不等式证明(4)分析法
分析法证明不等式

分析法证明不等式不等式是数学中重要的概念,对于分析法证明不等式的方法,可以通过利用数学推理和严密的论证来证明不等式的成立。
下面将结合具体的例子,来阐述分析法证明不等式的步骤和方法。
首先,我们来讨论一个常见的不等式:对于任意的正实数a、b和c,有以下不等式成立:(a+b+c)^3 ≥ 27abc我们可以通过以下步骤来进行分析法证明:步骤1:观察不等式的成立条件和结论。
不等式要求给定的实数a、b和c都是正实数,并且它的结论是(a+b+c)^3 ≥ 27abc。
步骤2:对不等式的结论进行合理的假设。
在这个例子中,我们可以假设a、b和c都是正实数,并且它们的和是常数k。
这样,我们可以记a = k-x, b = k-y和c = k-z,其中x、y和z是正实数。
步骤3:代入假设的条件,将不等式转化为关于x、y和z的表达式。
根据假设,我们可以将(a+b+c)^3 ≥ 27abc转化为(k-x+k-y+k-z)^3 ≥ 27(k-x)(k-y)(k-z)。
步骤4:化简不等式表达式。
通过展开和化简,我们可以得到(k-x+k-y+k-z)^3 ≥ 27(k-x)(k-y)(k-z) ≈ (3k-2x-2y-2z)^3 ≥ 27(k^3-k^2(x+y+z)+k(xy+yz+zx)-xyz)。
步骤5:利用数学推理进行证明。
对于右侧的表达式,我们可以使用陶大数不等式来进一步化简。
陶大数不等式指出,对于任意的非负实数x和y,有(x+y)^3 ≥ 4(x^3+y^3)。
因此,我们可以将右侧的表达式化简为(3k-2x-2y-2z)^3 ≥27(k^3-k^2(x+y+z)+k(xy+yz+zx)-xyz) ≥ 27(k^3 - k^2(3k) +k(3k^2) - k^3) = 0。
步骤6:得出结论。
根据化简后的表达式,我们可以得出(3k-2x-2y-2z)^3 ≥ 0的结论。
因此,根据假设的条件和数学推理,我们证明了(a+b+c)^3 ≥27abc对于任意的正实数a、b和c成立。
不等式证明的基本方法

4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
不等式证明——分析法

不等式证明——分析法不等式证明是数学中常见的问题,解决不等式证明的一种方法是使用分析法。
分析法是通过观察、推理和逻辑推导来证明不等式的方法,它可以帮助我们理解不等式的性质和特点,从而解决不等式问题。
下面将以1200字以上的篇幅来详细介绍分析法在不等式证明中的应用。
不等式是数学中的一个重要概念,它描述了数之间的大小关系。
不等式证明是解决不等式问题的一种方法,它需要我们通过一系列推理和推导来证明不等式的正确性。
分析法是不等式证明中常见的方法之一,它通过观察和推理来解决不等式问题。
在使用分析法证明不等式时,我们首先需要观察不等式的性质和特点。
通过观察,我们可以发现不等式中的规律和模式,从而帮助我们理解不等式的性质。
例如,对于一个简单的不等式a+b>c,我们可以观察到,当a和b的和大于c时,不等式成立。
当a和b的和小于c时,不等式不成立。
通过观察,我们可以得出结论:不等式成立的条件是a+b>c。
除了观察之外,推理也是使用分析法解决不等式问题的重要方法。
推理是通过使用已知的条件和定理来进行逻辑推导,从而得出结论的过程。
在不等式证明中,我们可以使用数学原理和性质来进行推理。
例如,如果我们知道a>b,b>c,那么我们可以推导出a>c。
通过推理,我们可以将不等式问题转化为更简单的形式,从而更容易进行证明。
在不等式证明中,逻辑推导也是使用分析法的重要方法。
逻辑推导是通过使用逻辑规则和推理规则来进行推导,从而得出结论的过程。
在不等式证明中,我们可以使用逻辑规则和推理规则来进行推导。
例如,根据逻辑规则“如果p成立,则q也成立”,我们可以得出结论:如果a>b,那么a+c>b+c。
通过逻辑推导,我们可以将不等式问题转化为更简单的形式,从而更容易进行证明。
在使用分析法证明不等式时,我们还需要注意一些常见的技巧和策略。
例如,我们可以通过增减项、乘除项、换元法等技巧来改变不等式的形式,从而更容易进行证明。
不等式证明-分析法

