高二数学平面向量知识点归纳
高二数学向量知识点
高二数学向量知识点1. 向量的定义和表示向量是带有方向和大小的量,通常用箭头来表示。
向量用字母加上一个箭头来表示,例如AB→表示从点A指向点B的向量。
2. 向量的加法和减法向量的加法是指将两个向量的大小和方向相加得到一个新的向量。
向量的减法是指将两个向量的大小和方向相减得到一个新的向量。
3. 向量的数量积向量的数量积也叫点积,表示为两个向量之间的乘积。
向量的数量积等于这两个向量的模长的乘积再乘以它们夹角的余弦值。
4. 向量的向量积向量的向量积也叫叉积,表示为两个向量之间的乘积。
向量的向量积等于这两个向量的模长的乘积再乘以它们夹角的正弦值,并且结果是一个新的向量。
5. 平面向量的坐标表示平面向量可以使用其在坐标系中的坐标表示。
一般情况下,平面向量的坐标表示为 (x, y),其中 x 表示向量在 x 轴上的投影,y 表示向量在 y 轴上的投影。
6. 向量的数量积的性质向量的数量积具有交换律、结合律和分配律。
即对于任意向量 a、b 和 c,有以下性质:- 交换律:a·b = b·a- 结合律:(a + b)·c = a·c + b·c- 分配律:k(a·b) = (ka)·b = a·(kb),其中 k 是一个实数7. 向量的向量积的性质向量的向量积满足反交换律和分配律。
即对于任意向量 a 和b,有以下性质:- 反交换律:a×b = -b×a- 分配律:a×(b + c) = a×b + a×c8. 向量共线与垂直的判定- 共线判定:如果两个向量的数量积为0,则它们共线。
- 垂直判定:如果两个向量的数量积为0,则它们垂直。
9. 向量的模长和单位向量向量的模长表示向量的大小,用 ||a|| 或 |a| 表示,计算方式为向量的坐标的平方和的开平方。
单位向量是模长为1的向量,可以通过将向量除以它的模长得到。
高中平面向量知识点详细归纳总结(附带练习)
向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
高中数学平面向量知识点总结
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
高二数学向量知识点总结
高二数学向量知识点总结高二数学向量知识点总结(一)考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是能够自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则实行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会实行平面向量积的运算,能使用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来协助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。
因为向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
平面向量知识点总结归纳
平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。
平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。
一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。
2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。
平行向量的模长相等。
3. 零向量:所有分量都为零的向量称为零向量,用0→表示。
零向量的模长为0。
4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。
二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。
向量加法满足交换律和结合律。
2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。
向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。
3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。
4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。
内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。
5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。
外积的结果是一个向量。
三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。
2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。
3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。
4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。
5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。
四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。
2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。
平面向量知识点总结
平面向量知识点总结平面向量是二维空间中的向量,它在数学中有着广泛的应用。
在平面向量的研究中,我们需要了解平面向量的定义、运算法则、坐标表示、线性相关与线性无关、向量的模和方向、向量的投影、平行四边形法则、平面向量的夹角、向量的数量积等内容。
本文将对这些内容进行详细的总结,以帮助读者更好地理解平面向量的相关知识。
1. 定义:平面向量是一个具有大小和方向的量。
它可以用一个有向线段来表示,也可以用它的坐标来表示。
平面向量的定义包括初始点和终点,表示为AB。
2. 运算法则:平面向量有加法和数乘两种运算方式。
向量的加法规则是将两个向量的横纵坐标分别相加,得到一个新的向量。
