零输入、零状态及完全响应 1

合集下载

信号与系统实验——零输入响应、零状态响应和全响应实验

信号与系统实验——零输入响应、零状态响应和全响应实验

实验三信号与系统实验
1. 零输入响应、零状态响应和全响应实验
1.1实验目的
(1)掌握零输入相应、零状态响应和全响应的意义。

(2)了解零输入响应、零状态响应和全响应三者之前的关系。

1.2实验步骤和结果
(1)零状态响应:在零输入、零状态及全响应单元格,将IN端接地,按下按钮S给电容放电以保证系统没有初始状态。

将直流信号源的开关拨到直流档,调节电位器使其输出+4V的直流信号。

将此信号接入IN端,按下按钮S,用示波器测量OUT端波形,大概画出所测量波形并记录表中各时刻对应的幅值。

图一零状态响应Array
(2)零输入响应:保持直流信号接入到IN端,按下按钮S,用示波器观察输出信号,待系统稳定后断开按钮。

此时电容充满电,系统拥有初态。

将直流信号从IN端断开,接IN端接地,这样系统便没有激励,按下按钮S,用示波器测量OUT端波形,大概画出所测的波形,
并记录表中各时刻对应的幅值。

图二零输入响应
(3)全响应:利用上述方法重新对电容充电,充电后保持直流信号接入到IN端,按下按钮S,用示波器测量OUT端波形,大概画出对应时刻的波形并记录表中各时刻对应的幅值。

图三全响应
3.总结
结合上面三个表格,对应每个表格各时刻的值,虽然读数有一定的偏差,但是基本上满足关系式:全响应=零输入响应+零状态响应。

从这个关系式可以得出零状态响应加上零输入响应得到的就是全响应。

零输入响应是一种系统的初态,零状态响应是没有初态的系统加入激励后产生的响应后的系统。

即拥有初态的系统,再给予其一个激励,产生的响应就
是全响应。

零输入响应和零状态响应

零输入响应和零状态响应

计算方法
利用系统的传递函数和初始条 件进行计算。
通过求解常微分方程或差分方 程ห้องสมุดไป่ตู้找到系统的零输入响应。
在MATLAB/Simulink等仿真软 件中,可以通过设置系统的初 始状态来模拟零输入响应。
02 零状态响应
定义
零状态响应:是指在系统无输入 信号的情况下,系统对初始状态
产生的响应。
描述了系统在没有输入信号作用 时,其内部状态的变化情况。
零状态响应完全取决于系统本身 的特性,与输入信号无关。
产生原因
系统内部存在储能元件(如电容、电 感),当输入信号为零时,储能元件 的能量不会立即消失,而是会以某种 形式继续存在并产生响应。
系统参数(如电阻、电感、电容等) 发生变化,导致系统内部状态发生变 化,从而产生零状态响应。
计算方法
根据系统的传递函数 和初始状态进行计算。
针对复杂系统和多尺度问题,发展基于零输入响应和零状态响应的跨学科 解决方案,促进各领域之间的交流与合作。
探索零输入响应和零状态响应在可持续发展、环境保护、公共安全等领域 的潜在应用价值,为社会发展和人类福祉做出贡献。
技术创新
开发高效、稳定的零输入响应和零状态响应算 法,提高计算效率和精度,降低计算成本。
零状态响应
零状态响应描述的是系统在外部输入作用下的输出变化。通过研究零状态响应, 可以了解系统对不同类型输入的响应特性,进而设计出更好的控制系统。
系统建模与仿真
零输入响应
在系统建模与仿真中,零输入响应用 于描述系统的内部动态特性。通过分 析零输入响应,可以深入了解系统的 内部工作原理和稳定性。
零状态响应
零状态响应用于描述系统对外部输入 的响应特性。通过研究零状态响应, 可以预测系统在不同输入条件下的行 为表现,有助于优化系统的设计和控 制。