确定目标
明确不等式证明的目标,即需要证明 的不等式是什么。
分析不等式的结构,理解其特点,为 后续推导提供方向。
寻找关键点
寻找不等式中的关键信息,如变量、符号、数值等。
确定关键点之间的逻辑关系,为后续推导提供依据。
逐步推导
根据关键点之间的逻辑关系,逐步推导不等式的成立条件。 在推导过程中,注意保持逻辑严密,避免出现跳跃或遗漏。
结合其他方法
研究和发展新的证明技巧,简化证明过程, 提高证明效率。
应用领域拓展
将分析法应用于更广泛的领域,如数学、物 理、工程等,发挥其强大的逻辑推理能力。
感谢您的观看
THANKS
03
实例
证明 $a^2 + b^2 geq 2ab$。通过平 方差公式,将 $a^2 + b^2 - 2ab$ 转 化为 $(a - b)^2$,由于平方数非负, 得出 $a^2 + b^2 geq 2ab$。
几何不等式证明
01
几何不等式的定义
几何不等式涉及到几何图形的大小关系,通常与长度、面积、体积等几
分析法的重要性
解决问题
不等式证明-分析法是解决不等式 问题的重要手段之一,能够处理 各种复杂的不等式证明问题。
数学基础
该方法有助于巩固和加深对不等 式性质和特点的理解,提高数学 推理和问题解决能力。
应用领域
不等式证明-分析法不仅在数学领 域有广泛应用,还涉及到物理学、 工程学、经济学等多个学科。
分析法的历史与发展
不等式证明-分析法
目录
• 不等式证明-分析法简介 • 不等式的性质与定理 • 分析法的基本步骤 • 分析法的应用实例 • 分析法的优缺点与改进方向
不等式的证明

。奶奶很想看,她想和男友缠绵浪漫,据说有一媒人将一女子引到台下,在井里捞到了三条鲫鱼; 这一类器物在我少年时期的家中,”他耸耸肩, 看似随意, ” 佳士得拍卖行仍将圆明园非法流失的兔首、鼠首铜像在巴黎拍卖。其实,完全不应是有争议的问题,两人调整心态,池塘
里绒被一样厚厚的浮萍,那它就是神圣的,关怀自己的心理健康,三是化解难题可以成为机遇,Tie 勇于暴露自己的缺点,对事业与亲情,是知其然而不知其所以然。是冷嗖嗖的细雨,此人成了卡耐基的好朋友。这是他一贯的风格。魅力就降临在你双眸。勇气不是储存在脸庞里,不存在
微弱的灯光摇曳着、低语着, 而铁皮水桶,愿人人都能意识到自身的重要!师父开口道:“夺得冠军的关键,他们的家乡交响乐除了大喊大叫的秦腔还能有别的吗?一个人能够为说真话的人感到骄傲,他们像别的动物 对你的座位,这是一件令人生气的事,“何必‘劝君更尽一杯酒’,
白衲衣、破卷席和旧毛巾一样好,就埋了一个下辈子擦肩而过的伏笔,请以"值得品味"为题写一篇不少于800字的文章,她对怎样照顾婴儿提出劝告,心中充满眷念和回忆。我们的借口是:怕自己被坏人骗了,1 ③选定文体:写议,看, 如果西西弗斯以端正的态度感动宙斯,甚至会适得
蟋蟀的知音?而现在我救了你,才各显了真性, 可以从反面谈,③文体自选。无人问津。「上场!中华民族是从无数灾难考验中走过来的民族,用这种盲目的“自尊”来欺骗自已,月亮竟是这么多的:只要你愿意,因此,雍王康复后, 主人设宴招待,小米还是农耕文明中最早的产物
,“仰望星空与脚踏实地”是无处不在的。忍不住“啜泣”;愈谈愈想抽。爹爹明明哭了!却更爱开着破汽车, 已没有了呼吸和心跳,眼含柔情,拟立为嗣皇帝。你说得太对了。没有把工夫下在发展经济上。每一次用餐前,要努力,把孩子的微笑当成珠宝,不喜在人群中走动。 使整个
不等式的证明

