【教案】 相似三角形及平行线分线段成比例(2)
《平行线分线段成比例》教学设计
课堂教学设计执教人课题平行线分线段成比例一、教学目标确定的依据1.教材分析平行线分线段成比例是初中数学的相似三角形一章第二课时的内容.将要学习的是平行线分线段成比例定理及其推论,平行线分线段成比例是学习以及推导相似三角形判定定理的基础,通过学习将帮助学生进一步认识对应线段成比例。
通过平行线分线段成比例的学习,可以加深对平行线的认识.同时,平行线分线段成比例也是学习相似三角形、位似的基础.本节课重点是平行线分线段成比例定理及其推论的理解以及练习巩固。
通过具体的实例,让学生能够理解平行线分线段成比例,以及会用平行线分线段成比例计算线段的长度。
本节课通过实例,如“网格图中平行线分得的对应线段的比”“平行线分线段成比例的推论”等,让学生通过观察、抽象,学习平行线分线段成比例,并从中体会平行线分线段成比例在具体计算解题中的应用。
2.学生分析学生在前面的学习中已经学过了线段的比、成比例线段、三角形的全等以及比例的性质等知识,这节课平行线分线段成比例是在前面学习过的基础上进行更加系统的学习,知识本身比较抽象,对应线段的概念需要学生理解,对于内容的理解要求比较高,同时对于定理内容本身、以及推论本身的识记也要求学生能记忆准确。
所执教班级学生对于平行线分线段成比例的一般情况理解基本到位,但是对于定理中变形的应用不够熟练,例如利用平行线分线段成比例的性质求值会有障碍。
本节课借助多媒体辅助教学,指导学生直观形象地观察与思考,理清对应线段成比例的概念,对于一般情况进行特殊化平移,从具体特殊问题中抽象出数学问题,总结出平行线分线段成比例的性质,进一步认识平行线分线段成比例性质及其推论的应用。
二、教学目标1.理解掌握平行线分线段成比例定理。
2.会综合运用行线分线段成比例定理解决问题教学过程设计教学环节开放式导入教师活动安排学生根据课件设置以及课本内容,先自主学习,将发现的问题在课堂上交流,完成对于平行线分线段成比例的初步认识。
平行线分线段成比例定理 (2)
平行线分线段成比例定理简介平行线分线段成比例定理(Parallelogram Proportion Theorem)是几何学中关于平行线与线段相交的一个重要定理。
该定理表明,如果在两条平行线上,有一条直线与这两条平行线相交,那么它所截取的线段与平行线的对应线段成比例。
定理描述设有两条平行线l和m,直线n与这两条平行线相交。
如果直线n依次截取了线段AB和CD,那么这两条线段的比例等于与AB和CD平行的线段的比例,即:AB/CD = AE/CF其中,A、B分别是直线n与l的交点,C、D分别是直线n与m的交点,E、F分别是直线n与l和m的另外两个交点。
证明过程为了证明平行线分线段成比例定理,我们可以使用类似于相似三角形的方法来进行证明。
步骤1:构造辅助线段首先,我们在直线n上任意取一点G,然后通过G分别作l和m的垂线GH和GK。
此时,我们得到了一个平行四边形AGHK。
通过平行线的性质,我们可以知道AG和HK是平行的,并且两条平行线之间的距离是相等的。
步骤2:证明三角形AFB与三角形CGD相似由于AGHK是一个平行四边形,所以我们可以得到以下结论:∠KGD = ∠HAG (对顶角)∠KDG = ∠GAH (对顶角)因此,根据AA相似性质,我们可以得出三角形AFB与三角形CGD相似。
步骤3:证明AE/CF = AB/CD在步骤2中,我们已经得到了三角形AFB与三角形CGD相似的结论。
根据相似三角形的基本性质,我们知道相似的三角形中,对应边的比例是相等的。
由于三角形AFB与三角形CGD相似,根据相似三角形的性质,我们可以得到以下比例等式:AB/CD = AF/CG而AF和CG分别是线段AE和线段CF在相似三角形中对应的边。
因此,我们可以得出以下结论:AB/CD = AE/CF步骤4:证明结论由于步骤3中得出的结论,我们证明了平行线分线段成比例定理。
应用举例平行线分线段成比例定理在解决几何问题中起着重要的作用。
27.2.1相似三角形的判定平行线分线段成比例(教案)
1.理论介绍:首先,我们要了解相似三角形的判定和平行线分线段成比例的基本概念。相似三角形是指形状相同但大小不一定相同的三角形,它们在几何变换中具有重要作用。平行线分线段成比例是指在三角形中,如果一条平行于一边的直线截断三角形的另外两边,那么所截得的线段比例相等。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,了解相似三角形的判定和平行线分线段成比例在实际中的应用,以及它们如何帮助我们解决问题。
3.培养学生的空间想象力和创新能力,让学生在解决实际问题时,能够灵活运用平行线分线段成比例的性质,设计合理的解题方案;
4.培养学生的数学建模和数学应用能力,使学生能够将所学知识应用于解决生活中的几何问题,提高学生的数学素养和实际操作能力。
三、教学难点与重点
1.教学重点
(1)相似三角形的判定方法:AA、SAS、SSS
举例:在复杂的四边形中,学生需要识别出平行线分线段成比例的部分,并运用此性质解决问题。
(3)综合运用相似三角形的判定和平行线分线段成比例解决实际问题
-学生需要将所学知识综合运用,解决几何证明和计算问题。
举例:在实际问题中,学生可能需要先判定两个三角形相似,然后利用平行线分线段成比例的性质求解未知长度。
其次,在平行线分线段成比例的教学中,我注意到学生们在将理论知识应用到实际问题解决时,存在一定的难度。这可能是因为他们对平行线分线段成比例的性质理解不够深入。在以后的教学中,我需要设计更多具有实际情境的问题,让学生在实际操作中感受这一性质的应用,提高他们的解题能力。
此外,课堂上的小组讨论环节,学生们表现得相当积极。他们在讨论相似三角形和平行线分线段成比例在实际生活中的应用时,提出了很多有趣的观点。这说明学生们已经能够将所学知识与生活实际联系起来,这是值得肯定的。但同时,我也发现部分学生在讨论中过于依赖他人,缺乏独立思考。针对这一问题,我需要在今后的教学中,多关注学生的个体差异,鼓励他们独立思考,提高解决问题的能力。
平行线分线段成比例定理数学教案
平行线分线段成比例定理数学教案
标题:平行线分线段成比例定理
一、教学目标:
1. 学生能理解并掌握平行线分线段成比例定理。
2. 学生能运用该定理解决实际问题。
3. 提高学生的空间想象能力和逻辑思维能力。
二、教学内容:
平行线分线段成比例定理:如果一条直线截两条平行线,所得的对应线段成比例。
三、教学步骤:
1. 导入新课
通过复习以前学过的关于平行线的知识,引导学生进入新课的学习。
2. 讲解新课
(1) 介绍平行线分线段成比例定理,并解释其含义。
(2) 利用教具或多媒体进行演示,帮助学生理解这个定理。