信号与系统 零输入响应和零状态响应

信号与系统  零输入响应和零状态响应
自由响应+强迫响应 (Natural+forced)
自由响应也:称固有响应,对应于齐次解。 由系统本身特性决 定,与外加激励形式无关,但与起始点点跳变有关系。
强迫响应: 形式取决于外加激励。对应于特解。
零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应: 没有外加激励信号的作用,只由起始状态(起始时刻系 统储能)所产生的响应。
§2.2.3 零输入响应和 零状态响应
起始状态与激励源的等效转换
在一定条件下,激励源与起始状态之间可以等效转换。即可以将原始储能看 作是激励源。
系统的完全响应 可以看作
外加激励源 起始状态等效激励源
共同作用的结果
系统的完全响应 = 零输入响应 + 零状态响应 ( 线性系统具有叠加性 )
各种系统响应定义
iL (t)
列出零状态等效电路的微分方程为
is (t)
3A 1F 10V
1H uC (t) 2
u(t)
d2 dt
uzs
(t
)
2
d dt
uzs
(t
)
uzi
(t
)
2is
(t
)
其中,
uzs (0 )
0
,d dt
uzs (0 )
0 , is (t)
3u(t)
根据微分方程经典解法易求得零状态响应中的特解为常数6
)
0
1F
零输入响应形式为
uzi (t) Czi1et Czi2tet (t 0)
iL (t)
uC (t)
1H
2
uL (t)
u(t)
零输入响应
零输入响应形式为 uzi (t) Czi1et Czi2tet (t 0)

初始值的计算,零输入响应,零状态响应,全响应及三要素公式的推导(1)

初始值的计算,零输入响应,零状态响应,全响应及三要素公式的推导(1)

i R 0 u L 0
, u 0 uS(0+)
R
NR
, i 0 iS(0+) c
uC(0+) iL(0+)
(b)t=0+时等效电路
电路分析基础
3.8 电路初始值的计算
9
计算非独立初始值的具体方法: A、画出t =0+电路,
a、若 若
uc (0 ) uc (0 ) U cs ,
6
以电容上电压为未知变量列写电路的方程。
换路后由图(b)可知,其KVL方程为:
uczi (t ) uRzi (t ) 0
而uRzi(t)=izi(t) R,
izi ( t )
C
d u C zi ( t dt
)
,代入上式可得:
RC
duCzii (0+ )= RI S
则电容用一个电压源UCS代替;
uc (0 ) 0 , 则电容用短路线代替。
b、若 iL (0 ) iL (0 ) ILs ,
则电感用一个电流源ILS 代替; 若 iL (0 ) 0 , 则电感作开路处理。
B、现在可用求解电阻电路的各种方法来求解指定的非独立初始值。
电路分析基础
3.8 电路初始值的计算
(或称内部激励)共同作用引起的响应。
f t 0
N
y t
xk 0 0 k1,2,,n
实际上,由线性电路的性质知:
全响应 零输入响应 零状态响应
即:
y t yzi t yzs t
电路分析基础
xk 0 0 k 1,2,,n
3.4 电感的串联和并联
6
思考题
1. 解释电路零输入响应的定义; 2. 解释电路零状态响应的定义; 3. 解释电路全响应的定义;

零输入响应与零状态响应

零输入响应与零状态响应

零输入响应与零状态响应一、零输入响应1定义在没有外加激励时,仅有t = 0时刻的非零初始状态引起的响应。

取决于初始状态和电路特性,这种响应随时间按指数规律衰减。

2简介系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。

当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。

指数函数的个数等于微分方程的阶数,也就是系统内部所含"独立"储能元件的个数。

假定系统的内部不含有电源,那么这种系统就被称为"无源系统"。

实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。

零输入响应是系统微分方程齐次解的一部分。

3起始状态所谓的起始状态,是反映一个系统在初始观察时刻的储能状态。

以电系统为例,我们做如下约定:在研究t=0以后的响应时,把t=0(-)时的值uc(0-)和il(0-)等称为起始状态,而把t=0+时的值uc(0+)和il(0+)以及它们的各阶导数称为初始值或初始条件。

