信号与系统 零输入响应和零状态响应
§2.4 零输入响应和零状态响应
各种响应用初始值确定待定系数的区别: (2)各种响应用初始值确定待定系数的区别:
在经典法求全响应的待定系数时, 在经典法求全响应的待定系数时,用的是 状初始值。 0+状初始值。 在求系统零输入响应时,用的是0-状态初始值。 在求系统零输入响应时,用的是0 状态初始值。 在求系统零状态响应时, 状态初始值, 在求系统零状态响应时,用的是 0+ 状态初始值, 这时的零状态是指0 状态为零。 这时的零状态是指0-状态为零。
(4)0+状态的确定
已知0 状态求0 状态的值, 已知0-状态求0+状态的值,可用冲激函数匹 配法。见有关参考资料。 配法。见有关参考资料。 状态的值还可以用拉普拉斯变换中的初值 求0+状态的值还可以用拉普拉斯变换中的初值 定理求出 求出。 定理求出。
三.对系统线性的进一步认识
由常系数微分方程描述的系统在下述意义上是线性的, 由常系数微分方程描述的系统在下述意义上是线性的, 响应可分解为:零输入响应+零状态响应。 (1)响应可分解为:零输入响应+零状态响应。 零状态线性: 当起始状态为零时, (2) 零状态线性 : 当起始状态为零时 , 系统的零状态响 应对于各激励信号呈线性。 应对于各激励信号呈线性。 (3)零输入线性 当激励为零时, 零输入线性: (3)零输入线性:当激励为零时,系统的零输入响应对 于各起始状态呈线性
信号与系统
Signals and Systems
§时域分析双零法——
零输入响应+ 零输入响应+零状态响应
一.起始状态与激励源的等效转换
在一定条件下,激励源与起始状态之间可以等效转换。 在一定条件下,激励源与起始状态之间可以等效转换。 即可以将原始储能看作是激励源。 即可以将原始储能看作是激励源。
外加激励源 系统的完全响应 共同作用的结果 可以看作 起始状态等效激励源 零状态响应” 系统的完全响应 = 零输入响应 + “零状态响应 零状态响应 线性系统具有叠加性) (线性系统具有叠加性)
信号与系统实验-实验一 零状态输入零状态响应
三、实验原理
1、零输入响应与零状态响应: 零输入响应: 没有外加激励的作用, 只有起始状态 (起始时刻系统储能) 所产生的响应。 零状态响应:不考虑起始时刻系统储能的作用(起始状态等于零) 。 2、典型电路分析: 电路的响应一般可分解为零输入响应和零状态响应。首先考察一个实例:在下图中由 RC 组成一电路,电容两端有起始电压 Vc(0-),激励源为 e(t)。
四实验结果高频r900高频r902中频r900中频r902低频r900低频r902五思考题图211所示电路中根据实验提供的实验元件计算系统的零状态和零输入过程
实验一 零状态输入零状态响应
一、实验内容
1、观察零输入响应的过程。 2、观察零状态响应的过程。
二、实验器材
1、信号与系统实验箱一台(主板) 。2、系统时域与频域分析模块一块。 3、20MHz 示波器一台。
压值开始,以指数规律进行衰减。 第二项与起始储能无关, 只与输入激励有关, 被称为零状态响应。 在不同的输入信号下, 电路会表征出不同的响应。
四、实验结果
高频 r900 高频 r902
中频 r900
中频 r902
低频 r900
低频 r902
五、思考题 图 2-1-1 所示电路中,根据实验提供的实验元件,计算系统的零状态和零输入过程。 解答:
R + e (t) C _ + Vc(0-) Vc(t)
图 2-1-1 则系统响应-电容两端电压:
t
RC 电路
1 ( t ) 1 RC e e()de RC Vc (0)
上式中第一项称之为零输入响应, 与输入激励无关, 零输入响应 e
Vc (0) 是以初始电
零输入响应和零状态响应
计算方法
利用系统的传递函数和初始条 件进行计算。
通过求解常微分方程或差分方 程ห้องสมุดไป่ตู้找到系统的零输入响应。
在MATLAB/Simulink等仿真软 件中,可以通过设置系统的初 始状态来模拟零输入响应。
02 零状态响应
定义
零状态响应:是指在系统无输入 信号的情况下,系统对初始状态
产生的响应。
描述了系统在没有输入信号作用 时,其内部状态的变化情况。
零状态响应完全取决于系统本身 的特性,与输入信号无关。
产生原因
系统内部存在储能元件(如电容、电 感),当输入信号为零时,储能元件 的能量不会立即消失,而是会以某种 形式继续存在并产生响应。
系统参数(如电阻、电感、电容等) 发生变化,导致系统内部状态发生变 化,从而产生零状态响应。
计算方法
根据系统的传递函数 和初始状态进行计算。
针对复杂系统和多尺度问题,发展基于零输入响应和零状态响应的跨学科 解决方案,促进各领域之间的交流与合作。
探索零输入响应和零状态响应在可持续发展、环境保护、公共安全等领域 的潜在应用价值,为社会发展和人类福祉做出贡献。
技术创新
开发高效、稳定的零输入响应和零状态响应算 法,提高计算效率和精度,降低计算成本。
零状态响应
零状态响应描述的是系统在外部输入作用下的输出变化。通过研究零状态响应, 可以了解系统对不同类型输入的响应特性,进而设计出更好的控制系统。
系统建模与仿真
零输入响应
在系统建模与仿真中,零输入响应用 于描述系统的内部动态特性。通过分 析零输入响应,可以深入了解系统的 内部工作原理和稳定性。
零状态响应
零状态响应用于描述系统对外部输入 的响应特性。通过研究零状态响应, 可以预测系统在不同输入条件下的行 为表现,有助于优化系统的设计和控 制。
零输入、零状态
全响应=零输入响应+零状态响应
一.关于
1.零输入响应的定义 外加激励信号为零时,仅由系统的 起始状态 (系统的历史储能)所产生
的响应,记为
。
2.特点
(1)仅是因为系统储能元件存储的能量释放 而产生的,只起始状态与有关 (2)可由求解对应的微分方程得到,因为无 外加激励信号,所以求解时特解为零 (3)在数学上是齐次方程的通解,
解特征方程得特征根为 齐次解: 由激励源自号形式,设特解: 完全响应为
系数A的确定:
先判断是否有跳变 由方程两侧 函数平衡条件容易判断 , 在起始点 无跳变。
利用
求出系数
,即
从而,有:
自由响应: 强迫响应: 1
(2)求零输入响应和零状态响应:
:
由 的特点找对应的微分方程
起始状态
,此方程的解即为
(3)数学上,零状态响应是非齐次方程的解, 其形式为
式中
是特解.