向量的数乘规则是将向量的横纵坐标分别与给定的实数相乘,得到一个新的向量。
3. 坐标表示:平面向量可以用坐标表示,即用其横纵坐标表示向量的位置。
设向量AB的坐标为(a, b),则向量AB的终点的坐标为(A.x + a, A.y + b),其中A.x和A.y分别为点A 的横纵坐标。
4. 线性相关与线性无关:若存在一组实数k1, k2, ... , kn,使得k1v1 + k2v2 + ... + knvn = 0,则向量组V1, V2, ... , Vn是线性相关的。
否则,向量组V1, V2, ... , Vn是线性无关的。
线性无关的向量组在平面向量的研究中具有重要的作用。
5. 向量的模和方向:向量的模表示向量的大小,即向量的长度。
向量的方向表示向量的朝向,即向量的角度。
向量的模可以用勾股定理计算,即v的模等于√(x^2 + y^2),其中x 和y分别为向量v的横纵坐标。
6. 向量的投影:向量的投影指的是一个向量在另一个向量上的投影长度。
设向量A在向量B上的投影为P,且向量A 和向量B的夹角为θ,则投影P的长度等于A在B上的模乘以cosθ。
7. 平行四边形法则:平行四边形法则是用来计算两个向量的和的规则。
根据平行四边形法则,两个向量的和等于以这两个向量为邻边的平行四边形的对角线。
高二数学平面向量知识点
高二数学平面向量知识点一、向量的表示与运算平面向量是具有大小和方向的量,常用箭头表示。
向量AB的起点为A,终点为B。
向量的表示可以用坐标形式,也可以用向量符号表示。
1. 向量的坐标表示:设向量AB的起点为A(x₁, y₁),终点为B(x₂, y₂),则向量AB的坐标表示为AB = (x₂ - x₁, y₂ - y₁)。
2. 向量的向量符号表示:设向量AB的起点为A,终点为B,向量AB的向量符号表示为→AB。
3. 向量的加法与减法:向量的加法满足三角形法则,即将两个向量的起点连接起来,然后连接两个向量的终点,所得向量为其和向量。
向量的减法即为加法的逆运算。
二、向量的数量运算向量的数量运算包括向量的数乘和向量的数量积。
1. 向量的数乘:向量的数乘即将一个向量与一个实数相乘,结果是一个新的向量,其大小为原向量的大小与实数的乘积,方向与原向量相同(当实数为正数时)或相反(当实数为负数时)。
若向量a = (x, y),实数k,则向量ka = (kx, ky)。
2. 向量的数量积:向量的数量积又称为点积,用符号·表示。
设向量a = (x₁, y₁),向量b = (x₂, y₂),则向量a与b的数量积为a·b = x₁x₂ + y₁y₂。
数量积的性质:- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b) = a·(kb) (k为实数)- 分配律:(a + b)·c = a·c + b·c三、向量的模与单位向量向量的模即为向量的大小,用符号|a|表示。
设向量a = (x, y),则向量a的模为|a| = √(x² + y²)。
单位向量是模等于1的向量。
设向量a = (x, y),则向量a的单位向量为a/|a| = (x/|a|, y/|a|)。
四、向量的夹角设向量a与向量b的夹角为θ,则有以下公式成立:cosθ = (a·b) / (|a|·|b|)- 若cosθ = 0,则称向量a与向量b垂直。
平面向量知识点归纳
平面向量知识点归纳一、平面向量的基本概念1、向量的定义既有大小又有方向的量叫做向量。
物理学中又叫做矢量。
2、向量的表示(1)几何表示:用有向线段表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
(2)字母表示:通常在印刷时用黑体小写字母 a、b、c 等来表示向量,手写时可写成带箭头的小写字母。
3、向量的模向量的大小叫做向量的模,记作或。
4、零向量长度为 0 的向量叫做零向量,记作。
零向量的方向是任意的。
5、单位向量长度等于 1 个单位长度的向量叫做单位向量。
6、平行向量(共线向量)方向相同或相反的非零向量叫做平行向量,也叫共线向量。
规定:零向量与任意向量平行。
7、相等向量长度相等且方向相同的向量叫做相等向量。
8、相反向量长度相等且方向相反的向量叫做相反向量。
二、平面向量的线性运算1、向量的加法(1)三角形法则:已知非零向量、,在平面内任取一点 A,作,,则向量叫做与的和,记作,即。
(2)平行四边形法则:已知两个不共线的向量、,作,,以、为邻边作平行四边形 ABCD,则对角线上的向量就是与的和。
(3)运算性质:交换律;结合律。
2、向量的减法(1)三角形法则:已知非零向量、,在平面内任取一点 O,作,,则向量叫做与的差,记作,即。
(2)几何意义:可以表示为从向量的终点指向向量的终点的向量。
3、向量的数乘(1)定义:实数与向量的积是一个向量,记作,它的长度与方向规定如下:①;②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,。
(2)运算律:结合律;分配律,。
三、平面向量的基本定理及坐标表示1、平面向量基本定理如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使。
2、平面向量的坐标表示在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个单位向量、作为基底,对于平面内的一个向量,有且只有一对实数 x、y,使得,则有序数对叫做向量的坐标,记作,其中 x 叫做在 x 轴上的坐标,y 叫做在 y 轴上的坐标。
高中数学平面向量知识点总结及常见题型
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
平面向量知识点总结(精华)
平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。
例如,物理学中的力、位移等都是向量。
我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。
字母表示:用小写字母a、b、c等表示。
2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。
模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。
3. 零向量长度为\(0的向量称为零向量,记作0。
零向量的方向是任意的。