二、零状态响应1定义在动态电路中,动态元件的初始储能为零(即零初始状态)下,仅有电路的输入(激励)所引起的响应。

三、两种响应的区别零状态响应:0时刻以前响应为0(即初始状态为0),系统响应取决于从0时刻开始加入的信号f(t);零输入响应:从0时刻开始就没有信号输入(或说输入信号为0),响应取决于0时刻以前的初始储能。

四、两种响应的判断方法如果有电源激励就是,而元件本身没有电压或电流就是零状态,相反没有电源激励只有元件本身初始值电压电流,就是零输入响应。

五、两种响应的求解方法1零输入响应:就是没有外加激励,由初始储能产生的响应,它是齐次解的一部分;2零状态响应:就是初始状态为零,外加激励产生的响应。

它可以通过卷积积分来求解。

零状态响应等于单位样值相应和激励的卷积。

其中,单位样值相应就是系统函数的反拉式变换或z变换。

六、两种响应之间的联系引起电路响应的因素有两个方面,一是电路的激励,而是动态元件储存的初始能量。

零输入响应与零状态响应

零输入响应与零状态响应

零输⼊响应与零状态响应1.零输⼊响应与零状态响应在Matlab中,lsim函数还可以对带有⾮零起始状态的LTI系统进⾏仿真,使⽤⽅法为y=lsim(sys,u,t,x0),其中sys表⽰LTI系统,⽮量u和t分别表⽰激励信号的抽样值和抽样时间,⽮量x0表⽰该系统的初始状态,返回值y是系统响应值。

如果只有起始状态⽽没有激励信号,或者令激励信号为0,则得到零输⼊响应。

如果既有初始状态也有激励信号,则得到完全响应。

请注意lsim函数只能对⽤状态⽅程描述的LTI系统仿真⾮零起始状态响应,函数ss(对传递函数描述的LTI系统将失效,函数tf)。

例2.5 给定如图所⽰电路,t<0时S处于1的位置⽽且已经达到稳态,将其看做起始状态,当t=0时,S由1转向2.分别求t>0时i(t)的零状态响应和零输⼊响应。

图2.1 例2.4 电路图解:由所⽰电路写出回路⽅程和结点⽅程分别得到状态⽅程和输出⽅程:下⾯将⽤两种⽅法计算完全响应。

第⼀种⽅法:⾸先仿真2V电压e作⽤⾜够长时间(10s)后系统进⼊稳态,从⽽得到稳态值x0,再以该值作为初始值仿真4V电压e作⽤下的输出rf,即是系统的完全响应,为充分掌握lsim函数的使⽤⽅法,还仿真了系统的零状态响应rzs和零输⼊响应rzi。

第⼆种⽅法:构造⼀个激励信号,先保持2V⾜够长时间再跳变为4V,然后即可以零初始状态⼀次仿真得到系统的完全响应r1。

对应程序如下:C=1;L=1/4;R1=1;R2=3/2;A=[-1/R1/C,-1/C;1/L,-R2/L];B=[1/R1/C;0];C=[-1/R1,0];D=[1/R1];sys=ss(A,B,C,D); %建⽴LTI 系统systn=[-10:0.01:-0.01]'; %⽣成-10s 到-0.01s 的抽样时间,间隔为0.01sen=2*(tn<0); %⽣成机理信号的抽样值e(t)=2[rn tn xn]=lsim(sys,en,tn); %仿真t<0时的输出信号x0=xn(length(en),:); %x0记录了初始状态的值t=[0:0.01:10]';e=4*(t>=0); %⽣成激励信号的抽样值e(t)=4ezi=0*(t>=0); %⽣成零输⼊信号的抽样值e(t)=0rzs=lsim(sys,e,t); %仿真零状态响应rzi=lsim(sys,ezi,t,x0); %仿真零输⼊响应rf=lsim(sys,e,t,x0); %仿真完全响应r1=lsim(sys,[en;e],[tn;t]); %⽤另⼀种⽅法仿真完全响应2. 冲激响应与阶跃响应如果分别⽤冲激信号和阶跃信号作激励,lsim 函数可仿真出冲激响应和阶跃响应。