可能会出
(4)因有外加激励,所以在 现跳变,需要判断才能确定系数。
r (二). rzi 、 zs 的求解步骤
[例2-5]已知系统方程式为
起始状态 求自由响应、强迫响应、零输入响应、零状态 响应和全响应。
解:(1)先求自由响应和强迫响应:
是系统方程的齐次解,
因为
,所以
所对应的微分方程为:
又因为根据前面的判断,在起始点 无 跳变。所以此时 ,且满足系统微分方 程,即
故系统全响应为
:
:
思考: 两种分类形式的响应有何联系?
(三)响应的分解形式及其关系
零输入响应与零状态响应
零输入响应与零状态响应一、零输入响应1定义在没有外加激励时,仅有t = 0时刻的非零初始状态引起的响应。
取决于初始状态和电路特性,这种响应随时间按指数规律衰减。
2简介系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。
当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。
指数函数的个数等于微分方程的阶数,也就是系统内部所含"独立"储能元件的个数。
假定系统的内部不含有电源,那么这种系统就被称为"无源系统"。
实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
零输入响应是系统微分方程齐次解的一部分。
3起始状态所谓的起始状态,是反映一个系统在初始观察时刻的储能状态。
以电系统为例,我们做如下约定:在研究t=0以后的响应时,把t=0(-)时的值uc(0-)和il(0-)等称为起始状态,而把t=0+时的值uc(0+)和il(0+)以及它们的各阶导数称为初始值或初始条件。
二、零状态响应1定义在动态电路中,动态元件的初始储能为零(即零初始状态)下,仅有电路的输入(激励)所引起的响应。
三、两种响应的区别零状态响应:0时刻以前响应为0(即初始状态为0),系统响应取决于从0时刻开始加入的信号f(t);零输入响应:从0时刻开始就没有信号输入(或说输入信号为0),响应取决于0时刻以前的初始储能。
四、两种响应的判断方法如果有电源激励就是,而元件本身没有电压或电流就是零状态,相反没有电源激励只有元件本身初始值电压电流,就是零输入响应。
五、两种响应的求解方法1零输入响应:就是没有外加激励,由初始储能产生的响应,它是齐次解的一部分;2零状态响应:就是初始状态为零,外加激励产生的响应。
它可以通过卷积积分来求解。
零状态响应等于单位样值相应和激励的卷积。
其中,单位样值相应就是系统函数的反拉式变换或z变换。
六、两种响应之间的联系引起电路响应的因素有两个方面,一是电路的激励,而是动态元件储存的初始能量。
连续时间系统的时域分析——求零输入响应和零状态响应
成绩评定表之巴公井开创作课程设计任务书2 Matlab入门2结论20参考文献21人们之间的交流是通过消息的传布来实现的,信号则是消息的暗示形式,消息是信号的具体内容.本文概述了信号仿真系统的需求、总体结构、基本功能.重点介绍了利用Matlab软件设计实现信号仿真系统的基来源根基理及功能,以及利用Matlab软件提供的图形用户界面(Graphical User Interfaces ,GUI)设计具有人机交互、界面友好的用户界面.本文采纳Matlab的图形用户界面设计功能, 开发出了各个实验界面.在该实验软件中, 集成了信号处置中的多个实验, 应用效果良好.本系统是一种演示型软件,用可视化的仿真工具,以图形和静态仿真的方式演示部份基本信号的传输波形和变换,使学习人员直观、感性地了解和掌握信号与系统的基本知识.近年来,计算机多媒体教育手段的运用逐步普及,年夜量优秀的科学计算和系统仿真软件不竭涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台.通过对这些软件的分析和比较,我们选择MA TLAB语言作为辅助教学工具,借助MATLAB强年夜的计算能力和图形暗示能力,将《信号与系统》中的概念、方法和相应的结果,以图形的形式直观地展现给我们,年夜年夜的方便我们迅速掌握和理解老师上课教的有关信号与系统的知识.MATLAB 7.0是一个包括年夜量计算算法的集合.其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能.函数中所使用的算法都是科研和工程计算中的最新研究功效,而前经过了各种优化和容错处置.在通常情况下,可以用它来取代底层编程语言,如C和C++ .在计算要求相同的情况下,使用MA TLAB的编程工作量会年夜年夜减少.MATLAB 7.0的这些函数集包括从最简单最基本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数.函数所能解决的问题其年夜致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组把持以及建模静态仿真等.作为信号与系统的基天职析软件之一,利用MATLAB进行信号与系统的分析与设计是通信以及信息工程学科的学生所要掌握的需要技能之一.通过学习并使用MA TLAB语言进行编程实现课题的要求,对学生能力的培养极为重要.尤其会提高综合运用所学理论知识进行分析问题、解决问题的能力,也便于将理论知识与实践相结合,并得以更好地掌握信号分析与处置的基本方法与实现.这也将为后续相关的课程学习打下一定的基础,从而在以后相关课程设计与分析的时候到达对MATLAB的熟练应用与融会贯通.MATLAB7.02009版本,高级技术计算语言和交互式环境可以较使用传统的编程语言(如 C、C++ 和 Fortran)更快地解决技术计算问题.MATLAB 7.0主要功能为交互式工具可以按迭代的方式探查、设计及求解问题此高级语言可用于技术计算此开发环境可对代码、文件和数据进行管理各种工具可用于构建自界说的图形用户界面各种函数可将基于MA TLAB 的算法与外部应用法式和语言(如C、C++、Fortran、Java、COM 以及Microsoft Excel)集成数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值积分等二维和三维图形函数可用于可视化数据;特点:1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处置功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处置工具箱、通信工具箱等) ,为用户提供了年夜量方便实用的处置工具.MATLAB 7.0由一系列工具组成.