中考试题第17课时等腰三角形

合集下载

--2021年春人教版数学九年级中考专题复习课件 等腰三角形

--2021年春人教版数学九年级中考专题复习课件 等腰三角形

【对应训练1】如图,在△ABC中,CD是∠ACB的平分线, DE∥BC交AC于点E,若AC=15 cm,AE=7 cm,则DE=__8_cm.
等边三角形 【例2】(2020·营口)如图,△ABC为等边三角形,边长为6,AD⊥BC, 垂足为点D,点E和点F分别是线段AD和AB上的两个动点, 连接CE,EF,则CE+EF的最小值为_3___3_.
∴EC=4,AB=AC=12,∴AE= AC2+EC2 = 122+42 =4 10 , ∴DP=PA=PE=12 AE=2 10 ,∵EF=13 AF,AP=PE, ∴PF=EF=12 PE= 10 ,∵∠DPF=90°,∴DF= DP2+PF2 =5 2
A.3
3 4
B.3 8 3
C.
3 4
D.
3 8
20.(2020·眉山)如图,等腰△ABC中,AB=AC=10,
边AC的垂直平分线交BC于点D,交AC于点E. 若△ABD的周长为26,则DE的长为___1_45_.
21.(2020·襄阳)在△ABC中,∠BAC=90°,AB=AC, 点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE. (1)特例发现:如图①,当AD=AF时, ①求证:BD=CF; ②推断:∠ACE=90°; (2)探究证明:如图②,当AD≠AF时,请探究∠ACE的度数是否为定值,并 说明理由;
∴△ADM∽△AEC,∴∠ACE=∠AMD=90°,
即∠ACE的度数为定值90°
(3)连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴AECB =AEFF =13 , 设EC=a,则AB=AC=3a,AK=3a-136 ,∵DA=DE,DK⊥AE, ∴AP=PE,∴AK=KE=3a-136 ,∵EK2=CK2+EC2, ∴(3a-136 )2=(136 )2+a2,解得a=4或0(舍去),

初中数学专题02等腰三角形的存在性问题(原卷版)

初中数学专题02等腰三角形的存在性问题(原卷版)

专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。

【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D ,满足∠DAB =45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段P A 最长?并求出此时P A 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx +c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A ,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.。

安徽省2014年中考数学专题复习课件 第17课时 等腰三角形

安徽省2014年中考数学专题复习课件 第17课时 等腰三角形

皖考解读
考点聚焦
皖考探究
当堂检测
第17课时┃等腰三角形
3.如图 17-5,△ABC 中,AB=AC=6,BC=8,AE 平 分∠BAC 交 BC 于点 E, 点 D 为 AB 的中点, 连接 DE, 则△BDE 的周长是________ 10 .
图 17-5
皖考解读
考点聚焦
皖考探究
当堂检测
第17课时┃等腰三角形
探究三 等腰三角形的多解问题
命题角度: 1.遇到等腰三角形的问题时,注意边有腰与底之分, 角有底角和顶角之分; 2.遇到三角形的高线的问题要考虑高在形内、形上 和形外等多种情况.
皖考解读
考点聚焦
皖考探究
当堂检测
第17课时┃等腰三角形
例 3 [2013· 白银] 等腰三角形的周长为 16,其一边长 为 6,则另两边长为____________________ . 5,5或6,4
第17课时 等腰三角形
第17课时┃ 等腰三角形
皖 考 解 读
考纲 要求 了解 掌握 2010 填空题 5 分 2012 选择题 4 分 2013 解答题 5 分
考点 等腰三角形 有关概念 等腰三角 形的性质 和判定
年份
题型
分值 预测热度 ★ ★★★★
皖考解读
考点聚焦
皖考探究
读 考点聚焦 皖考探究 当堂检测
第17课时┃等腰三角形
(1) 根据等腰三角形“三线合一”可得 BD = 解 析 CD,AD⊥BC,再根据全等三角形的判定定理 SSS 或 HL 可 以证得△ABD≌△ACD; (2)利用(1)中已证 AD 是 BC 的垂直平分线可证 BE=CE.

证明:(1)∵D 是 BC 的中点,∴BD=CD. 在△ABD 和△ACD 中, BD=CD,AB=AC,AD=AD(公共边), ∴△ABD≌△ACD(SSS). (2)∵AB=AC,D 是 BC 的中点, ∴AD⊥BC,BD=CD, ∴BE=CE(线段垂直平分线上的点到线段两端的距离相等).