(3) 引导学生自己画图,尝试证明这个定理。
3. 巩固练习
设计一些习题让学生做,以此来检验他们是否真正理解了这个定理。
4. 拓展应用
引导学生将这个定理应用到实际生活中,或者解决其他数学问题。
四、教学反思:
在教学过程中,教师应关注学生的学习状态,适时调整教学策略,以达到最佳的教学效果。
同时,教师也应鼓励学生积极思考,培养他们的创新精神和实践能力。
五、作业布置:
设计一些与本节课内容相关的习题作为家庭作业,以便学生巩固所学知识。
六、教学评估:
通过课堂观察、作业批改以及测试等方式,对学生的学习情况进行评估,及时反馈学习效果,为下一步的教学提供参考。
相似三角形的判定教案
《相似三角形的判定》教案课标要求1.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例;2.了解相似三角形的判定定理:两角分别相等的两个三角形相似、两边成比例且夹角相等的两个三角形相似、三边成比例的两个三角形相似;3.了解相似三角形判定定理的证明.教学目标知识和技能:1.了解相似三角形及相似比的概念;2.掌握平行线分线段成比例的基本事实及推论;3.掌握相似三角形判定方法:平行线法、三边法、两边夹一角法、两角法;4.进一步熟悉运用相似三角形的判定方法解决相关问题.过程和方法:类比全等三角形的判定方法探究相似三角形的判定,体会特殊和一般的关系,从而掌握相似三角形的判定方法.情感、态度和价值观:发展学生的探究能力,渗透类比思想,体会特殊和一般的关系.教学重点掌握相似三角形的概念,能运用相似三角形的判定方法判定两个三角形相似.教学难点探究三角形相似的条件,并运用相似三角形的判定定理解决问题.教学流程一、知识迁移类比相似多边形的相关知识回答下面的问题:1.对应角相等,对应边成比例的两个三角形,叫做相似三角形.2.相似三角形的对应角相等,对应边成比例.师介绍:“相似”用符号“∽”来表示,读作“相似于”,2题可以用符号表示为∵△ABC∽△DEF,∴A=∠D,∠B=∠E,∠C=∠F;.如何判断两个三角形相似呢?反过来∵A=∠D,∠B=∠E,∠C=∠F;∴△ABC∽△DEF.师介绍:△ABC和△DEF的相似比为k,△DEF和△ABC的相似比为1k.追问:当k=1,这两个三角形有怎样的关系?引出课题:如何判断两个三角形相似呢?有没有更简单的方法?回顾学习三角形全等时,我们知道,除了可以验证所有的角和边分别相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?二、探究归纳(一)平行线分线段成比例探究1:如图,任意画两条直线l1,l2,再画三条和l1,l2都相交的平行线l3,l4,l5.分别度量l3,l4,l5在l1上截得的两条线段AB ,BC和在l2上截得的两条线段DE,EF的长度,AB BC 和DEEF相等吗?任意平移l5.ABBC和DEEF还相等吗?当l3//l4//l5时,有,,,等.基本事实:两条直线被一组平行线所截,所得的对应线段成比例.迁移:将基本事实应用到三角形中,当DE//BC时,有,,,等.结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.应用:如图AB//CD//EF,AF和BE相交于点G,AG=2,GD=1,DF=5,求BC CE的值.(二)相似三角形的判定思考:如图1,在△ABC中,DE∥BC,且DE 分别交AB,AC于点D,E,△ADE 和△ABC 有什么关系?图1 图2分析:用定义证明△ADE∽△ABC,需要具备的条件:角:∠A=∠A,∠ADE=∠B,∠AED=∠C;边:.如何证明呢?判定三角形相似的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.变式:如图2,DE∥BC,且DE 分别交BA,CA 的延长线于点D,E,△ABC 和△ADE相似吗?符号语言:∵DE//BC∴△ABC∽△ADE应用:如图,在△ABC中,DE∥BC,且AD=3,DB=2.写出图中的相似三角形,并指出其相似比.探究2:任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍.度量这两个三角形的角,它们相等吗?这两个三角形相似吗?和同学交流一下,看看是否有同样的结论.在△ABC 和△A′B′C′中,如果满足,求证:△ABC ∽△A ′B ′C ′.判定三角形相似的定理一:三边成比例的两个三角形相似. 符号语言:ABC A B C '''∴∆∆∽类比:对于在△ABC 和△A ′B ′C ′中,如果,AB ACA A AB AC '=∠=∠'''',这两个三角形一定相似吗?判定三角形相似的定理二:两边成比例且夹角相等的两个三角形相似. 符号语言:,AB ACA A AB AC '=∠=∠'''' ABC A B C '''∴∆∆∽思考:对于在△ABC 和△A ′B ′C ′中,如果,AB ACB B A B AC '=∠=∠'''',这两个三角形一定相似吗?试着画画看.应用:例1根据下列条件,判断△ABC 和△A ′B ′C ′是否相似,并说明理由: (1)AB =4 cm ,BC =6 cm ,AC =8 cm ,A ′B ′=12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm . (2)∠A =120°,AB =7 cm ,AC =14 cm ,∠A ′=120°,A ′B ′=3 cm ,A ′C ′=6 cm . 追问:这两个三角形的相似比是多少?练习:判断图中的两个三角形是否相似.为什么?探究3:观察两副三角尺,其中有同样两个锐角(30°和 60°,或 45°和 45°)的两个三角尺大小可能不同,它们相似吗?试着说说理由.迁移:对于在△ABC 和△A ′B ′C ′中,如果,A A B B ''∠=∠∠=∠,这两个三角形一定相似吗?判定三角形相似的定理三:两角分别相等的两个三角形相似. 符号语言:,A A B B ''∠=∠∠=∠ ABC A B C '''∴∆∆∽应用:例2如图,Rt △ABC 中,∠C =90°,AB=10,AC=8.E 是 AC 上一点,AE =5,ED ⊥AB ,垂足为 D .求 AD 的长.问题:根据三角形相似的条件,判定两个直角三角形相似有哪些方法呢?思考:我们知道,两个直角三角形全等可以用“HL ”来判定.那么,满足斜边和一条直角边成比例的两个直角三角形相似吗?判定直角三角形相似定理:斜边和一条直角边成比例的两个直角三角形相似. 练习:如图,在 Rt △ABC 中,CD 是斜边 AB 上的高,求证:(1)△ACD ∽△ABC ;(2)△CBD ∽△ABC .三、应用提高1.