《信号与系统教学课件》§2.3零输入响应与零状态响应

《信号与系统教学课件》§2.3零输入响应与零状态响应

下章预告
THANKS
感谢您的观看。
《信号与系统教学课件》
目录
引言 零输入响应 零状态响应 零输入响应与零状态响应的比较 总结
01
CHAPTER
引言
01
02
课程背景
随着信息技术的发展,信号与系统在现实生活和工程应用中的重要性日益凸显。
信号与系统是通信、电子、控制等领域的重要基础课程,为后续专业课程提供必要的知识储备。
零输入响应与零状态响应的定义
信号的运算与变换
信号的运算包括加减、乘除、翻转等基本运算,信号的变换包括傅里叶变换、拉普拉斯变换和Z变换等。这些运算和变换对于信号的分析和处理具有重要意义。
系统的稳定性分析
系统的稳定性是系统的重要特性之一,对于系统的分析和设计具有重要意义。稳定性分析的方法包括代数方法和几何方法,其中几何方法又包括极坐标和波德图等。
零输入响应
体现输入信号对系统的作用效果,是系统对输入信号的响应。
零状态响应
在系统中的作用
用于分析系统内部储能元件的动态特性,如电路中的电感、电容等。
用于分析系统对特定输入信号的响应,如控制系统中的输入信号对输出信号的影响等。
在实际应用中的选择
零状态响应
零输入响应
05
CHAPTER
总结
信号与系统的基本概念
线性时不变系统是信号与系统中最为常见的一类系统,其分析方法包括时域分析和频域分析。时域分析主要通过差分方程和卷积运算进行,频域分析主要通过傅里叶变换进行。
信号的分类与表示方法
信号可以根据不同的特性进行分类,如连续信号和离散信号、确定性信号和随机信号等。信号的表示方法包括时域表示法和频域表示法。
本章重点回顾
零输入响应与零状态响应的比较

零输入响应和零状态响应

零输入响应和零状态响应

X
三.求解
第 9

零状态响应
系统零状态响应,是在激励作用下求系统方程的非齐次解,由
状态值 vC (0 ) iL (0 ) 为零决定的初始值求出待定系数。
系统方程:
n

k
0
ak
d k yzs (t) dt k

m
bk
k 0
d k x(t) dt k
起始条件:d
k
yzx (0 ) dt k
5

iC (t) C
vC (t)
vC (0 ) 0, t 0
电路等效为起始状态为零的电容与电压源 vC (0 )ut的
串联
iC (t) C
vC(0 )
vC (t)

等效电路中的
电容器的起始
状态为零
X
电感的等效电路
第 6

iL(t) L
vL(t)
iL(0 ) 0,t 0
(Cte-t
)

3
d dt
(Cte-t
)

2(Cte-t
)

e-t
特解 yp (t) t et
零状态响应: yzs (t) C1et C2e2t t et
由起始状态导出初始条件

y(0 ) 0 y '(0 ) 0


y(0 ) 0 y '(0 ) 0
式中
n
n
n
cieit
c eit xi

c eit fi
i 1
i 1
i 1
自由响应 零输入响应 零状态响应的

零输入响应和零状态响应

零输入响应和零状态响应
信号与系统
零输入响应和零状态响应
线性非时变系统的完全响应也可分解为零输 入响应和零状态响应。在激励信号加入系统之 前,系统原有的储能(如电容上的初始电压, 电感上的初始电流等)构成了系统的初始状态。
1.1 零输入响应的求取
1.2 零状态响应的求取
其中零状态响应的完全解的系数应在零状 态响应的全解中由初始条件