4第17课时等腰三角形与直角三角形(练).docx

4第17课时等腰三角形与直角三角形(练).docx

第17课时 等腰三角形与直角三角形1. (2017包头〉若等腰三角形的周长为10cm,其中一边长为2 cm, 则该等腰三角形的底边长为( )A. 2 cmB. 4 cmC. 6 cmD. 8 cm2. (2017长沙)一个三角形三个内角的度数之比为1 : 2 : 3,则这个三 角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形3. (2017 大连〉如图,在ZXABC 中,ZACB=90°, CD 丄AB,垂足 为D,点E 是AB 的中点,CD=DE=a,则AB 的长为( )4. (2017荆州)如图,在厶ABC 中,AB=AC 5ZA=30°, AB 的垂直平 分线/交AC 于点D,则ZCBD 的度数为()5. (2017南充)如图,等边△OAB 的边长为2,则点B 的坐标为C. 3ci A. 30° B. 45° C. 50°D. 75°D.4B C第4题图()6. (2017台州》如图,已知等腰三角形ABC.AB=AC.若以点B 为圆心,7. (2017聊城)如图是rfl 8个全等的矩形组成的大正方形,线段 的端点都在小矩形的顶点上•如果点P 是某个小矩形的顶点,连接PB.那么使为等腰直角三角形的点P 的个数是()/ BA第7题图A.2个B.3个C.4个D.5个 & (2017海南》已知ZXABC 的三边长分别为4、4、6,在厶ABC 所B. (3,1)C.(3, 3)长为半径画弧, 交腰AC 于点E,则下列结论一定正确的是()B. AE=BEC. ZEBC=ZBACD. ZEBC=ZABEA. (1,1) 笫5题图CA. AE=EC在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条・A. 3B.4C. 5D. 69.(2017襄阳》“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为Q,较短直角边长为b,若(a^)2=21,大正方形的面积为13,则小正方形的面积为()A. 3B.4C. 5D. 610.(2017河池》已知等边厶ABC的边长为12, D是AB ±的动点,过D作DELAC于点E,过E作EF丄BC于点F,过点F作FGLAB 于点G,当G与D重合时,AD的长是()A. 3B.4C. 8D. 911.(2017丽水)等腰三角形的一个内角为100°,则顶角的度数是12. (2017内高》已知等腰三角形一边长等于4,一边等于9,则它的周长是_________ .13.(2017淄博》在边长为4的等边三角形4BC中,D为BC边上的任意一点,过点D分别作DE丄AB, DF丄AC,垂足分別为乙F,则DE+DF= __________ .14.(2017 益阳〉如图,ZX/IBC 中,AC=5, BC=\2, AB=13, CD 是AB边上的中线,则CZ>15. (2017 青岛)如图,在四边形 ABCD 中,ZABC=ZADC=9Q°9 E 为对角线AC 的中点,连接BE, ED, BD,若ZBAD=5S°,则ZEBD 的度数为 _____________ 度.第15题图16. (2017泸州》在厶ABC 中,已知BD 和CE 分別是边AC, AB 上的中线,且BD 丄CE,垂足为O,若OD=2 cm,OE=4 cm,则线段 AO 的长度为 ___________ cm.17. (2016哈尔滨》在等腰直角三角形ABC 中,ZACB=90\AC=3.点P 为边BC 的三等分点,连接AP,则AP 的长为 ___________ .18. (2017 杭州》如图,在 RtAABC 中,ZBAC=90°, AB=15, AC=20, 点D 在边AC 上,AD=59 DE 丄BC 于点E,连接4E,则△ABE 的面 积等于 ____________ .第18题图19. (2017 北京》如图,在厶ABC 中,AB=AC,ZA=36°, BD 平分ZABC交AB 于点D求证:AD=BC.第14题图B第19题图20.(2017内江》如图,AD平分ZBAC, AZ)丄BD捶足为点D, DE//AC ・求证:厶BDE是等腰三角形.B D第20题图满分冲关1.(2017武汉》如图,在RtAABC中,ZC=90°,以ZXABC的一边为边画等腰三角形,使得它的第三个顶点在AABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B. 5C. 6D. 7第1题图2.(2017天津》如图,在厶ABC中,AB=AC,AD.CE是厶ABC的两条中线,P是AD±的一个动点,则下列线段的长等于BP+EP最小值的是()第2题图A. BCB. CEC. ADD. AC3.(2016株洲)如图,以直角三角形a,b,c为边,向外分别作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数有()第3题图A. 1个B. 2个C. 3个D. 4个4.(2017 咸宁)如图,在RtAACB 中,BC=2,ZBAC=30。