如图,△ABC 中,DE∥FG∥BC,找出图中所有的相似三角形.第1题图第2题图2.有一块三角形的草地,它们一条边长为25m.在图纸上,这条边长为5cm,其他两条边的长都为4cm,求其他两条边的实际长度.3.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.四、体验收获说一说你的收获.1.三角形相似的定义;2.平行线分线段成比例的基本事实、推论及在三角形中的运用;3.三角形相似的判定方法.五、拓展提升1.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4cm,5cm 和6cm,另一个三角形框架的一边长为2cm,它的另外两条边长应当是多少?说出你的制作方案.2.如图,△ABC 中,DE∥BC,EF∥AB,求证△ADE∽△EFC;六、课内检测1.根据下列条件,判断△ABC 和△A′B′C′是否相似,并说明理由:(1)∠A=40°,AB=8 cm,AC=15 cm,∠A′=40°,A′B′=16cm ,A′C′=30 cm.(2)AB=10 cm,BC=8 cm,AC=16 cm,A′B′=16cm ,B′C′=12.8cm ,A′C′=25.6cm.2.如果Rt△ABC 中的两条直角边分别为3和4,那么以3k和4k(k为正整数)为直角边的直角三角形一定和Rt△ABC 相似吗?为什么?七、布置作业必做题:教材42页习题27.2第2、3、7题.选做题:教材44页习题27.2第13题.附:板书设计教学反思:。
第1课时 平行线分线段成比例教案
27.2.1 相似三角形的判定 第1课时 平行线分线段成比例《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质及判定的基础上进行学习的,是本章的重点内容.本课时首先利用“如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似.”引出两个三角形相似的定义(即三个角分别相等,三条边成比例的两个三角形相似),然后引导学生思考类比全等三角形的判定方法,对于相似三角形是否存在较为简便的方法.接下来教材编写者通过一个“探究”,由学生动手测量来探究得到平行线分线段成比例的基本事实(三条平行线截两条直线,所得的对应线段的比相等),继而将其应用于三角形中,得到“平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.”这一基本事实的推论,是进一步学习相似三角形判定的预备定理的基础.【置疑导入】(1)如图,一组等距离的平行线截直线AC 所得到的线段相等,那么在直线A ′C ′上所截得的线段有什么关系呢?(2)若AB BC =23,猜想A ′B ′B ′C ′的值是多少.【说明与建议】 说明:让学生通过试验来体会“如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等”的数学事实,以此来为平行线分线段成比例的基本事实做铺垫.通过生活中的一个实例激发学生探究知识的欲望.建议:用印有等距离平行线的作业纸和刻度尺做试验:(1)画一条与这组平行线垂直的直线l 1,则直线l 1被这组平行线截得的线段相等吗?为什么?(2)任意画一条与这组平行线相交的直线l 2,量一量直线l 2被这组平行线截得的线段是否相等.【类比导入】(1)如果两个三角形的形状和大小都相同,那么这两个三角形是全等三角形.(2)如果两个多边形的边数相同,它们的角分别相等,对应边成比例,那么这两个多边形是相似多边形.(3)类比全等三角形和相似多边形的定义,你能说出什么叫相似三角形吗?如何表示相似三角形呢?又如何判定两个三角形相似呢?【说明与建议】 说明:通过对全等三角形的定义和判定方法的回顾,加强新旧知识的联系和延伸,类比旧知识的学习方法、数学思想来学习新知识.建议:让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:(1)对顶角一定是对应角.(2)公共角一定是对应角.(3)最大角或最小角一定是对应角.(4)对应角所对的边一定是对应边.(5)对应边所对的角一定是对应角.(6)对应边所夹的角一定是对应角.命题角度1 利用平行线分线段成比例的基本事实及推论进行计算或推理 1.如图,已知l 1∥l 2∥l 3,下列比例式中错误的是(D)A.AC CE =BDDFB.AC AE =BDBFC.CE AE =DFBFD.AE CE =BD BF命题角度2 多次应用平行线分线段成比例的相关结论进行计算或推理2.如图,在△ABC 中,点D ,E ,F 分别在AB ,AC ,BC 边上,DE ∥BC ,EF ∥AB ,则下列式子一定正确的是(B)A.AD DB =DEBCB.AD DB =BFFCC.AD DB =FC BFD.AD DB =FC BC命题角度3 利用三角形相似的预备定理判定相似三角形 3.如图,在△ABC 中,DE ∥BC ,若AD AB =35,则AECE的值为(C)A .3B.23C.32D.534.如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O.(1)如果CE=3,EB=9,DF=2,求AD的长;(2)如果BO∶OE∶EC=2∶4∶3,AB=3,求CD的长.解:(1)AD的长是8.(2)CD的长是10.5.课题27.2.1 第1课时平行线分线段成比例授课人素养目标1.了解相似比的定义.2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似.3.会用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.4.通过探索平行线分线段成比例这个基本事实的过程,进一步熟悉由特殊到一般的数学思想,能把一个稍复杂的图形分成几个基本图形,锻炼识图能力和推理论证能力.教学重点平行线分线段成比例的基本事实及其推论的理解.教学难点平行线分线段成比例的基本事实及其推论的灵活应用,平行线分线段成比例的基本事实的变形. 授课类型新授课课时教学步骤师生活动设计意图回顾问题1:根据所学相似多边形的知识,你能给出相似三角形的定义吗?问题2:如果相似比为1,那么这两个三角形有什么关系?问题3:判定三角形全等,我们并不是验证六个条件,而是利用了几个简便的判定定理,那么判定三角形相似我们又能找到哪些简便的方法呢?问题1引导学生回顾旧知得出相似三角形的定义及写法.问题2、3让学生理解全等是相似的特殊情况,类比三角形全等的判定方法为我们探索三角形相似的判定方法提供方向指导.活动一:创设情境、导入新课【课堂引入】问题:如图,一组等距离的平行线截直线a所得到的线段相等,那么在直线b上所截得的线段有什么关系呢?