(Ⅱ)曲线y=f(x)在点(t,f(t))处的曲线方程为:y=(+2at-1)(x-t)+lnt+at2-t,曲线方程和y=f(x)联立可得:lnx+ax2-(+2at)x-lnt+at2+1=0,设h(x)=lnx+ax2-(+2at)x-lnt+at2+1(x>0),h′(x)=,当a≤0时,在(0,t)h′(x)>0,在(t,+∞)h′(x)<0,故h(x)在(0,t)递增,在(t,+∞)递减,又h(t)=0,故h(x)只有唯一的零点t,即切线与该曲线只有1个公共点(t,f(t)).6.【四川省成都石室中学2019届高三第二次模拟】已知函数,. (Ⅰ)当,函数图象上是否存在3条互相平行的切线,并说明理由?(Ⅱ)讨论函数的零点个数.【答案】(Ⅰ)存在;(Ⅱ)详见解析.【解析】(Ⅰ),,,则函数在单调递减,上单调递增,上单调递减,因为,,,,,所以存在切线斜率,使得,,,,所以函数图象上是存在3条互相平行的切线.(Ⅱ),当,有;,在上单调递增;所以函数存在唯一一个零点在内;当,有,;,在上单调递增;所以函数存在唯一一个零点在内;当,有,∴在上单调递增,在上单调递减,在上单调递增,,,,,,所以函数一个零点在区间内,一个零点在区间内,一个零点在内.所以函数有三个不同零点.综上所述:当函数一个零点;当函数三个零点.7.【浙江省金华十校2019届高三上学期期末】已知,,其中,为自然对数的底数.若函数的切线l经过点,求l的方程;Ⅱ若函数在为递减函数,试判断函数零点的个数,并证明你的结论.【答案】Ⅰ;Ⅱ见解析Ⅱ判断:函数的零点个数是0,下面证明恒成立,,故,若在递减,则,因此,要证明对恒成立,只需证明对恒成立,考虑等价于,记,,先看,,令,解得:,令,解得:,故在递减,在递增,,再看,.令,解得:,令,解得:,故在递增,在递减,.,且两个函数的极值点不在同一个x处,故对恒成立,综上,对恒成立,故函数函数零点是0个.8.【辽宁省丹东市2019届高三总复习质量测试(一)】已知函数.(1)当时,讨论的单调性;(2)证明:当且时,只有一个零点.【答案】(1)详见解析;(2)详见解析.【解析】(1).当时,由得,由得,在单调递减,在单调递增.当时,由得,由得或,在单调递减,在和单调递增.令,,当时,,故在单调递增,所以,在单调递增,所以,因此.因为在单调递增,所以在有唯一零点.所以只有一个零点.综上,当且时,只有一个零点.9.【云南师范大学附属中学2019届高三上学期第一次月考】已知函数.求的单调区间和极值;当时,证明:对任意的,函数有且只有一个零点.【答案】(1)见解析;(2)见解析【解析】解:函数的定义域为,,当时,,在定义域上单调递增,无极值;当时,由,得,当时,,得的单调递增区间是;当时,,得的单调递减区间是,故的极大值为,无极小值.由,得,当时,,则在上单调递增;当时,,则在上单调递减,所以,于是,则在上单调递减.设,则,由,得,当时,,则在上单调递减;当时,,则在上单调递增,所以,即当时,,所以当时,,对任意的,有当时,,有;当时,有,又在上单调递减,所以存在唯一的,有;当时,,有,当时,有,又在上单调递减,所以存在唯一的,有,综上所述,对任意的,方程有且只有一个正实数根,即函数有且只有一个零点.10.【2019届高三第一次全国大联考】已知函数(其中).(1)当时,求函数的单调区间;(2)当时,求函数的极值点;(3)讨论函数零点的个数.【答案】(1)在上单调递增;在上单调递减;(2)函数无极大值点,有2个极小值点,分别为和;(3)详见解析.(2)先考虑时的情况,当时,则;所以当时,;当时,;所以函数在上单调递减,在上单调递增.又因为函数的图象关于直线对称,所以在和上单调递减,在和上单调递增.所以函数无极大值点,有2个极小值点,分别为和.令,则.由,解得;由,解得,所以在上递增,在上递减,所以,当时,注意到,知此时在上单调递减,在上单调递增,且,这表明的图象与轴相切,所以此时函数在上只有1个零点,且为;当或时,,又当或时,,所以此时函数在上有2个零点,一个零点是,另一个零点在区间或内.又由函数的图象关于直线对称,综上可得,当或时,函数有2个零点;当或时,函数有4个零点.11.【2019年四川省达州市高考一诊】已知,函数,.求证:;讨论函数零点的个数.