。因此,零状态响应的特解、齐次
解和完全解分别为
将零状态响应的初始条件 解得
代入上式
因此,此系统的零状态响应为 (3)求系统的完全响应。
其中,

信号与系统
确定。
1.3 系统的完全响应
系统的完全响应按性质可分为自由响应和 强迫响应,按来源可分为零输入响应和零状态 响应,它们的关系为
式中,

例1.1 已知某系统的微分方程模型为
初始条件
,输入
系统的零输入响应 ,零状态响应
全响应 。
解:(1)求零输入响应 。
由特征方程
,求 以及完
得单根
,因此零输入响应为

零输入、零状态、全响应

零输入、零状态、全响应
重置
在系统运行过程中,通过重置操作将系统的状态清零,达到 零状态的效果。
零状态优势分析
简化系统分析
零状态可以简化系统的分析和设 计过程,因为在无输入信号作用 时,系统的输出仅与初始状态有 关,使得问题变得更加简单。
提高系统稳定性
零状态有助于提高系统的稳定性。 当系统处于零状态时,其内部不 存在任何振荡或不稳定因素,从 而降低了系统出现故障或失稳的 风险。
全响应满足线性性质,即系统对输入的响应可以 分解为各个输入单独作用时产生的响应之和。
3
时不变性质
全响应具有时不变性质,即系统参数不随时间变 化,输出响应仅与输入和系统函数有关。
全响应实现方式
卷积积分法
通过求解系统函数与输入的卷积积分,可以得到全响应的表达式。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通过分析系统函数在 频域的特性,可以得到全响应的频域表达式。
PART 03
零状态原理及特点
零状态定义与性质
零状态定义
零状态是指系统在某一时刻无任何输入信号作用时的状态,即系统的初始状态 为零。
零状态性质
零状态是线性时不变系统的一个重要性质,它表明系统在无输入信号作用时, 其输出仅与系统的初始状态有关,而与输入信号无关。
零状态实现方式
初始化
在系统设计时,通过初始化操作将系统的状态设置为零,从 而实现零状态。
效果评估及经验教训总结
效果评估
经过数字化转型,企业运营效率得到显著提升,客户满意度大幅提 高,市场竞争力得到增强。
成功经验
制定科学合理的数字化转型战略、搭建稳定可靠的数字化平台、注 重数据迁移与整合的质量、加强员工培训和市场推广等。
教训总结

信号与系统 零输入响应和零状态响应

信号与系统  零输入响应和零状态响应

0
,d dt
uzs
(0
)

0
,is (t)
3u(t)
根据微分方程经典解法易求得零状态响应中的特解为常数6
uzs (t) uzs_h (t) uzs_ p (t) Czs1et Czs2tet 6 (t 0)
间范围是 0 t ,则系统的初始条件要根据系统的原始内部储能和激
励接入瞬时的情况来确定。
如具体电路系统,根据如下条件从 起始条件求初始条件
uC (0 ) uC (0 ) iL (0 ) iL (0 )
t 0 时刻等效电路
信号与系统
【例2-2-6】 如图2-2-2所示的电路,t 0 以前开关位于“1”,已进入稳态,t 0 时刻, S1 与 S 2 同时自“1”转至“2”,求输出电压u(t) 的零输入响应、零状
零输入响应
讨论:由 t 0 时刻的电路
可计算
S1 2 2
iL (t)
3A
1
1 S2 1F 10V 来自 1H uC (t) 2
u(t)
uzi (0 ) 10V=uzi (0 )
d dt
uzi
(0
)

0V/s=
d dt
uzi
(0
)
在零输入的情况下,起始 点没有跳变。可以起始条件计算 零输入响应。不用计算初始条件。
n

k
0
ak
d k yzi (t dt k
起始条件:d
)
k

yzi dt
0
(0
k

)

ck , k

0,1,2,, n
n

一阶电路的零输入响应和零状态响应

一阶电路的零输入响应和零状态响应

一阶电路的零输入响应和零状态响应下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一阶电路的零输入响应和零状态响应在电路理论中,一阶电路是一种常见的电路结构,其具有简单的数学描述和易于理解的特点。