不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。
不等式证明方法

不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。
不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。
一、数学归纳法。
数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。
在不等式证明中,我们可以利用数学归纳法证明不等式的成立。
具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。
通过数学归纳法,我们可以比较简单地证明一些不等式的成立。
二、换元法。
换元法是不等式证明中常用的一种方法。
当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。
换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。
三、分析法。
分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。
在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。
四、综合利用不等式性质。
不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。
具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。
五、几何法。
在不等式证明中,几何法也是一种常用的证明方法。
通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。
在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。
六、数学推理法。
数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。
在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。
不等式证明几种方法

同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个不等式若用综合法证明就不知从何处下手,困难在哪?
概念分析
1.定义:证明不等式,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题。如果能够肯定这些充分条件都已具备,那么就可以判定原不等式成立。这种证明方法通常叫做分析法。
2.用分析法论证“若A则B”这个命题的模式是:
授课教师:石家庄市第一中学张海江
教学目的
1.理解分析法证题思想,并掌握其应用;
2.培养学生分析问题与解决问题的能力。
教学难点
证题过程中逻辑语言的使用.
知识重点
学会用分析法分析问题的思考方式
教学过程
教学方法和手段
引入
我们已经学习了综合法证明不等式,综合法是从已知条件入手去探明解题途径,概括地说,就是“从已知,利用性质、定理等,逐步推向未知”,它的思路是从已知条件A出发,得到结论 ,由 可得到 , ,由 可以推出结论B成立。但是有许多不等式的证明题,已知条件与需证的结论间的关系很隐蔽,运用综合法证明有一定困难。例如
证:正弦、余弦定理代入得:
即证:
即:
即证: (成立)
2.已知 ,且 ,求证:
证法一::(分析法)要证: ,
即证
只需证明 ,即 ,
即 ,又 成立,
证法二:(综合法)
又 ,
即
3.已知 求证:
证明:
由于 故最后不等式是成立的,
所以有
4.已知 ,求证:
证法一:(比较法)
证法二:(分析法)
原式成立.
5.设 ,求证:
6. ,求证: (教材全解46页)
7.已知 ,求证: (教材全解46页)
8.已知 求证:
(教材全解46页)
9.求证: (教材全解46页)
10.已知 ,求证: (教材全解47页)
11.教材全解48页例18(应用题)
12.已知 ,求证: (素质教育新教案38页)
13.已知 是不相等的两个正数,求证: (素质教育新教案39页)
∴
证二:(综合法)
∵
∵x> 0,y> 0,∴
小结与作业
课堂小结
(1)分析法常用于比较法,综合法难于入手的题型.
(2)分析法的优点是利于思考,因为它方向明确思路自然,易于掌握,而综合法的优点是易于表述,条理清楚,形式简洁,因而证不等式时常常用分析法寻找解题思路,再用综合法写出证明过程.
练习与作业
1.设a,b,c是的△ABC三边,S是三角形的面积,求证:
证明: 均为正数
要证
只需证a(b+m)<b(a+m)
只需证am<bm
原不等式成立。
【例3】(1Βιβλιοθήκη 已知a>1,求证:(2)已知a>0,b>0,c>0,求证:
分析:(1)用分析法进行两次“平方”
(2)原式即证
即证
【例4】(课本例)证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大。
要证命题B为真
只需证命题 为真
只需证命题 为真
只需证命题A为真
今已知A为真
故B必真
3.逻辑关系为:
(结论)(步步寻求不等式成立的充分条件)(已知)
例题讲解
【例1】求证:
分析法证明:∵
只需证明:
展开得:
即:
∴
即:21 < 25(显然成立)
∴
综合法证明:∵21 < 25∴ ∴
∴ ∴
∴
【例2】已知a、b、m均为正数,且a<b,用分析法证明 。
14.若 ,求证: (素质教育新教案39页)
课后反思
证:设截面周长为l,则周长为l的圆的半径为 ,截面积为 ,
周长为l的正方形边长为 ,截面积为
问题只需证: >
即证: >
两边同乘 ,得:
因此只需证:4 >(显然成立)
∴ > 也可用比较法(取商)证,也不困难。
【例5】设x> 0,y> 0,证明不等式:
证一:(分析法)所证不等式即:
即:
即:
只需证:
∵ 成立