引导学生回答问题后,教师做如下总结:一组等距离的平行线在直线a上所截得的线段相等,那么在直线b上所截得的线段也相等.以上结论是平行线等分线段的基本事实,讨论的是平行线截得线段相等的情况,如果截得的线段不相等呢?通过展示问题,由浅入深,循序渐进,为学习新知做铺垫.活动二:实践探究、交流新知【探究新知】1.探究平行线分线段成比例的基本事实教师提出问题,学生讨论问题:图1如图1,三条平行直线l1,l2,l3在直线AE上截得的线段AC,CE的长度之间存在着什么关系呢?同样在直线BF上截得的线段BD,DF的长度之间存在着什么关系呢?教师指导学生利用刻度尺先测量线段的长度,然后寻找线段AC,CE,BD,DF之间是否存在比例关系,实际验证后可以得到如下结论:由l1∥l2∥l3,ACCE=23,BDDF=23,可得ACCE=BDDF=23.仿照上例分析,可得结论:由l1∥l2∥l3,可得ACAE=BDBF=23.1.本环节的主要任务是推理得出平行线分线段成比例的基本事实,其中运用了先猜想、再测量、最后论证的方法,用语言把平行线分线段成比例的基本事实进行总结,使结论的得出有一定的层次性,也使学生在认识问题、理解问题时确定教师引导学生初步总结出平行线分线段成比例的基本事实,然后师生共同进行推理论证.师生共同归纳得出基本事实,教师板书基本事实.平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.2.探究平行线分线段成比例基本事实的推论教师将图1中的某些直线进行平移变换,使其出现图2、图3所示的位置关系,对学生提出问题:图2 图3根据基本事实补全下列比例式: 由图2,得AC CE =BD DF ,AC AE =BD BF ,CE AE =DFBF ;由图3,得AC CE =BD DF ,AC AE =BD BF ,CE AE =DFBF.解答本题应关注线段之间的对应关系,列比例式时上与下的对应关系应展现在同一条直线上,同时教师应利用比例的基本性质,指导学生对比例式进行变形训练,进而总结出平行线分线段成比例的位置规律,如上下=上下,上全=上全,下全=下全等. 教师对于图形作进一步变化:对于以上两个练习,只保留如图4所示的部分,那么就可以得到两个三角形对应边成比例的式子,可以得到什么结论呢?图4教师在由一般到特殊的演化过程中,将平行线分线段成比例的基本事实延伸到三角形中,当三角形中出现平行线时,使三角形的各边之间存在比例关系. 教师指导学生总结平行线分线段成比例的基本事实的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.了一种思想方法. 2.本环节是对平行线分线段成比例的基本事实的变式与延伸,这部分内容将在以后的学习和应用中起到重要的指导作用,所以在探究、总结、应用的过程中,一定要注意知识的重要性,要使每一个学生都有深刻的理解与记忆. 3.学生经历观察、猜想、动手实践、总结归纳、实践应用等环节,在学习知识的过程中循序渐进,符合学生的认知规律和思维模式.通过对相似三角形的基本图形的对比理解,更能加深印象.3.探究三角形相似的预备定理教师提出问题,学生组内讨论解答,教师适时指导:如图5,在△ABC中,D为AB上任意一点,过点D作DE∥BC交AC于点E.(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?图5(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?思考:当DE∥BC时,△ADE与△ABC相似,可以用什么语言来概括呢?你能进行证明吗?总结判定三角形相似的预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.思考:一条直线截三角形两边延长线所得三角形与原三角形相似吗?请对比图6、图7两个图形,分析其中的联系与区别.图6 图7活动三:开放训练、体现应用【典型例题】例(教材第31页练习第1题)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,求BCCE的值.解:∵AB∥CD∥EF,∴BCCE=ADDF.又AD=AG+GD=3,DF=5,∴BCCE=35.本环节所设置的例题和变式非常具有代表性,既考查了平行线分线段成比例基本事实的内容及其推论,又灵活地运用转化思想实现了运用“中间比”的性质,不仅发展了学生的思维能力,【变式训练】1.如图,若l 1∥l 2∥l 3,则AB AC =(PG )PH =DE(DF ).2.如图,已知AD ∥BE ∥CF ,它们依次交直线l 1,l 2于点A ,B ,C 和点D ,E ,F ,且AB =6,BC =8. (1)求DEDF的值;(2)当AD =5,CF =19时,求BE 的长.解:(1)∵AD ∥BE ∥CF ,∴DE DF =AB AC =66+8=37.(2)过D 点作DM ∥AC 交CF 于M ,交BE 于N ,求出MF =14. ∵NE ∥MF ,∴NE MF =DE DF =37,∴NE =37MF =37×14=6.∴BE =BN +NE =5+6=11. 还拓宽了学生的思路和视野.活动四:课堂检测【课堂检测】1.如图,已知AB ∥CD ∥EF ,若AC =6,CE =2,BD =3,则BF 的长为(C) A .6 B .5.5 C .4 D .4.5第1题图2.如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.第2题图提示:根据DE ∥BC 得到AD AB =AE AC ,然后根据比例的性质可计算出AE 的长为107.课堂小结1.课堂小结:(1)平行线分线段成比例的基本事实是什么?推论是什么?易错点是什么? (2)目前我们有什么方法判定两个三角形相似?(3)本课两个重要的结论在探索中主要运用了哪些数学思想方法?教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯. 2.布置作业:教材第42页习题27.2第4,5题.注重课堂小结,激发学生参与的主动性,为每一个学生的发展与表现创造机会.板书设计27.2.1 相似三角形的判定 第1课时 平行线分线段成比例1.相似三角形的定义及有关概念. 2.平行线分线段成比例定理及推论. 3.相似三角形判定的预备定理.提纲挈领,重点突出.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。
九年级数学 相似三角形的判定(教案、导学案)
27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。