4. 单位向量模等于\(1的向量称为单位向量。
对于非零向量a,与它同方向的单位向量记作e=aa。
例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。
5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。
规定:零向量与任意向量平行。
若向量a与b平行,记作a。
例如,a=(1,2),b=(2,4),因为b = 2a,所以a。
6. 相等向量长度相等且方向相同的向量称为相等向量。
若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。
二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:\((a+b)+c=a+(b+c)。
2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。
向量减法的定义:ab=a+(b)。
其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。
3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。
高中平面向量知识点总结
高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。
2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。
(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。
(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。
二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。
2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。
3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。
4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。
(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。
2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。
高二数学下册第二单元知识点:平面向量学习要求
高二数学下册第二单元知识点:平面向量学习要求数学在科学进展和现代生活生产中的应用专门广泛,小编预备了高二数学下册第二单元知识点,具体请看以下内容。
1.平面向量的实际背景及差不多概念(1)了解向量的实际背景.(2)明白得平面向量的概念和两个向量相等的含义.(3)明白得向量的几何表示.2.向量的线性运算(1)把握向量加法、减法的运算,并明白得其几何意义.(2)把握向量数乘的运算及其几何意义,明白得两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的差不多定理及坐标表示(1)了解平面向量的差不多定理及其意义.(2)把握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)明白得用坐标表示的平面向量共线的条件.4.平面向量的数量积(1) 明白得平面向量数量积的含义及其物理意义.(2) 了解平面向量的数量积与向量投影的关系.(3) 把握数量积的坐标表达式,会进行平面向量数量积的运算.(4) 能运用数量积表示两个向量的夹角,会用数量积判定两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.【考纲阐释】我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
专门是写议论文,初中水平以上的学生都明白议论文的“三要素”是论点、论据、论证,也通晓议论文的差不多结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
高二数学平面向量知识点总结
高二数学平面向量知识点总结高二数学平面向量知识点总结上学的时候,大家对知识点应该都不陌生吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。
为了帮助大家掌握重要知识点,以下是小编精心整理的高二数学平面向量知识点总结,仅供参考,欢迎大家阅读。
1、有向线段的定义线段的端点A为始点,端点B为终点,这时线段AB具有射线AB 的方向。
像这样,具有方向的线段叫做有向线段。
记作:。
2、有向线段的三要素:有向线段包含三个要素:始点、方向和长度。
3、向量的定义:(1)具有大小和方向的量叫做向量。
向量有两个要素:大小和方向。
(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量。
书写时,则用带箭头的小写字母,来表示。
4、向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||。
5、相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=。
6、相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:—。
7、向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线。
向量平行于向量,记作//。
规定: //。
8、零向量:长度等于零的向量叫做零向量,记作:。
零向量的方向是不确定的,是任意的。
由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量。
9、单位向量:长度等于1的向量叫做单位向量。
10、向量的加法运算:(1)向量加法的三角形法则11、向量的减法运算12、两向量的和差的模与两向量模的和差之间的关系对于任意两个向量,,都有|||—|||||+||。
13、数乘向量的定义:实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作。