第十七讲 等腰三角形、等边三角形、直角三角形

第十七讲 等腰三角形、等边三角形、直角三角形

CG=CD,DF=DE,则∠E= 15 度.
4.边长为 6cm 的等边三角形中,其一边上高的长度为__3__3__c_m_.
5.(2013 滨州)在△ABC 中,∠C=90°,AB=7,BC=5,则边 AC 的长为

6.如图所示,在 Rt△ABC 中,CD 是斜边 AB 上的高,∠ACD=40°,则∠EBC= 140 度.
7.(2013 佛山)如图,若∠A=60°,AC=20m,则 BC 大约是(结果精确到 0.1m)( B )
A.34.64m
B.34.6m
C.28.3m
D.17.3m
思路点拨:首先计算出∠B 的度数,再根据直角三角形的性质可得 AB=40m,再利用勾 股定理计算出 BC 长即可.
★随堂检测★
1.(2013 白银)等腰三角形的周长为 16,其一边长为 6,则另两边为 6,4或5,5 .
★课前预习★
1.(2013 新疆)等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为( B )
A.12
B.15
C.12 或 15
D.18
2.(2013 成都)如图,在△ABC 中,∠B=∠C,AB=5,则 AC 的长为( D )
A.2
B.3
C.4
D.5
3.(2013 黔西南州)如图,已知△ABC 是等边三角形,点 B、C、D、E 在同一直线上,且
形;④有一个角是直角的三角形是直角三角形.
A.1 个
B.2 个
C.3 个
D.4 个
7.已知△ABC 的三边长分别为 5,13,12,则△ABC 的面积为( A )
A.30
B.60
C.78
D.不能确定
8.(2013 东营)如图,圆柱形容器中,高为 1.2m,底面周长为 1m,在容器内壁离容 器底部 0.3m 的点 B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿 0.3m 与 蚊子相对的点 A 处,则壁虎捕捉蚊子的最短距离为 1.3 m(容器厚度忽略不计).

2020年中考数学第一轮复习 第十七讲 三角形与全等三角形 知识点+真题 学生版(后含答案)

2020年中考数学第一轮复习 第十七讲  三角形与全等三角形 知识点+真题 学生版(后含答案)

2020年中考数学第一轮复习教案第三章图形的认识与三角形第十七讲三角形与全等三角形【中考真题考点例析】考点一:三角形三边关系例1 (温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11对应练习1-1(长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8考点二:三角形内角、外角的应用例2 (2019青岛中考)如图,BD 是△ABC 的角平分线,AE⊥ BD ,垂足为F .若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A. 35°B. 40°C. 45°D. 50°对应练习2-1(2019年威海)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上),若∠1=23°,则∠2=°对应练习2-2(2019年枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B. 60°C. 75°D. 85°考点三:三角形全等的判定和性质例3 (2019年山东滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC ,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.1对应练习3-1 (天门)如图,已知△ABC ≌△ADE ,AB 与ED 交于点M ,BC 与ED ,AD 分别交于点F ,N .请写出图中两对全等三角形(△ABC ≌△ADE 除外),并选择其中的一对加以证明.对应练习3-2 (宜宾)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD . 考点四:全等三角形开放性问题例4 (云南)如图,点B 在AE 上,点D 在AC 上,AB=AD .请你添加一个适当的条件,使△ABC ≌△ADE (只能添加一个).(1)你添加的条件是 .(2)添加条件后,请说明△ABC ≌△ADE 的理由.对应练习4-1 (昭通)如图,AF=DC ,BC ∥EF ,只需补充一个条件 ,就得△ABC ≌△DEF .第十七讲 三角形与全等三角形 参考答案【中考真题考点例析】考点一:三角形三边关系例1答案:C 对应练习1-1答案:B 考点二:三角形内角、外角的应用例2答案:C 对应练习2-1答案:68 对应练习2-2 答案:C 考点三:三角形全等的判定和性质MOCD B例3 答案:B 对应练习3-1 答案:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .选择△AEM ≌△ACN ,证明:∵△ADE ≌△ABC ,∴AE=AC ,∠E=∠C ,∠EAD=∠CAB ,∴∠EAM=∠CAN ,∵在△AEM 和△ACN 中,∠E =∠CAE =AC∠EAM =∠CAN∴△AEM ≌△ACN (ASA ).对应练习3-2 答案:证明:在△ABE 和△ACD 中,⎪⎩⎪⎨⎧)公共角A(=∠A ∠)已知AC(= AB )已知C(=∠B ∠ ∴△ABE ≌△ACD (ASA ),∴BE=CD (全等三角形的对应边相等).考点四:全等三角形开放性问题例4 答案:解:(1)∵AB=AD ,∠A=∠A ,∴若利用“AAS ”,可以添加∠C=∠E ,若利用“ASA ”,可以添加∠ABC=∠ADE ,或∠EBC=∠CDE ,若利用“SAS ”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为∠C=∠E (或∠ABC=∠ADE 或∠EBC=∠CDE 或AC=AE 或BE=DC );故答案为:∠C=∠E ;(2)选∠C=∠E 为条件.理由如下:∵在△ABC 和△ADE 中,⎪⎩⎪⎨⎧AD =AB E=∠C ∠A =∠A ∠ ∴△ABC ≌△ADE (AAS ).对应练习4-1 答案:BC=EF ,解析:∵AF=DC ,∴AF+FC=CD+FC ,即AC=DF ,∵BC ∥EF ,∴∠EFC=∠BCF ,∵在△ABC 和△DEF 中,⎪⎩⎪⎨⎧DF =AC BCF=∠EFC ∠BC =EF ∴△ABC ≌△DEF (SAS ).故答案为:BC=EF .【聚焦中考真题】 一、选择题 1.(湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15°B .25°C .30°D .10°2.(鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°3.(泉州)在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形4.(宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,45.(衡阳)如图,∠1=100°,∠C=70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°6.(河北)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远7.(铁岭)如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D8.(台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确9.(邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC10.(河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°11.(陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对二、填空题12.(威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF= .13.(黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B= 度.14.(柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .15.(巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)16.(郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).17.(达州)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013= 度.三、解答题18.(聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.19.(菏泽)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.20.(临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.(东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.22.(烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF 的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.23.(玉林)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.24.(湛江)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.25.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.26.(十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.27.(佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.28.(内江)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.29.(舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?30.(荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.31.(随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明.提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .第十七讲 三角形与全等三角形 参考答案【聚焦中考真题】一、选择题1-5 AADDC 6-10 CCDAB 11 C二、填空题12答案:25°13答案:6014答案:2015答案:CA=FD16答案:∠B=∠C17答案:20152m解:∵A1B 平分∠ABC ,A1C 平分∠ACD ,∴∠A1=21∠A ,∠A2=21∠A1=221∠A ,… ∴∠A2 015=201521∠A=20152m 。