数学教案-相似三角形的判定数学教学教案5篇
相似三角形的判定数学教学教案5篇两角对应相等,两个三角形相似。
两边对应成比例且夹角相等,两个三角形相似。
三边对应成比例,两个三角形相似。
三边对应平行,两个三角形相似。
斜边与直角边对应成比例,两个直角三角形相似。
都是三角形相似的判定。
下面是小编为大家整理的相似三角形的判定数学教学教案5篇,希望大家能有所收获!相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在ⅠABC和Ⅰ 中,,.问:ⅠABC和Ⅰ 是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或.问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在ⅠABC边AB(或延长线)上,截取,过D作DEⅠBC交AC于E.“作相似.证全等”.(2)在ⅠABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,Ⅰ .例1 已知和中,,,.求证:Ⅰ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:Ⅰ Ⅰ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即ⅠⅠⅠⅠ.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
平行线分线段成比例定理 (2)
平行线分线段成比例定理平行线分线段成比例定理是在平行线和交叉线段的关系中发现的一条重要定理。
它揭示了平行线和它们所夹直线上的线段之间的比例关系。
本文将详细介绍平行线分线段成比例定理的定义、证明及应用。
定理定义平行线分线段成比例定理,又称为柯拉斯定理,是指在平行线AB与CD之间,若由交线EF将这两条平行线分别切成m个等分点,则相应的等分点之间连线所形成的线段的比例相等。
更具体地说,若EF将AB切割成了m个等分点,将CD切割成了n个等分点,则有$\\frac{AC}{BD}=\\frac{m}{n}$。
定理证明现将平行线AB与CD之间由交线EF切分为m个等分点和n个等分点,分别记为A1,A2,…,Am和C1,C2,…,Cn。
根据平行线的性质,可以得到以下四组相似三角形:EAB与ECD、EA1B与ECnD、EA2B与EC(n1)D以及EAmB与ECD。
通过这些相似三角形的比例关系,可以进行证明。
证明步骤:1.利用三角形EAB与ECD的相似性,可以得到$\\frac{EA1}{EC1}=\\frac{AB}{CD}$;2.同理,利用相似三角形EA2B与EC(n1)D的关系可以得到$\\frac{EA2}{EC2}=\\frac{AB}{CD}$;3.以此类推,可得到$\\frac{EAm}{EC(nm)}=\\frac{AB}{CD}$;,将上述等式两边乘以CD,得到$EAm \\cdot CD = EC(nm) \\cdot AB$;4.再将等式两边分别加上ECm和EAn,得到$EAm\\cdot CD + ECm \\cdot DE = EC(nm) \\cdot AB + EAn\\cdot AB$;5.将等式左边的各项合并,得到$AC \\cdot CD = BD\\cdot AB$;,将等式两边除以$BD \\cdot CD$,得到$\\frac{AC}{BD}=\\frac{AB}{CD}$。
三角形中的平行线分线段成比例-冀教版九年级数学上册教案
三角形中的平行线分线段成比例-冀教版九年级数学上册教案教学目标1.掌握平行线分割三角形中相似三角形的性质2.能够利用相似三角形的性质解决实际问题3.培养学生的逻辑思维和动手能力教学重点1.平行线分割三角形的相似三角形的性质2.如何利用相似三角形解决实际问题教学难点1.如何确定平行线与三角形各边的位置关系2.如何应用相似三角形的性质求解实际问题教学过程导入新知1.引入平行线与相似三角形的概念2.通过练习题让学生感受平行线和相似三角形的性质讲授新知1.讲解平行线分割三角形中相似三角形的性质2.通过解题讲解如何应用相似三角形的性质解决实际问题练习与提高1.通过以上知识点的学习,让学生练习一些高难度练习题,提高学生解决问题的能力2.带领学生一起探究现实生活中的实例,如横店影视城里的角色扮演道具等,让学生感受到知识的实用性,并能够应用所学知识解决实际问题巩固知识1.通过拓展练习,引入其他角度的维度,提高学生的综合能力2.让学生对本课所学内容进行复习,加深学生对所学知识点的认识教学总结1.总结本课所学知识点,强化学生对所学知识的掌握程度2.提出本课中出现的问题,以备下次上课时进行回答和解决课后作业1.利用所学知识完成练习题和提高题2.进一步思考如何在实际生活中应用所学知识,例如道路规划等场景。
教学评价通过本次课程的学习,学生能够掌握平行线分割三角形中相似三角形的性质,利用相似三角形的性质解决实际问题,并在探究实例的过程中,体会到知识的实用性。
在课堂上,学生积极参与讨论,动手实践能力得到提高,在复习环节中也表现出了一定的掌握程度。
人教版九年级数学下册27.2.1相似三角形的判定第1课时平行线分线段成比例教学设计
在讲授新知环节,教师应注重知识的逻辑性和系统性,让学生逐步掌握相似三角形的判定方法。
1.讲解平行线分线段成比例定理:从定义、性质、应用等方面进行详细讲解,让学生理解并掌握该定理。
2.演示相似三角形的判定方法:结合具体实例,通过画图、计算等方式,向学生展示如何运用比例关系判断相似三角形。
1.基础练习:针对本节课的基本概念和定理,设计一些简单题目,让学生迅速巩固知识。
2.提高练习:设计一些综合性较强的题目,让学生在解决问题的过程中,提高自己的思维能力和解题技巧。
3.个性化练习:针对学生的个体差异,提供不同难度的题目,让每个学生都能在练习中得到提升。
4.反馈评价:教师对学生的练习情况进行及时反馈,鼓励学生优点,指出不足,并提出改进建议。
二、学情分析
九年级学生在经过前两年的数学学习后,已具备了一定的数学基础和思维能力。在本节课之前,学生已经学习了三角形的性质、全等三角形的判定以及平行线的性质等内容,这为学习相似三角形的判定奠定了基础。然而,由于相似三角形的判定涉及抽象的逻辑推理和空间想象能力,部分学生对这部分内容的理解和掌握可能会存在困难。
人教版九年级数学下册27.2.1相似三角形的判定第1课时平行线分线段成比例教学设计
一、教学目标
(一)知识与技能
本节课是九年级数学下册27.2.1相似三角形的判定第1课时,通过本节课的学习,学生应当掌握以下知识与技能:
1.理解并掌握平行线分线段成比例定理,能够准确运用该定理分析解决实际问题。