向量()的长度与方向规定为:(1)||=|(2)当0时,与方向相同;当0时,与方向相反。
(3)当=0时,当=时,=。
14、数乘向量的运算律:(1))= (结合律)(2)(+)=+(第一分配律)(3)(+)=+。
成都高二下期数学知识点
成都高二下期数学知识点下面将为你详细介绍成都高二下期的数学知识点。
希望通过这些知识的学习,你能更好地掌握数学的技巧和应用。
一、平面向量1. 平面向量的表示方法:坐标表示法和模长与方向表示法。
2. 平面向量的运算法则:加法、减法、数量乘法和点乘法。
3. 平面向量的性质:平行、垂直、共线、共面等。
二、解析几何1. 空间直角坐标系:直线、平面的方程。
2. 空间几何体的性质:点、直线、平面、球体等的定义和性质。
3. 空间中的位置关系:相交、相切、平行、垂直等。
三、三角函数1. 弧度制和角度制的转换:常见角度的弧度表示。
2. 三角函数的定义和性质:正弦、余弦、正切等的计算和图像表示。
3. 三角函数的基本关系:诱导公式、和差化积、积化和差等的运用。
四、导数与微分1. 函数导数的定义:极限、斜率和切线的概念。
2. 常见函数的导数:多项式函数、指数函数、对数函数等的导数计算。
3. 导数的应用:函数的极值、函数曲线的拐点等。
五、不等式与函数1. 不等式与不等关系的性质:大小关系的推导与应用。
2. 函数的性质与增减性:函数的单调性、极值等的分析与应用。
3. 解不等式和不等式组:绝对值不等式、二次函数不等式等的求解方法。
六、数列和数列极限1. 数列的定义和性质:常数列、等差数列、等比数列等的特征。
2. 数列的运算法则:数列的加法、减法、乘法、除法的性质。
3. 数列极限的概念与计算:数列极限的存在性、计算极限的方法。
七、概率统计1. 随机事件与概率:事件的定义、运算与概率的基本性质。
2. 随机变量与概率分布:离散型随机变量和连续型随机变量的概念和性质。
3. 统计与抽样:样本调查、频率分布、抽样误差等的应用和推断。
这些是成都高二下期的数学知识点。
希望你通过学习,能够熟练掌握这些知识,提升数学学科的理解和应用能力。
祝你学业顺利!。
(完整版)高中平面向量公式及知识点默写
(完整版)高中平面向量公式及知识点默写平面向量知识点及公式默写一,基本概念1,向量的概念:。
2,向量的表示:。
3,向量的大小:(或称模)4,零向量:,记为,零向量方向是。
5,单位向量:长度为的向量称为单位向量,一般用、1=1=6,平行向量(也称共线向量):方向向量称为平行向量,规定零向量与任意向量。
若a 平行于b ,则表示为a ∥b 。
7,相等向量:称为相等向量。
若a 与b 相等,记为a =b8,相反向量:称为相反向量。
若与是相反向量,则表示为=-;向量-=二,几何运算1,向量加法:(1)平行四边形法则(起点相同),可理解为力的合成,如图所示:(2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, =+BC AB(3)两个向量和仍是一个向量;(4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式):= << = 2,减法:(1)两向量起点相同,方向是从减数指向被减数,如图=-AC AB (2)两向量差依旧是一个向量;(3)减法本质是加法的逆运算:CB CA AB CB AC AB =+?=- 3,加法、减法联系:(1)加法和减法分别是平行四边行两条对角线,=+,=- (2=,则四边形ABCD 为矩形 4,实数与向量的积:(1)实数λ与向量的积依然是个向量,记作λ,它的长度与方向判断如下: BAaCB Aaba babba +当0>λ时,a λ与a 方向;当0<λ时,a λ与a 方向;当0=λ时,=a λ当=时,=λ;=(2)实数与向量相乘满足:=)(a μλ =+a )(μλ=+)(b a λ5,向量共线:(1)向量b 与非零向量a 共线的条件是:有且只有一个实数λ(2)如图,平面内C B使得=++n m q ,且0=++q n m ,反之也成立。
(3)AC AB λ=,则OC OA OB λλ+-=)1((系数之和等于) 6,向量的数量积(1)数量积公式:夹角公式(2)向量夹角θ:同起点两向量所夹的角,范围是[]0180,0∈θ(3)零向量与任一向量的数量积为0,即0=? (4)数量积与夹角关系:b a ≤?≤00=θ 00900<<θ 090=θ 0018090<<θ 0180=θb a =? 0>?>b a 0=?b a b a >?>0 b a =?(5)投影:称为在的方向上的投影;成为在(6)重要结论:直角三角形ABC 中,2 =?=2a ?=的单位向量为(7)向量数量积的运算律:=?b a )(λ = =?+c b a )(=b a2222)(bb a a b a +?+=+2222)(b b a a b a +?-=-22)()(b a b a b a -=-?+ba b三,坐标运算1,平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数μλ,,使得21e e μλ+=,我们把不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底。
高中向量知识点总结
高中向量知识点总结一、向量的基本概念1. 向量:具有大小和方向的量,可以表示空间中的位移、速度等。
2. 向量的表示:用带箭头的线段表示,箭头方向表示向量的方向,线段长度表示向量的大小。
3. 向量的分类:有序实数对、有序三元组、复数向量等。
二、向量的运算1. 加法:两个向量相加,结果向量的模长等于原向量模长的和,方向与两个原向量相同。
2. 减法:两个向量相减,结果向量的模长等于原向量模长的差,方向与被减向量相同。
3. 数乘:向量与实数的乘积,结果向量的模长等于原向量的模长乘以实数的绝对值,方向与原向量相同。
4. 向量与向量的数量积:两个向量的模长相乘再乘以它们的夹角的余弦值。
5. 向量的几何意义:向量的模长表示向量的大小,向量的方向表示夹角。
三、平面向量1. 平面向量的基本概念:平面上的向量,包括有序实数对和有序三元组。
2. 平面向量的运算:加法、减法、数乘、几何意义等。
3. 平面向量的应用:几何、物理、计算机图形学等领域。
四、空间向量1. 空间向量的基本概念:空间中的向量,包括有序实数对、有序三元组和复数向量。
2. 空间向量的运算:加法、减法、数乘、几何意义等。
3. 空间向量的应用:几何、物理、计算机图形学、机器人等领域。