单位冲激响应零状态响应零输入响应等各种响应之间的关系

单位冲激响应零状态响应零输入响应等各种响应之间的关系

单位冲激响应零状态响应零输入响应等各种响应之间的关系单位冲激响应、零状态响应、零输入响应是信号与系统领域中常见的概念,它们描述了一个线性时不变系统对不同输入信号的响应方式。

本文将深入探讨这些响应之间的关系,并一步一步回答相关问题。

首先,我们来定义这些概念:1. 单位冲激响应:单位冲激信号(也称为狄拉克脉冲或者单位激励)是一个幅度为1、宽度为0的理论上的信号。

单位冲激响应是指系统对单位冲激信号的响应,用h(t)表示。

2. 零状态响应:零状态响应是指系统在某一时刻的初始状态下对输入信号的响应。

这意味着系统没有存储信息或记忆,只对当前的输入信号作出响应。

零状态响应用y(t)表示。

3. 零输入响应:零输入响应是指系统在没有输入信号的情况下,由系统的初始状态所导致的响应。

它反映了系统的内部特性和初始状态对系统行为的影响。

零输入响应用zi(t)表示。

接下来,我们将一步一步回答关于单位冲激响应、零状态响应和零输入响应之间的关系的问题。

问题1:单位冲激响应与零状态响应之间的关系是什么?单位冲激响应和零状态响应之间有一个重要的关系,即卷积定理。

卷积定理指出,一个系统对任意输入信号的响应等于系统的单位冲激响应与输入信号卷积运算的结果。

具体而言,设输入信号为x(t),系统对输入信号的响应为y(t),则有以下关系:y(t) = x(t) * h(t)其中* 表示卷积运算。

这个等式说明了系统对任意输入信号的响应可以通过输入信号与单位冲激响应的卷积运算得到,即零状态响应等于输入信号与单位冲激响应的卷积。

问题2:单位冲激响应与零输入响应之间的关系是什么?单位冲激响应与零输入响应之间的关系可以通过零状态响应的性质得到。

由于零状态响应是指系统在某一时刻的初始状态下对输入信号的响应,如果系统没有输入信号,则零状态响应就等于零输入响应。

所以,我们可以得到以下关系:zi(t) = y(t),当输入信号x(t)等于零时这个关系说明,当输入信号为零时,单位冲激响应就是零输入响应。

一阶电路的零输入响应零状态响应全响应

一阶电路的零输入响应零状态响应全响应

e
5
e
6
0.368U 0.135U 0.050U 0.018U 0.007U 0.002U
当 t =5 时,过渡过程基本结束,uC达到稳态值。
第四章 动态电路的时域分析
二、一阶RL电路的零输入响应
电感电流根据三要素公式:
iL (0 ) I 0
iL (0 ) iL (0 ) I 0
s
i R C + _ uC
+
t 0
s
i R C + _ uc
U _
uC (0 -) = U0
零输入响应
uC (0 -) = 0
uC U 0
零状态响应
t e RC
U
t ( 1 e RC
) (t 0
uC
U
Ue

t RC
第四章 动态电路的时域分析
3.3.3 一阶电路的全响应:
回顾
若零输入响应用yx(t)表示之,其初始值为yx(0+),那么
y x (t ) y x (0 )e

t

t 0
t
若零状态响应用yf(t)表示之,其初始值为yf(0+)=0,那么
y f (t ) y f ()(1 e ) t 0

第四章 动态电路的时域分析
+ U _
t 0
U (1 e
1 t RC

)V
t 0
第四章 动态电路的时域分析
uC的变化规律
稳态分量
+U
uC
U
Ue

t RC
uC
uC
t 暂态分量
电路达到 稳定状态 时的电压

信号与系统零输入和零状态响应问题和解答

信号与系统零输入和零状态响应问题和解答

信号与系统零输入和零状态响应问题和解答该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

信号与系统零输入和零状态响应问题和解答该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。

文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 信号与系统零输入和零状态响应问题和解答can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!信号与系统零输入和零状态响应问题和解答。