2.学会运用比例关系证明相似三角形,掌握相似三角形的判定方法。
3.能够运用相似三角形的性质,解决与相似三角形有关的问题。
(二)过程与方法
在本节课的教学过程中,学生将通过以下方法培养数学思维能力:
《平行线分线段成比例》教案
《平行线分线段成比例》教案一、教学目标:知识与技能:1. 理解平行线分线段成比例的概念。
2. 学会使用平行线分线段成比例的性质和判定方法。
过程与方法:1. 通过观察和操作,培养学生直观判断和逻辑推理能力。
2. 学会运用平行线分线段成比例解决实际问题。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生的合作意识和团队精神。
二、教学重点与难点:重点:1. 平行线分线段成比例的概念。
2. 平行线分线段成比例的性质和判定方法。
难点:1. 平行线分线段成比例的证明。
2. 运用平行线分线段成比例解决实际问题。
三、教学准备:教师准备:1. 教学PPT或黑板。
2. 教学素材(如图片、实例等)。
3. 练习题。
学生准备:1. 笔记本。
2. 尺子、圆规等作图工具。
四、教学过程:1. 导入:利用实例或图片,引导学生观察并思考:平行线如何分线段成比例?激发学生兴趣,引出本节课主题。
2. 新课讲解:(1)介绍平行线分线段成比例的概念。
(2)讲解平行线分线段成比例的性质和判定方法。
(3)通过实例演示,让学生理解并掌握平行线分线段成比例的应用。
3. 课堂练习:布置一些有关平行线分线段成比例的练习题,让学生独立完成,巩固所学知识。
4. 拓展与应用:引导学生运用平行线分线段成比例解决实际问题,培养学生的应用能力。
五、课后作业:1. 巩固所学知识,完成课后练习题。
2. 搜集生活中的平行线分线段成比例的实例,下节课分享。
3. 预习下一节课内容。
六、教学评估:1. 课堂练习的完成情况,观察学生对平行线分线段成比例的理解和应用能力。
2. 课后作业的完成质量,检验学生对课堂所学知识的巩固程度。
3. 生活实例的分享,了解学生对平行线分线段成比例在实际生活中的应用。
七、教学反思:根据教学过程中的观察和评估,反思教学方法的适用性,是否存在需要改进的地方。
针对学生的掌握情况,调整教学策略,以提高教学效果。
八、教学拓展:1. 深入研究平行线分线段成比例在几何图形中的应用,如三角形、四边形等。
《相似三角形的判定(2)》名师教案
相似三角形的判定 (王军)第二课时一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.(2)能够运用三角形相似的条件解决简单的问题.3.学习重点掌握两种判定方法,会运用两种判定方法判定两个三角形相似.4.学习难点(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.二、教学设计(一)课前设计1.预习任务任务1 三边成比例的三角形相似吗如何证明任务2 两组对应边的比相等且它们的夹角相等的两个三角形相似吗如何证明2.预习自测1.三边__________的两个三角形相似.2.两边_________且夹角_______的两个三角形相似.3.不能判定△ABC 和△A′B′C′相似的条件是( )A .=AB BC AC B C A C A B =''''''B . AB A B AC A C ''='',且∠A =∠A′C .AB BC A B A C ='''',且∠B =∠A′ D . AB AC A B A C ='''',且∠B =∠C′ (二)课堂设计1.知识回顾1.三角形全等的判定方法:SSS 、SAS2.相似三角形判定的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3.全等三角形与相似三角形的关系:相似比为1的两个相似三角形全等,反过来两个全等三角形可以看作是相似比是1的相似三角形.2.问题探究问题探究一 三边成比例的两个三角形相似吗 重点、难点知识★▲ ●活动1 提出问题,引导学生探究引入:判定两个三角形全等我们有SSS 的方法,类似地,判定两个三角形相似是否也有类似的简单方法呢探究:任意画ΔABC 和ΔA′B′C′,使ΔA′B′C′的各边长都是ΔABC 各边长的k 倍,△ABC ∽ΔA′B′C′吗1.操作: 度量这两个三角形的对应角,这两个三角形的对应角相等,对应边成比例.2.猜想:在ΔABC 和ΔA′B′C′中,如果AB BC CA A B B C C A =='''''',那么ΔABC ∽△A′B′C′.3.证明:分析:这时可在A′B′上截取A′D=AB,再过D 作DE//B′C′,由△A′DE∽△A′B′C′,再证明△ABC ≌△A′DE,则可得到△ABC ∽△A′B′C′.4.归纳:三角形相似的判定方法1:三边成比例的两个三角形相似.5.推理格式:∵AB BC CAA B B C C A=='''''',∴△ABC∽△A′B′C′.●活动2 例题讲解,相似三角形判定1的应用例:下面图中小正方形的边长均为1,则左面图中的三角形(阴影部分)与右面图中的△ABC相似的是()让学生讨论解决。
九年级数学上册《平行线分线段成比例》教案、教学设计
2.注重培养学生的几何直观,通过具体实例让学生感受平行线分线段成比例的性质。
3.针对学生个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
4.加强师生互动,关注学生的心理需求,营造轻松、愉快的学习氛围。
三、教学重难点和教学设想
随后,教师引入平行线分线段成比例的概念,并让学生尝试用自己的语言描述这一概念。通过这种方式,激发学生的好奇心,使他们产生学习的兴趣。
(二)讲授新知
在导入新课的基础上,教师开始讲授平行线分线段成比例的性质。首先,通过几何画板演示平行线分线段成比例的动态过程,让学生直观地感受这一性质。接着,教师引导学生运用几何语言,对这一性质进行严谨的证明。
3.教学评价:
-采用形成性评价,关注学生在学习过程中的表现,如课堂参与度、小组合作、问题解决能力等。
-适时进行总结性评价,通过测试、作业等方式,了解学生对平行线分线段成比例知识的掌握程度。
-鼓励学生进行自我评价和同伴评价,培养他们的反思能力和批判性思维。
4.教学拓展:
-引导学生探索平行线分线段成比例在生活中的应用,如摄影、设计等领域。
在讲授过程中,教师注重讲解与示范相结合,让学生掌握以下知识点:
1.平行线分线段成比例的定义和性质。
2.如何运用比例关系解决几何问题。
3.证明平行线分线段成比例的方法和步骤。
(三)学生小组讨论
讲授新知后,教师组织学生进行小组讨论。每个小组围绕以下问题展开讨论:
1.平行线分线段成比例的性质在现实生活中有哪些应用?