这些工具方便用户使用MATLAB的函数和文件,其中许多工具采纳的是图形用户界面.包括MATLAB桌面和命令窗口、历史命令窗口、编纂器和调试器、路径搜索和用于用户浏览帮手、工作空间、文件的浏览器.随着MATLAB 7.0的商业化以及软件自己的不竭升级,MA TLAB 7.0的用户界面也越来越精致,更加接近Windows 的标准界面,人机交互性更强,把持更简单.而且新版本的MA TLAB 7.0提供了完整的联机查询、帮手系统,极年夜的方便了用户的使用.简单的编程环境提供了比力完备的调试系统,法式不用经过编译就可以直接运行,而且能够及时地陈说呈现的毛病及进行犯错原因分析.综上,在进行信号的分析与仿真时,MA TLAB7.0无疑是一个强年夜而实用的工具.尤其对信号的分析起到了直观而形象的作用,非常适合与相关课题的研究与分析.3.1.1 零输入响应的求解方法描述n阶线性时不变(LTI)连续系统的微分方程为:已知y及各阶导数的初始值为y(0),y(1)(0),…y(n-1)(0),求系统的零输入响应.建模如下:当LIT系统的输入为零时,其零输入响应为微分方程的齐次解(即令微分方程的等号右端为零),其形式为(设特征根均为单根)其中p1,p2,…,pn是特征方程a1λn+a2λn-1+…+anλ+an=0的根,它们可以用root(a)语句求得.各系数由y及其各阶导数的初始值来确定.对此有下列方程:写成矩阵形式为: P1n-1C1+ P2n-1C2+…+ Pnn-1Cn=Dn-1y0即V•C=Y0 其解为:C=V\Y0式中V为范德蒙矩阵,在matlab的特殊矩阵库中有vander.以下面式子为例:初始条件为,MATLAB法式:a=input('输入分母系数a=[a1,a2,...]=');n=length(a)-1;Y0=input('输入初始条件向量 Y0=[y0,Dy0,D2y0,...]=');p=roots(a);V=rot90(vander(p));c=V\Y0';dt=input('dt=');te=input('te=');t=0:dt:te;y=zeros(1,length(t));for k=1:n y=y+c(k)*exp(p(k)*t);endplot(t,y);gridxlabel('t') ;ylabel('y');title('零输入响应');法式运行结果:用这个通用法式来解一个三阶系统,运行此法式并输入a=[1,2,3] Y0=[2,7] dt=0.002 te=7结果如图3.1所示.图3.1 零输入响应的波形图3.1.3 零输入响应的结果分析根据图可以分析零输入响应,它的起始值与输入函数无关,只与它的初始状态值有关,其起始值即是y(0_)的值.随着时间的推移,最后零输入响应的值无限的趋近于0.我们知道,LTI连续系统可用如下所示的线性常系数微分方程来描述,例如,对以下方程:可用输入函数,得出它的冲激响应h ,再根据LTI系统的零状态响应y(t)是激励u(t)与冲激响应h(t)的卷积积分.注意,如果微分方程的左端或右端表达式中有缺项,则其向量a或b中的对应元素应为零,不能省略不写,否则犯错.例如:求函数的零状态响应,已知:及初始状态.输入函数.建模:先求出系统的冲激响应,写出其特征方程求出其特征根为p1和p2,及相应的留数r1,r2;则冲激响应为输入y(t)可用输入u(t)与冲激响应h(t)的卷积求得.MATLAB法式:a=input('输入分母系数a=[a1,a2,...]=');b=input('输入输入信号系数b=[b1,b2,...]=');dt=input('dt=');te=input('te=');t=0:dt:te;u=input('输入函数u=');te=t(end);dt=te/(length(t)-1);[r,p,k]=residue(b,a);h=r(1)*exp(p(1)*t)+r(2)*exp(p(1)*t);subplot(2,1,1),plot(t,h);gridtitle('冲激函数');y=conv(u,h)*dt;subplot(2,1,2),plot(t,y(1:length(t)));gridtitle('零状态响应');法式运行结果执行这个法式,取a=[1,2,3] b=[4,6] dt=0.001 te=7得出图形如图3.2所示.图3.2 零状态响应的波形图由于初始状态为零,所以零状态的起始值也为零,即h(t)包括了连续系统的固有特性,与系统的输入无关.只要知道了系统的冲激响应,即可求得系统在分歧输入时发生的输出.因此,求解系统的冲激响应h对进行连续时间系统的分析具有非常重要的意义总结本次的信号与系统课程设计,我的课设题目是求连续时间系统的零输入与零状态响应,需要用到MA TLAB进行波形仿真.由于我对MATLAB这个仿真软件其实不是很熟悉,所以在进行课设的过程中,遇到了很多问题,不外最后还是顺利完成,虽然做的法式其实不是很完美,可是我还是从中学会了很多.设计过程中,呈现了各种各样的问题,有些是由对软件的使用不熟悉引起的,有的是由对零状态响应和零输入响应的求解方法不熟悉引起的.可是最后我还是找到了解决的法子.比如说,在我用系统求解法求解零状态响应和零输入响应时,由于求解过程复杂,用MATLAB软件进行仿真时,编程很难,所以我采纳了矩阵求解的方法,可以在编程时直接调用特殊矩阵库中的Vander进行系统求解,这样编程就容易了许多.在整个设计过程中我理解了许多工具,也培养了自力思考和设计的能力,树立了对知识应用的信心,相信会对今后的学习工作和生活有非常年夜的帮手,而且学习到了MATLAB软件主要功能交互式工具可以按迭代的方式探查、设计及求解问题此高级语言可用于技术计算此开发环境可对代码、文件和数据进行管理各种工具可用于构建自界说的图形用户界面各种函数可将基于MA TLAB 的算法与外部应用法式和语言(如C、C++、Fortran、Java、COM 以及 Microsoft Excel)集成数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值积分等二维和三维图形函数可用于可视化数据..