信号与系统§3.3 离散系统的零输入响应与零状态响应

信号与系统§3.3 离散系统的零输入响应与零状态响应
号与系统 信
§3.3 离散系统的零输入响应 与零状态响应
1. 零输入响应
2. 零状态响应
离散时间系统的全响应
与连续时间系统的情况类似,差分方程的 完全解也可称为离散时间系统的全响应,其可 表示为自由响应分量和强迫响应分量的和,或 零收入响应分量与零状态响应分量之和。自由 响应对应差分方程的齐次解,其形式根据没有 激励时的齐次方程或特征方程的特征根情况来 确定,待定系数依据差分方程的通解,即齐次 解+特解,由系统的初始状态求解;强迫响应对 应差分方程的特解,此时不考虑系统的初始状 态,其形式及待定系数依据差分方程由自由项 形式来确定和求解。
串联
iC (t ) C
vC (t)
vC(0 )
等效电路中的电容 器的起始状态为零
电感的等效电路
iL(t) L
vL(t)

iL (0 ) 0, t 0
1
iL (t) L
t
vL ( )d
1
L
iL
0vL ( )d
(0 )

1 L
1 L t
起始状态与激励源的等效转换
在一定条件下,激励源与起始状态之间可以等 效转换。即可以将原始储能看作是激励源。 电容的等效电路 电感的等效电路
系统可的以完看全做响应 起 外始加状激态 励激源励源 共 的 同 结作 果用
系统的完全响应 = 零输入响应 零状态响应
的齐次解,由非零的系统状态值决定的初始值 求出待定系数。
零状态响应
定义:不考虑原始时刻系统储能的作用(起 始状态等于零),由系统的外加激励信号产 生的响应。
系统零状态响应:是在激励作用下求系统方
程的非齐次解,由状态值Vc (0和)

零输入、零状态及完全响应-1

零输入、零状态及完全响应-1

-----WORD格式--可编辑--专业资料-----一、实验目1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。

2.掌握用简单的R-C 电路观测零输入响应、零状态响应和完全响应的实验方法。

二、实验设备1.TKSS-D 型 信号与系统实验箱2.双踪慢扫描示波器1台三、实验原理1.零输入响应、零状态响应和完全响应的模拟电路如图1-1所示。

图1-1 零输入响应、零状态响应和完全响应的电路图2.合上图1-1中的开关K1、K3,则由回路可得iR+Uc =E (1)∵ i =C dtdU c ,则上式改为 =E U dtdU RC c c (2) 对上式取拉式变换得:RCU C (S )-RCU C (0)+U C (S )=S15 班 级班 级学 号 姓 名 实验名称零输入、零状态及完全响应 实验日期 实验地点 课程名称 信号与系统 指导教师教师签名 同组其他成员 成 绩∴RC1S5RC1S15S15=1RCS(0)RCU1)S(RCS15(S)=U cc+++-+++⎪⎪⎪⎪⎭⎫⎝⎛,其中5V(0)Uc=tRC1-tRC1-c5ee1(t)=15U+-⎪⎪⎭⎫⎝⎛(3)式(3)等号右方的第二项为零输入响应,即由初始条件激励下的输出响应;第一项为零状态响应,它描述了初始条件为零(Uc(0)=0)时,电路在输入E=15V作用下的输出响应,显然它们之和为电路的完全响应,图1-2所示的曲线表示这三种响应的过程。

图1-2零输入响应、零状态响应和完全响应曲线其中:①---零输入响应②---零状态响应③----完全响应四、实验内容与步骤1. 零输入响应用短路帽连接K2、K3,使+5V直流电源对电容C充电,当充电完毕后,断开K3连接K4,用示波器观测Uc (t)的变化。