中考数学总复习 第一部分 教材同步复习 第四章 三角形 第17讲 等腰三角形与直角三角形课件

中考数学总复习 第一部分 教材同步复习 第四章 三角形 第17讲 等腰三角形与直角三角形课件
125/9/2021
2.(2016·江西 12 题 3 分)如图是一张长方形纸片 ABCD,已知 AB=8,AD=7, E 为 AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点 P 落在长 方形 ABCD 的某一条边上,则等腰三角形 AEP 的底边长是_5___2_或__4__5_或___5__________.
1224/9/2021
如答图 2 所示, 当∠B′ED=90°时,点 C 与点 E 重合.
∵AB′=10,AC=6,∴B′E=4. 设 BD=DB′=x,则 DE=CD=8-x. 在 Rt△B′DE 中,DB′2=DE2+B′E2,即 x2=(8-x)2 +42.解得 x=5,∴BD=5. 综合所述,BD 的长为 2 或 5.
第一部分 教材同步复习
第四章 三角形
第17讲 等腰三角形与直角三角形
12/9/2021
Байду номын сангаас
知识要点 · 归纳
知识点一 等腰三角形的性质与判定
概念
有两条边相等的三角形叫做等腰三角形
(1)两底角相等,即∠B=∠C; (2)两腰相等,即 AB=AC; 性质 (3)是轴对称图形,有一条对称轴,即 AD; (4)“三线合一”(即顶角的①__平_分__线___、底边上的中线和底边上的高互 相重合)
• (2)若图形中含折叠,考虑用折叠的性质,然后在直角三角形中,设 未知量,列方程求解.
• (3)若所求为线段和(或可转化为线段和的形式),考虑用证全等转 化到直角三角形中求解.
1227/9/2021
12/9/2021
122/9/2021
重难点2 直角三角形的多解题 重点 例3 (2018·宜春模拟)如图,Rt△ABC 纸片中,∠C=90°,AC=6,BC=8, 点 D 在边 BC 上,以 AD 为折痕将△ABD 折叠得到△AB′D,AB′与边 BC 交于点 E.若△DEB′为直角三角形,则 BD 的长是__2_或__5___.