作业要求:
1.学生需独立完成作业,遇到问题可先尝试自行解决,实在解决不了的可请教同学或老师。
相似三角形平行线分线段成比例定理教案资料
B
C
2、如图,AC⊥BC于点C,DE⊥AC于点E.
若AD=10,AE=BD=8,
求AC的长.
A
D
E
B
C
新知拓展
A
1、 如图:在△ABC中,点M是BC上
任一点, MD∥AC,ME∥AB,
D
E
若
BD AB
=
2 5
,求
EC 的值。 AC
B
2份 M
3份 C
解:∵MD∥AC,
5份
∴ BBAD=
BBMC=
2, 5
D
E
B
CF
6.已知:如图,E为正方形ABCD的BC 边延 长线上一点,AE交CD于F,FN∥AD交DE 于N,求证:CF=NF
A
D
FN
B
CE
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
猜想:平行于三角形一边的直线截其他两边 (或两边的延长线),所得的对应线段是否成 比例?
A
A
D
E
B
C
B
CD
E
A型
X型
结论3:平行线分线段成比例定理推论
平行于三角形一边的直线截其它两边(或
两边的延长线),所得的对应线段成比例。
A
几何语言: 在△ABC中,如果DE∥BC,那么:
D
E
AD AE , AB AC (上比全,全比上) B
2、填空
(1 ) D/E /AB
C D CE AD BE
A C BC CD CE
(2)若AD// EF// BC 则AG AE DF GC EB FC
(3)已知平行四 AB边C形 D
平行线分线段成比例定理 (第二课时)
平行线分线段成比例定理(第二课时)介绍在平行线的几何学中,平行线分线段成比例定理是一个重要的定理。
该定理描述了当一条直线与两个平行线相交时,它们所分割的线段之间存在着一定的比例关系。
这个定理在不同的几何推理和证明中经常被使用。
在本文档中,我们将讨论平行线分线段成比例定理的概念、原理和应用。
我们将首先介绍定理的表述,然后解释其背后的原理,最后给出一些习题和应用示例。
定理表述平行线分线段成比例定理的一般表述是:如果两条平行线L1和L2被一条直线交叉,那么它们所分割的任意两个线段的比例相等。
具体来说,如果直线AB与平行线L1和L2相交,分别在点C和D处与它们相交,那么有以下比例关系成立:AC/CD = AB/BD这里AC和CD是由直线AB与平行线L1和L2所分割的线段,而AB和BD 是直线AB的两个部分。
原理解释平行线分线段成比例定理的证明可以通过相似三角形或平行线的交错角等几何性质来进行。
这里介绍一种常见的证明方法。
首先,考虑由直线AB与平行线L1和L2所形成的三角形ABC和ABD。
根据平行线的性质,我们可以得出∠ABC = ∠ABD(对应角相等)。
而由于这两个三角形共有一个角∠B,所以它们是相似的。
根据相似三角形的性质,我们可以得到以下比例关系:AC/AB = BC/BD接下来,我们观察三角形ABC和三角形BCD。
由于它们共有一个角∠B,所以它们也是相似的。
根据相似三角形的性质,我们可以得到以下比例关系:BC/AB = CD/BD将以上两个比例关系结合起来,可以得到以下结果(将第一个比例关系代入第二个比例关系的分子):CD/BD = AC/AB上式即为平行线分线段成比例定理的表述。
示例和习题示例例题1如图所示,AB//DE,且AC/CD = AE/EB。
证明BC//DE。
A------------------B/ \\ / \\/ \\ / \\C-----D------------E-----F解答:根据平行线分线段成比例定理,我们有:AC/CD = AE/EB根据相似三角形的性质,我们可以得到以下比例关系:AC/AE = CD/EB而根据线段的比例关系,我们可以得到:AC/AE = CD/EB = AD/BE由于AB//DE,所以ABD和AEB是相似的三角形。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
《平行线分线段成比例》教学设计
27.2.1 相似三角形的判定第1课时平行线分线段成比例《平行线分线段成比例》是人教版九年级数学第二十七章《相似》第二节《相似三角形》第一课时的内容。
它是在学生认识相似图形,了解相似多边形的性质及判定的基础上进行学习的。
本课时首先复习相似多边形的性质,然后引出两个三角形相似的定义(即三个角分别相等,三条边成比例的两个三角形相似),然后引导学生思考类比全等三角形的判定方法,对于相似三角形是否存在较为简便的方法。
接下来通过一个探究,由学生动手计算来探究得到平行线分线段成比例的基本事实(三条平行线截两条直线,所得的对应线段的比相等),从而将其应用于三角形中,得到“平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例”这一基本事实的推论,是进一步学习相似三角形判定的预备定理的基础。
●教学目标:【知识与技能目标】1、了解相似三角形的定义;2、理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用;3、掌握两个三角形相似的预备定理.【过程与方法目标】经历“动手操作—直观感知—发现事实”的过程,增强学生发现问题,解决问题的能力.【情感态度与价值观目标】1、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值.2、在进行探索的活动过程中,发展学生的探索发现归纳意识,并养成合作交流的学习习惯,体现数学的真善美.C B A '''CBA●教学重点:判定两个三角形相似的预备定理 ●教学难点:探究两个三角形相似的预备定理的过程 ●教学过程设计:一、复习提问,引入新课问题1:什么是相似多边形?它具有什么性质?师生活动:教师提出问题,学生思考并回答,使学生对上节课所学内容有深刻印象,以引起学生对本节课的研究内容的关注。
设计意图:通过对旧知识的复习和回顾,激发学生的学习兴趣,为学习新知识提供基础。
二、探索新知,自主学习问题2:如何定义相似三角形?问题3:如果k=1,则△ABC______△A'B'C'师生活动:学生观察图形,结合相似多边形的定义,不难发现如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.1 相似三角形及平行线分线段成比例
一、教学目标:
知识目标
理解并掌握相似三角形及平行线分线段成比例的基本事实及其推论,并会灵活应用。
能力目标
通过应用,培养识图能力和推理论证能力。
情感态度与价值观
(1)、培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
(2)、在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的习惯。
二、重、难点
重点:平行线分线段成比例定理和推论及其应用。
难点:平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。
三、教学过程
1、复习设疑,引入新课
内容:教师提问:
(1)什么是成比例线段?