课程设计不单是对前面所学知识的一种检验,也是对自己能力的一种提高,通过这次课程设计使自己明白了原来的光靠书面知识是非常欠缺的,还是需要不竭的实践巩固.因此在以后的工作和生活中还是应该不竭的学习,努力提高自己的知识和综合素质.本次的课程设计让我对信号与系统这一门学科有了更深条理的理解,在分析并解决问题的过程中,巩固了该门学科的基础,对相关知识的认知水平有了很年夜的提高.实践是认识的基础,本次的课程设计中所学习到的求解方法以及对MATLAB软件的了解,对我以后的工作学习都意义深远.参考文献1:张平.MATLAB基础与应用简明教程.北京:北京航天年夜学出书社,2001.2:黄忠霖.控制系统MA TLAB计算及仿真(第2版).北京:国防工业出书社,2004.3:肖伟、刘忠. MA TLAB法式设计与应用[M].北京:清华年夜学出书社 2005.4:刘振全、杨世凤.MA TLAB语言与控制系统仿真实训教程.北京:化学工业出书。
零状态响应和零输入响应公式
零状态响应和零输入响应公式
零状态响应和零输入响应是线性时不变系统中重要的概念。
零状态响应是指系统在没有输入信号时的响应,也可以称为自由响应。
零输入响应是指系统在有输入信号时,当输入信号为零时的响应,也可以称为强制响应。
这两种响应都可以用公式来表示。
下面介绍它们的具体公式。
零状态响应公式:
设系统的初始状态为x(0),系统的零状态响应为y_z(t),系统的传递函数为H(s),则系统的零状态响应可以用下面的公式表示: y_z(t) = L^{-1}[H(s)X(s)] + x(0)
其中,L^{-1}表示拉普拉斯变换的反变换,X(s)表示输入信号的拉普拉斯变换。
零输入响应公式:
设系统的输入信号为x(t),系统的零输入响应为y_h(t),系统的冲击响应为h(t),则系统的零输入响应可以用下面的公式表示: y_h(t) = h(t) * x(t)
其中,*表示卷积运算。
总响应公式:
系统的总响应可以表示为零状态响应与零输入响应之和:
y(t) = y_z(t) + y_h(t)
这里需要注意的是,当系统的输入信号为零时,总响应就等于零状态响应。
当系统的初始状态为零时,总响应就等于零输入响应。
因
此,知道了零状态响应和零输入响应公式,就能够求出系统的总响应。
信号与系统零输入响应和零状态响应资料课件
总结词
通过RLC电路的零输入响应和零状态响应分析,理解二阶线性时不变系统的动态行为。
详细描述
RLC电路由一个电阻R、一个电感L和一个电容C组成,当输入信号为零时,电感L和电容C上的电压和电流的响应称为零输入响应;当系统初始状态为零时,输入信号引起的电感L和电容C上的电压和电流的响应称为零状态响应。通过分析这两种响应,可以了解二阶线性时不变系统的动态行为。
零输入响应与零状态响应的比较
CATALOGUE
04
系统在没有输入信号作用下的输出信号的响应,是系统内部储能元件的能量耗散过程。求解方法通常采用经典法或现代法。
零输入响应
系统在输入信号作用下的输出信号的响应,是系统对输入信号的响应。求解方法通常采用经典法或现代法。
零状态响应
零输入响应具有以下特性
THANKS
感谢观看
总结词
系统是由若干相互关联和相互作用的元素组成的整体,这些元素可以是物理元件、电路元件、化学反应物等。系统的功能和行为是由这些元素的相互作用和关联所决定的。线性系统是指系统的输出与输入成正比的系统,而非线性系统则是指系统的输出与输入不成正比的系统。时变系统是指系统的参数随时间变化的系统,而时不变系统则是指系统的参数不随时间变化的系统。
详细描述
总结词:线性时不变系统具有一些重要的性质,如叠加性、均匀性、稳定性等。这些性质对于理解和分析系统的行为具有重要意义。
零输入响应
CATALOGUE
02
01
02
03
零状态响应
CATALOGUE
03
01
零状态响应:在动态系统中,当输入信号作用时,系统在没有初始状态的情况下产生的输出响应。
总结词
通过分析信号通过线性时不变系统的零输入响应和零状态响应,理解系统对不同类型信号的响应特性。
《信号与系统教学课件》§2.3零输入响应与零状态响应
下章预告
THANKS
感谢您的观看。
《信号与系统教学课件》
目录
引言 零输入响应 零状态响应 零输入响应与零状态响应的比较 总结
01
CHAPTER
引言
01
02
课程背景
随着信息技术的发展,信号与系统在现实生活和工程应用中的重要性日益凸显。
信号与系统是通信、电子、控制等领域的重要基础课程,为后续专业课程提供必要的知识储备。
零输入响应与零状态响应的定义
信号的运算与变换
信号的运算包括加减、乘除、翻转等基本运算,信号的变换包括傅里叶变换、拉普拉斯变换和Z变换等。这些运算和变换对于信号的分析和处理具有重要意义。
系统的稳定性分析
系统的稳定性是系统的重要特性之一,对于系统的分析和设计具有重要意义。稳定性分析的方法包括代数方法和几何方法,其中几何方法又包括极坐标和波德图等。
零输入响应
体现输入信号对系统的作用效果,是系统对输入信号的响应。
零状态响应
在系统中的作用
用于分析系统内部储能元件的动态特性,如电路中的电感、电容等。
用于分析系统对特定输入信号的响应,如控制系统中的输入信号对输出信号的影响等。
在实际应用中的选择
零状态响应
零输入响应
05
CHAPTER
总结
信号与系统的基本概念
线性时不变系统是信号与系统中最为常见的一类系统,其分析方法包括时域分析和频域分析。时域分析主要通过差分方程和卷积运算进行,频域分析主要通过傅里叶变换进行。
信号的分类与表示方法
信号可以根据不同的特性进行分类,如连续信号和离散信号、确定性信号和随机信号等。信号的表示方法包括时域表示法和频域表示法。
本章重点回顾
零输入响应与零状态响应的比较
零输入响应与零状态响应