五、向量与解析几何1. 解析几何中的向量:用于表示点、线、面的位置和方向。
2. 向量在解析几何中的应用:求解直线、圆、椭圆等几何图形的方程。
3. 解析几何中的向量运算:向量加法、向量数乘、向量夹角、向量模长等。
六、向量与概率1. 随机向量:具有随机性和方向性的向量。
2. 概率向量:用于表示随机变量,包括离散型和连续型随机变量。
3. 向量在概率中的应用:用于表示多元随机变量、边缘分布、条件概率等。
七、向量与其他数学领域1. 向量与线性代数:向量空间、线性变换、矩阵与向量的关系等。
2. 向量与微积分:求解微分方程、积分方程等。
3. 向量与计算机科学:图形学、计算几何、机器人等。
以上为高中向量知识点总结,实际学习过程中还需注重实践操作、实验技能的培养以及解决实际问题的能力。
高中数学平面向量知识点总结
高中数学平面向量知识点总结XXXPart 1: Concepts of Vectors and ns of n。
n。
XXXI。
Concepts of Vectors1.Vector: A vector is a XXX.2.Methods of Representing Vectors:1) Geometric n: A directed line segment from a point with a certain n and length (note the starting and ending points).2) XXX: AB XXX.3.Concept of Magnitude: The magnitude of vector AB is its length。
denoted by |AB|。
Magnitudes can be compared.4.Two Special Vectors:1) Zero vector: A vector with a length of 0.denoted by 0.It can have any n.2) Unit vector: A vector with a length of 1 unit is called a unit vector.XXX1.Parallel Vectors: Non-zero vectors with the same or opposite ns are called parallel vectors。
Denoted as a∥b∥c。
Defined as parallel to any vector.2.Equal Vectors: Vectors with the same length and XXX as =。
Any two equal non-zero vectors can be represented by a directed line segment。
高中数学有关平面向量的公式的知识点总结
高中数学有关平面向量的公式的知识点总结定比分点定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。
则存在一个实数 λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。
(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心[编辑本段]向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件a⊥b的充要条件是 a•b=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.设a=(x,y),b=(x',y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学平面向量知识点归纳
高二数学平面向量知识点归纳
在平平淡淡的学习中,说到知识点,大家是不是都习惯性的重视?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
还在为没有系统的知识点而发愁吗?以下是店铺为大家整理的高二数学平面向量知识点归纳,仅供参考,希望能够帮助到大家。
高二数学平面向量知识点归纳1
1、基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2、加法与减法的代数运算:
(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2)。
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+=+(交换律);+(+c)=(+)+c (结合律);
3、实数与向量的积:
实数与向量的积是一个向量。
(1)||=||
(2)当a0时,与a的方向相同;当a0时,与a的方向相反;当a=0时,a=0。
两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=。
(2)若=(),b=()则‖b。
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2。
4、P分有向线段所成的比:
设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。
当点P在线段上时,当点P在线段或的延长线上时,
分点坐标公式:若=;的坐标分别为(),(),();则(—1),中点坐标公式:。
5、向量的数量积:
(1)向量的夹角:
已知两个非零向量与b,作=,=b,则AOB=()叫做向量与b 的夹角。
(2)两个向量的数量积:
已知两个非零向量与b,它们的夹角为,则b=|||b|cos。
其中|b|cos称为向量b在方向上的投影。
(3)向量的数量积的性质:
若=(),b=()则e=e=||cos(e为单位向量);
bb=0(,b为非零向量);||=;
cos==。
(4)向量的数量积的运算律:
b=b()b=(b)=(b);(+b)c=c+bc。
6、主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。
由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
高二数学平面向量知识点归纳2
1.有向线段的定义
线段的端点A为始点,端点B为终点,这时线段AB具有射线AB 的方向.像这样,具有方向的线段叫做有向线段.记作:.