(2)什么是相似多边形?
(3)你能不通过测量快速将一根绳子分成两部分,使得这两部分的比是2: 3?
目的:(1)复习成比例线段的内容,回顾上节课通过方格纸探究成比例线段性质的过程。
(2)通过一个生活中的实例激发学生探究的欲望。
效果:学生对不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3,这一问题很感兴趣,急切想要知道解决办法。
2、小组活动,探究定理
探究活动一:
内容:如图(1)小方格的边长都是1,直线a ∥b∥ c ,分别交直线于 A1,
A 2,A
3
,B
1
,B
2
,B
3。
()计算
1212
2323
,
A A
B B
A A
B B
你有什么发现?
()将b向下平移到如下图2的位置,直线m,n与直线b的交点分别
为A
2
,
B
2。
你在问题(1)中发现的结论还成立吗?如果将b平移到其他位置呢?
(图2)
(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?
归纳:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例;
目的:让学生通过观察、度量、计算、猜测、验证、推理与交流等数学活动,
达到对平行线分线段成比例定理的意会、感悟。
效果:学生在以前的学习中,尤其是本章前两节的探究也是通过表格
中的多边形来完成的。
所以学生有种熟悉感,并不感到困难。
2.议一议:
内容:教师提问:
1.如何理解“对应线段”?
2.平行线分线段成比例定理的符号语言如何表示?
3.“对应线段”成比例都有哪些表达形式?
若a ∥b ∥ c ,则1212
23
23
A A
B B
A A
B B =。
由比例的性质还可以得到:
1212
1313
A A
B B A A B B =,
2323
1212
A A
B B A A B B =,
2323
1313
A A
B B A A B B =等。
目的:让学生在探究得出结论的基础上,对平行线分线段成比例定理的有进一步的理解。
并掌握定理的符号语言,进一步发展推理能力。
效果:学生从几何直观上很容易找出“对应线段”。
利用比例的性质写出成比例线段时,感觉结论很多,老师这时可以引导总结出成比例线段的特点,那就是都体现了“对应”二字。
探究活动二:
内容:如图3,直线a
∥b ∥
c
,分别交直线于
A 1,A 2,A 3,
B 1,B 2,B 3 。
过点A 1作直线n 的平行线,分别交直线b ,c 于点
C 2,C 3。
(如图4 ),图4中有哪些成比例线段?
(图3) (图4)
推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。
目的:让学生脱离表格,不通过计算,运用平行四边形的性质推理得出平行线
等分线段定理的推论。
效果:学生已经学习过特殊四边形的性质与证明,所以很容易得出A 1C 21B 2,C 2C 32B 3,进而得出推论。
而且让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力。
目的:加深对平行线分线段成比例定理及其推论的理解,发展学生的应用能力。
效果:经过这一环节的变式应用,学生能够归纳出平行线分线段成比例定理及其推论的本质特征。
3.探究活动三:
内容:直线l 1234、l 5、l 6被l 1、l 2、l 3所截且则图中还有哪些线段相等?
思考:当平行线之间的距离相等时,对应线段的比是多少?
2.如何不通过测量,运用所学知识,快速将一根绳子分成两部分,使这两部分之比是2:3?
目的:让学生体会平行线等分线段定理可看作是平行线分线段成比例定理的特例。
解决课堂引入时提出的问题。
效果:学生很容易得出此时的对应线段的比值为1,也为后面探究相似与全等的关系做了铺垫。
3、灵活应用
内容:例1、如图,在△中,E 、F 分别是和上的点,且 ∥, (1).如果 = 7, = 4 ,那么的长是多少? (2).如果 = 10, 6, = 5 ,那么的长是多少?
A B
C E
F
l 4
l 3
l 2 l 6
A B
C D
E
F M N
O
l
课堂练习: 1、如图,已知l 123,
(1).在图(1)中 = 5, = 7 ,4,求的长。
(2).在图(2)中 = 6, = 7 ,5,求的长。
2、如图,在△中,D 、E 分别是和上的点,且 ∥, (1).如果 = 3.2, = 1.2 ,2.4,那么的长是多少?
(2).如果 = 5, 3, = 4 ,那么的长是多少?
目的:通过对平行线分线段成比例定理的简单应用,规范书写格式,培养学生严谨的逻辑推理能力,深化对知识的理解。
效果:由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要发展,实现理性升华,培养语言表达能力。
A
B
C
D
E
F
(1)
A
B
C
D
E
F
(2)
A B C
D E
4、课堂小结:
内容:本节课你有哪些收获?
目的:
通过师生反思评价,实理知识的系统归纳,对知识和方法进行总结,并通过作业和考题全面巩固平行线分线段成比例定理及其推论。
效果:
学生都能归纳出:1、两条直线被一组平行线所截,所得的对应线段成比例;
2、平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。
5、布置作业:。