信号与系统课程设计报告书课题名称 零输入响应与零状态响应姓 名梁何磊学 号 20086354 院、系、部 电气系 专 业 电子信息工程 指导教师秀婷 康朝红2011年1月11日※※※※※※※※※ ※ ※※ ※※ ※※※※※※※※※2008级信号与系统课程设计连续时间系统的LTI 系统的时域仿真 -------零输入响应与零状态响应20086354 梁何磊一、设计目的掌握信号经过LTI 系统的时域分析方法。
巩固已经学过的知识,加深对知识的理解和应用,加强学科间的横向联系,学会应用MATLAB 对实际问题进行仿真。
学会对带有非零起始状态的LTI 系统进行仿真。
二、设计要求(1)根据实际问题建立系统的数学模型,对给定的如下电路,课本第二章例2-8,参数如图所示;建立系统的数学模型,并计算其完全响应;(2)用MATLAB 描述此系统;(3)仿真实现并绘制输出信号的波形。
要求用两种方法仿真实现完全响应。
对仿真结果进行比较,并与理论值比较。
三、设计方法与步骤:一般的连续时间系统分析有以下几个步骤: ①求解系统的零输入响应; ②求解系统的零状态响应; ③求解系统的全响应; ④分析系统的卷积;⑤画出它们的图形. 下面以具体的微分方程为例说明利用MATLAB 软件分析系统的具体方法.1.连续时间系统的零输入响应描述n 阶线性时不变(LTI )连续系统的微分方程为:已知y 及各阶导数的初始值为y(0),y (1)(0),… y (n-1)(0), 求系统的零输入响应。
建模当LIT 系统的输入为零时,其零输入响应为微分方程的其次解(即令微分方程的等号右端为零),其形式为(设特征根均为单根)1121111n n m n n m m n n m d y d y dy d u du a a a a y b b b u dtdt dt dt dt -++-++⋅⋅⋅⋅⋅++=+⋅⋅⋅⋅++()4=t e ()t L H 41=L Ω=232其中p1,p2,…,p n是特征方程a1λn+a2λn-1+…+a nλ+a n=0的根,它们可以用root(a)语句求得。
信号与系统§3.3 离散系统的零输入响应与零状态响应
零状态响应
定义:不考虑原始时刻系统储能的作用(起 始状态等于零),由系统的外加激励信号产 生的响应。
系统零状态响应:是在激励作用下求系统方
程的非齐次解,由状态值Vc值
t
0iL ( )d
0iL ( )d
故电路等效为起始状
态为零的电感L和电流 iL (t)
源Vc(0) u(t)的并联。
t0
v L (t )
L
iL (0 )
零输入响应
定义:没有外加激励信号的作用,只由起始 状态(起始时刻系统储能)所产生的响应。
系统零输入响应:实际上是求Vc(0和) il系(0统) 方程
电容器的等效电路
iC (t ) C
vC (t )
vc (0 ) 0, t 0
1
vc (t) C
t
iC ( )d
电路等效C1为vc起0(0始iC)状()态dC1为C零1t0的t0iC电iC((容 ))d与d电压源t V0c(0) u(t) 的
电容的等效电路电感的等效电路系统的完全响应可以看做?????????系统的完全响应零输入响应?零状态响应?共同作用的结果外加激励源起始状态激励源电容器的等效电路c??tvctic电路等效为起始状态为零的电容与电压源的串联c?tvctic?0?cv等效电路中的电容器的起始状态为零0?cvut00t0cv???1cctvtidc??????0110cctididcc????????????100cctvidc???????t0?电感的等效电路til???tvll故电路等效为起始状态为零的电感l和电流源的并联
串联
iC (t ) C
vC (t)
零输入响应和零状态响应
零输入响应和零状态响应
线性非时变系统的完全响应也可分解为零输 入响应和零状态响应。在激励信号加入系统之 前,系统原有的储能(如电容上的初始电压, 电感上的初始电流等)构成了系统的初始状态。
1.1 零输入响应的求取
1.2 零状态响应的求取
其中零状态响应的完全解的系数应在零状 态响应的全解中由初始条件
即
。因此,零状态响应的特解、齐次
解和完全解分别为
将零状态响应的初始条件 解得
代入上式
因此,此系统的零状态响应为 (3)求系统的完全响应。
其中,
信号与系统
确定。
1.3 系统的完全响应
系统的完全响应按性质可分为自由响应和 强迫响应,按来源可分为零输入响应和零状态 响应,它们的关系为
式中,
。
例1.1 已知某系统的微分方程模型为
初始条件
,输入
系统的零输入响应 ,零状态响应
全响应 。
解:(1)求零输入响应 。
由特征方程
,求 以及完
得单根
,因此零输入响应为
信号与系统第三版郑君里课后习题答案
信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin[()];y t A x t = 连续、模拟、周期、功率型信号 。
()()tt y t x e d τττ--∞=⎰ 连续、模拟、非周期、功率型信号。
()(2y n x n =) 离散、模拟、非周期、功率型信号。
()()y n nx n = 离散、模拟、非周期、功率型信号。
1-6,示意画出下列各信号的波形,并判断其类型。
(1) 0()sin()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()tx t Ae -= 连续、模拟、非周期、只是一个函数,不是物理量。
(3) ()cos 0t x t e t t -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5kx k k =≥ 离散、模拟、非周期、能量型 (6) 0().j kx k eΩ= 离散、模拟、周期、功率型()sin[()];()()()(2);()()tt y t A x t y t x ed y n x n y n nx n τττ--∞====⎰1-6题,1-4图。