广东省中考第一轮复习第17讲等腰三角形、直角三角形课件

广东省中考第一轮复习第17讲等腰三角形、直角三角形课件

(2)AC=EF.
证明:∵AF∥BC,∴∠FAE=∠AEB. ∵AB=AE,∴∠B=∠AEB,∴∠B=∠FAE.
∠B=∠FAE,
在△ABC 和△EAF 中,AB=AE, ∠BAC=∠AEF,
∴△ABC≌△EAF,∴AC=EF.
4.(2019·甘肃天水)如图,等边三角形OAB的边长 为2,则点B的坐标为( B )
A.(1,1) C.( 3,1)
B.(1, 3) D.( 3, 3)
5.如图,在等腰三角形ABC中,AD是BC边上的 高,E是AD上的一点.
(1)求证:△ BEC是等腰三角形.
证明:∵△ABC 是等腰三角形,AD 是 BC 边上的高, ∴AD 为 BC 边上的垂直平分线. ∵点 E 在 AD 上,∴BE=CE, ∴△BEC 为等腰三角形.
第17讲 等腰三角形、直角三角形
名师导航 知识梳理 考点精练 中考实战
年份 真题类型
考点分布
考查分值
2015 2016
等腰三角形与直角三角形的
解答题 性质
3+3=6(分)
等腰三角形的定义及分类讨
2017
解答题 论
3分
2018 2019
解答题 解答题
等腰三角形的判定 等腰三角形与直角三角形的 判定
3分 3+3=6(分)
B组 能力提升 6.“三等分角”大约是在公元前五世纪由古希腊人提出 来的,借助如图的“三等分角仪”能三等分任一角.这个三等 分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并 可绕点O转动、点C固定,OC=CD=DE,点D,E可在槽中 滑动.若∠BDE=75°,则∠CDE的度数是( D )
A.60° B.65° C.75° D.80°
2020预测 等腰三角形、等边三角形、直角三角形的性质与判定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17课时等腰三角形
1.★等腰三角形的两边长分别为6和8,则这个等腰三角形的周长为( ) A.20 B.22 C.20或22 D.12或16
2.如图Y-27,在△ABC中,AB=AC,∠B=70°,则∠A的度数是( )
图Y-27
A.70°B.55°C.50°D.40°
3.如图Y-28,在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )
图Y-28
A.18°B.24°C.30°D.36°
4.如图Y-29,在△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC 于点E,D为AB的中点,连接DE,则△BDE的周长是________.
图Y-29
5.★若(a-1)2+|b-2|=0,则以a,b为边长的等腰三角形的周长为________.
6.如图Y-30,△ABC是等边三角形,D是AB边上一点,以CD为边作
等边三角形CDE,使点E,A在直线DC的同侧,连接AE.
求证:AE∥BC.
图Y-30
参考答案
1.C [解析] 分情况讨论:若6为底,则这个等腰三角形的周长为22;若8为底,则这个等腰三角形的周长为20.故选C.
2.D [解析] ∵AB=AC,∠B=70°,∴∠C=∠B=70°.又∵∠A+∠C+∠B=180°,∴∠A=40°.故选D.
3.A [解析] 在△ABC中,∵AB=AC,∴∠C=∠ABC.设∠C=∠ABC=x°,∵∠A=36°,∴x+x+36=180,解得x=72,∴∠C=72°.∵BD是AC边上的高,
∴∠BDC=90°.在△BDC中,∠DBC=180°-90°-72°=18°.故选A.
4.10 [解析] 由等腰三角形的三线合一,可知AE⊥BC,BE=CE=4.由直角三角形斜边上的中线等于斜边的一半,知DE=BD=3,所以△BDE的周长是10.
5.5 [解析] ∵(a-1)2+|b-2|=0,∴a=1,b=2.当a为腰时,三角形的边长为1,1,2,不能构成三角形;当b为腰时,三角形的边长为2,2,1,能构成三角形,∴等腰三角形的周长=2+2+1=5.此类问题容易出现的错误是:1.不能根据非负数的性质求a,b;2.没有分类讨论.
6.证明:∵△ABC和△EDC是等边三角形,
∴∠BCA=∠DCE=60°,
∴∠BCA-∠ACD=∠DCE-∠ACD,
即∠BCD=∠ACE.
在△DBC和△EAC中,
∵BC=AC,∠BCD=∠ACE,DC=EC,
∴△DBC≌△EAC(SAS),
∴∠DBC=∠EAC.
又∵∠DBC=∠ACB=60°,
∴∠ACB=∠EAC,
∴AE∥BC.
初中数学试卷。

相关文档
最新文档