2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.
3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和方向.
(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.
4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.
5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.
6.相反向量:与向量等长且方向相反的向量叫做的.相反向量,记作:-.
7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定://.
8.零向量:长度等于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.
9.单位向量:长度等于1的向量叫做单位向量.
10.向量的加法运算:
(1)向量加法的三角形法则
11.向量的减法运算
12、两向量的和差的模与两向量模的和差之间的关系
对于任意两个向量,,都有|||-|||||+||.
13.数乘向量的定义:
实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.
向量的长度与方向规定为:(1)||=|
(2)当0时,与方向相同;当0时,与方向相反.
(3)当=0时,当=时,=.
14.数乘向量的运算律:(1))=(结合律)
(2)(+)=+(第一分配律)(3)(+)=+.(第二分配律)
15.平行向量基本定理
如果向量,则//的充分必要条件是,存在唯一的实数,使得=.
如果与不共线,若m=n,则m=n=0.
16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量,通常记作.
=||,即==(,)
17.线段中点的向量表达式
点M是线段AB的中点,O是平面内任意一点,则=(+).
18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).
19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).
20.两向量相等和平行的条件:若=(a1,a2),=(b1,b2),则
=a1=b1且a2=b2.
//a1b2-a2b1=0.特别地,如果b10,b20,则//=.
21.向量的长度公式:若=(a1,a2),则||=.
22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.
23.中点公式
若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y=.
24.重心公式
在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则
x=,y=
25.(1)两个向量夹角的取值范围是[0,p],即0,p.
当=0时,与同向;当=p时,与反向
当=时,与垂直,记作.
(3)向量的内积定义:=||||cos.
其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.
(4)内积的几何意义
与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在方向上的正射影数量的乘积
当0,90时,0;=90时,
90时,0.
26.向量内积的运算律:
(1)交换率
(2)数乘结合律
(3)分配律
(4)不满足组合律
27.向量内积满足乘法公式
29.向量内积的应用:
高二数学平面向量知识点归纳3
1.平面向量的数量积
平面向量数量积的定义
已知两个非零向量a和b,它们的夹角为,把数量|a||b|cos叫做a 和b的数量积(或内积),记作ab。
即ab=|a||b|cos,规定0a=0.
2.向量数量积的运算律
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究]根据数量积的运算律,判断下列结论是否成立。
(1)ab=ac,则b=c吗?
(2)(ab)c=a(bc)吗?
提示:(1)不一定,a=0时不成立,
另外a0时,ab=ac.由数量积概念可知b与c不能确定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,当a与c 不共线时它们必不相等.
高二数学平面向量知识点归纳4
【考纲解读】
1、理解平面向量的概念与几何表示、两个向量相等的含义;掌握向量加减与数乘运算及其意义;理解两个向量共线的含义,了解向量线性运算的性质及其几何意义
2、了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件
3、理解平面向量数量积的含义及其物理意义;了解平面向量数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系
【考点预测】
高考对平面向量的考点分为以下两类:
(1)考查平面向量的概念、性质和运算,向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加、减、数乘、数量积等运算,高考中或直接考查或用以解决有关长度,垂直,夹角,判断多边形的形状等,此类题一般以选择题形式出现,难度不大(2)考查平面向量的综合应用。
平面向量常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅,此类题一般以解答题形式出现,综合性较强
【要点梳理】
1、向量的加法与减法:掌握平行四边形法则、三角形法则、多边形法则,加法的运算律;
2、实数与向量的乘积及是一个向量,熟练其含义;
3、两个向量共线的条件:平面向量基本定理、向量共线的坐标表示;
4、两个向量夹角的范围是:[0,π]
5、向量的数量积:熟练定义、性质及运算律,向量的模,两个向量垂直的充要条件。
【高二数学平面向量知识点归纳】。