t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题 n=0:pi/10:2*pi; y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill '),title('(0.8)^n'),grid n1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill '),title('exp[2*pi*n1'),grid subplot(4,1,4),stem(n1,sin(2*pi*n1),'fill '),title('sin2pin1'),grid subplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。
对系统响应三大分类的解释
对系统响应三大分类的解释零状态响应、零输入响应零状态响应由于与时域卷积联系密切,在信号与系统的课程中占据有十分重要的地位。
信号与系统通篇的研究对象基于LTI(LSI)系统,而卷积分与卷积和是时域与各变换域之间最关键的纽带,因而成为了研究系统极为重要的切入点。
零状态响应是由表征系统特性的单位冲激响应与输入激励相卷积后得出的产物,在变换域中由系统函数与输入的乘积所表征。
而零状态响应在变换域中的构成结构也由此被划分为两个部分。
第一个部分,是由输入激励与系统相作用后所产生的效应对系统全部(部分)固有频率因子项系数加权并求和所得的“自由响应ZS”。
第二部分,是由系统与输入激励相作用后对输入激励的全部(部分)固有频率因子项系数加权并求和所得的“强迫响应”。
由于系统函数有可能在其对应的微分方程按变换域变换后在等式两边产生因式相消的情况出现,导致对应固有频率消失,因而系统函数可以完全表征零状态响应,而无法在所有情况下表征零输入响应。
注意,此处的固有频率消失本质是由微分方程的结构导致的。
在电路系统中,微分方程反映的是系统拓扑结构与元器件特性,而与激励的形式无关。
因此,在得到H(S)系统函数的条件下,直接写出对应的微分方程的行为在数学上来说是不严谨的,需要验证;如验证结果确实证明系统函数的分母所含全部极点亦为微分方程的所有根,则此时应用系统函数反推微分方程才是合理的。
综上所述,简单来说,零状态响应是系统与激励间相互作用后的结果,反映在方程解上是以相互加权系数的形式来表征系统部分(或全部,由H(S)是否分子分母有因式相消决定)固有频率与输入激励固有频率。
零输入响应是由微分方程的特征方程唯一决定,是系统固有频率的完全反映。
由于零输入响应不符合LTI特性,因此,在实际变换域求解中,往往将其等效为“输入激励”,以T=0时刻等效储能的形式融入进变换域等效模型。
同时,零输入响应也是完全解的“自由响应”组成部分之一,可以被称为“自由响应ZP”,加上零状态响应中的组成部分“自由响应ZS”构成完整的“自由响应”。
零输入、零状态及完全响应
实验二零输入、零状态及完全响应一、实验目的1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。
2.掌握用简单的R-C电路观测零输入响应、零状态响应和完全响应的实验方法。
二、实验设备1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台2.PC机3. THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各一根)三、实验内容1.连接一个能观测零输入响应、零状态响应和完全响应的电路图(参考图2-1)。
2.分别观测该电路的零输入响应、零状态响应和完全响应的动态曲线。
四、实验原理1.零输入响应、零状态响应和完全响应的模拟电路如图2-1所示。
图2-1零输入响应、零状态响应和完全响应的电路图图2-2 零输入响应、零状态响应和完全响应曲线其中①---零输入响应②---零状态响应③----完全响应式(3)等号右方的第二项为零输入响应,即由初始条件激励下的输出响应;第一项为零状态响应,它描述了初始条件为零(Uc(0)=0)时,电路在输入E=15V 作用下的输出响应,显然它们之和为电路的完全响应,图2-2所示的曲线表示这三种的响应过程。
五、实验步骤1.实验准备1.1 将“阶跃信号发生器”的输出端接至实验台上“输入响应、零状态响应和完全响应”单元的“+2V”输入端,调节“阶跃型号发生器”正输出的“RP1”电位器,让阶跃输出为“2V”;1.2 将“直流稳压电源”的“+5V”接至“零输入响应、零状态响应和完全响应”单元的“+5V”输入端。
1.3 将“零输入、零状态和完全响应”单元的输出端与“数据采集接口单元”的AD1通道相连。
2. 零输入响应将S1短接到2处,S2短接到1处,使+2V直流电源对电容C充电,当充电完毕后,将S2接到2处,用“THBCC-1”软件上的“虚拟示波器”观察并记录Uc(t)的变化。
零输入响应2.零状态响应先将S2短接到2处,使电容两端的电压放电完毕,将S1接到1处,S2接到1处,用虚拟示波器观察并记5V直流电向电容的充电过程。
单位冲激响应零状态响应零输入响应等各种响应之间的关系
单位冲激响应零状态响应零输入响应等各种响应之间的关系单位冲激响应、零状态响应、零输入响应是信号与系统领域中常见的概念,它们描述了一个线性时不变系统对不同输入信号的响应方式。
本文将深入探讨这些响应之间的关系,并一步一步回答相关问题。
首先,我们来定义这些概念:1. 单位冲激响应:单位冲激信号(也称为狄拉克脉冲或者单位激励)是一个幅度为1、宽度为0的理论上的信号。
单位冲激响应是指系统对单位冲激信号的响应,用h(t)表示。
2. 零状态响应:零状态响应是指系统在某一时刻的初始状态下对输入信号的响应。
这意味着系统没有存储信息或记忆,只对当前的输入信号作出响应。
零状态响应用y(t)表示。
3. 零输入响应:零输入响应是指系统在没有输入信号的情况下,由系统的初始状态所导致的响应。
它反映了系统的内部特性和初始状态对系统行为的影响。
零输入响应用zi(t)表示。
接下来,我们将一步一步回答关于单位冲激响应、零状态响应和零输入响应之间的关系的问题。
问题1:单位冲激响应与零状态响应之间的关系是什么?单位冲激响应和零状态响应之间有一个重要的关系,即卷积定理。
卷积定理指出,一个系统对任意输入信号的响应等于系统的单位冲激响应与输入信号卷积运算的结果。
具体而言,设输入信号为x(t),系统对输入信号的响应为y(t),则有以下关系:y(t) = x(t) * h(t)其中* 表示卷积运算。