2.零状态响应先用短路帽连接K4,使电容两端的电压放电完毕,然后断开K4连接K3、K1,用示波器观测15V直流电压向电容C的充电过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ ,其中
(3)
式(3)等号右方的第二项为零输入响应,即由初始条件激励下的输出响应;第一项为零状态响应,它描述了初始条件为零(Uc(0)=0)时,电路在输入E=15V作用下的输出响应,显然它们之和为电路的完全响应,图1-2所示的曲线表示这三种响应的过程。
图1-2零输入响应、零状态响应和完全响应曲线
其中:①---零输入响应②---零状态响应③----完全响应
四、实验内容与步骤
1.零输入响应
用短路帽连接K2、K3,使+5V直流电源对电容C充电,当充电完毕后,断开K3连接K4,用示波器观测Uc(t)的变化。
2.零状态响应
先用短路帽连接K4,使电容两端的电压放电完毕,然后断开K4连接K3、K1,用示波器观测15V直流电压向电容C的充电过程。
3.完全响应
先连接K4,使电容两端电压通过R-C回路放电,一直到零为止。然后连接K3、K2,使5V电源向电容充电,待充电完毕后,将短路帽连接K1,使15V电源向电容充电,用示波器观测Uc(t)的完全响应。
六、实验报告
1.推导图1-1所示R-C电路在下列两种情况的电容两端电压Uc(t)的表达式。
1) Uc(0)=0,输入Ui=15V。2) Uc(0)=5V,输入Ui=15V。
2.根据实验,分别画出该电路在零输入响应、零状态响应、完全响应下的响应曲线。
七、实验思考题
系统零输入响应的稳定性与零状态响应的稳定性是不是相同?
2.双踪慢扫描示波器1台
三、实验原理
1.零输入响应、零状态响应和完全响应的模拟电路如图1-1所示。
图1-1零输入响应、零状态响应和完全响应的电路图
2.合上图1-1中的开关K1、K3,则由回路可得
iR+Uc=E (1)
∵i=C ,则上式改为
(2)
对上式取拉式变换得:
RCUC(S)-RCUC(0)+名称
零输入、零状态及完全响应
实验日期
实验地点
课程名称
信号与系统
指导教师
教师签名
同组其他成员
成绩
一、实验目
1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。
2.掌握用简单的R-C电路观测零输入响应、零状态响应和完全响应的实验方法。
二、实验设备
1.TKSS-D型信号与系统实验箱
八、实验心得
做实验可以进一步了解系统的零输入响应、零状态响应和完全响应的原理,通过该实验我们明白了零输入响应和零状态响应的区别,及实验电路的连接和学会电路的零状态响应与零输入响应的观察方法。
答:不相同。理由如下:零输入响应与输入激励无关,零输入响应是以初始电压值开始,以指数规律进行衰减。所以零输入响应是只和电路结构有关,只要电路自身是稳定的,零输入响应就是稳定的。零状态响应与起始储能无关,与输入激励有关。在不同的输入信号下,电路会表征出不同的响应。所以零状态响应的稳定性不仅和电路结构有关,还与输入的信号有关。
5、实验数据与数据处理
1.零输入响应
用短路帽连接K2、K3,使+5V直流电源对电容C充电,当充电完毕后,断开K3连接K4,用示波器观测Uc(t)的变化。
2.零状态响应
先用短路帽连接K4,使电容两端的电压放电完毕,然后断开K4连接K3、K1,用示波器观测15V直流电压向电容C的充电过程。
3.完全响应
先连接K4,使电容两端电压通过R-C回路放电,一直到零为止。然后连接K3、K2,使5V电源向电容充电,待充电完毕后,将短路帽连接K1,使15V电源向电容充电,用示波器观测Uc(t)的完全响应。
相关文档
最新文档