【答案】(1)见解析;(2)见解析解:,,,,,方程有两个不相等的实根,分别为,,且,,当时,,递减,当时,,递增,,,,即,.设,则,是减函数,当,即时,,函数只有一个零点,当,即时,,函数没有零点,当,即时,,且,由知,,若,则有,,函数有且只有一个大于的零点,又,即函数在区间有且只有一个零点,综上,当时,函数有两个零点;当时,函数只有一个零点,当时,函数没有零点.12.【北京延庆区2019届高三一模】已知函数.(1)当时,求曲线在点处的切线方程;(2)求函数的单调区间;(3)当时,求函数在上区间零点的个数.【答案】(1)(2)在区间上单调递增,在区间上单调递减(3)见解析【解析】(1)当时,,,,,切点,所以切线方程是.(2),令,、及的变化情况如下增减所以,在区间上单调递增,在区间上单调递减.(3)由(2)可知的最大值为,(1)当时,在区间单调递增,在区间上单调递减.由,故在区间上只有一个零点 .(2)当时,,,,且 .因为,所以,在区间上无零点.综上,当时,在区间上只有一个零点,当时,在区间上无零点.13.【广东省江门市2019届高考模拟(第一次模拟)】设函数,是自然对数的底数,是常数.(1)若,求的单调递增区间;(2)讨论曲线与公共点的个数.【答案】(1)的单调递增区间为(或);(2)或时,两曲线无公共点;或时,两曲线有一个公共点;时,两曲线有两个公共点 .(I)时,有一个零点 .(II)时,由解得,.当时,;当时,,在取最小值 ,①时,,有一个零点.②时,,无零点 .③时,,由知,在有一个零点,即在有一个零点;由指数函数与幂函数单调性比较知,当且充分大时,,所以在有一个零点,即在有一个零点.从而有两个零点 .(III)时,,单调递减,,,所以在有一个零点,从而在定义域内有一个零点 .(IIII)时,无零点 .14.【安徽省六安市毛坦厂中学2019届高三3月联考】设函数.(1)试讨论函数的单调性;(2)若,证明:方程有且仅有3个不同的实数根.(附:,,)【答案】(1)详见解析;(2)详见解析.【解析】(1)由,得,令,所以,所以当时,,恒成立,即恒成立,所以单调递增;即,所以单调递减;当时,,即,所以单调递增.综上,当时,在上单调递增;当时,的单调递增区间为,;的单调递减区间为.(2)当时,,由(1)知,函数在上单调递增,在上单调递减,在上单调递增,所以当时,函数有极大值,且,当时,函数有极小值,且.又因为,,所以直线与函数的图象在区间上有且仅有3个交点,所以当时,方程有且仅有3个不同的实数根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.方法三 方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x =,重新构造方程()()g x h x =,再画函数(),()y g x y h x ==的图像分析解答.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个【点评】(1)本题主要考察零点的个数,但是方程f(x)lg cos 0x x =-=也不好解,直接研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1)+∞;【反馈检测3答案】(1)单调递增区间是(),m+∞, 单调递减区间是()0,m;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x的定义域为()()()()0,,'x m x mf xx+-+∞=.当0x m<<时,()'0f x<,函数()f x单调递减,当x m>时,()'0f x>函数()f x单调递增,综上,函数()f x的单调递增区间是(),m+∞, 单调递减区间是()0,m.(2)令()()()()211ln,02F x f x g x x m x m x x=-=-++->,问题等价于求函数()F x的零点个数,()()()1'x x mF xx--=-,当1m=时,()'0F x≤,函数()F x为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

相关文档
最新文档