这个等式说明了系统对任意输入信号的响应可以通过输入信号与单位冲激响应的卷积运算得到,即零状态响应等于输入信号与单位冲激响应的卷积。
问题2:单位冲激响应与零输入响应之间的关系是什么?单位冲激响应与零输入响应之间的关系可以通过零状态响应的性质得到。
由于零状态响应是指系统在某一时刻的初始状态下对输入信号的响应,如果系统没有输入信号,则零状态响应就等于零输入响应。
所以,我们可以得到以下关系:zi(t) = y(t),当输入信号x(t)等于零时这个关系说明,当输入信号为零时,单位冲激响应就是零输入响应。
信号与系统零输入响应和零状态响应
零输入响应
系统零输入响应,实际上是求系统方程的齐次解,由非零的系 统起始状态值决定的初始值求出待定系数。
系统方程:
n
k0ak
dkyzi(t) dtk
0
起始条d件 kydz: itk(0) ck,k0,1,2,,n
自由响应+强迫响应 (Natural+forced)
自由响应也:称固有响应,对应于齐次解。 由系统本身特性决 定,与外加激励形式无关,但与起始点点跳变有关系。
强迫响应: 形式取决于外加激励。对应于特解。
零输入响应+零状态响应
(Zero-input+Zero-state)
零输入响应: 没有外加激励信号的作用,只由起始状态(起始时刻系 统储能)所产生的响应。
讨论:
➢用经典法从起始条件求出 t 0 时刻的初始条件的过程往往比较复杂,需
根据实际的物理系统的约束关系求解。
➢作为纯粹的数学问题,也可从起始条件求出 t 0 时刻的初始条件,有兴趣 的同学有参考有关的参考课。“微分方程冲激函数匹配原理判断0 时刻和0
时刻状态的变化 ”
➢在系统的时域分析中,引入冲激响应后,利用卷积积分求系统的零状态响应比
r 1 ( t) r z i( t) r z s ( t) 2 e 3 t s in ( 2 t) u ( t) r 2 ( t ) r z i( t ) 2 r z s ( t ) [ e 3 t 2 s i n ( 2 t ) ] u ( t )
对系统线性的进一步认识
解得 r z i(t) 2 r 1 (t) 2 r 2 (t) 3 e 3 tu (t) r z s ( t) r 1 ( t) r z i( t) [ e 3 t s i n ( 2 t) ] u ( t) r3(t)rzi(t)rzs(t t0)
信号与系统零输入和零状态响应问题和解答
信号与系统零输入和零状态响应问题和解答该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
信号与系统零输入和零状态响应问题和解答该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。
文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 信号与系统零输入和零状态响应问题和解答can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!信号与系统零输入和零状态响应问题和解答。
《信号与系统教学课件》§2.3零输入响应与零状态响应
卷积法
利用输入信号和系统的冲击响 应求得它的零状态响应。
设置初态与给予输入 如何计算完整响应
设置初态
将系统的初始状态先设置,再给予 一个输入信号,求出此条件下的输 出结果。
给予输入
将一部分的初始状态和输入信号叠 加在一起,求出此条件下的输出结 果。
其他相关概念和扩展阅读
拉普拉斯变换
拉普拉斯变换是一种非常重要的 数学工具,它可以将时域函数转 化为复平面上的解析函数,从而 方便地分析系统的稳定性、因果 性、纵向稳定性等问题。
傅里叶变换
傅里叶变换是一种重要的信号处 理工具,它将连续时间域的信号 转换为连续频率域信号,方便对 信号特性的分析。
差分方程
差分方程是离散时间系统中的一 种描写方式,用于求解从各种输 入得到的输出响应,是离散信号 处理领域的基本工具之一。
总结和要点
1 理解零状态响应和零输入响应的区别 3 了解如何计算系统的完整响应
2 掌握零状态响应和零输入响应的计算方
法
4 了解实际问题中零状态响应和零输入响
应的应用
零输入响应的计算方法
1
寻找系统的零输入响应
将系统输入为0,求出此条件下的输出。
2
插值法
由于信号的初始状态对零输入响应有影响,需要对初始状态进行插值,再求出相 应的零输入响应结果。
3
卷积法
利用被激励系统的冲击响应求得它的零输入响应。
零状态响应的计算方法
寻找系统的零状态响应
将系统初始状态设定为0,求出 对于任意输入条件下的输出。
深入探究《信号与系统教 学课件》§2.3
了解零输入响应与零状态响应的定义、区别以及应用场景。
零输入响应与零状态响应的区别
零输入响应和零状态响应
10 (t) (0 ) 10
i(0 ) 0A,i(0 ) 0A/s,故i(0 ) i(0 ) 0 A,
i(0 ) i(0 ) 10 10A/s
④ i)零输入:特征根为 1 j 3 ,故可设
izi (t) 由 i(0
)
e
1 2
0
t
( Azi1 cos A,i(0 )
3 2
0
At /s2A可zi2知si2Anzi123t
20
t
e2
sin
3
3 tu(t) 2
iii)完全响应
r(t) rzi (t) rzs (t)
20
t
e2
sin
3
3 tu(t) 2
二.起始状态与激励源的等效转换
在一定条件下,激励源与起始状态之间可以等效转换。 即可以将原始储能看作是激励源。
电容器的等效电路
电感的等效电路
外加激励源
系统的完全响应
共同作用的结果
可以看作 起始状态等效激励源
系统的完全响应 = 零输入响应 + “零状态响应” (线性系统具有叠加性)
iC (t) C
vC (t)
电容器的等效电路
vC (0 ) 0, t 0
1
vc(t) C
t
ic ( ) d
1 C
0
ic
(
)d
1 C
t
0 ic ( ) d
1
vc (0 ) C
20V+ -
2 S 1F 1H
+C L 1
+ e(t) -10V
-
i(t) 1Ω R
解:① i) i(0 ) 0A,i(0 ) 0A/ s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自由响应也:称固有响应,对应于齐次解。 由系统本身特性决 定,与外加激励形式无关,但与起始点点跳变有关系。
强迫响应: 形式取决于外加激励。对应于特解。
零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应: 没有外加激励信号的作用,只由起始状态(起始时刻系 统储能)所产生的响应。
§2.2.3 零输入响应和 零状态响应
起始状态与激励源的等效转换
在一定条件下,激励源与起始状态之间可以等效转换。即可以将原始储能看 作是激励源。
系统的完全响应 可以看作
外加激励源 起始状态等效激励源
共同作用的结果
系统的完全响应 = 零输入响应 + 零状态响应 ( 线性系统具有叠加性 )
各种系统响应定义
iL (t)
列出零状态等效电路的微分方程为
is (t)
3A 1F 10V
1H uC (t) 2
u(t)
d2 dt
uzs
(t
)
2
d dt
uzs
(t
)
uzi
(t
)
2is
(t
)
其中,
uzs (0 )
0
,d dt
uzs (0 )
0 , is (t)
3u(t)
根据微分方程经典解法易求得零状态响应中的特解为常数6
)
0
1F
零输入响应形式为
uzi (t) Czi1et Czi2tet (t 0)
iL (t)
uC (t)
1H
2
uL (t)
u(t)
零输入响应
零输入响应形式为 uzi (t) Czi1et Czi2tet (t 0)
C C 其中,待定系数
zi和1
得根据初始条件 zi 2
u zi (0和 )
零输入响应
零输入响应形式为 uzi (t) Czi1et Czi2tet
初始条件 uzi (0 ) 10V
d dt
uzi
(0
)
0V/s
可求得零输入响应为 :
(t 0)
uzi (t) 10et 10tet (t 0)
零输入响应
讨论:由 t 0 时刻的电路
可计算
S1 2 2
iL (t)
初始条件常常为一组已知的数据,利用这组数据可求得方程完全解中的各项系数
Ci
而作为工程技术问题,一般激励都是从时刻
t 0 加入,系统的响应时间范围
是情况来确定。0 t ,则系统的初始条件要根据系统的原始内部储能和激励接入瞬时的
如具体电路系统,根据如下条件从 起始条件求初始条件
uC (0 ) uC (0 ) iL (0 ) iL (0 )
u(t)
uC (0 ) uC (0 ) 10V
iL (0 ) iL (0 ) 5A
零输入响应
S1 2 2
iL (t)
3A
1
1 S2 1F 10V
1H uC (t) 2
u(t)
t 0 零输入等效电路
列写电路的微分方程为:
d2 dt
uzi
(t)
2
d dt
uzi
(t)
uzi
(t
uC (t)
1H
iL (0 ) 5A
uC (0 ) 10V
2 u(t)
iL (t)
由电路可求得:
uzi (0 ) 10V
d dt
uzi
(0
)
d dt
iL
(0
)R
d dt
iL (0 )
uL (0 L
)
0
uC (0 ) 10V
2
iL (0 ) 5A
u(t)
d dt
uzi
(0
)
0V/s
(0
k
)
ck , k
0,1,2,
,n
n
yzi (t) Ciei t i 1
由起始状态求待定系数。
零状态响应
系统零状态响应,是在激励作用下求系统方程的非齐次解,由 起始状态值 为零决定的初始值求出待定系数。
系统方程:
起kn0始ak条d 件kdyt:zksd(tk)
yzx dt
m
bk
k 0
(0 )
t
0 时刻的零状态初始值等效电路
uC (0 ) uC (0 ) 0
iL (0 ) iL (0 ) 0
u zs (0 )
d dt
uzs
(0
)
iL (t)
is (t)
3A 1F 1H
10V
uC (t)
2 u(t)
uC (0 ) uC (0 ) 0 iL (0 ) iL (0 ) 0
d dt
uzi
(0确定) 。
t
0 时刻的零输入初始值等效电路
iL (t)
iL (t)
1F
uC (t)
1H
2 u(t)
1F
uC (t)
1H
iL (0 ) 5A
uC (0 ) 10V
2 u(t)
uC (0 ) uC (0 ) 10V
iL (0 ) iL (0 ) 5A
iL (t)
1F
t 0 时刻等效电路
t 0 【例2-2-6】 如图2-2-2所示的电路,
以前开关位于“1”,已进入稳态,
t 0
S 时刻, S1 与
同时自“1”转至“2”,求输出电压
2
u(t的)零输入响应、零状态响应
和完全响应。
激励加入的瞬时 t 0
S1 2 2
iL (t)
3A
1
1 S2 1F 10V
1H uC (t) 2
uzs (t) uzs_h (t) uzs_ p (t) Czs1et Czs2tet 6 (t 0)
零状态响应
零状态响应 uzs (t) Czs1et Czs2tet 6 (t 0)
C C 其中,待定系数
和
得根据初始条件
zs1
zs 2
uzs (0和 )
d dt uzs (0确定) 。
k
d k x(t) dt k
0, k
0,1,2,
,n
n
解的形式:齐次解+特解 y(t) Ciei t y p (t)
i 1
0 0 由初始条件求待定系数,需要计算从
到
跳变,一般根据实际的工程问
题的物理关系求跳变,也可以作为一个纯粹的数字问题求解。 。
零状态响应
C 用经典法求解微分方程完全解的待定系数 时,作为一个数学问题,所需要的 i
3A
1
1 S2 1F 10V
1H uC (t) 2
u(t)
uzi (0 ) 10V=uzi (0 )
d dt
uzi
(0
)
0V/s=
d dt
uzi
(0
)
在零输入的情况下,起始点没有 跳变。可以起始条件计算零输入响应。 不用计算初始条件。
零状态响应
零状态响应:不考虑系统起始储能,零状态响应等效电路如图
零状态响应: 不考虑原始时刻系统储能的作用(起始状态等于 零),由系统的外加激励信号产生的响应。
零输入响应
系统零输入响应,实际上是求系统方程的齐次解,由非零的系统起始 状态值决定的初始值求出待定系数。
系统方程: 解的形式:
n
k
0
ak
d k yzi (t dt k
起始条件:d
)
k
yzi dt
0